
Chapter 3
Spectral Theory

3.1 The spectral approach to ergodic theory

A basic problem in ergodic theory is to determine whether two ppt are measure
theoretically isomorphic. This is done by studying invariants: properties, quantities,
or objects which are equal for any two isomorphic systems. The idea is that if two
ppt have different invariants, then they cannot be isomorphic. Ergodicity and mixing
are examples of invariants for measure theoretic isomorphism.

An effective method for inventing invariants is to look for a weaker equivalence
relation, which is better understood. Any invariant for the weaker equivalence rela-
tion is automatically an invariant for measure theoretic isomorphism. The spectral
point of view is based on this approach.

The idea is to associate to the ppt (X ,B,µ ,T ) the operator UT : L2(X ,B,µ)→
L2(X ,B,µ), Ut f = f ◦ T . This is an isometry of L2 (i.e. ‖UT f‖2 = ‖ f‖2 and
〈UT f ,UT g〉= 〈 f ,g〉). It is useful here to think of L2 as a Hilbert space over C.

Definition 3.1. Two ppt (X ,B,µ,T ), (Y,C ,ν ,S) are called spectrally isomorphic,
if their associated L2–isometries UT and US are unitarily equivalent, namely if there
exists a linear operator W : L2(X ,B,µ)→ L2(Y,C ,ν) s.t.

1. W is invertible;
2. 〈W f ,Wg〉= 〈 f ,g〉 for all f ,g ∈ L2(X ,B,µ);
3. WUT =USW .

It is easy to see that any two measure theoretically isomorphic ppt are spectrally iso-
morphic, but we will see later that there are Bernoulli schemes which are spectrally
isomorphic but not measure theoretically isomorphic.

Definition 3.2. A property of ppt is called a spectral invariant, if whenever it holds
for (X ,B,µ,T ), it holds for all ppt which are spectrally isomorphic to (X ,B,µ ,T ).

Proposition 3.1. Ergodicity and mixing are spectral invariants.
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84 3 Spectral theory

Proof. Suppose (X ,B,µ,T ) is a ppt, and let UT be as above. The trick is to phrase
ergodicity and mixing in terms of UT .

Ergodicity is equivalent to the statement “all invariant L2–functions are con-
stant”, which is the same as saying that dim{ f : UT f = f} = 1. Obviously, this
is a spectral invariant.

Mixing is equivalent to the following statement: dim{ f : UT f = f}= 1, and

〈 f ,Un
T g〉 −−−→

n→∞
〈 f ,1〉〈g,1〉 for all f ,g ∈ L2.

To see that this property is preserved by spectral isomorphisms, note that if dim{ f :
UT f = f}= 1, then any unitary equivalence W satisfies W1 = c with |c|= 1. ut

The spectral point of view immediately suggests the following invariant.

Definition 3.3. Suppose (X ,B,µ ,T ) is a ppt. If f : X →C, f ∈ L2 satisfies f ◦T =
λ f , then we say that f is an eigenfunction and that λ is an eigenvalue. The point
spectrum T is the set H(T ) := {λ ∈ C : f ◦T = λ f}.

H(T ) is a countable subgroup of the unit circle (problem 3.1). Evidently H(T ) is a
spectral invariant of T .

It is easy to see using Fourier expansions that for the irrational rotation Rα ,
H(Rα) = {αk : k ∈ Z} (problem 3.2), thus irrational rotations by different angles
are non-isomorphic.

Here are other related invariants:

Definition 3.4. Given a ppt (X ,B,µ,T ), let Vd := span{eigenfunctions}. We say
that (X ,B,µ,T ) has

1. discrete spectrum (sometime called pure point spectrum), if Vd = L2,
2. continuous spectrum, if Vd = {constants} (i.e. is smallest possible),
3. mixed spectrum, if Vd 6= L2,{constants}.

Any irrational rotation has discrete spectrum (problem 3.2). Any mixing transfor-
mation has continuous spectrum, because a non-constant eigenfunction f ◦T = λ
satisfies

〈 f , f ◦T nk〉 −−−→
n→∞

‖ f‖2
2 6= (

∫
f )2

along any nk → ∞ s.t. λ nk → 1. (To see that ‖ f‖2 6= (
∫

f dµ)2 for all non-constant
functions, apply Cauchy-Schwarz to f − ∫

f , or note that non-constant L2 functions
have positive variance.)

The invariant H(T ) is tremendously successful for transformations with discrete
spectrum:

Theorem 3.1 (Discrete Spectrum Theorem). Two ppt with discrete spectrum are
measure theoretically isomorphic iff they have the same group of eigenvalues.

But this invariant cannot distinguish transformations with continuous spectrum. In
particular - it is unsuitable for the study of mixing transformations.
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3.2 Weak mixing

3.2.1 Definition and characterization

We saw that if a transformation is mixing, then it does not have non-constant eigen-
functions. But the absence of non-constant eigenfunctions is not equivalent to mix-
ing (see problems 3.8–3.10 for an example). Here we study the dynamical signifi-
cance of this property. First we give it a name.

Definition 3.5. A ppt is called weak mixing, if every f ∈ L2 s.t. f ◦T = λ f a.e. is
constant almost everywhere.

Theorem 3.2. The following are equivalent for a ppt (X ,B,µ,T ) on a Lebesgue
space:

1. weak mixing;
2. for all E,F ∈ B, 1

N ∑N−1
k=0 |µ(E ∩T−nF)−µ(E)µ(F)| −−−→

N→∞
0;

3. for every E,F ∈ B, ∃N ⊂ N of density zero (i.e. |N ∩ [1,N]|/N −−−→
N→∞

0) s.t.

µ(E ∩T−nF)−−−−−→
N 63n→∞

µ(E)µ(F);

4. T ×T is ergodic.

Proof. We prove (2) ⇒ (3) ⇒ (4) ⇒ (1). The remaining implication (1) ⇒ (2)
requires additional preparation, and will be shown later.

The implication (2)⇒ (3) is a general fact from calculus (Koopman–von Neu-
mann Lemma): If an is a bounded sequence of non-negative numbers, then 1

N ∑N
n=1 an →

0 iff there is a set of zero density N ⊂ N s.t. an −−−−−→
N 63n→∞

0 (Problem 3.3).

We show that (3)⇒ (4). Let S be the semi-algebra {E ×F : E,F ∈ B} which
generates B⊗B, and fix Ei ×Fi ∈ S . By (3), ∃Ni ⊂ N of density zero s.t.

µ(Ei ∩T−nFi)−−−−−→
Ni 63n→∞

µ(Ei)µ(Fi) (i = 1,2).

The set N = N1 ∪N2 also has zero density, and

µ(Ei ∩T−nFi)−−−−−→
N 63n→∞

µ(Ei)µ(Fi) (i = 1,2).

Writing m = µ ×µ and S = T ×T , we see that this implies that

m[(E1 ×E2)∩S−n(F1 ×F2)]−−−−−→
N 63n→∞

m(E1 ×F1)m(E2 ×F2),

whence 1
N ∑N−1

k=0 m[(E1 ×F1)∩S−n(E2 ×F2)]−−−→
N→∞

m(E1 ×F1)m(E2 ×F2). In sum-

mary, 1
N ∑N−1

k=0 m[A∩S−nB]−−−→
N→∞

m(A)m(B) for all A,B ∈ S .

Since S generates B⊗B the above holds for all A,B ∈B⊗B, and this implies
that T ×T is ergodic.
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Proof that (4)⇒ (1): Suppose T were not weak mixing, then T has an non-
constant eigenfunction f with eigenvalue λ . The eigenvalue λ has absolute value
equal to one, because |λ |‖ f‖2 = ‖| f | ◦T‖2 = ‖ f‖2. Thus

F(x,y) = f (x) f (y)

is T ×T –invariant. Since f is non-constant, F is non-constant, and we get a contra-
diction to the ergodicity of T ×T .

The proof that (1)⇒ (2) is presented in the next section. ut

3.2.2 Spectral measures and weak mixing

It is convenient to introduce the following notation Un
T := (U∗

T )
|n| where n < 0,

where U∗
T is the unique operator s.t. 〈U∗

T f ,g〉= 〈 f ,UT g〉 for all g ∈ L2. This makes
sense even if UT is not invertible. The reader can check that when UT is invertible,
U−1

T = (UT )
−1, so that there is no risk of confusion.

We are interested in the behavior of Un
T f as n →±∞. To study it, it is enough to

study UT : H f → H f , where H f := span{Un
T f : n ∈ Z}.

It turns out that UT : H f → H f is unitarily equivalent to the operator M : g(z) 7→
zg(z) on L2(S1,B(S1),ν f ) where ν f is some finite measure on S1, called the spectral
measure of f , which contains all the information on UT : H f → H f .

To construct it, we need the following important tool from harmonic analysis.
Recall that The n-th Fourier coefficient of µ is the number µ̂(n) =

∫
S1 zndµ .

Theorem 3.3 (Herglotz). A sequence {rn}n∈Z is the sequence of Fourier coeffi-
cients of a positive Borel measure on S1 iff r−n = rn and {rn} is positive definite:

N
∑

n,m=−N
rn−maman ≥ 0 for all sequences {an} and N. This measure is unique.

It is easy to check that rn = 〈Un
T f , f 〉 is positive definite (to see this expand

〈Σ N
n=−NanUn

T f ,Σ N
m=−NamUm

T f 〉 noting that 〈Un
T f ,Um

T f 〉= 〈Un−m
T f , f 〉).

Definition 3.6. Suppose (X ,B,µ ,T ) is a ppt, and f ∈ L2 \ {0}. The spectral mea-
sure of f is the unique measure ν f on S1 s.t. 〈 f ◦T n, f 〉= ∫

S1 zndν f for n ∈ Z.

Proposition 3.2. Let H f := span{Un
T f : n ∈ Z}, then UT : H f → H f is unitarily

equivalent to the operator g(z) 7→ zg(z) on L2(S1,B(S1),ν f ).

Proof. By the definition of the spectral measure,

∥∥∥∥∥
N

∑
n=−N

anzn

∥∥∥∥∥

2

L2(ν f )

=

〈
N

∑
n=−N

anzn,
N

∑
m=−N

amzm

〉
=

N

∑
n,m=−N

anam

∫

S1
zn−mdν f (z)

=
N

∑
n,m=−N

anam〈Un−m
T f , f 〉=

N

∑
n,m=−N

anam〈Un
T f ,Um

T f 〉=
∥∥∥∥∥

N

∑
n=−N

anUn
T f

∥∥∥∥∥

2

L2(µ)
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In particular, if Σ N
n=−NanUn

T f = 0 in L2(µ), then Σ N
n=−Nanzn = 0 in L2(ν f ). It follows

that W : Un
T f 7→ zn extends to a linear map from span{Un

T f : n ∈ Z} to L2(ν f ).
This map is an isometry, and it is bounded. It follows that W extends to an linear

isometry W : H f → L2(ν f ). The image of W contains all the trigonometric poly-
nomials, therefore W (H f ) is dense in L2(ν f ). Since W is an isometry, its image is
closed (exercise). It follows that W is an isometric bijection from H f onto L2(ν f ).

Since (WUt)[g(z)] = z[Wg(z)] on span{Un
T f : n ∈ Z}, WUT g(z) = zg(z) on H f ,

and so W is the required unitary equivalence. ut

Proposition 3.3. If T is weak mixing ppt on a Lebesgue space, then all the spec-
tral measures of f ∈ L2 s.t.

∫
f = 0 are non-atomic (this explains the terminology

“continuous spectrum”).

Proof. Suppose f ∈ L2 has integral zero and that ν f has an atom λ ∈ S1. We con-
struct an eigenfunction (with eigenvalue λ ). Consider the sequence 1

N ∑N−1
n=0 λ−nUn

T f .
This sequence is bounded in norm, therefore has a weakly convergent subsequence
(here we use the fact that L2 is separable — a consequence of the fact that (X ,B,µ)
is a Lebesgue space):

1
Nk

N−1

∑
n=0

λ−kUk
T

w−−−→
N→∞

g.

The limit g must satisfy 〈UT g,h〉 = 〈λg,h〉 (check!), therefore it must be an eigen-
function with eigenvalue λ .

But it could be that g = 0. We rule this out using the assumption that ν f {λ} 6= 0:

〈g, f 〉= lim
k→∞

1
Nk

Nk−1

∑
n=0

λ−n〈Un
T f , f 〉= lim

k→∞

1
Nk

Nk−1

∑
n=0

∫
λ−nzndν f (z)

= ν f {λ}+ lim
k→∞

1
Nk

Nk−1

∑
n=0

∫

S1\{λ}
λ−nzndν f (z)

= ν f {λ}+ lim
k→∞

∫

S1\{λ}

1
Nk

1−λ−Nk zNk

1−λ−1z
dν f (z).

The limit is equal to zero, because the integrand tends to zero and is uniformly
bounded (by one). Thus 〈g, f 〉= ν f {λ} 6= 0, whence g 6= 0. ut

Lemma 3.1. Suppose T is a ppt on a Lebesgue space. If T is weak mixing, then for

every f ∈ L2, 1
N

N−1
∑

k=0
|∫ f · f ◦T ndµ − (

∫
f dµ)2| −−−→

N→∞
0.

Proof. It is enough to treat the case when
∫

f dµ = 0. Let ν f denote the spectral
measure of f , then
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1
N

N−1

∑
k=0

∣∣∣∣
∫

f · f ◦T ndµ
∣∣∣∣
2

=
1
N

N−1

∑
k=0

|〈Un
T f , f 〉|2 = 1

N

N−1

∑
k=0

∣∣∣∣
∫

S1
zndν f (z)

∣∣∣∣
2

=
1
N

N−1

∑
k=0

(∫

S1
zndν f (z)

)(∫

S1
zndν f (z)

)

=
1
N

N−1

∑
k=0

∫

S1

∫

S1
znwndν f (z)dν f (w)

=
∫

S1

∫

S1

1
N

(
N−1

∑
k=0

znwn

)
dν f (z)dν f (w)

The integrand tends to zero and is bounded outside ∆ := {(z,w) : z = w}. If we can

show that (ν f ×ν f )(∆) = 0, then it will follow that 1
N

N−1
∑

k=0
|∫ f · f ◦T ndµ|2 −−−→

N→∞
0.

This is indeed the case: T is weak mixing, so by the previous proposition ν f is
non-atomic, whence (ν f ×ν f )(∆) =

∫
S1 ν f {w}dν f (w) = 0 by Fubini-Tonelli.

It remains to note that by the Koopman - von Neumann theorem, for every
bounded non-negative sequence an, 1

N ∑N
k=1 a2

n → 0 iff 1
N ∑N

k=1 an → 0, because both
conditions are equivalent to saying that an converges to zero outside a set of indices
of density zero. ut

We can now complete the proof of the theorem in the previous section:

Proposition 3.4. If T is weak mixing, then for all f ,g ∈ L2,

1
N

N−1

∑
k=0

∣∣∣∣
∫

g · f ◦T ndµ −
(∫

f dµ
)(∫

gdµ
)∣∣∣∣−−−→N→∞

0. (3.1)

Proof. Assume first T is invertible, then UT is invertible, with a bounded inverse
(equal to UT−1). Fix f ∈ L2, and set

S( f ) := span{Uk
T f : k ∈ Z}.

Write L2 = S( f )+{constants}+[S( f )+ constants]⊥.

1. Every g ∈ S( f ) satisfies (3.1), because S( f ) is generated by functions of the form
g :=Uk

T f , and these functions satisfy (3.1) by Lemma 3.1.
2. Every constant g satisfies (3.1) trivially.
3. Every g⊥ S( f )⊕{constants} satisfies (3.1) because 〈g, f ◦T n〉 is eventually zero.

It follows that every g ∈ L2 satisfies (3.1).
Now consider the case of a non-invertible ppt. Let (X̃ ,B̃, µ̃, T̃ ) be the natural

extension. A close look at the definition of B̃ shows that if f̃ : X̃ → R is B̃–
measurable, then the value of f̃ (. . . ,x−1,x0,x1, . . .) is completely determined by x0.
Moreover, f̃ : X̃ → C is of the form f ◦ π̃ where f is B–measurable. Thus every
eigenfunction for T̃ is a lift of an eigenfunction for T . It follows that if T is weak
mixing, then T̃ is weak mixing.
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By the first part of the proof, T̃ satisfies (3.1). Since T is a factor of T , it also
satisfies (3.1). ut

3.3 The Koopman operator of a Bernoulli scheme

In this section we analyze the Koopman operator of an invertible Bernoulli scheme.
The idea is to produce an orthonormal basis for L2 which makes the action of UT
transparent.

We cannot expect to diagonalize UT : Bernoulli schemes are mixing, so they have
no non-constant eigenfunctions. But we shall we see that we can get the following
nice structure:

Definition 3.7. An invertible ppt is said to have countable Lebesgue spectrum if
L2 has an orthonormal basis of the form {1} ∪ { fλ , j : λ ∈ Λ , j ∈ Z} where Λ is
countable, and UT fλ , j = fλ , j+1 for all i, j.

The reason for the terminology is that the spectral measure of each fλ , j is propor-
tional to the Lebesgue measure on S1 (problem 3.6).

Example. The invertible Bernoulli scheme with probability vector ( 1
2 ,

1
2 ) has count-

able Lebesgue spectrum.

Proof. The phase space is X = {0,1}Z. Define for every finite non-empty A ⊂Z the
function ϕA(x) := ∏ j∈A(−1)x j . Define ϕ∅ := 1. Then,

1. if A 6= B, then ϕA ⊥ ϕB;
2. span{ϕA : A ⊂ Z finite} is algebra of functions which separates points, and con-

tains the constants.

By the Stone-Weierstrass theorem, span{ϕA : A ⊂ Z finite} = L2, so {ϕA} is an
orthonormal basis of L2. This is called the Fourier–Walsh system.

Note that UT ϕA = ϕA+1, where A+1 := {a+1 : a∈ A}. Take Λ the set of equiva-
lence classes of the relation A ∼ B ⇔∃c s.t. A = c+B. Let Aλ be a representative of
λ ∈Λ . The basis is {1}∪{ϕAλ+n : λ ∈Λ ,n ∈Z}= {Fourier Walsh functions}. ut

It is not easy to produce such bases for other Bernoulli schemes. But they exist.
To prove this we introduce the following sufficient condition for countable Lebesgue
spectrum, which turns out to be satisfied by many smooth dynamical systems:

Definition 3.8. An invertible ppt (X ,B,µ,T ) is called a K automorphism if there is
a σ–algebra A ⊂ B s.t.

1. T−1A ⊂ A ;
2. A generates B: σ(

⋃
n∈ZT−nA ) = B mod µ;1

3. the tail of A is trivial:
⋂∞

n=0 T−nA = {∅,X} mod µ .

1 F1 ⊂ F2 mod µ is for all F1 ∈ F2 there is a set F2 ∈ F2 s.t. µ(F14F2) = 0, and F1 = F2
mod µ iff F1 ⊂ F2 mod µ and F2 ⊂ F1 mod µ .
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Proposition 3.5. Every invertible Bernoulli scheme has the K property.

Proof. Let (SZ,B(SZ),µ,T ) be a Bernoulli scheme, i.e. B(SZ) is the sigma algebra
generated by cylinders −k[a−k, . . . ,a`] := {x ∈ SZ : xi = ai (−k ≤ i ≤ `)}, T is the
left shift map, and µ(k[a−k, . . . ,a`]) = pa−k · · · pa` .

Call a cylinder non-negative, if it is of the form 0[a0, . . . ,an]. Let A be the sigma
algebra generated by all non-negative cylinders. It is clear that T−1A ⊂ A and
that

⋃
n∈ZT−nA generates B(SZ). We show that the measure of every element of⋂∞

n=0 T−nA is either zero or one. Probabilists call the elements of this intersection
tail events. The fact that every tail event for a sequence of independent identically
distributed random variables has probability zero or one is called “Kolmogorov’s
zero–one law”.

Two measurable sets A,B are called independent, if µ(A∩B) = µ(A)µ(B). For
Bernoulli schemes, any two cylinders with non-overlapping set of indices is inde-
pendent (check). Thus for every cylinder B of length |B|,

B is independent of T−|B|A for all non-negative cylinders A.

It follows that B is independent of every element of T−|B|A (a monotone class
theorem argument). Thus every cylinder B is independent of every element of⋂

n≥1 T−nA . Thus every element of B is independent of every element of
⋂

n≥1 T−nA
(another monotone class theorem argument).

This means that every E ∈ ⋂
n≥1 T−nA is independent of itself. Thus µ(E) =

µ(E ∩E) = µ(E)2, whence µ(E) = 0 or 1. ut

Proposition 3.6. Every K automorphism on a non-atomic standard probability
space has countable Lebesgue spectrum.

Proof. Let (X ,B,µ,T ) be a K automorphism of a non-atomic standard probability
space. Since (X ,B,µ) is a non-atomic standard space, L2(X ,B,µ) is (i) infinite
dimensional, and (ii) separable.

Let A be a sigma algebra in the definition of the K property. Set V :=L2(X ,A ,µ).
This is a closed subspace of L2(X ,B,µ), and

1. UT (V )⊆V , because T−1A ⊂ A ;
2.

⋃
n∈ZUn

T (V ) is dense in L2(X ,B,µ), because
⋃

n∈ZT−nA generates B, so every
B∈B can be approximated by a finite disjoint union of elements of

⋃
n∈ZT−nA ;

3.
⋂∞

n=1 Un
T (V ) = {constant functions}, because

⋂
n≥1 T−nA = {∅,X} mod µ .

Now let W := V ªUT (V ) (the orthogonal complement of UT (V ) in V ). For all
n > 0, Un

T (W )⊂Un
T (V )⊂UT (V )⊥W . Thus W ⊥Un

T (W ) for all n > 0. Since U−1
T

is an isometry, W ⊥Un
T (W ) for all n < 0. It follows that

L2(X ,B,µ) = {constants}⊕
⊕

n∈Z
Un

T (W ) (orthogonal sum).

If { fλ : λ ∈ Λ} is an orthonormal basis for W , then the above implies that
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{1}∪{Un
T fλ : λ ∈ Λ}

is an orthonormal basis of L2(X ,B,µ) (check!).
This is almost the full countable Lebesgue spectrum property. It remains to show

that |Λ |= ℵ0. |Λ | ≤ ℵ0 because L2(X ,B,µ) is separable. We show that Λ is infi-
nite by proving dim(W ) = ∞. We use the following fact (to be proved later):

∀N ∃A1, . . . ,AN ∈ A pairwise disjoint sets, with positive measure. (3.2)

Suppose we know this. Pick f ∈ W \ {0} (W 6= {0}, otherwise L2 = {constants}
and (X ,B,µ) is atomic). Set wi := f 1Ai ◦T with A1, . . . ,AN as above, then (i) wi
are linearly independent (because they have disjoint supports); (ii) wi ∈V (because
T−1Ai ∈ T−1A ⊂ A , so wi is A –measurable); and (iii) wi ⊥UT (V ) (check, using
f ∈W ). It follows that dim(W )≥ N. Since N was arbitrary, dim(W ) = ∞.

Here is the proof of (3.2). Since (X ,B,µ) is non-atomic, ∃B1, . . . ,BN ∈ B pair-
wise disjoint with positive measure. By assumption,

⋃
n∈ZT nA generates B, thus

we can approximate Bi arbitrarily well by elements of
⋃

n∈ZT nA . By assumption,
A ⊆ TA . This means that we can approximate Bi arbitrarily well by sets from
T nA by choosing n sufficiently large. It follows that L2(X ,T nA ,µ) has dimension
at least N. This forces T nA to contain at least N pairwise disjoint sets of positive
measure. It follows that A contains at least N pairwise disjoint sets of positive mea-
sure. ut

Corollary 3.1. All systems with countable Lebesgue spectrum, whence all invertible
Bernoulli schemes, are spectrally isomorphic.

Proof. Problem 3.7. ut

But it is not true that all Bernoulli schemes are measure theoretically isomorphic.
To prove this one needs new (non-spectral) invariants. Enter the measure theoretic
entropy, which we discuss in the next chapter.

Problems

3.1. Suppose (X ,B,µ,T ) is an ergodic ppt on a Lebesgue space, and let H(T ) be
its group of eigenvalues.

1. show that if f is an eigenfunction, then | f |= const. a.e., and that if λ ,µ ∈ H(T ),
then so do 1,λ µ ,λ/µ .

2. Show that eigenfunctions of different eigenvalue are orthogonal. Deduce that
H(T ) is a countable subgroup of the unit circle.

3.2. Prove that the irrational rotation Rα has discrete spectrum, and calculate H(Rα).

3.3. Koopman - von Neumann Lemma
Suppose an is a bounded sequence of non-negative numbers. Prove that 1

N ∑N
n=1 an →
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0 iff there is a set of zero density N ⊂ N s.t. an −−−−−→
N 63n→∞

0. Guidance: Fill in the

details in the following argument.

1. Suppose N ⊂ N has density zero and an −−−−−→
N 63n→∞

0, then 1
N ∑N

n=1 an → 0.

2. Now assume that 1
N ∑N

n=1 an → 0.

a. Show that Nm := {k : ak > 1/m} form an increasing sequence of sets of den-
sity zero.

b. Fix εi ↓ 0, and choose ki ↑ ∞ such that if n > ki, then (1/n)|Ni ∩ [1,n]| < εi.
Show that N :=

⋃
i Ni ∩ (ki,ki+1] has density zero.

c. Show that an −−−−−→
N 63n→∞

0.

3.4. Here is a sketch of an alternative proof of proposition 3.4, which avoids natural
extensions (B. Parry). Fill in the details.

1. Set H := L2, V :=
⋂

n≥0 Un
T (H), and W := H ªUT H := {g ∈ H,g ⊥UT H}.

a. H =V ⊕ [(UT H)⊥+(U2
T )

⊥+ · · · ]
b. {Uk

T H} is decreasing, {(Uk
T H)⊥} us increasing.

c. H =V ⊕⊕∞
k=1 Uk

TW (orthogonal space decomposition).

2. UT : V → V has a bounded inverse (hint: use the fact from Banach space the-
ory that any bounded linear operator between mapping one Banach space onto
another Banach space which is one-to-one, has a bounded inverse).

3. (3.1) holds for any f ,g ∈V .
4. if g ∈Uk

TW for some k, then (3.1) holds for all f ∈ L2.
5. if g ∈V , but f ∈Uk

TW for some k, then (3.1) holds for f ,g.
6. (3.1) holds for all f ,g ∈ L2.

3.5. Show that every invertible ppt with countable Lebesgue spectrum is mixing,
whence ergodic.

3.6. Suppose (X ,B,µ,T ) has countable Lebesgue spectrum. Show that { f ∈ L2 :∫
f = 0} is spanned by functions f whose spectral measures ν f are equal to the

Lebesgue measure on S1.

3.7. Show that any two ppt with countable Lebesgue spectrum are spectrally iso-
morphic.

3.8. Cutting and Stacking and Chacon’s Example
This is an example of a ppt which is weak mixing but not mixing. The example is
a certain map of the unit interval, which preserves Lebesgue’s measure. It is con-
structed using the method of “cutting and stacking” which we now explain.

Let A0 = [1, 2
3 ) and R0 := [ 2

3 ,1] (thought of as reservoir).

Step 1: Divide A0 into three equal subintervals of length 2
9 . Cut a subinterval B0

of length 2
9 from the left end of the reservoir.
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• Stack the three thirds of A0 one on top of the other, starting from the left and
moving to the right.

• Stick B0 between the second and third interval.
• Define a partial map f1 by moving points vertically in the stack. The map is

defined everywhere except on R \B0 and the top floor of the stack. It can be
viewed as a partially defined map of the unit interval.

Update the reservoir: R1 := R\B0. Let A1 be the base of the new stack (equal to
the rightmost third of A0).

Step 2: Cut the stack vertically into three equal stacks. The base of each of these
thirds has length 1

3 × 2
9 . Cut an interval B1 of length 1

3 × 2
9 from the left side of

the reservoir R1.

• Stack the three stacks one on top of the other, starting from the left and moving
to the right.

• Stick B1 between the second stack and the third stack.
• Define a partial map f2 by moving points vertically in the stack. This map is

defined everywhere except the union of the top floor floor and R1 \B1.

Update the reservoir: R2 := R1 \B1. Let A2 be the base of the new stack (equal to
the rightmost third of A1).

Step 3: Cut the stack vertically into three equal stacks. The base of each of these
thirds has length 1

32 × 2
9 . Cut an interval B2 of length 1

32 × 2
9 from the left side of

the reservoir R2.

• Stack the three stacks one on top of the other, starting from the left and moving
to the right.

• Stick B2 between the second stack and the third stack.
• Define a partial map f3 by moving points vertically in the stack. This map is

defined everywhere except the union of the top floor floor and R2 \B2.

Update the reservoir: R3 := R2 \B2. Let A3 be the base of the new stack (equal to
the rightmost third of A2)

Continue in this manner, to obtain a sequence of partially defined maps fn. There is
a canonical way of viewing the intervals composing the stacks as of subintervals of
the unit interval. Using this identification, we may view fn as partially defined maps
of the unit interval.

1. Show that fn is measure preserving where it is defined (the measure is Lebesgue’s
measure). Calculate the Lebesgue measure of the domain of fn.

2. Show that fn+1 extends fn (i.e. the maps agree on the intersection of their do-
mains). Deduce that the common extension of fn defines an invertible probability
preserving map of the open unit interval. This is Chacon’s example. Denote it by
(I,B,m,T ).

3. Let `n denote the height of the stack at step n. Show that the sets {T i(An) : i =
0, . . . , `n, n ≥ 1} generate the Borel σ–algebra of the unit interval.



94 3 Spectral theory

A
0

R
0

step 1 (cutting) step 1 (stacking)

A
1

R
1

B
0

step 2 (cutting)

A
1

R
1

B
0

step 2 (stacking)

A
2

R
2

B
1

B
0

B
1

l
2

l
1

Fig. 3.1 The construction of Chacon’s example

3.9. (Continuation) Prove that Chacon’s example is weak mixing using the follow-
ing steps. Suppose f is an eigenfunction with eigenvalue λ .

1. We first show that if f is constant on An for some n, then f is constant every-
where. (An is the base of the stack at step n.)

a. Let `k denote the height of the stack at step k. Show that An+1 ⊂ An, and
T `n(An+1)⊂ An. Deduce that λ `n = 1.

b. Prove that λ `n+1 = 1. Find a recursive formula for `n. Deduce that λ = 1.
c. The previous steps show that f is an invariant function. Show that any invari-

ant function which constant on An is constant almost everywhere.

2. We now consider the case of a general L2– eigenfunction.

a. Show, using Lusin’s theorem, that there exists an n such that f is nearly con-
stant on most of An. (Hint: part 3 of the previous question).

b. Modify the argument done above to show that any L2–eigenfunction is con-
stant almost everywhere.

3.10. (Continuation) Prove that Chacon’s example is not mixing, using the following
steps.

1. Inspect the image of the top floor of the stack at step n, and show that for every n
and 0 ≤ k ≤ `n−1, m(T kAn ∩T k+`nAn)≥ 1

3 m(T kAn).
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2. Use problem 3.8 part 3 and an approximation argument to show that for every
Borel set E and ε > 0, m(E ∩T `n E)≥ 1

3 m(E)−ε for all n. Deduce that T cannot
be mixing.

Notes to chapter 3

The spectral approach to ergodic theory is due to von Neumann. For a thorough
modern introduction to the theory, see Nadkarni’s book [1]. Our exposition follows
in parts the books by Parry [2] and Petersen [1]. A proof of the discrete spectrum
theorem mentioned in the text can be found in Walters’ book [3]. A proof of Her-
glotz’s theorem is given in [2].
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Birkhäuser Verlag, Basel, 1998. x+182 pp.

2. Parry, W.: Topics in ergodic theory. Cambridge Tracts in Mathematics, 75. Cambridge Uni-
versity Press, Cambridge-New York, 1981. x+110 pp.

3. Petersen, K.: Ergodic theory. Corrected reprint of the 1983 original. Cambridge Studies in
Advanced Mathematics 2 Cambridge University Press, Cambridge, 1989. xii+329 pp.

4. Walters, P.: An introduction to ergodic theory. Graduate Texts in Mathematics, 79 Springer-
Verlag, New York-Berlin, 1982. ix+250 pp.


