
Chapter 11
Entropy and Information Theory

Von Neumann told me, “You should call it entropy, for two
reasons. In the first place your uncertainty function has been
used in statistical mechanics under that name, so it already has
a name. In the second place, and more important, no one really
knows what entropy really is, so in a debate you will always
have the advantage.”

C.E. Shannon (1916–2001)

11.1 Introduction

The term entropy was first used by R. Clausius in 1865, in the setting of his research
on heat. The underlying concept would play a crucial role in the development of
thermodynamics and statistical mechanics with the work of J.W. Gibbs and L.
Boltzmann at the end of the nineteenth century. It was, however, not these two
theories that inspired A.N. Kolmogorov when he introduced a new invariant called
“entropy” to study dynamical systems, but rather the work of C.E. Shannon on
information theory.

In a well-known paper published in 1948, marking the birth of information
theory, C.E. Shannon introduced a quantity meant to quantify the information lost
in telephone transmissions when there is static on the line.

The following experiment shows how we can understand entropy from the point
of view of information theory. Consider an information source that produces a value
or result belonging to a set of n symbols x1; : : : ; xn with respective probabilities
p1; : : : ; pn. We wish to determine the result produced by the information source by
asking yes-no questions, of the type “Is the result equal to x1?” or “Does the result
belong to such and such a subset?”. Set H D �P pi log pi, where the logarithm is
in base 2. C.E. Shannon showed that the average number of questions necessary lies
between H and H C 1 provided that the choice of the questions is optimal.

In Chap. 10, we introduced the concept of partition and associated information
function. What is the connection with the question we just stated? First, note that

© Springer-Verlag London 2016
Y. Coudène, Ergodic Theory and Dynamical Systems, Universitext,
DOI 10.1007/978-1-4471-7287-1_11

113



114 11 Entropy and Information Theory

a question partitions the sample space into two subsets. A sequence of questions
therefore gives a sequence of partitions of our space. If this sequence of questions
is able to distinguish between all possible results, this means that the generated
partition is the partition into singletons, where �.x/ D fxg for all x. The entropy of
this partition is exactly equal to H.

The value of H manifests as the average amount of information needed to
determine the result produced by the source. Later on, we will explain how to
quantify this concept of information and treat a number of concrete examples. We
will compute explicitly the entropy H when the source produces a sequence of
mutually independent symbols or when the probability of a symbol depends only
on the symbol that precedes it (Markov case).

11.2 The Notion of Information

Alice is informed of the result of a random experiment. Bob wants to determine this
result and asks Alice to give him information. Alice allows Bob to ask one question,
which she will answer with “yes” or “no”.

Bob asks his question, and Alice gives a positive answer. How much information
has Bob received?

Let us try to understand the value of this information. We first note that Bob’s
question partitions the sample space˝ into two subsets: on the one hand, the results
that lead to a positive answer from Alice and on the other hand, those that lead to a
negative answer.

The amount of information received by Bob depends on the probability p of
obtaining a positive answer to his question; we denote this amount by I. p/. Next,
suppose that Alice carries out the experiment twice and that the answer to the first
question is positive in both cases, and let us state the following postulate.
The value of the information provided by the two results obtained in an independent
manner is equal to the sum of the amount of information associated with each of the
results.

The amount of information obtained by Bob is therefore equal to twice the
amount that would have resulted from a positive answer to a single execution of the
experiment. On the other hand, the probability of obtaining a positive answer twice
is equal to p2. So we have I. p2/ D 2I. p/. It follows that I. pm/ D mI. p/ when we
repeat the experiment m times. If the function p 7! I. p/ is continuous on .0; 1/, this
leads to the equality I. px/ D xI. p/ for every real number x. By convention, we set
I. 1
2
/ D 1, which gives I. y/ D � log2. y/.
Let us compute the average amount of information given by Alice’s answer:

the answer is positive with probability p, in which case the amount of information
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received is equal to log2 p; the answer is negative with probability 1 � p, in which
case the amount of information received is equal to log2.1 � p/. We therefore have

H. p/ D �p log2 p � .1 � p/ log2.1 � p/:

Denote by � D fyes; nog the partition of ˝ associated with Alice’s question, by x
the result of the random experiment, and by� the probability measure defined on˝ .
By the definition of p, we have p D P. yes/ D �.�.x//, and we recover the usual
formula for the entropy of a partition with two elements. Let us now treat a concrete
example Sect. 11.3.

11.3 The Game of Questions and Answers

Alice rolls two six-sided dice and takes the sum of the outcomes (Table 11.1). Bob
tries to guess the result by asking questions to which Alice replies with “yes” or
“no”.

Bob asks, for example, whether the result is greater than or equal to 7, then
whether it is even. The respective answers to these questions are “no” and “yes”. He
then asks whether the result is equal to 6, and after receiving a negative answer,
whether it is equal to 2. This is summarized in Table 11.2. We can calculate
explicitly the information given by Alice’s replies. Denote Alice’s result by x,
and by �1,. . . , �n the partitions associated with Bob’s successive questions. The
information Bob obtains from the answers to questions 1 through n is equal to
I.�1 _ �2 _ � � � _ �n/.x/; it can be found in the penultimate column of the table.

The information gain given by answer n is I.�n j �1_� � �_�n�1/.x/, that is,
� log2 �.�n.x/ j �1 _ � � � _ �n�1.x//. This is the difference between I.�1 _ �2 _
� � � _ �n/.x/ and I.�1 _ �2 _ � � � _ �n�1/.x/; it can be found in the last column of the
table.

To guess the result x, Bob must obtain a total gain of information equal to
� log2

�
P.fxg/�. We can follow his progress in the table. For example, the reply

to question 3, “Is the result equal to 6?”, is rather favorable (information greater
than 1), even if on average such a question brings little information in this context
(the average relative information is equal to 0:25). After having asked question 4, “Is
the result equal to 2?”, Bob has enough information to guess the number. Indeed, 4
is the only result that induces the series of answers “no-yes-no-no” to his questions,
and in fact, Bob has reached the necessary amount of information: log2.12/ ' 3.58.

11.4 Information and Markov Chains

Here is another example from probability theory. Let X0;X1; : : : ;Xn; : : : be a
sequence of stationary random variables on a probability space .˝; T ;P/, with
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Table 11.1 Probability distribution of the sum of the outcomes of rolling two six-sided dice

Result x 2 3 4 5 6 7 8 9 10 11 12

Probability p 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Information 5.17 4.17 3.58 3.17 2.85 2.58 2.85 3.17 3.58 4.17 5.17

Table 11.2 List of questions and answers (x D 4)

i Question An element Cumulative Gain Answer Cumulative Gain

of �i entropy information

1 > 7? f7; 8; 9; 10; 11; 12g 0.98 0:98 No 1.26 1:26

2 Even? f2; 4; 6; 8; 10; 12g 1.96 0:98 Yes 2 0:74

3 6? f6g 2.21 0:25 No 3.17 1:17

4 2? f2g 2.3 0:09 No 3.58 0:41

2

3

4
5

6

7 8
9 10
11 12

Table 11.3 List of questions and answers (x D 12)

i Question An element Cumulative Gain Answer Cumulative Gain

of �i entropy information

1 6; 7; 8; 10, or 11? f6; 7; 8; 10; 11g 0.98 0:98 No 1.26 1:26

2 4; 7; 9; 10, or 11? f4; 7; 9; 10; 11g 1.98 1 No 2.16 0:9

3 5; 7; 8, or 9? f5; 7; 8; 9g 2.97 0:99 No 3.18 1:02

4 2; 10, or 12? f2; 10; 12g 3.22 0:25 Yes 4.17 0:99

5 2? f2g 3.28 0:06 No 5.17 1

2
3

4
5

6

7
8

9

1011 12
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values in the finite set A D f1; : : : ;Ng. Suppose that we know the values of the Xi

for i > 1. What amount of information do we need, on average, to know the value
of X0?

We may assume that the space ˝ on which the Xi are defined is equal to AN,
where the random variable Xi corresponds to the projection onto the coordinate i.
We denote by � W ˝ ! ˝ the shift to the left. Let us consider the partitions �n of˝
defined by �n D f.Xn D a/ j a 2 Ag; note that �n D ��n�0. Let H.X0 j X1; : : : ;Xn/

be the average amount of information needed to know the value of X0 if we know
that of the Xi for i D 1; : : : ; n. We have the equality

H.X0 j X1; : : : ;Xn/ D H.�0 j �1 _ �2 _ � � � _ �n/ D H
�
�0 j n_

iD1 �
�i�0

�
:

This amount converges to the entropy of the shift h.�; �0/. When ˝ D AN, the

partition �0 is generating because the elements of the partition
n_
0
��i�0 are the

cylinder sets of length n C 1. The entropy of the shift can therefore be seen as the
average amount of information needed to know the “current” value X0 if we know
the “past” values Xi of the process for i > 1. Let us carry out the calculation when
the Xi form a Markov chain.

Proposition 11.1 Let A be a finite set; the shift � W AN ! AN is defined by the
formula �.fxigi2N/ D fxiC1gi2N. For i; j 2 A, we consider elements pi, pi;j of Œ0; 1�
satisfying

P
i pi D 1,

P
j pi;j D 1, and

P
i pipi;j D pj. Denote by P the probability

satisfying

P
�ffxigi2N j x0 D i0; : : : ; xn D ing

� D pi0pi0;i1pi1;i2 � � � pin�1;in :

The entropy of � with respect to P is given by

hP.�/ D �
X

i;j

pipi;j log2 pi;j:

Proof By virtue of the equalities P.XkD j j XkC1D i/D pi;j and piDP.X1D i/ and
the Markov property, we have

H.X0 j X1; : : : ;Xn/ D H.X0 j X1/
D �

X

i;j

P.X0 D j;X1 D i/ log2 P.X0 D j j X1 D i/

D �
X

i;j

pipi;j log2 pi;j:

ut
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As a corollary, we deduce that a Bernoulli shift on an alphabet with n symbols
with respective probabilities p1; : : : ; pn has entropy�P pi log2 pi. For example, the
Bernoulli shift corresponding to flipping a fair coin (p1 D p2 D 1

2
) has entropy

equal to log2 2 D 1. The Bernoulli shift corresponding to rolling a six-sided die
(p1 D � � � D p6 D 1

6
) has entropy log2 6.

In Chap. 10, we saw that two measure-preserving dynamical systems with
different entropies cannot be isomorphic.

Corollary 11.1 Two Bernoulli shifts with different entropies are not isomorphic. In
particular, the Bernoulli shift with probability vector . 1

2
; 1
2
/ is not isomorphic to the

Bernoulli shift with probability vector . 1
6
; 1
6
; 1
6
; 1
6
; 1
6
; 1
6
/.

11.5 Interpretation in the Dynamical Setting

Consider a transformation T that admits a one-sided generating partition �, in the
sense that the elements of the T�i� for i 2 N generate the �-algebra of measurable
sets. Let us try to interpret the entropy h.T/ of T in terms of information. We saw in
Chap. 10 that this entropy is given by the formula h.T/ D h.T; �/ D H.� j T�1T /;
it corresponds to the average amount of information needed to determine to which
element of � the point x belongs if we know the positions of the iterates Ti.x/ in the
partition � for i > 1.

Under very general hypotheses, we can show that � is generating if and only
if the sequence �.Ti.x// for i > 0 determines x uniquely if x belongs to a certain
well-chosen set of full measure. To formalize this result, we need preliminaries on
measure theory that are the object of the last part of this book.

Proposition 11.2 Let .X; T ; �/ be a Lebesgue space, and let T W X ! X be a
measurable map that preserves the measure �. A finite partition � is one-sided
generating if and only if there exists a set X0 � X of full measure such that the
map

X �! �N

x 7�! f�.Ti.x//gi2N
restricted to X0 is injective.

In other words, once the points of Xc
0 have been dismissed, the position of the

point x is fixed if we know the list of elements of � to which x and its iterates
belong. This result will be proved in Chap. 15. We use the notion of Lebesgue space,
a notion that will be explained in Part IV of this book. All probability spaces one
comes across in practice are Lebesgue spaces. For example, every Borel space of
a complete metric space, endowed with a Borel probability measure, is a Lebesgue
space.
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Using this result, we can interpret the entropy of a transformation in terms of
information. Knowing the position of all the iterates Ti.x/ for i > 0 with respect
to the generating partition � corresponds to knowing the point T.x/, and the only
thing missing to determine the point x completely is the position of x with respect
to the partition itself. The entropy h.T/ can therefore be seen as the average amount
of information needed to know x if we know T.x/.

If the transformation T is invertible, the point x is completely determined by
the knowledge of T.x/, and the amount of information needed to know x if we
know T.x/ is 0. The entropy of an invertible transformation with a one-sided
generating partition is 0. This does not mean that all invertible transformations
have entropy 0, rather that in general, these transformations do not have one-sided
generating partitions, whence the need to turn to generating partitions to calculate
their entropy.

11.6 Exercises

11.6.1 Basic Exercises

Exercise 1 Alice rolls two six-sided dice and takes the sum of the outcomes. She
agrees to answer Bob’s questions about the value of the sum with “yes” or “no”.

Can Bob be certain to guess the correct value using only three questions? What
is the minimal number of questions he must ask to be certain to conclude regardless
of the result? Repeat this exercise for three and then four dice.

Exercise 2 Alice rolls two six-sided dice and Bob tries to guess the sum of the
outcomes. He is allowed to ask four questions.

Alice’s first three answers have given him an amount of information equal to
3:17, and he only has one question left.

• Can the result be 6?
• Can the result be 4?
• If so, which question should Bob ask?

Recall that log2.3/ D 1.58 and log2.5/ D 2.32.

Exercise 3 Let X0;X1; : : : ;Xn; : : : be a stationary Markov sequence of random
variables. Show the inequality H.Xn j X0/ 6 H.XnC1 j X0/.
Exercise 4 We roll two n-sided dice and take the sum of the outcomes. Calculate
the entropy of the system obtained by repeating this experiment independently.
Compare this with the entropy associated with the independent repetition of a
uniformly distributed experiment on a set with 2n� 1 elements.

Exercise 5 Show that the two-sided Bernoulli shift (where “two-sided” means
indexed by Z) on an alphabet with three symbols with respective probabilities 1

3
,
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1
3
, and 1

3
is not isomorphic to the Bernoulli shift on an alphabet with two symbols

with respective probabilities 1
2

and 1
2
.

Exercise 6 Let p; q 2 Œ0; 1� satisfy pCq D 1. Compute the entropy of the following
Markov chains:

12

pq

1 2

p

p

p

qq

q

Transition matrix:

�
p q
p q

�

Transition matrix:

�
p q
q p

�

11.6.2 More Advanced Exercise

Exercise 7 We consider a random experiment with n possible outcomes with
respective probabilities p1; : : : ; pn. Bob tries to guess the outcome of the experiment
using only yes-no questions. Show that the minimal number of questions Bob needs
to ask to be certain to conclude regardless of the result is always greater than the
entropy �P pi log2 pi. Show that equality is possible only if all outcomes of the
experiment have the same probability. The number of possible outcomes must then
be a power of 2.

11.7 Comments

Let us return to the case of a six-sided die. Consider a set of questions �1; : : : ; �n that allows
us to conclude regardless of the outcome: �1_� � �_�n.x/ D fxg, that is, H.�1_� � �_�n/ D
�P

pi log pi D 3.27. For some outcomes, it is not necessary to ask n questions to conclude.
For example, for the questions in Table 11.3, it suffices to ask the first three to find the result
if it is 4; 5; 6; 7; 8, or 9.
On average, what is the number of questions truly asked to find the outcome? In his
fundamental paper of 1948, C.E. Shannon showed that this average number is always
greater than the entropy. In 1952, D. Huffman proposed an algorithm to construct a sequence
of questions that minimizes the average number of questions that need to be asked. For the
rolling of two dice, Table 11.3 was obtained using this algorithm. The average number of
questions truly asked is 3:306; this is optimal. The compression methods jpeg, mp3, and
pkzip use this algorithm by D. Huffman.
Note that at least four questions need to be asked to distinguish between all outcomes.
Indeed, three questions partition the set of outcomes into at most 23 D 8 parts, whereas
there are 11 different outcomes.
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We can try to determine a set of four questions such that the average number of questions
that need to be asked out of this set of four is minimal. This can be obtained using a
“numismatic” algorithm, which gives the questions “6; 7; 8, or 9?”; “4; 5; 7; 8, or 10?”;
“3; 5; 6; 7, or 11?”; and “2; 3, or 4?”. The average number of questions needed is 3.333.
The entropy associated with rolling two n-sided dice is given by

H D �X
pi log pi D 2 log n � 1

n2

� n�1X

iD1

2i log i C n log n
�

� log.n/C 1

2
C o.1=n/:

The reader may want to compare this with the entropy of the uniform distribution on a set
with 2n � 1 elements: H D log.2n � 1/ � log.n/C log.2/C o.1/.


