Rotational properties of nilpotent groups of diffeomorphisms of surfaces

Javier Ribón javier@mat.uff.br

April 2014

Javier Ribón (UFF)

イロン 不得い イラン イラン 一声

Flows

Theorem (Lima)

Let X_1, \ldots, X_n be vector fields in \mathbb{S}^2 such that the flows of X_i and X_j commute for all $1 \le i, j \le n$. Then $\operatorname{Sing}(X_1) \cap \ldots \cap \operatorname{Sing}(X_n) \ne \emptyset$.

イロト 不得 トイラト イラト 一日

Close to Id diffeomorphisms

Theorem (Bonatti)

Let *S* be a compact surface of non-vanishing Euler characteristic. Let f_1, \ldots, f_n be pairwise commuting C^1 -diffeomorphisms close to *Id*. Then $Fix(f_1) \cap \ldots \cap Fix(f_n) \neq \emptyset$.

イロン 不得い イラン イラン 二日

Close to Id diffeomorphisms

Theorem (Bonatti)

Let *S* be a compact surface of non-vanishing Euler characteristic. Let f_1, \ldots, f_n be pairwise commuting C^1 -diffeomorphisms close to *Id*. Then $Fix(f_1) \cap \ldots \cap Fix(f_n) \neq \emptyset$.

 $\langle f_1, \ldots, f_n \rangle$ is an abelian group

くロン くぼう くほう くほう

Close to Id diffeomorphisms

Theorem (Bonatti)

Let *S* be a compact surface of non-vanishing Euler characteristic. Let f_1, \ldots, f_n be pairwise commuting C^1 -diffeomorphisms close to *Id*. Then $Fix(f_1) \cap \ldots \cap Fix(f_n) \neq \emptyset$.

$\langle f_1, \ldots, f_n \rangle$ is an abelian group

The result holds for nilpotent groups on the sphere (Druck-Fang-Firmo).

Isotopy theory

Idea

Finding models of the group up to isotopy with irreducible elements and then transferring the properties of the model to the initial group.

イロト 不得 トイヨト イヨト・

Irreducible elements

- Finite order elements
- Pseudo-Anosov elements

イロン 不得 とくき とくき とうき

Irreducible elements

- Finite order elements
- Pseudo-Anosov elements

Thurston classification

Given an orientation-preserving homeomorphism $f : S \rightarrow S$, there exists a homeomorphism g isotopic to f such that:

- g is a finite order element or
- g is pseudo-Anosov or
- *g* preserves a finite union of disjoint simple essential closed curves (= reducing curves).

Irreducible elements

- Finite order elements
- Pseudo-Anosov elements

Thurston classification

Given an orientation-preserving homeomorphism $f : S \rightarrow S$, there exists a homeomorphism g isotopic to f such that:

- g is a finite order element or
- g is pseudo-Anosov or
- *g* preserves a finite union of disjoint simple essential closed curves (= reducing curves).

There exists a common Thurston decomposition for abelian groups.

Theorem (Franks-Handel-Parwani '07)

Let *G* be an abelian subgroup of $\text{Diff}^1_+(\mathbb{S}^2)$. Then there exists either a global fixed point or a 2-orbit. Moreover *G* has a global fixed point if w(f,g) = 0 for all $f, g \in G$.

イロン 不得い イラン イラン 一声

Theorem (Franks-Handel-Parwani '07)

Let *G* be an abelian subgroup of $\text{Diff}_+^1(\mathbb{S}^2)$. Then there exists either a global fixed point or a 2-orbit. Moreover *G* has a global fixed point if w(f,g) = 0 for all $f, g \in G$.

 $w: G \times G \to \mathbb{Z}/2\mathbb{Z}$ is a morphism of groups

イロン 不得い イラン イラン 二日

Theorem (Franks-Handel-Parwani '07)

Let *G* be an abelian subgroup of $\text{Diff}^1_+(\mathbb{R}^2)$. Suppose that *G* has a non-empty compact invariant set. Then there exists a global fixed point.

くロン く得い くほう くほう

Theorem (R)

Let *G* be a nilpotent subgroup of $\text{Diff}^1_+(\mathbb{S}^2)$. Then there exists either a global fixed point or a 2-orbit.

イロト 不得 トイラト イラト・

Theorem (R)

Let *G* be a nilpotent subgroup of $\text{Diff}_+^1(\mathbb{S}^2)$. Then there exists either a global fixed point or a 2-orbit.

Theorem (R)

Let *G* be a nilpotent subgroup of $\text{Diff}^1_+(\mathbb{R}^2)$. Suppose that *G* has a non-empty compact invariant set. Then there exists a global fixed point.

くロン く得入 くまと くまとう

Theorem (R)

Let *G* be a nilpotent subgroup of $\text{Diff}^1_+(\mathbb{S}^2)$. Suppose that *G* has an odd finite invariant set. Then there exists either a global fixed point or a 2-orbit.

イロン 不得い イラン イラン 一声

Consider a fixed point free nilpotent subgroup G of $\text{Diff}^1_+(\mathbb{S}^2)$.

イロン 不得 とくき とくき とうき

Consider a fixed point free nilpotent subgroup G of $\text{Diff}^1_+(\mathbb{S}^2)$.

Definition

We say that two 2-orbits \mathcal{O}_1 and \mathcal{O}_2 have the same class if

$$\{f \in G : f_{|\mathcal{O}_1} \equiv Id\} = \{f \in G : f_{|\mathcal{O}_2} \equiv Id\}$$

イロト 不得 トイヨト イヨト・

Consider a fixed point free nilpotent subgroup G of $\text{Diff}^1_+(\mathbb{S}^2)$.

Definition

We say that two 2-orbits \mathcal{O}_1 and \mathcal{O}_2 have the same class if

$$\{f \in G : f_{|\mathcal{O}_1} \equiv \mathit{Id}\} = \{f \in G : f_{|\mathcal{O}_2} \equiv \mathit{Id}\}$$

Definition

We say that 2-orbits $\mathcal{O}_1, \ldots, \mathcal{O}_n$ are independent if the action of *G* on $\mathcal{O}_1 \cup \ldots \cup \mathcal{O}_n$ is $(\mathbb{Z}/2\mathbb{Z})^n$.

イロト 不得 トイラト イラト 一日

Definition

We say that two 2-orbits \mathcal{O}_1 and \mathcal{O}_2 have the same class if

$$\{f \in G : f_{|\mathcal{O}_1} \equiv Id\} = \{f \in G : f_{|\mathcal{O}_2} \equiv Id\}$$

Definition

We say that 2-orbits $\mathcal{O}_1, \ldots, \mathcal{O}_n$ are independent if the action of *G* on $\mathcal{O}_1 \cup \ldots \cup \mathcal{O}_n$ is $(\mathbb{Z}/2\mathbb{Z})^n$.

Exercise

If there are 4 classes of 2-orbits then there are 3 independent 2-orbits.

Definition

We say that two 2-orbits \mathcal{O}_1 and \mathcal{O}_2 have the same class if

$$\{f \in G : f_{|\mathcal{O}_1} \equiv Id\} = \{f \in G : f_{|\mathcal{O}_2} \equiv Id\}$$

Definition

We say that 2-orbits $\mathcal{O}_1, \ldots, \mathcal{O}_n$ are independent if the action of *G* on $\mathcal{O}_1 \cup \ldots \cup \mathcal{O}_n$ is $(\mathbb{Z}/2\mathbb{Z})^n$.

Exercise

If there are 4 classes of 2-orbits then there are 3 independent 2-orbits.

Abelian case

$$\{f \in G : f_{|\mathcal{O}_1} \equiv \mathit{Id}\} \cap \{f \in G : f_{|\mathcal{O}_2} \equiv \mathit{Id}\} = \{f \in G : \mathit{w}(f,g) = 0 \; \forall g \in G\}$$

Definition

We say that two 2-orbits \mathcal{O}_1 and \mathcal{O}_2 have the same class if

$$\{f \in G : f_{|\mathcal{O}_1} \equiv Id\} = \{f \in G : f_{|\mathcal{O}_2} \equiv Id\}$$

We say that 2-orbits $\mathcal{O}_1, \ldots, \mathcal{O}_n$ are independent if the action of *G* on $\mathcal{O}_1 \cup \ldots \cup \mathcal{O}_n$ is $(\mathbb{Z}/2\mathbb{Z})^n$.

Exercise

If there are 4 classes of 2-orbits then there are 3 independent 2-orbits.

Definition

We say that two 2-orbits \mathcal{O}_1 and \mathcal{O}_2 have the same class if

$$\{f \in G : f_{|\mathcal{O}_1} \equiv Id\} = \{f \in G : f_{|\mathcal{O}_2} \equiv Id\}$$

We say that 2-orbits $\mathcal{O}_1, \ldots, \mathcal{O}_n$ are independent if the action of *G* on $\mathcal{O}_1 \cup \ldots \cup \mathcal{O}_n$ is $(\mathbb{Z}/2\mathbb{Z})^n$.

Exercise

If there are 4 classes of 2-orbits then there are 3 independent 2-orbits.

Abelian case

There are no 4 different classes of 2-orbits. More precisely there are 3 classes of 2-orbits.

Javier Ribón (UFF)

Nilpotent case

F = union of two 2-orbits or three 2-orbits whose classes are pairwise different.

 $G \to [G] \subset \operatorname{Mod}(\mathbb{S}^2, F)$

Nilpotent case

F = union of two 2-orbits or three 2-orbits whose classes are pairwise different.

 $G \to [G] \subset \operatorname{Mod}(\mathbb{S}^2, F)$

[G] is abelian and irreducible.

Nilpotent case

F = union of two 2-orbits or three 2-orbits whose classes are pairwise different.

 $G \to [G] \subset \operatorname{Mod}(\mathbb{S}^2, F)$

[G] is abelian and irreducible.

It is possible to define $w : G \times G \rightarrow \mathbb{Z}/2\mathbb{Z}$ as in the abelian case.

Nilpotent case

F = union of two 2-orbits or three 2-orbits whose classes are pairwise different.

 $G \to [G] \subset \operatorname{Mod}(\mathbb{S}^2, F)$

[G] is abelian and irreducible.

It is possible to define $w : G \times G \to \mathbb{Z}/2\mathbb{Z}$ as in the abelian case.

Theorem (R)

Let *G* be a fixed-point-free nilpotent subgroup of $\text{Diff}_{+}^{1}(\mathbb{S}^{2})$. Then there are either 1 or 3 classes of 2-orbits.

Theorem (Firmo-R)

Let $G = \langle H, \phi \rangle$ be a nilpotent subgroup of $\text{Diff}_0^1(\mathbb{T}^2)$ where *H* is a normal subgroup of *G*. Suppose that there exists a ϕ -invariant ergodic measure μ such that the support of μ is contained in Fix(H) and $\rho_{\mu}(\phi) = (0,0)$. Then *G* has a global fixed point.

イロン 不得い イラン イラン 一声

Theorem (Firmo-R)

Let $G = \langle H, \phi \rangle$ be a nilpotent subgroup of $\text{Diff}_0^1(\mathbb{T}^2)$ where *H* is a normal subgroup of *G*. Suppose that there exists a ϕ -invariant ergodic measure μ such that the support of μ is contained in Fix(H) and $\rho_{\mu}(\phi) = (0, 0)$. Then *G* has a global fixed point.

Theorem (Firmo-R)

Let *G* be an irrotational nilpotent subgroup of $\text{Diff}_0^1(\mathbb{T}^2)$. Then *G* has a global fixed point.

くロン 人間 とくほう くほう

Theorem (Firmo-R)

Let $G = \langle H, \phi \rangle$ be a nilpotent subgroup of $\text{Diff}_0^1(\mathbb{T}^2)$ where *H* is a normal subgroup of *G*. Suppose that there exists a ϕ -invariant ergodic measure μ such that the support of μ is contained in Fix(H) and $\rho_{\mu}(\phi) = (0, 0)$. Then *G* has a global fixed point.

Theorem (Firmo-R)

Let *G* be an irrotational nilpotent subgroup of $\text{Diff}_0^1(\mathbb{T}^2)$. Then *G* has a global fixed point.

Theorem (Firmo-R)

Let *G* be a nilpotent subgroup of Homeo(\mathbb{T}^2) (resp. Homeo₊(\mathbb{T}^2), Homeo₊(\mathbb{T}^2)). Then *G*^{'''} (resp. *G*^{''}, *G*[']) is irrotational.

イロト 不得 トイラト イラト 一日

Let *G* be a nilpotent subgroup of $\text{Diff}^1(\mathbb{S}^2)$ such that $\text{Fix}(G) = \{\infty\}$. Then:

- i) G has a fixed point on S_{∞} ;
- ii) if $f \in G$, then ∞ is not isolated in Fix(f) if $Fix(f) \neq \{\infty\}$;
- iii) for every $f \in G$ and every $z \in Fix(f) \setminus \{\infty\}$ one has $R_f(z) = \{0\}$;
- iv) every finite invariant measure of $f \in G$ is supported on Fix(f);
- **v)** every periodic point of $f \in G$ is fixed;

Let *G* be a nilpotent subgroup of $\text{Diff}^1(\mathbb{S}^2)$ such that $\text{Fix}(G) = \{\infty\}$. Then:

- i) G has a fixed point on S_{∞} ;
- ii) if $f \in G$, then ∞ is not isolated in Fix(f) if $Fix(f) \neq \{\infty\}$;
- iii) for every $f \in G$ and every $z \in Fix(f) \setminus \{\infty\}$ one has $R_f(z) = \{0\}$;
- iv) every finite invariant measure of $f \in G$ is supported on Fix(f);
- **v)** every periodic point of $f \in G$ is fixed;

 $S_{\infty} =$ circle of half-directions at ∞ , it is obtained by blowing-up ∞ .

Let *G* be a nilpotent subgroup of $\text{Diff}^1(\mathbb{S}^2)$ such that $\text{Fix}(G) = \{\infty\}$. Then:

- i) G has a fixed point on S_{∞} ;
- ii) if $f \in G$, then ∞ is not isolated in Fix(f) if $Fix(f) \neq \{\infty\}$;
- iii) for every $f \in G$ and every $z \in Fix(f) \setminus \{\infty\}$ one has $R_f(z) = \{0\}$;
- iv) every finite invariant measure of $f \in G$ is supported on Fix(f);
- **v)** every periodic point of $f \in G$ is fixed;

 $\mathcal{S}_{\infty}=$ circle of half-directions at ∞ , it is obtained by blowing-up ∞ .

 $R_f(z) =$ rotation set of the annulus homeomorphism induced by f in $\mathbb{R}^2 \setminus \{z\}$

《日》《圖》《日》《日》 - 日

Let *G* be a nilpotent subgroup of $\text{Diff}^1(\mathbb{S}^2)$ such that $\text{Fix}(G) = \{\infty\}$. Then:

- i) G has a fixed point on S_{∞} ;
- ii) if $f \in G$, then ∞ is not isolated in Fix(f) if $Fix(f) \neq \{\infty\}$;
- iii) for every $f \in G$ and every $z \in Fix(f) \setminus \{\infty\}$ one has $R_f(z) = \{0\}$;
- iv) every finite invariant measure of $f \in G$ is supported on Fix(f);
- **v)** every periodic point of $f \in G$ is fixed;

 $\mathcal{S}_{\infty}=$ circle of half-directions at ∞ , it is obtained by blowing-up ∞ .

 $R_f(z) =$ rotation set of the annulus homeomorphism induced by f in $\mathbb{R}^2 \setminus \{z\}$

The result was already known for abelian groups (Beguin - Le Calvez - Firmo - Miernowski)

Javier Ribón (UFF)