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different backgrounds...

Flows

Theorem (Lima)

Let X1, . . . ,Xn be vector fields in S2 such that the flows of Xi and Xj
commute for all 1 ≤ i , j ≤ n. Then Sing(X1) ∩ . . . ∩ Sing(Xn) 6= ∅.
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Close to Id diffeomorphisms

Theorem (Bonatti)
Let S be a compact surface of non-vanishing Euler characteristic. Let
f1, . . . , fn be pairwise commuting C1-diffeomorphisms close to Id . Then
Fix(f1) ∩ . . . ∩ Fix(fn) 6= ∅.

〈f1, . . . , fn〉 is an abelian group

The result holds for nilpotent groups on the sphere
(Druck-Fang-Firmo).

Javier Ribón (UFF) Dynamical systems 3 / 15



different backgrounds...

Close to Id diffeomorphisms

Theorem (Bonatti)
Let S be a compact surface of non-vanishing Euler characteristic. Let
f1, . . . , fn be pairwise commuting C1-diffeomorphisms close to Id . Then
Fix(f1) ∩ . . . ∩ Fix(fn) 6= ∅.

〈f1, . . . , fn〉 is an abelian group

The result holds for nilpotent groups on the sphere
(Druck-Fang-Firmo).

Javier Ribón (UFF) Dynamical systems 3 / 15



different backgrounds...

Close to Id diffeomorphisms

Theorem (Bonatti)
Let S be a compact surface of non-vanishing Euler characteristic. Let
f1, . . . , fn be pairwise commuting C1-diffeomorphisms close to Id . Then
Fix(f1) ∩ . . . ∩ Fix(fn) 6= ∅.

〈f1, . . . , fn〉 is an abelian group

The result holds for nilpotent groups on the sphere
(Druck-Fang-Firmo).

Javier Ribón (UFF) Dynamical systems 3 / 15



different backgrounds...

Isotopy theory

Idea
Finding models of the group up to isotopy with irreducible elements
and then transferring the properties of the model to the initial group.
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different backgrounds...

Irreducible elements
Finite order elements
Pseudo-Anosov elements

Thurston classification
Given an orientation-preserving homeomorphism f : S → S, there
exists a homeomorphism g isotopic to f such that:

g is a finite order element or
g is pseudo-Anosov or
g preserves a finite union of disjoint simple essential closed
curves (= reducing curves).

There exists a common Thurston decomposition for abelian groups.
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Theorem (Franks-Handel-Parwani ’07)

Let G be an abelian subgroup of Diff1
+(S2). Then there exists either a

global fixed point or a 2-orbit. Moreover G has a global fixed point if
w(f ,g) = 0 for all f ,g ∈ G.

w : G ×G→ Z/2Z is a morphism of groups
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Theorem (Franks-Handel-Parwani ’07)

Let G be an abelian subgroup of Diff1
+(R2). Suppose that G has a

non-empty compact invariant set. Then there exists a global fixed
point.
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Theorem (R)

Let G be a nilpotent subgroup of Diff1
+(S2). Then there exists either a

global fixed point or a 2-orbit.
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different backgrounds...

Applications

Theorem (R)

Let G be a nilpotent subgroup of Diff1
+(S2). Suppose that G has an

odd finite invariant set. Then there exists either a global fixed point or a
2-orbit.
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different backgrounds...

Applications

Consider a fixed point free nilpotent subgroup G of Diff1
+(S2).

Definition
We say that two 2-orbits O1 and O2 have the same class if

{f ∈ G : f|O1
≡ Id} = {f ∈ G : f|O2

≡ Id}

Definition
We say that 2-orbits O1, . . . ,On are independent if the action of G on
O1 ∪ . . . ∪ On is (Z/2Z)n.
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Consider a fixed point free nilpotent G of Diff1
+(S2).

Definition
We say that two 2-orbits O1 and O2 have the same class if

{f ∈ G : f|O1
≡ Id} = {f ∈ G : f|O2

≡ Id}

Definition
We say that 2-orbits O1, . . . ,On are independent if the action of G on
O1 ∪ . . . ∪ On is (Z/2Z)n.

Exercise
If there are 4 classes of 2-orbits then there are 3 independent 2-orbits.

Abelian case
{f ∈ G : f|O1

≡ Id} ∩ {f ∈ G : f|O2
≡ Id} = {f ∈ G : w(f ,g) = 0 ∀g ∈ G}
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different backgrounds...

Consider a fixed point free nilpotent G of Diff1
+(S2).

Nilpotent case
F = union of two 2-orbits or three 2-orbits whose classes are pairwise
different.
G→ [G] ⊂ Mod(S2,F )

[G] is abelian and irreducible.
It is possible to define w : G ×G→ Z/2Z as in the abelian case.

Theorem (R)

Let G be a fixed-point-free nilpotent subgroup of Diff1
+(S2). Then there

are either 1 or 3 classes of 2-orbits.
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Theorem (Firmo-R)

Let G = 〈H, φ〉 be a nilpotent subgroup of Diff1
0(T2) where H is a

normal subgroup of G. Suppose that there exists a φ-invariant ergodic
measure µ such that the support of µ is contained in Fix(H) and
ρµ(φ) = (0,0). Then G has a global fixed point.

Theorem (Firmo-R)

Let G be an irrotational nilpotent subgroup of Diff1
0(T2). Then G has a

global fixed point.

Theorem (Firmo-R)

Let G be a nilpotent subgroup of Homeo(T2) (resp. Homeo+(T2),
Homeo0(T2)). Then G′′′ (resp. G′′, G′) is irrotational.
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different backgrounds...

Theorem (Firmo-Le Calvez-R)

Let G be a nilpotent subgroup of Diff1(S2) such that Fix(G) = {∞}.
Then:
i) G has a fixed point on S∞;
ii) if f ∈ G, then∞ is not isolated in Fix(f ) if Fix(f ) 6= {∞};
iii) for every f ∈ G and every z ∈ Fix(f ) \ {∞} one has Rf (z) = {0};
iv) every finite invariant measure of f ∈ G is supported on Fix(f );
v) every periodic point of f ∈ G is fixed;

S∞ = circle of half-directions at∞, it is obtained by blowing-up∞.

Rf (z) = rotation set of the annulus homeomorphism induced by f in
R2 \ {z}

The result was already known for abelian groups (Beguin - Le Calvez -
Firmo - Miernowski)
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