Topology and dynamics on the boundary of two-dimensional domains

Meysam Nassiri

IPM - Institute for Research in Fundamental Sciences Tehran

Joint work with Andres Koropecki and Patrice Le Calvez

Meysam Nassiri (IPM)

Boundary dynamics and topology

Surfaces at SP, 2014

Basic Problem

- $f: S \rightarrow S$ homeomorphism of an orientable surface;
- $U \subset S$ invariant domain;
- Describe the dynamics in the boundary of U.
 - Existence of periodic points in ∂U
 - Topological restrictions imposed by the dynamics of $f|_{\partial U}$.

イロト 不得下 イヨト イヨト

Simplest setting

- $f: \mathbb{R}^2 \to \mathbb{R}^2$ orientation-preserving homeomorphism;
- $U \subset \mathbb{R}^2$ bounded, *f*-invariant, open, simply connected.

Simplest setting

- $f: \mathbb{R}^2 \to \mathbb{R}^2$ orientation-preserving homeomorphism;
- $U \subset \mathbb{R}^2$ bounded, *f*-invariant, open, simply connected.

Question

Existence of periodic point of f in ∂U ? Any necessary and sufficient condition?

Simplest setting

- $f: \mathbb{R}^2 \to \mathbb{R}^2$ orientation-preserving homeomorphism;
- $U \subset \mathbb{R}^2$ bounded, *f*-invariant, open, simply connected.

Question

Existence of periodic point of f in ∂U ? Any necessary and sufficient condition?

Simplest simplest case:

 ∂U is a circle (so $\overline{U} \simeq \overline{\mathbb{D}}$)

イロト 不得 トイヨト イヨト 二日

Simplest setting

- $f: \mathbb{R}^2 \to \mathbb{R}^2$ orientation-preserving homeomorphism;
- $U \subset \mathbb{R}^2$ bounded, *f*-invariant, open, simply connected.

Question

```
Existence of periodic point of f in \partial U?
Any necessary and sufficient condition?
```

Simplest simplest case:

$$\partial U$$
 is a circle (so $\overline{U} \simeq \overline{\mathbb{D}}$)
 $\implies f|_{\partial U}$ is a circle homeomorphisn

Simplest setting

- $f: \mathbb{R}^2 \to \mathbb{R}^2$ orientation-preserving homeomorphism;
- $U \subset \mathbb{R}^2$ bounded, *f*-invariant, open, simply connected.

Question

Existence of periodic point of f in ∂U ? Any necessary and sufficient condition?

Simplest simplest case:

 ∂U is a circle (so $\overline{U} \simeq \overline{\mathbb{D}}$)

- $\implies f|_{\partial U}$ is a circle homeomorphism
- ⇒ Poincaré Theory. Key: Rotation number!

Theorem (Poincaré)

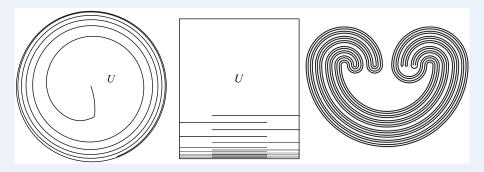
 \exists periodic point \iff rotation number of $f|_{\partial U}$ is rational.

Meysam Nassiri (IPM)

Usually ∂U is not circle!

Meysam Nassiri (IPM)

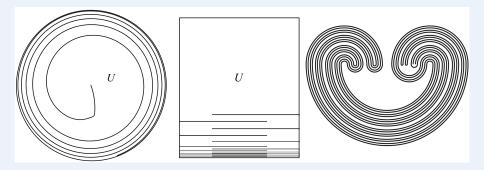
Usually ∂U **is not circle!** Not even similar. ∂U can have very very complicated topology!



Surfaces at SP, 2014

イロト イヨト イヨト イヨト

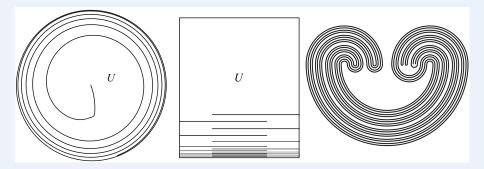
Usually ∂U **is not circle!** Not even similar. ∂U can have very very complicated topology!



- may have points inaccessible from U,
- can be nowhere locally connected,
- worse things (e.g. an hereditarily indecomposable continuum)

イロト イポト イヨト イヨト

Usually ∂U **is not circle!** Not even similar. ∂U can have very very complicated topology!



- may have points inaccessible from U,
- can be nowhere locally connected,
- worse things (e.g. an hereditarily indecomposable continuum)
- these are not isolated or infrequent, independently of regularity.

Meysam Nassiri (IPM)

Boundary dynamics and topology

Surfaces at SP, 2014

- Poincaré-like theory for ∂U ?
- How to associate a rotation number to f and U?

イロト 不得下 イヨト イヨト

- Poincaré-like theory for ∂U ?
- How to associate a rotation number to f and U?
- How to associate a circle homeomorphism to f and U?

イロト 不得下 イヨト イヨト

- Poincaré-like theory for ∂U ?
- How to associate a rotation number to f and U?
- How to associate a circle homeomorphism to f and U?

Idea

• Compactify U by adding an "ideal" circle (in a sensible way)

$$\widehat{U} := U \ \sqcup \ \mathbb{S}^1$$

with a suitable topology such that $\widehat{U} \simeq \overline{\mathbb{D}}$.

- Hopefully, $f|_U$ extends to $\widehat{f}: \widehat{U} \to \widehat{U}$.
- Define the rotation number $\rho(f, U) := \rho(\widehat{f}|_{\mathbb{S}^1})$.

イロト イポト イヨト イヨト 二日

- Poincaré-like theory for ∂U ?
- How to associate a rotation number to f and U?
- How to associate a circle homeomorphism to f and U?

Idea

• Compactify U by adding an "ideal" circle (in a sensible way)

$$\widehat{U} := U \ \sqcup \ \mathbb{S}^1$$

with a suitable topology such that $\widehat{U} \simeq \overline{\mathbb{D}}$.

- Hopefully, $f|_U$ extends to $\widehat{f}: \widehat{U} \to \widehat{U}$.
- Define the rotation number $\rho(f, U) := \rho(\widehat{f}|_{\mathbb{S}^1}).$

Cartwright-Littlewood, 1951

 \widehat{U} = Carathéodory's prime ends compactification $\rho(f, U)$ = Prime ends rotation number. Meysam Nassiri (IPM) Boundary dynamics and topology

How is the relation between two dynamics:

f has a periodic point in $\partial U \iff \rho(f, U) \in \mathbb{Q}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

How is the relation between two dynamics:

f has a periodic point in $\partial U \iff \rho(f, U) \in \mathbb{Q}$

Answer: No in both directions!

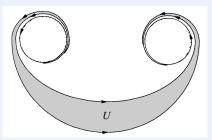


Figure : $\rho = 0$ and $Fix(f|_{\partial U}) = \emptyset$

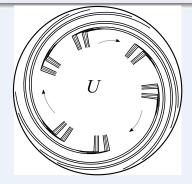
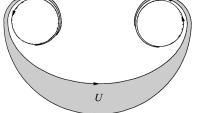


Figure : $ho \notin \mathbb{Q}$ and $\operatorname{Fix}(f|_{\partial U}) = \operatorname{circle}$

How is the relation between two dynamics:

f has a periodic point in $\partial U \iff \rho(f, U) \in \mathbb{Q}$

Answer: No in both directions!



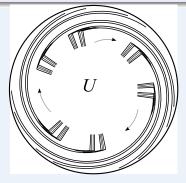


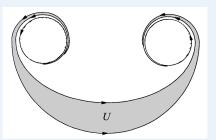
Figure : $\rho = 0$ and $\operatorname{Fix}(f|_{\partial U}) = \emptyset$ Figure : $\rho \notin \mathbb{Q}$ and $\operatorname{Fix}(f|_{\partial U}) = \operatorname{circle}$

• Note: Both examples have *attracting* regions near the boundary.

How is the relation between two dynamics:

f has a periodic point in $\partial U \iff \rho(f, U) \in \mathbb{Q}$

Answer: No in both directions!



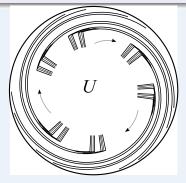


Figure : $\rho = 0$ and $\operatorname{Fix}(f|_{\partial U}) = \emptyset$ Figure : $\rho \notin \mathbb{Q}$ and $\operatorname{Fix}(f|_{\partial U}) = \operatorname{circle}$

- Note: Both examples have *attracting* regions near the boundary.
- Not possible if f preserves area (or nonwandering)....

Meysam Nassiri (IPM)

Boundary dynamics and topology

Surfaces at SP, 2014

Consequences of the rotation number

- $f: \mathbb{R}^2 \to \mathbb{R}^2$ homeomorphism
- $U \subset \mathbb{R}^2$ bounded, simply connected, open, *f*-invariant
- f is nonwandering (e.g. area-preserving) in U.

Theorem (Cartwright-Littlewood, 1951)

 $ho(f,U) \in \mathbb{Q} \implies \exists \text{ periodic point in } \partial U$

Consequences of the rotation number

- $f: \mathbb{R}^2 \to \mathbb{R}^2$ homeomorphism
- $U \subset \mathbb{R}^2$ bounded, simply connected, open, *f*-invariant
- f is nonwandering (e.g. area-preserving) in U.

Theorem (Cartwright-Littlewood, 1951)

 $\rho(f, U) \in \mathbb{Q} \implies \exists \text{ periodic point in } \partial U$

Refinements of this result: Barge-Gillette 1991, Barge-Kuperberg 1998, Ortega-Ruiz del Portal 2011

Consequences of the rotation number

- $f: \mathbb{R}^2 \to \mathbb{R}^2$ homeomorphism
- $U \subset \mathbb{R}^2$ bounded, simply connected, open, *f*-invariant
- *f* is nonwandering (e.g. area-preserving) in *U*.

Theorem (Cartwright-Littlewood, 1951)

 $ho(f,U) \in \mathbb{Q} \implies \exists \text{ periodic point in } \partial U$

Refinements of this result: Barge-Gillette 1991, Barge-Kuperberg 1998, Ortega-Ruiz del Portal 2011

Opposite direction? What if $\rho \notin \mathbb{Q}$?

Meysam Nassiri (IPM)

Boundary dynamics and topology

Surfaces at SP, 2014

ヘロン 人間 とくほ とくほ とうほ

- $f: \mathbb{R}^2 \to \mathbb{R}^2$ homeomorphism
- $U \subset \mathbb{R}^2$ bounded, simply connected, open, *f*-invariant
- *f* is nonwandering (e.g. area-preserving).

Theorem A (Converse of [C-L])

$ho(f,U) \notin \mathbb{Q} \implies \nexists$ periodic point in ∂U

- $f: \mathbb{R}^2 \to \mathbb{R}^2$ homeomorphism
- $U \subset \mathbb{R}^2$ bounded, simply connected, open, *f*-invariant
- *f* is nonwandering (e.g. area-preserving).

Theorem A (Converse of [C-L])

$\rho(f, U) \notin \mathbb{Q} \implies \nexists$ periodic point in ∂U and ∂U is annular.

- $f: \mathbb{R}^2 \to \mathbb{R}^2$ homeomorphism
- $U \subset \mathbb{R}^2$ simply connected, open, *f*-invariant
- f is nonwandering.

Theorem A'

$$\rho(f, U) \neq 0 \implies \nexists$$
 fixed point in ∂U .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

- $f: \mathbb{R}^2 \to \mathbb{R}^2$ homeomorphism
- $U \subset \mathbb{R}^2$ simply connected, open, *f*-invariant
- f is nonwandering.

Theorem A'

$$\rho(f, U) \neq 0 \implies \nexists$$
 fixed point in ∂U .

Moreover: if U is unbounded,

$$ho(f, U) \neq 0 \implies \nexists \text{ fixed point in } \mathbb{R}^2 \setminus U.$$

Still true for an arbitrary surface S?

イロト 不聞と 不良と 不良とう 度

Still true for an arbitrary surface S?

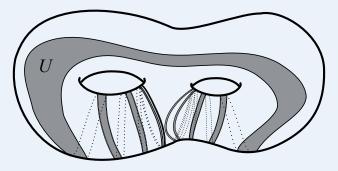


Figure : a simply connected open set

イロト イヨト イヨト イヨト

Still true for an arbitrary surface S?

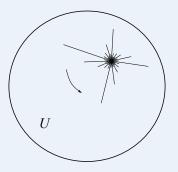


Figure : unique fixed point in ∂U , surface = \mathbb{S}^2

(日) (周) (日) (日) (日)

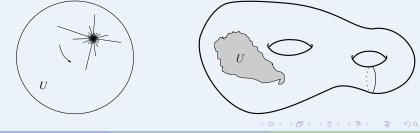
Theorem B (on closed surfaces)

- f nonwandering homeomorphism of a closed orientable surface S,
- $U \subset S$ open, *f*-invariant, simply connected.
- $\rho(f, U) \notin \mathbb{Q}$

One of these two holds:

• ∂U contains a unique fixed point and no other periodic points S = Sphere, U is dense in S, $\partial U = S \setminus U$ cellular continuum, or

2 ∂U is aperiodic contractible annular continuum.



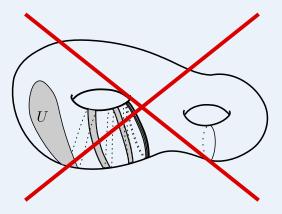


Figure : Impossible! if $\rho(f, U) \notin \mathbb{Q}$.

<□> <□> <□> <=> <=> <=> <=> <=> <<

Theorem B'

Theorem B extends to

- surfaces of finite type (non-compact);
- any invariant connected open set U;
- a ∂ -nonwandering condition (instead of nonwandering)

(日) (周) (日) (日)

Theorem B'

Theorem B extends to

- surfaces of finite type (non-compact);
- any invariant connected open set U;
- a ∂ -nonwandering condition (instead of nonwandering)

Remark

The ∂ -nonwandering condition holds if f is a holomorphic diffeomorphism.

イロト イポト イヨト イヨト

Theorem B'

Theorem B extends to

- surfaces of finite type (non-compact);
- any invariant connected open set U;
- a ∂ -nonwandering condition (instead of nonwandering)

Remark

The ∂ -nonwandering condition holds if f is a holomorphic diffeomorphism.

 \implies consequences in one-dimensional holomorphic dynamics.

イロト イポト イヨト イヨト

Application for generic area-preserving diffeos

Theorem [Mather '81]

- f a C^r -generic area preserving diffeomorphism ($r \ge 16$),
- U periodic complementary domain,
- \implies prime ends rotation numbers of U are irrational at each end.

Example: $p \in \operatorname{Per}_h(f)$, $U = \text{connected component of } S \setminus \overline{W^s(p)}$.

<ロ> <用> <用> <用> <用> <用> <用</p>

Application for generic area-preserving diffeos

Theorem [Mather '81]

- f a C^r -generic area preserving diffeomorphism ($r \ge 16$),
- U periodic complementary domain,
- \implies prime ends rotation numbers of U are irrational at each end.

Example: $p \in \operatorname{Per}_h(f)$, $U = \text{connected component of } S \setminus \overline{W^s(p)}$.

Dynamical consequences?

Theorem C

- f a C^r -generic area preserving diffeomorphism ($r \ge 1$),
- U periodic complementary domain,

イロト 不得 トイヨト イヨト 二日

Theorem C

- f a C^r -generic area preserving diffeomorphism ($r \ge 1$),
- U periodic complementary domain,

Then,

- **1** no periodic points in ∂U ,
- **2** $\partial U =$ finite disjoint union of aperiodic annular continua.

イロト 不得下 イヨト イヨト

Theorem C

- f a C^r -generic area preserving diffeomorphism ($r \ge 1$),
- U periodic complementary domain,

Then,

1 no periodic points in ∂U ,

2 $\partial U =$ finite disjoint union of aperiodic annular continua.

Example: $p \in \operatorname{Per}_h(f)$, $U = \text{connected component of } S \setminus \overline{W^s(p)}$.

Theorem C

- f a C^r -generic area preserving diffeomorphism ($r \ge 1$),
- U periodic complementary domain,

Then,

1 no periodic points in ∂U ,

2 $\partial U =$ finite disjoint union of aperiodic annular continua.

Example: $p \in \operatorname{Per}_h(f)$, $U = \text{connected component of } S \setminus \overline{W^s(p)}$.

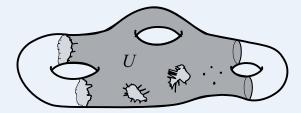
Remarks

- **()** Mather [1981] proved $\rho \notin \mathbb{Q}$, assuming *r* large ($r \ge 16$, KAM & KS)
- **2** For \mathbb{S}^2 and \mathbb{T}^2 , can be proved using Mather + Pixton-Oliveira.
- Generic condition is explicit.

Theorem C'

- f a C^r -generic area preserving diffeomorphism of a closed surface $(r \ge 1)$
- U periodic open set with finitely many topological ends.

Then $\partial U = \{ \text{aperiodic annular continua} \} \sqcup \{ \text{periodic points} \}$ (finitely many of each)



Corollary C' completes the proof of:

Theorem D

For a C^r -generic area-preserving diffeo f of any closed surface,

$$\bigcup_{p \in Per(f)} W^{s}(p) = \bigcup_{p \in Per(f)} W^{u}(p) = S$$

イロト 不得下 イヨト イヨト

Corollary C' completes the proof of:

Theorem D

For a C^r -generic area-preserving diffeo f of any closed surface,

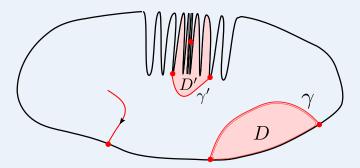
$$\bigcup_{p \in Per(f)} W^{s}(p) = \bigcup_{p \in Per(f)} W^{u}(p) = S$$

• For $S = \mathbb{S}^2$, $r \ge 16$: done by Franks and Le Calvez [ETDS, 2003]

• For any genus: proof of J. Xia [CMP, 2006] relies in Corollary C' (gap).

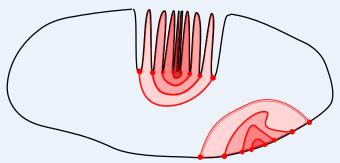
Definition

- **cross-cut**: a simple arc γ in U with endpoints in ∂U .
- cross-section: any one of the two components of $U \setminus \gamma$.



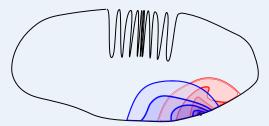
Chains

A chain in U is a decreasing sequence of cross sections (D_n) bounded by cross-cuts (γ_n) such that $\overline{\gamma_n} \cap \overline{\gamma_{n+1}} = \emptyset$.



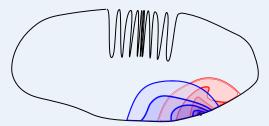
(日) (周) (日) (日) (日)

A chain in U is a decreasing sequence of cross sections (D_n) bounded by cross-cuts (γ_n) such that $\overline{\gamma_n} \cap \overline{\gamma_{n+1}} = \emptyset$. If (D'_n) is another chain, we say that (D_n) divides (D'_n) if for each n > 0 there is m such that $D_m \subset D'_n$.



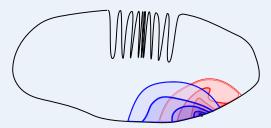
イロト 不得下 イヨト イヨト

A chain in U is a decreasing sequence of cross sections (D_n) bounded by cross-cuts (γ_n) such that $\overline{\gamma_n} \cap \overline{\gamma_{n+1}} = \emptyset$. If (D'_n) is another chain, we say that (D_n) divides (D'_n) if for each n > 0 there is m such that $D_m \subset D'_n$.



イロト 不得下 イヨト イヨト

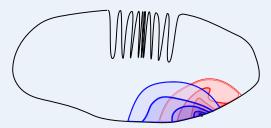
A chain in U is a decreasing sequence of cross sections (D_n) bounded by cross-cuts (γ_n) such that $\overline{\gamma_n} \cap \overline{\gamma_{n+1}} = \emptyset$. If (D'_n) is another chain, we say that (D_n) divides (D'_n) if for each n > 0 there is m such that $D_m \subset D'_n$.



A chain (D_n) is called a **prime chain** if it divides $(D'_n)_{\in\mathbb{N}}$ whenever (D'_n) is a chain that divides (D_n) .

イロト 不得 トイヨト イヨト 二日

A chain in U is a decreasing sequence of cross sections (D_n) bounded by cross-cuts (γ_n) such that $\overline{\gamma_n} \cap \overline{\gamma_{n+1}} = \emptyset$. If (D'_n) is another chain, we say that (D_n) divides (D'_n) if for each n > 0 there is m such that $D_m \subset D'_n$.



A chain (D_n) is called a **prime chain** if it divides $(D'_n)_{\in\mathbb{N}}$ whenever (D'_n) is a chain that divides (D_n) . **Prime ends of** $U = \mathcal{PE}(U) := \{\text{prime chains}\} / \text{equivalence}$

《曰》 《聞》 《臣》 《臣》 三臣

Prime chain

If \overline{U} is compact, then we may define in this way: A **prime chain** in U is a decreasing sequence of cross sections (D_n) bounded by cross-cuts (γ_n) such that

• diam
$$(\gamma_n) \rightarrow 0$$
 as $n \rightarrow \infty$

•
$$\overline{\gamma_n} \cap \overline{\gamma_{n+1}} = \emptyset$$

Prime ends compactification (Carathéodory)

$$\mathcal{PE}(U)\simeq~\mathbb{S}^1$$
 $\widehat{U}:=U~\sqcup~\mathcal{PE}(U)\simeq~\overline{\mathbb{D}}$

Prime ends rotation number

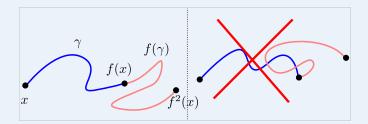
f extends to a **homeomorphism** $\widehat{f}: \widehat{U} \to \widehat{U}$

 $\rho(f, U) = Poincaré rotation number of <math>\hat{f}|_{\mathbb{S}^1}$

Meysam Nassiri (IPM)

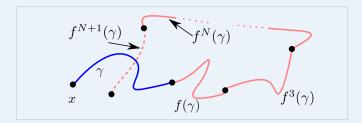
N-translation arc

- γ simple arc from x to $f(x) \neq x$,
- $\Gamma = \gamma \cup f(\gamma) \cup \cdots \cup f^N(\gamma)$ is also a simple arc.



N-translation arc

- γ simple arc from x to $f(x) \neq x$,
- $\Gamma = \gamma \cup f(\gamma) \cup \cdots \cup f^N(\gamma)$ is also a simple arc.



<ロ> (四) (四) (三) (三) (三) (三)

- $f: S \rightarrow S$ homeomorphism, S surface of genus g.
- $U \subset S$ invariant open topological disk ($S \setminus U \supsetneq$ one point)
- f is nonwandering in U,

•
$$\rho(f, U) = \alpha \neq 0$$

 $\implies \exists N = N_{\alpha,g}$ s.t every *N*-translation arc in *S* is disjoint from ∂U .

イロト 不得 トイヨト イヨト 二日

- $f: S \rightarrow S$ homeomorphism, S surface of genus g.
- $U \subset S$ invariant open topological disk ($S \setminus U \supsetneq$ one point)
- f is nonwandering in U,

•
$$\rho(f, U) = \alpha \neq 0$$

 $\implies \exists N = N_{\alpha,g}$ s.t every N-translation arc in S is disjoint from ∂U .

Case $N = \infty$ and "transverse": easy.

- $f: S \rightarrow S$ homeomorphism, S surface of genus g.
- $U \subset S$ invariant open topological disk ($S \setminus U \supsetneq$ one point)
- f is nonwandering in U,

•
$$\rho(f, U) = \alpha \neq 0$$

 $\implies \exists N = N_{\alpha,g}$ s.t every *N*-translation arc in *S* is disjoint from ∂U .

Case $N = \infty$ and "transverse": easy. "non-transverse" ($\subset \partial U$): hard.

- $f: S \rightarrow S$ homeomorphism, S surface of genus g.
- $U \subset S$ invariant open topological disk ($S \setminus U \supsetneq$ one point)
- f is nonwandering in U,
- $\rho(f, U) = \alpha \neq 0$

 $\implies \exists N = N_{\alpha,g}$ s.t every N-translation arc in S is disjoint from ∂U .

Case $N = \infty$ and "transverse": easy. "non-transverse" ($\subset \partial U$): hard.

Remark (Brouwer theory)

Assuming $S = \mathbb{R}^2$:

- Every non-fixed point belongs to an 1-translation arc γ .
- If γ is not an N-translation arc, then Γ = γ ∪ f(γ) ∪ · · · ∪ f^N(γ) surrounds a fixed point.

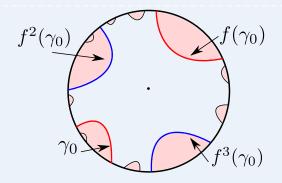
Arc Lemma: idea of the proof

Assume $S = \mathbb{R}^2$. In this case, N = 3

- Let γ be a 3-translation arc intersecting ∂U
- \exists maximal cross-cut γ_0 defined by γ
- Cyclic order of iterations of γ_0 by rotation number
- Linear order of iterations of γ_0 by 3-translation arc γ
- Construct a pair of simple closed curves with intersection number = 1
- \implies genus of S > 0. Contradiction !

<ロ> <用> <用> <用> <用> <用> <用</p>

Arc Lemma: idea of the proof (heuristics)

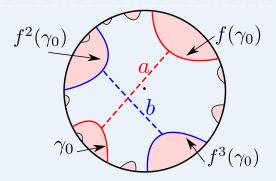


Meysam Nassiri (IPM)

Boundary dynamics and topology

Surfaces at SP, 2014

Arc Lemma: idea of the proof (heuristics)

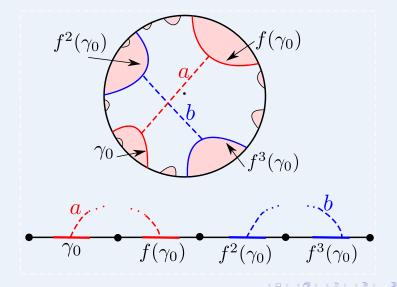


Meysam Nassiri (IPM)

Boundary dynamics and topology

Surfaces at SP, 2014

Arc Lemma: idea of the proof (heuristics)

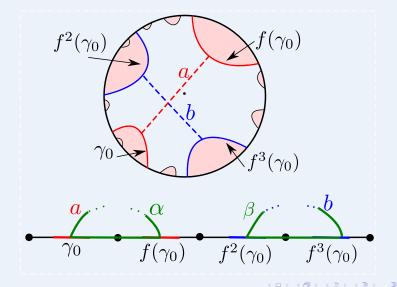


Meysam Nassiri (IPM)

Boundary dynamics and topology

Surfaces at SP, 2014

Arc Lemma: idea of the proof (heuristics)



- $f: \mathbb{R}^2 \to \mathbb{R}^2$ homeomorphism
- $U \subset \mathbb{R}^2$, simply connected, open, f-invariant
- f is nonwandering in U

Theorem A (Converse of [C-L])

 $\rho(f, U) \neq 0 \implies \nexists \text{ fixed point in } \partial U$

- $f: \mathbb{R}^2 \to \mathbb{R}^2$ homeomorphism
- $U \subset \mathbb{R}^2$, simply connected, open, f-invariant
- f is nonwandering in U

Theorem A (Converse of [C-L])

$$\rho(f, U) \neq 0 \implies \nexists \text{ fixed point in } \partial U$$

General strategy

Assuming there is a fixed point z_1 in ∂U :

- Find an N-translation arc in a neighborhood of z_1
- contradicts Arc Lemma.

- $f: \mathbb{R}^2 \to \mathbb{R}^2$ homeomorphism
- $U \subset \mathbb{R}^2$, simply connected, open, f-invariant
- f is nonwandering in U

Theorem A (Converse of [C-L])

$$\rho(f, U) \neq 0 \implies \nexists \text{ fixed point in } \partial U$$

General strategy

Assuming there is a fixed point z_1 in ∂U :

- Find an N-translation arc in a neighborhood of z_1
- contradicts Arc Lemma.
- Problem: doesn't work directly!

Idea of the proof of Theorem A

Suppose $\rho(f, U) \neq 0$ but $z_1 \in Fix(f) \cap \partial U$

Reduce to the case where:

- \exists unique fixed point $z_0 \in U$.
- \nexists accessible fixed point in ∂U
- Fix(f) totally disconnected.

イロト 不得 トイヨト イヨト 二日

Suppose $\rho(f, U) \neq 0$ but $z_1 \in Fix(f) \cap \partial U$

Reduce to the case where:

- \exists unique fixed point $z_0 \in U$.
- \nexists accessible fixed point in ∂U
- Fix(f) totally disconnected.
- Remove maximal unlinked $X \subset Fix(f)$, $z_0, z_1 \in X$. (using the work of O. Jaulent [2012])

Suppose $\rho(f, U) \neq 0$ but $z_1 \in Fix(f) \cap \partial U$

Reduce to the case where:

- \exists unique fixed point $z_0 \in U$.
- \nexists accessible fixed point in $\partial \; U$
- Fix(f) totally disconnected.
- Remove maximal unlinked X ⊂ Fix(f), z₀, z₁ ∈ X. (using the work of O. Jaulent [2012])
- $M = \mathbb{R}^2 \setminus (X \setminus \{z_0\}), \quad \pi : \widetilde{M} \to M$ universal covering map
- Define $\widetilde{f}: \widetilde{M} \to \widetilde{M}, \ \widetilde{U}$ invariant for \widetilde{f} , same rotation number.
- $\pi(\operatorname{Fix}(\widetilde{f}))$ far from z_1
- Find N-translation arc $\tilde{\gamma}$ for \tilde{f} that projects near z_1 .
- Brouwer $\implies \Gamma$ "turns around" a fixed point of \tilde{f} . Contradiction!

a technical problem

In the classic theory of prime ends:

- *U* must be a **bounded** (relatively compact) open subset of *S*
- PE compactification depends fundamentally on ambient space
- \implies so does prime ends dynamics. Rotation number?

a technical problem

In the classic theory of prime ends:

- U must be a **bounded** (relatively compact) open subset of S
- PE compactification depends fundamentally on ambient space
- \implies so does prime ends dynamics. Rotation number?

Theorem

- The theory of prime ends extends to the unbounded case;
- If $U \subset S' \subset S$ open invariant sets and $\partial_{S'} U \neq \emptyset$, then

$$\rho(f, U \subset S) = \rho(f, U \subset S')$$

Poincaré theory on S^1

• Rotation number is independent of the point used to compute it.

•
$$\rho(f) = p/q \in \mathbb{Q} \implies \operatorname{Fix}(f^q) \neq \emptyset$$

•
$$\rho(f) \notin \mathbb{Q} \implies \operatorname{Per}(f) = \emptyset.$$

(日) (周) (日) (日)

Poincaré theory on S^1

• Rotation number is independent of the point used to compute it.

•
$$\rho(f) = p/q \in \mathbb{Q} \implies \operatorname{Fix}(f^q) \neq \emptyset$$

•
$$\rho(f) \notin \mathbb{Q} \implies \operatorname{Per}(f) = \emptyset.$$

Cartwright-Littlewod + Theorem A \implies this holds for boundary dynamics (+nonwandering).

イロト 不得下 イヨト イヨト

Refinement of Poincaré theory on S^1

- $\rho(f) = p/q \in \mathbb{Q} \implies \operatorname{Fix}(f^q) \neq \emptyset$ and $\alpha(x) \cup \omega(x) \subset \operatorname{Fix}(f^q)$ for all $x \in S^1$.
- ρ(f) ∉ Q ⇒ Per(f) = Ø, there is a unique minimal set, and f is
 uniquely ergodic.

Refinement of Poincaré theory on S^1

- $\rho(f) = p/q \in \mathbb{Q} \implies \operatorname{Fix}(f^q) \neq \emptyset$ and $\alpha(x) \cup \omega(x) \subset \operatorname{Fix}(f^q)$ for all $x \in S^1$.
- ρ(f) ∉ Q ⇒ Per(f) = Ø, there is a unique minimal set, and f is
 uniquely ergodic.

How much of this translates to boundary dynamics?

Refinement of Poincaré theory on S^1

- $\rho(f) = p/q \in \mathbb{Q} \implies \operatorname{Fix}(f^q) \neq \emptyset$ and $\alpha(x) \cup \omega(x) \subset \operatorname{Fix}(f^q)$ for all $x \in S^1$.
- ρ(f) ∉ Q ⇒ Per(f) = Ø, there is a unique minimal set, and f is
 uniquely ergodic.

How much of this translates to boundary dynamics?

Work in progress

The first item holds for boundary dynamics with a nonwandering condition.