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Introduction

Basic Problem

f : S → S homeomorphism of an orientable surface;

U ⊂ S invariant domain;

Describe the dynamics in the boundary of U.
I Existence of periodic points in ∂ U
I Topological restrictions imposed by the dynamics of f |∂ U .
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Introduction

Simplest setting

f : R2 → R2 orientation-preserving homeomorphism;

U ⊂ R2 bounded, f -invariant, open, simply connected.

Question

Existence of periodic point of f in ∂ U ?
Any necessary and sufficient condition?

Simplest simplest case:

∂ U is a circle (so U ' D)
=⇒ f |∂ U is a circle homeomorphism
=⇒ Poincaré Theory. Key: Rotation number!

Theorem (Poincaré)

∃ periodic point ⇐⇒ rotation number of f |∂ U is rational.
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Introduction

Problem

Usually ∂ U is not circle!

Not even similar.
∂ U can have very very complicated topology!

• may have points inaccessible from U,
• can be nowhere locally connected,
• worse things (e.g. an hereditarily indecomposable continuum)
• these are not isolated or infrequent, independently of regularity.
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Introduction

Question

Poincaré-like theory for ∂ U ?

How to associate a rotation number to f and U ?

How to associate a circle homeomorphism to f and U ?

Idea

Compactify U by adding an “ideal” circle (in a sensible way)

Û := U t S1

with a suitable topology such that Û ' D.

Hopefully, f |U extends to f̂ : Û → Û.

Define the rotation number ρ(f ,U) := ρ(f̂ |S1).

Cartwright-Littlewood, 1951

Û = Carathéodory’s prime ends compactification
ρ(f ,U) = Prime ends rotation number.
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Introduction

Question

How is the relation between two dynamics:

f has a periodic point in ∂ U
?⇐==⇒ ρ(f ,U) ∈ Q

Answer: No in both directions!

Figure : ρ = 0 and Fix(f |∂ U) = ∅ Figure : ρ /∈ Q and Fix(f |∂ U) = circle

• Note: Both examples have attracting regions near the boundary.
• Not possible if f preserves area (or nonwandering)....
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Introduction

Consequences of the rotation number

f : R2 → R2 homeomorphism

U ⊂ R2 bounded, simply connected, open, f -invariant

f is nonwandering (e.g. area-preserving) in U.

Theorem (Cartwright-Littlewood, 1951)

ρ(f ,U) ∈ Q =⇒ ∃ periodic point in ∂ U

Refinements of this result: Barge-Gillette 1991, Barge-Kuperberg 1998,
Ortega-Ruiz del Portal 2011

Opposite direction? What if ρ /∈ Q?
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Introduction Homeomorphisms of plane

Results

f : R2 → R2 homeomorphism

U ⊂ R2 bounded, simply connected, open, f -invariant

f is nonwandering (e.g. area-preserving).

Theorem A (Converse of [C-L])

ρ(f ,U) /∈ Q =⇒ @ periodic point in ∂ U

and ∂ U is annular.
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Introduction Homeomorphisms of plane

Results

f : R2 → R2 homeomorphism

U ⊂ R2 simply connected, open, f -invariant

f is nonwandering.

Theorem A’

ρ(f ,U) 6= 0 =⇒ @ fixed point in ∂ U.

Moreover: if U is unbounded,

ρ(f ,U) 6= 0 =⇒ @ fixed point in R2 \ U.
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Introduction Homeomorphisms of plane

Question

Still true for an arbitrary surface S?

U

Figure : a simply connected open set
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Introduction Homeomorphisms of plane

Question

Still true for an arbitrary surface S?

U

Figure : unique fixed point in ∂ U, surface = S2
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Introduction Surface homeomorphisms

Theorem B (on closed surfaces)

f nonwandering homeomorphism of a closed orientable surface S ,

U ⊂ S open, f -invariant, simply connected.

ρ(f ,U) /∈ Q

One of these two holds:

1 ∂ U contains a unique fixed point and no other periodic points
S = Sphere, U is dense in S , ∂ U = S \ U cellular continuum, or

2 ∂ U is aperiodic contractible annular continuum.

U
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Introduction Surface homeomorphisms

Figure : Impossible! if ρ(f ,U) /∈ Q.
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Introduction Surface homeomorphisms

Theorem B’

Theorem B extends to

surfaces of finite type (non-compact);

any invariant connected open set U;

a ∂-nonwandering condition (instead of nonwandering)

Remark

The ∂-nonwandering condition holds if f is a holomorphic diffeomorphism.
=⇒ consequences in one-dimensional holomorphic dynamics.
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Introduction Surface homeomorphisms

Application for generic area-preserving diffeos

Theorem [Mather ’81]

f a C r -generic area preserving diffeomorphism (r ≥ 16),

U periodic complementary domain,

=⇒ prime ends rotation numbers of U are irrational at each end.

Example: p ∈ Perh(f ), U = connected component of S \W s(p).

Dynamical consequences?
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Introduction Area preserving surface diffeomorphism

Application for generic area-preserving diffeos

Theorem C

f a C r -generic area preserving diffeomorphism (r ≥ 1),

U periodic complementary domain,

Then,

1 no periodic points in ∂ U,

2 ∂ U = finite disjoint union of aperiodic annular continua.

Example: p ∈ Perh(f ), U = connected component of S \W s(p).

Remarks
1 Mather [1981] proved ρ /∈ Q, assuming r large (r ≥ 16, KAM & KS)

2 For S2 and T2, can be proved using Mather + Pixton-Oliveira.

3 Generic condition is explicit.
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Introduction Area preserving surface diffeomorphism

Application for generic area-preserving diffeos

Theorem C’

f a C r -generic area preserving diffeomorphism of a closed surface
(r ≥ 1)

U periodic open set with finitely many topological ends.

Then ∂ U = {aperiodic annular continua} t {periodic points}
(finitely many of each)
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Introduction Area preserving surface diffeomorphism

Application for generic area-preserving diffeos

Corollary C’ completes the proof of:

Theorem D

For a C r -generic area-preserving diffeo f of any closed surface,⋃
p∈Per(f )

W s(p) =
⋃

p∈Per(f )

W u(p) = S

For S = S2, r ≥ 16: done by Franks and Le Calvez [ETDS, 2003]

For any genus: proof of J. Xia [CMP, 2006] relies in Corollary C’
(gap).
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Introduction Area preserving surface diffeomorphism

Prime ends

Definition

cross-cut: a simple arc γ in U with endpoints in ∂ U.

cross-section: any one of the two components of U \ γ.
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Introduction Area preserving surface diffeomorphism

Chains

A chain in U is a decreasing sequence of cross sections (Dn) bounded by
cross-cuts (γn) such that γn ∩ γn+1 = ∅.
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Introduction Area preserving surface diffeomorphism

Prime ends

A chain in U is a decreasing sequence of cross sections (Dn) bounded by
cross-cuts (γn) such that γn ∩ γn+1 = ∅.
If (D ′

n) is another chain, we say that (Dn) divides (D ′
n) if for each n > 0

there is m such that Dm ⊂ D ′
n.

A chain (Dn) is called a prime chain if it divides (D ′
n)∈N whenever (D ′

n) is
a chain that divides (Dn).
Prime ends of U = PE(U) := {prime chains} / equivalence
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Introduction Area preserving surface diffeomorphism

Prime chain

If U is compact, then we may define in this way:
A prime chain in U is a decreasing sequence of cross sections (Dn)
bounded by cross-cuts (γn) such that

diam(γn)→ 0 as n→∞
γn ∩ γn+1 = ∅
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Introduction Area preserving surface diffeomorphism

Prime ends

Prime ends compactification (Carathéodory)

PE(U) ' S1

Û := U t PE(U) ' D

Prime ends rotation number

f extends to a homeomorphism f̂ : Û → Û

ρ(f ,U) = Poincaré rotation number of f̂ |S1
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Ideas of proofs

N-translation arc

γ simple arc from x to f (x) 6= x ,

Γ = γ ∪ f (γ) ∪ · · · ∪ f N(γ) is also a simple arc.
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Ideas of proofs

Theorem E (Arc Lemma)

f : S → S homeomorphism, S surface of genus g .

U ⊂ S invariant open topological disk (S \ U ) one point)

f is nonwandering in U,

ρ(f ,U) = α 6= 0

=⇒ ∃N = Nα,g s.t every N-translation arc in S is disjoint from ∂ U.

Case N =∞ and ”transverse”: easy. ”non-transverse” (⊂ ∂ U): hard.

Remark (Brouwer theory)

Assuming S = R2:

Every non-fixed point belongs to an 1-translation arc γ.

If γ is not an N-translation arc, then Γ = γ ∪ f (γ) ∪ · · · ∪ f N(γ)
surrounds a fixed point.
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Every non-fixed point belongs to an 1-translation arc γ.

If γ is not an N-translation arc, then Γ = γ ∪ f (γ) ∪ · · · ∪ f N(γ)
surrounds a fixed point.
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Ideas of proofs

Arc Lemma: idea of the proof

Assume S = R2. In this case, N = 3

Let γ be a 3-translation arc intersecting ∂ U

∃ maximal cross-cut γ0 defined by γ

Cyclic order of iterations of γ0 by rotation number

Linear order of iterations of γ0 by 3-translation arc γ

Construct a pair of simple closed curves with intersection
number = 1

=⇒ genus of S > 0. Contradiction !

Meysam Nassiri (IPM) Boundary dynamics and topology Surfaces at SP, 2014



Ideas of proofs

Arc Lemma: idea of the proof (heuristics)
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Ideas of proofs

Idea of the proof of Theorem A

f : R2 → R2 homeomorphism

U ⊂ R2 , simply connected, open, f -invariant

f is nonwandering in U

Theorem A (Converse of [C-L])

ρ(f ,U) 6= 0 =⇒ @ fixed point in ∂ U

General strategy

Assuming there is a fixed point z1 in ∂ U:

Find an N-translation arc in a neighborhood of z1

contradicts Arc Lemma.

Problem: doesn’t work directly!
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Ideas of proofs

Idea of the proof of Theorem A

Suppose ρ(f ,U) 6= 0 but z1 ∈ Fix(f ) ∩ ∂ U

Reduce to the case where:

∃ unique fixed point z0 ∈ U.

@ accessible fixed point in ∂ U

Fix(f ) totally disconnected.

Remove maximal unlinked X ⊂ Fix(f ), z0, z1 ∈ X .
(using the work of O. Jaulent [2012])

M = R2 \ (X \ {z0}), π : M̃ → M universal covering map

Define f̃ : M̃ → M̃, Ũ invariant for f̃ , same rotation number.

π(Fix(f̃ )) far from z1

Find N-translation arc γ̃ for f̃ that projects near z1.

Brouwer =⇒ Γ “turns around” a fixed point of f̃ . Contradiction!
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Ideas of proofs

a technical problem

In the classic theory of prime ends:

U must be a bounded (relatively compact) open subset of S

PE compactification depends fundamentally on ambient space

=⇒ so does prime ends dynamics. Rotation number?

Theorem

• The theory of prime ends extends to the unbounded case;

• If U ⊂ S ′ ⊂ S open invariant sets and ∂S ′ U 6= ∅, then

ρ(f ,U ⊂ S) = ρ(f ,U ⊂ S ′)
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Ideas of proofs

Further problems and results

Poincaré theory on S1

Rotation number is independent of the point used to compute it.

ρ(f ) = p/q ∈ Q =⇒ Fix(f q) 6= ∅
ρ(f ) /∈ Q =⇒ Per(f ) = ∅.

Cartwright-Littlewod + Theorem A =⇒ this holds for boundary dynamics
(+nonwandering).
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Ideas of proofs

Further problems and results

Refinement of Poincaré theory on S1

ρ(f ) = p/q ∈ Q =⇒ Fix(f q) 6= ∅ and α(x) ∪ ω(x) ⊂ Fix(f q) for all
x ∈ S1.

ρ(f ) /∈ Q =⇒ Per(f ) = ∅, there is a unique minimal set, and f is
uniquely ergodic.

How much of this translates to boundary dynamics?

Work in progress

The first item holds for boundary dynamics with a nonwandering condition.
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