
THE METHOD OF HYPERGRAPH CONTAINERS

ROBERT MORRIS

Abstract. In this series of four lectures, we will give a fast-paced introduction to a recently-

developed technique in probabilistic combinatorics, known as the method of hypergraph containers.

This general technique can be applied in a wide range of settings; to give just a few examples, it

has been used to study the following questions:

1. What is the largest H-free subgraph of G(n, p)?

2. How many sets A ⊂ [n] contain no k-term arithmetic progression?

3. When does every r-colouring of G(n, p) contain a monochromatic copy of H?

4. How many union-free families are contained in P(n)?

5. What is the volume of the metric polytope?

The solutions of these problems (and many others) are based on the same fundamental principle:

the objects in question exhibit a certain kind of ‘clustering’, which allows one to count them one

cluster at a time, using (in each case) a suitable ‘supersaturation’ theorem.

Our plan is as follows: In Lecture 1, we will give a relatively gentle introduction to the method,

focused on the example of triangle-free subgraphs of G(n, p); in Lecture 2 we will state the general

container lemma, and give several simple but important applications; finally, in Lectures 3 and 4,

we will discuss some more advanced applications.

Lecture 1: What do you do when the 1st moment blows up?

In probabilistic combinatorics one is often faced with the following situation: you want to show

that (with high probability) no member of some family of ‘bad’ events occurs, but the expected

number of such events is large. Such situations often arise when there is positive correlation

between the different bad events in your family, and the effect of such correlations can be difficult

to bound. In these lectures we will discuss a recently-discovered method of dealing with certain

situations of this type, whose basic idea can be summarised as follows:

“Independent sets in many ‘natural’ hypergraphs are ‘clustered’ together.”

In this first lecture, we will illustrate this idea with a relatively simple, but important example.

Definition 1. The extremal number of a graph H with respect to the Erdős-Rényi random graph

G(n, p) is defined to be

ex
(
G(n, p), H

)
:= max

{
e(G) : G ⊂ G(n, p) and H 6⊂ G

}
.

Our aim in this lecture is to prove the following theorem of Frankl and Rödl [32].

Theorem 2. If p� 1/
√
n, then

ex
(
G(n, p),K3

)
=

(
1

4
+ o(1)

)
pn2 (1)

with high probability as n→∞.
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To see the lower bound, simply consider the intersection of G(n, p) with a copy of Kn/2,n/2; we

will prove the upper bound. One natural first attempt at a proof of Theorem 2 would be to define

a random variable

Xm :=
∣∣{G ⊂ G(n, p) : e(G) = m and K3 6⊂ G

}∣∣,
and calculate the expected value of Xm. If E[Xm] = o(1), then it follows by Markov’s inequality

that ex
(
G(n, p),K3

)
6 m with high probability. However, when we do the calculation we obtain

instead

E[Xm] >

(
ex(n,K3)

m

)
pm =

((
1 + o(1)

)epn2

4m

)m
� 1

for all m 6 p
(
n
2

)
, so this approach fails.

What are we to do? Well, the reason the expected value of Xm blows up is that the triangle-free

graphs with m edges are ‘clustered’ together, and this creates strong positive correlations between

the events encoding their appearance in G(n, p). If we can understand this clustering, we have

a chance of grouping them into a relatively small number of ‘bunches’, and dealing with a whole

bunch in a single step. To be more precise, we’d like to prove the following ‘container’ theorem.

Theorem 3 (The container theorem for triangle-free graphs). For each n ∈ N, there exists a

collection G of graphs on n vertices with the following properties:

(a) |G| 6 nO(n3/2).

(b) Each G ∈ G contains o(n3) triangles.

(c) Each triangle-free graph on n vertices is contained in some G ∈ G.

In words, this theorem says that there exists a relatively small collection of graphs G, each of

which contains few triangles, with the property that every triangle-free graph is a subgraph of some

member of G. To motivate the statement, let’s begin by deducing from it a slightly weaker version

of Theorem 2. To do so, we will need the following classical ‘supersaturation’ theorem.

Theorem 4 (Supersaturation for triangles). For every ε > 0, there exists δ > 0 such that the

following holds. If G is a graph on n vertices with

e(G) >

(
1

4
+ ε

)
n2

edges, then G has at least δn3 triangles.

Theorem 4 is a straightforward consequence of Szemerédi’s regularity lemma, and can also be

proved by more elementary means, see the exercises. Note that it follows immediately from this

theorem that a graph on n vertices with o(n3) triangles has at most
(
1/4 + o(1)

)
n2 edges.

Now, suppose that G(n, p) contains a triangle-free graph H with m > (1/4 + ε)pn2 edges. By

Theorem 3, there exists a graph G ∈ G such that H ⊂ G, and since G contains o(n3) triangles, it

follows that e(G) 6
(
1/4 + o(1)

)
n2. However, by Chernoff’s inequality, the probability that such a

graph G contains more than m edges of G(n, p) is at most

P
(

Bin
(
e(G), p

)
> m

)
6 e−Ω(pn2).
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Now, writing Ym for the number of graphs G ∈ G that contain at least m edges of G(n, p), and

recalling that |G| 6 nO(n3/2), we obtain

P
(
Ym > 1

)
6 E

[
Ym
]
6
∑
G∈G

P
(
e
(
G ∩G(n, p)

)
> m

)
6 nO(n3/2)e−Ω(pn2) → 0

if p� log n/
√
n. We have thus proved (1) under a slightly stronger assumption on p.1

A container lemma for 3-uniform hypergraphs. In order to prove Theorem 3, we will need

to work in a more general setting: that of ‘almost linear’ 3-uniform hypergraphs. To consider

triangle-free graphs from this point of view, we will need the following simple but key definition.

Definition 5. The hypergraph encoding triangles in Kn is the 3-uniform hypergraph H with vertex

set V (H) = E(Kn) and edge set

E(H) =
{{
f1, f2, f3

}
⊂ E(Kn) :

{
f1, f2, f3

}
= E(K3)

}
.

In words, the edges of H encode the triangles in Kn.

The next lemma is the key step in the proof of Theorem 3. Given a hypergraph H, let us write

∆`(H) for the maximum degree of a set of ` vertices of H, that is

∆`(H) = max
{
dH(A) : A ⊂ V (H), |A| = `

}
,

where dH(A) =
∣∣{B ∈ E(H) : A ⊂ B

}∣∣, and I(H) for the collection of independent sets of H.

The Hypergraph Container Lemma for 3-uniform hypergraphs. For every c > 0, there

exists δ > 0 such that the following holds. Let H be a 3-uniform hypergraph with average degree d,

set τ := 1/
√
d, and suppose that τ 6 δ, and that

∆1(H) 6 c · d and ∆2(H) 6 c ·
√
d.

Then there exists a collection C of subsets of V (H), with

|C| 6
(

v(H)

τ · v(H)

)
,

such that

(a) For every I ∈ I(H) there exists C ∈ C such that I ⊂ C,

(b) |C| 6 (1− δ)v(H) for every C ∈ C.

In order to help us to understand the statement of this lemma, let’s see why it implies Theorem 3.

Sketch proof of Theorem 3, assuming the hypergraph container lemma for 3-uniform hypergraphs.

Let H be the hypergraph encoding triangles in Kn, and note that

v(H) =

(
n

2

)
, ∆2(H) = 1 and dH(v) = n− 1

for every v ∈ V (H). We apply the container lemma to H with c = 1, and obtain a collection C of

subsets of E(Kn) (that is, graphs on n vertices), with the following properties:

1We will see later how to remove the unwanted factor of logn.
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(a) Every triangle-free graph is a subgraph of some C ∈ C,

(b) Each C ∈ C has at most (1− δ)e(Kn) edges.

Moreover, since τ = Θ(1/
√
n), we have |C| 6 nO(n3/2). Now, if each C ∈ C contains o(n3) triangles

then we are done; otherwise, we choose C ∈ C with at least εn3 triangles and apply the container

lemma to the hypergraph H[C] induced by C. Note that H has average degree at least 3εn, since

each triangle in C corresponds to an edge of H[C], so we can apply the lemma with c = 1/ε. Since

τ = Θ(1/
√
n) and v(H) = |C| 6 n2, we produce at most nO(n3/2) new containers in each application.

Moreover, since the containers shrink by a factor of (1 − δ) in each step, after a bounded number

of steps they will have size at most εn2, and hence have at most εn3 triangles, as required. �

The observant reader will have noticed one or two things about this “proof”. First, we cheated

slightly: the bound on |G| depends on the maximum number of triangles allowed in a container.2

Second, for the application we are currently interested in (bounding ex(G(n, p),K3)), we could have

replaced condition (b) with “each G ∈ G contains o(n3) triangles or has at most n2/4 edges”.

The proof of the container lemma. As a warm-up for the proof of the hypergraph container

lemma, let’s consider first the somewhat simpler setting of graphs.

The Graph Container Lemma. For every c > 0, there exists δ > 0 such that the following

holds. Let G be a graph with average degree d and maximum degree ∆(G) 6 c ·d, and set τ := 2δ/d.

There exists a collection C of subsets of V (G), with

|C| 6
(

v(G)

dτ · v(G)e

)
,

such that

(a) For every I ∈ I(G) there exists C ∈ C such that I ⊂ C,

(b) |C| 6 (1− δ)v(G) for every C ∈ C.

The proof of the graph container lemma is originally due to Kleitman and Winston [40]. The key

idea is to encode each independent set I ∈ I(G) by a subset S = S(I) ⊂ I, which we will refer to

as the fingerprint of I. The set S should be small, and should have the following crucial property:

knowing only that S(I) = S is sufficient to guarantee that I avoids a positive proportion of the

vertices of G. In other words, every independent set I ∈ I(G) with S(I) = S should be contained

in a set C = C(S) with |C| 6 (1− δ)v(G). We will call the set C the container of I.

We will construct S using a simple deterministic algorithm, which goes through the vertices of

G one by one, recording whether or not they are a member of I. The order we use to query the

vertices is given by the following definition.

Definition 6. The max-degree order of a (hyper)graph G is the ordering (v1, . . . , vn) of V (G) such

that for each i ∈ [n], vi is the3 maximum degree vertex of G[{vi, . . . , vn}].

2More precisely, we proved that there exists a collection of |G| 6 exp
(
C(ε)n3/2 logn

)
containers, each containing

at most εn3 triangles, where C(ε)→∞ as ε→ 0.
3We break ties using some predefined (and arbitrary) ordering on V (G).
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We will prove the graph container lemma using the following algorithm.

The Graph Container Algorithm. Given a graph G and an independent set I ∈ I(G), we will

maintain a partition V (G) = A ∪ S ∪X, where A are the ‘active’ vertices, S is the current version

of the fingerprint, and X is the set of ‘excluded’ vertices, which we already know are not in I. We

start with A = V (G) and S = X = ∅.
Now, while |X| 6 δv(G), repeat the following steps:

1. Let v be the first vertex of I in the max-degree order on G[A].

2. Move v into S, i.e., set S := S ∪ {v}.
3. Move the neighbours of v into X, i.e., set X := X ∪N(v).

4. Move the vertices which preceded v in the max-degree order on G[A] into X, i.e., set

X := X ∪W , where W =
{
u ∈ A : u < v in the max-degree order on G[A]

}
.

5. Remove the new vertices of S ∪X from A, i.e., set A := V (G) \ (S ∪X).

Finally, set A(I) := A, S(I) := S and X(I) := X.

To prove the graph container lemma, we will show that the algorithm above produces a set

S = S(I) with the desired properties.

Proof of the graph container lemma. For each I ∈ I(G), recall that S(I) and A(I) are the final

fingerprint and active sets produced by the graph container algorithm. We claim that if I, I ′ ∈ I(G)

are such that S(I) = S(I ′), then A(I) = A(I ′). Indeed, if we ever query a vertex and discover that

it is in I4I ′, then we place it in only one of the sets S(I) and S(I ′), which implies that they are

different. Thus, since we query the vertices of G in the same order until we find such a vertex, it

follows that process is identical for the two independent sets, and thus the outcome is identical.

We may therefore define the container C(S) of a set S to be the set A(I) ∪ S for any I ∈ I(G)

such that S(I) = S, and

C :=
{
C(S) : S = S(I) for some I ∈ I(G)

}
.

Since the algorithm ended with |X(I)| > δv(G), it follows that |C| 6 (1− δ)v(G) for every C ∈ C,
and since X(I) is disjoint from I (since it consists of neighbours of vertices in I, and vertices which

were queried and found not to be in I), it follows that I ⊂ C(S(I)) for every I ∈ I(G).

It remains to show that |S(I)| 6 dτ · v(G)e for every I ∈ I(G), which immediately implies the

claimed bound on |C|. To do so, we will show that when a vertex v is added to S in the algorithm,

at least d/2 vertices4 are added to X. This will be sufficient to prove the claimed bound on |S(I)|,
since after τ · v(G) vertices have been added to S, we will have |X| > δv(G), as required.

To show that d/2 vertices are added to X, we will use the fact that ∆(G) 6 c · d. Indeed, if

|S| 6 τv(G), |X| 6 δv(G) and |W | 6 d/2, then

e
(
G[A \W ]

)
> e(G)−

(
(τ + δ)v(G) + d/2

)
·∆(G) >

(
1− 2c(c+ 1)δ

)
e(G) >

e(G)

2

if δ < 1/4c(c+ 1), since τ 6 2cδ and assuming that d 6 2δv(G) (since otherwise |S(I)| = 1). Since

v is a vertex of maximum degree in G[A \W ] (by the definition of the max-degree order), it follows

that v has at least d/2 neighbours in G[A], which are all moved to X, as required. �

4More precisely, this should be min{d/2, δv(G)} vertices, but for simplicity let us assume that d 6 2δv(G).
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We remark that the graph container lemma itself already has a large number of interesting

applications, see e.g. the surveys of Balogh, Treglown and Wagner [19] and Samotij [53].

We are now ready to prove the container lemma for 3-uniform hypergraphs. The approach is

similar, but instead of removing the neighbours of a vertex v when it is placed in S, we will need

to store the graph induced by the edges containing it. Once we have acquired enough edges (by

adding many vertices to S, and taking the union of the edges containing them), we will be able to

use the graph container algorithm to move δv(H) vertices into X.

We begin by defining the algorithm we will use to reduce a 3-uniform hypergraph to a graph.

The container algorithm for 3-uniform hypergraphs. Let H be a 3-uniform hypergraph, and

let I ∈ I(H) be an independent set. We will maintain a fingerprint S, a 3-uniform hypergraph A
of ‘available’ edges of H, and a graph G of ‘forbidden’ pairs on V (H). We start with A = H and

S = E(G) = ∅. Now, while |S| < bτv(H)/2c and V (A) ∩ I 6= ∅, repeat the following steps:

1. Let u be the first vertex of I in the max-degree order on A.

2. Move u into S, i.e., set S := S ∪ {u}.
3. Move the edges N(u) =

{
vw : uvw ∈ E(A)} into G, i.e., set E(G) := E(G) ∪N(u).

4. Remove u from V (A), and also the vertices which preceded u in the max-degree order on A,

i.e., set A := A[V (A)\W ], where W =
{
w ∈ V (A) : w 6 u in the max-degree order on A

}
.

5. Remove from V (A) every vertex whose degree in the graph G is larger than c ·
√
d, i.e., set

A := A[V (A) \ Y ], where Y =
{
w ∈ V (A) : dG(w) > c ·

√
d
}

.

6. Remove from E(A) every edge which contains an edge of G, i.e., set E(A) := E(A) \ Z,

where Z =
{
f ∈ E(A) : e(G[f ]) 6= 0

}
.

Finally, set A(I) := A, S2(I) := S and G(I) := G.

The reason we need to remove the vertices of high degree in G from V (A) is to ensure that the

final graph G(I) satisfies the condition ∆(G(I)) = O(
√
d) required by the graph container lemma.

We will show that either we remove many vertices from A, or e(G(I)) >
√
dn, in which case we

may apply the graph container algorithm to G(I).

Proof of the hypergraph container lemma for 3-uniform hypergraphs. As in the proof of the graph

container lemma, we begin by observing that if I, I ′ ∈ I(G) are such that S2(I) = S2(I ′), then

G(I) = G(I ′) and A(I) = A(I ′). Indeed, we query the vertices of H in the same order and always

receive the same answer, so the process is identical for the two independent sets. We may therefore

define G(S) and A(S) to be G(I) and A(I) for any I ∈ I(G) such that S2(I) = S.

Fix I ∈ I(H), let S2 = S2(I), and suppose first that

e
(
G(S2)

)
>

√
d · v(H)

8c
and ∆

(
G(S2)

)
6 2c
√
d. (2)

Observing that I is an independent set in G(S2), we may apply the graph container algorithm to

G(S2) and I, and obtain a fingerprint S1 = S1(I) with |S1| < τv(H)/2, and a container C for I,

depending only on S1 ∪ S2, with |C| 6 (1− δ)v(H), as required.

Let us therefore assume that (2) fails to hold; we will show how to define a container C for I,

depending only on S2, with |C| 6 (1 − δ)v(H). Note that the bound ∆
(
G(S2)

)
6 2c

√
d always
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holds, since the degree of a vertex increases by at most ∆
(
N(u)

)
6 ∆2(H) 6 c

√
d in each step of

the algorithm, and once a vertex of G has degree larger than c
√
d it enters Y , so no more edges

incident to it are added to G. Moreover, the bound on e
(
G(S2)

)
holds if at least d/4 edges are

added to G in each step, since in that case5

e
(
G(S2)

)
>

τ · v(H)

2
· d

4
>

√
d · v(H)

8
,

and it also holds if at any stage of the algorithm we have |Y | > v(H)/16c, since then

e
(
G(S2)

)
>
|Y | · c

√
d

2
>

√
d · v(H)

32
,

as required, since we may assume (without loss of generality) that c > 4.

We may therefore assume that there exists a step of the algorithm for which e(G) < (
√
d/8c)v(H),

|Y | < v(H)/16c and at most d/4 edges are added to G. If at most v(H)/16c other vertices have

been removed from A, then since ∆1(H) 6 c · d and ∆2(H) 6 c ·
√
d, it follows that

e(A) > e(H)− v(H) ·∆1(H)

8c
− e(G) ·∆2(H) > e(H)− d · v(H)

4
=

e(H)

4
,

and hence, by the definition of the max-degree order, u has degree at least d/4 in A. Since we have

removed all edges of A containing an edge of G, these must correspond to at least d/4 new edges of

G, which is a contradiction. Hence at least v(H)/16c vertices of Y c must have been removed from

A, and these are all either in S2 or in Ic. Since |S2| 6 τv(H) 6 δv(H) (by assumption), it follows

that we can define a container C for I (depending only on S2) with |C| 6 (1− δ)v(H), as claimed.

This completes the proof of the hypergraph container lemma for 3-uniform hypergraphs. �

A stronger (but slightly more technical) version of the container lemma. We end this

lecture by noting that the proof above in fact implies slightly stronger versions of the various

theorems above, which in particular allow us to remove the final factor of log n required for the

proof of Theorem 2. The statements of these stronger versions are slightly more technical, but

seeing them in this relatively simple (and, by now, familiar) setting will help prepare us for the

general statement at the start of Lecture 2, which will be given in this stronger form. We begin

with the container lemma for 3-uniform hypergraphs.

The Hypergraph Container Lemma for 3-uniform hypergraphs (stronger version). For

every c > 0, there exists δ > 0 such that the following holds. Let H be a 3-uniform hypergraph with

average degree d, set τ := 1/
√
d, and suppose that τ 6 δ, and that

∆1(H) 6 c · d and ∆2(H) 6 c ·
√
d.

Then there exists a collection C of subsets of V (H), and a function f : P
(
V (H)

)
→ C such that:

(a) For every I ∈ I(H) there exists S ⊂ I with |S| 6 τ · v(H) and I ⊂ f(S),

(b) |C| 6 (1− δ)v(H) for every C ∈ C.

We leave it to the reader to check that the proof given above implies this stronger statement,

which implies the following container theorem for triangle-free graphs.

5Here we assume that V (A) ∩ I 6= ∅ at the end of the algorithm; if it is, then our container is (Y ∪ S2)c.
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Theorem 7 (Another container theorem for triangle-free graphs). For every δ > 0, there exists

C > 0 such that the following holds. For every n ∈ N, there exists a collection G of graphs on n

vertices, and a function f : P
(
E(Kn)

)
→ G such that:

(a) Each G ∈ G contains at most δn3 triangles.

(b) For every triangle-free graph H on n vertices, there exists a subgraph S ⊂ H with

e(S) 6 Cn3/2 and H ⊂ f(S).

The proof is essentially identical to that of Theorem 3, given earlier, except using the stronger

version of the hypergraph container lemma for 3-uniform hypergraphs.6

We are finally able to deduce the theorem of Frankl and Rödl.

Proof of Theorem 2. Let ε > 0, and suppose that G(n, p) contains a triangle-free graph H with

m > (1/4 + 2ε)pn2 edges. By Theorem 7, there exists a subgraph S ⊂ H with e(S) 6 Cn3/2 and a

corresponding graph G(S) ∈ G such that H ⊂ G(S). Since G(S) contains at most δn3 triangles, it

follows from Theorem 4 that

e
(
G(S)

)
6

(
1

4
+ ε

)
n2.

Now, let S denote the collection of all graphs S obtained in this way, and note that if S ⊂ H ⊂
G(n, p), then S ⊂ G(n, p). Observe also that, by Chernoff’s inequality, the probability that G(S)

contains more than m− e(S) edges of G(n, p) other than E(S) is at most

P
(

Bin
(
e(G(S)), p

)
> m− e(S)

)
6 e−Ω(pn2)

if p � 1/
√
n, since then e(S) � m. Hence, writing Y for the number of sets S ∈ S such that

S ⊂ G(n, p) and
(
E(G(S)) \ E(S)

)
∩ E

(
G(n, p)

)
> m− e(S), we obtain

P
(
Y > 1

)
6 E[Y ] 6

∑
S∈S

pe(S)e−Ω(pn2) 6
Cn3/2∑
k=0

pk
((n

2

)
k

)
e−Ω(pn2) → 0

if p� 1/
√
n, as required. �

Let us finish the lecture by mentioning the following related theorems of DeMarco and Kahn [30]

and Osthus, Prömel and Taraz [48], which motivate several of the results stated later.

Theorem 8 (DeMarco and Kahn, 2015). There exists a constant C > 0 such that if

p > C

√
log n

n

then with high probability the largest triangle-free subgraph of G(n, p) is bipartite.

Theorem 9 (Osthus, Prömel and Taraz, 2003). There exists a constant C > 0 such that if

m > Cn3/2
√

log n

then almost all triangle-free graphs with m edges are bipartite.

6One technical point, which we ignore here for simplicity, is that as stated this gives a sequence of fingerprints for

each triangle-free graph, rather than a single fingerprint. However, it is not hard to show that one can reconstruct

the sequence of sets from their union, see [13].
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Exercises

1. (a) Prove that if G is a d-regular graph on n vertices, and A ⊂ V (G) is a set of vertices of size

|A| > n

2
+
βn2

2d

for some β > 0, then e(A) > β
(|A|

2

)
.

(b) Use the graph container lemma to deduce the following theorem of Alon [2].7

Theorem 10. If G is a d-regular graph, then G has at most 2n/2+o(n) independent sets.8

(c) Prove as strong a bound on the error term as you can. How close to best possible is it?

(d) How many independent sets of size m can a d-regular graph have?

2. (a) Recall that, by Roth’s theorem, every subset of N of positive density contains a 3-term

arithmetic progression. Use this result to deduce the following supersaturation theorem.

Theorem 11. For every ε > 0, there exists a δ > 0 such that the following holds. If A ⊂ [n] has

size |A| > εn, then A contains at least δn2 triples {x, y, z} with x+ y = 2z.

(b) Let us write [n]p for a p-random subset of [n], that is, a subset which includes each element

of [n] independently at random with probability p. Use Theorem 11 and the container lemma for

3-uniform hypergraphs to deduce the following theorem of Kohayakawa,  Luczak and Rödl [42].

Theorem 12. For every ε > 0 there exists C > 0 such that if p > C/
√
n, then with high probability

every subset A ⊂ [n]p of size |A| > εpn contains a 3-term arithmetic progression.

3. (a) Prove the following supersaturation theorem for Schur triples in [n].

Theorem 13. For every ε > 0, there exists a δ > 0 such that the following holds. If A ⊂ [n] has

size |A| > (1/2 + ε)n, then A contains at least δn2 triples {x, y, z} with x+ y = z.

(b) Use Theorem 13 and the container lemma for 3-uniform hypergraphs to deduce the following

theorem, which was first proved by Schacht [59] and by Conlon and Gowers [25].

Theorem 14. If p � 1/
√
n then with high probability the largest sum-free subset of a p-random

subset A ⊂ [n] has size
(
1/2 + o(1)

)
pn.

(c) State and prove a ‘supersaturated stability theorem’ for Schur triples in Z2n, which says that

a set A ⊂ Z2n with (1− o(1))n elements and o(n2) Schur triples must contain o(n) even numbers.

Use the container lemma for 3-uniform hypergraphs to deduce the following theorem.

Theorem 15. If m�
√
n then almost all sum-free m-subsets of Z2n contain o(m) even numbers.

(d) What should the corresponding theorem in [n] say?

7This proof is due to Sapozhenko [54], who independently developed the container method for graphs. The details

can be found in the survey of Samotij [53], as well as several other beautiful applications of graph containers.
8Here o(1) is a function which tends to zero as d→∞.

9



4. Say that a graph G is t-far from being bipartite if G has no bipartite subgraph H ⊂ G with

e(H) > e(G) − t, and say G is t-close to being bipartite otherwise. For each v ∈ V (G), define

B(v) = N(v) and A(v) = B(v)c. Observe that

(a) The number of triangles containing v is equal to e(B(v)), the number of edges in B(v).

(b) If G is t-far from being bipartite, then e(A(v)) + e(B(v)) > t.

(c) If we sum the degrees of the vertices in A(v), then we count each edge between A(v) and

B(v) once, and each edge inside A(v) twice.

Using these simple observations, prove the following strengthening of Theorem 4.9

Theorem 16. For every n, t > 1, the following holds. Every graph G on n vertices which is t-far

from being bipartite contains at least

n

6

(
e(G) + t− n2

4

)
triangles.

5. (a) Use Theorem 16 and the container lemma for 3-uniform hypergraphs to prove the following

approximate version of Theorem 9, which was originally proved by  Luczak.

Theorem 17 ( Luczak, 2000). For each ε > 0, there exists a constant C > 0 such that if

m > Cn3/2

then almost all triangle-free graphs with m edges are εm-close to bipartite.

(b) Prove that if m� n3/2 then almost all triangle-free graphs are far from being bipartite.

6. (a) Prove the following slight extension of Ramsey’s theorem for triangles.

Theorem 18. For every r ∈ N, there exists a δ > 0 such that the following holds for all sufficiently

large n ∈ N. If G is a graph with n vertices and e(G) > (1/2 − δ)n2 edges, then every colouring

c : E(G)→ [r] contains at least δn3 monochromatic triangles.

(b) Use Theorem 31 and the container lemma for 3-uniform hypergraphs to deduce the following

theorem of Rödl and Ruciński [50].10

Theorem 19. For every r ∈ N, and every function p � 1/
√
n, the following holds. With high

probability every r-colouring of the edges of G(n, p) contains a monochromatic triangle.

(c) Use the same idea to prove the following theorem of Graham, Rödl and Rucinski [35].

Theorem 20. For every r ∈ N, and every function p � 1/
√
n, the following holds. With high

probability every r-colouring of [n]p contains a monochromatic triple {x, y, z} with x+ y = z.

(d) Can you prove corresponding lower bounds on the thresholds for these events?

9We remark that this proof is essentially due to Füredi, see [7] for the details.
10This proof is due to Nenadov and Steger [47].
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Lecture 2: A general container lemma

In Lecture 1, we stated and proved the container lemmas for graphs, and for 3-uniform hy-

pergraphs. The following generalisation to k-uniform hypergraphs was proved independently by

Balogh, Morris and Samotij [13] and by Saxton and Thomason [57].

The Hypergraph Container Lemma. For every k ∈ N and c > 0, there exists a δ > 0 such

that the following holds. Let H be a k-uniform hypergraph, and suppose that τ ∈ (0, 1) satisfies

∆`(H) 6 c · τ `−1 e(H)

v(H)
(3)

for every 1 6 ` 6 k. Then there exists a collection C of subsets of V (H), and a function

f : P
(
V (H)

)
→ C such that:

(a) For every I ∈ I(H) there exists S ⊂ I with |S| 6 τ · v(H) and I ⊂ f(S),

(b) |C| 6 (1− δ)v(H) for every C ∈ C.

The proof for general k is similar to that described above, but the details are somewhat more

complicated and technical, and so we will omit the proof and refer the interested reader to [13, 57]

for the details. Instead, in this lecture we will aim to build up our intuition by focussing on some

important (but relatively straightforward) applications.

Sparse sets avoiding k-term arithmetic progressions. Perhaps the most famous theorem in

extremal combinatorics is that of Szemerédi, which states that every subset of N of positive density

contains arbitrarily long arithmetic progressions. Our first application of the hypergraph container

theorem for k-uniform hypergraphs will be the following strengthening of this theorem.

Theorem 21. For every β > 0 and every k ∈ N, there exist a constant C such that the following

holds. For every sufficiently large n ∈ N, if m > Cn1−1/(k−1), then there are at most(
βn

m

)
m-subsets of {1, . . . , n} that contain no k-term arithmetic progression.

As a almost immediate consequence, we will obtain the following theorem of Conlon and Gow-

ers [25] and Schacht [59], which was originally conjectured by Kohayakawa,  Luczak and Rödl [42].

Corollary 22. For every ε > 0 there exists C > 0 such that if p > Cn−1/(k−1), then with high

probability every subset A ⊂ [n]p of size |A| > εpn contains a k-term arithmetic progression.11

To prove Theorem 21, we will apply the hypergraph container lemma to the k-uniform hypergraph

H that encodes k-term arithmetic progressions in [n]. To spell it out, this hypergraph has vertex

set V (H) = [n] and edge set

E(H) =

{
e ∈

(
[n]

k

)
: e =

{
a, a+ d, . . . , a+ (k − 1)d

}
for some a, d ∈ [n]

}
.

11Recall that [n]p denotes a p-random subset of [n] = {1, . . . , n}.
11



Note that

e(H) = Θ(n2), ∆1(H) = O(n) and ∆2(H) = O(1),

where the implicit constants are all allowed to depend on k. It is now easy to check that (3) holds

for H (and for some c = c(k) > 0) with τ = n−1/(k−1); indeed, the inequality is tight (up to

the value of c) only when ` = 1 and ` = k. The following supersaturated version of Szemerédi’s

theorem (which follows from the original via a simple averaging argument, originally observed by

Varnavides) allows us to show that (3) also holds for H[A] for any subset A ⊂ [n] with |A| > εn.

Theorem 23. For every ε > 0 and k ∈ [n], there exists δ > 0 such that the following holds. Every

subset A ⊂ [n] with |A| > εn contains at least δn2 k-term arithmetic progressions.

We are ready to count the k-AP-free sets of size m.

Proof of Theorem 21. Set ε = β/2. We claim that there exists a family A ⊂ P(n), and a function

f : P(n)→ A such that:

(a) Each A ∈ A has at most εn elements.

(b) For every k-AP-free set B ⊂ [n], there exists a subset S ⊂ B with

|S| = O
(
n1−1/(k−1)

)
and B ⊂ f(S).

Indeed, let B be a k-AP-free set, and apply the hypergraph container lemma to H, with τ =

n−1/(k−1) and a suitable value of c = c(k). We obtain a sets S1 ⊂ B and C1 = C1(S1) ⊃ B with

|S1| 6 n1−1/(k−1) and |C1| 6 (1−δ)n. We now iterate: given sets St ⊂ B and Ct = Ct(St) ⊃ B with

|St| 6 t ·n1−1/(k−1) and |Ct| 6 (1−δ)tn, we do the following: if |Ct| 6 εn then we place Ct in A and

set f(St) = Ct; otherwise we apply the hypergraph container lemma to H[Ct], with τ = n−1/(k−1)

and a suitable value of c = c(k, ε), using Theorem 23 to prove that (3) holds. We obtain a fingerprint

S′t+1 ⊂ B and a container Ct+1 = Ct+1(Ct, S
′
t+1) ⊃ B with |Ct+1| 6 (1− δ)|Ct| 6 (1− δ)t+1n, and

set St+1 = St ∪ S′t+1 ⊂ B, so |St+1| 6 (t+ 1)n1−1/(k−1), as required. Finally, since δ depends only

on c, ε and k, after a constant number of steps we obtain a container with |Ct| 6 εn.

Let S denote the collection of fingerprints S obtained in (b), and let C be a sufficiently large

constant. Then, for each m > Cn1−1/(k−1), the number of subsets A ⊂ [n] of size m containing no

k-term arithmetic progression is at most∑
S∈S

(
|f(S)|
m− |S|

)
6
∑
s6εm

(
n

s

)(
εn

m− s

)
6
∑
s6εm

(
en

s

)s( m

εn−m

)s(εn
m

)
.

Observe that, by Szemerédi’s theorem, we may assume that m = o(n). Noting that the function

x 7→ (y/x)x is increasing on (0, y/e), it follows that the right-hand side is at most∑
s6εm

(
2em

εs

)s(εn
m

)
6 m

(
2e

ε2

)εm(εn
m

)
6

(
βn

m

)
,

where the final inequality follows since β = 2ε, so
(
εn
m

)
6 2−m

(
βn
m

)
. This proves Theorem 21. �
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We can now easily deduce Corollary 22 using Markov’s inequality.

Proof of Corollary 22. For each m ∈ N, let Ym denote the number of m-subsets of [n]p that contain

no k-term arithmetic progression. Set β = ε, and let C = C(β, k) be the constant given by

Theorem 21; it follows that if p > (C/ε)n−1/(k−1) then the conclusion of Theorem 21 holds for

m = εpn. Thus

P
(
Ym > 1

)
6 E

[
Ym
]
6

(
βn

m

)
pm 6

(
βepn

m

)m
= e−m,

as required. �

Containers for H-free graphs. We will next see how to deduce various results about the family

of H-free graphs (these were first proved by Conlon and Gowers [25] and Schacht [59]). The first

is a generalisation of the theorem of Frankl and Rödl proved in Lecture 1.

Theorem 24. For every graph H with ∆(H) > 2 and every ε > 0, there exists C > 0 such that if

p > Cn−1/m2(H), then12

ex
(
G(n, p), H

)
6

(
1− 1

χ(H)− 1
+ ε

)
p

(
n

2

)
with high probability.

The second is the following ‘stability’ version of Theorem 24.

Theorem 25. For every graph H with ∆(H) > 2 and every ε > 0, there exist C > 0 and δ > 0

such that if p > Cn−1/m2(H), then the following holds with high probability. Every H-free subgraph

G ⊂ G(n, p) with

e(G) >

(
1− 1

χ(H)− 1
− δ
)
p

(
n

2

)
is εpn2-close to being

(
χ(H)− 1

)
-partite.

The third is a variant of Theorem 25 for H-free graphs with m edges.

Theorem 26. For every graph H with χ(H) > 3, and every ε > 0, there exists C > 0 such that the

following holds. If m > Cn2−1/m2(H), then almost all H-free graphs with n vertices and m edges

are εm-close to being
(
χ(H)− 1

)
-partite.

In each case, we will apply the hypergraph container lemma to the k-uniform hypergraph that

encodes copies of H in Kn, where k = e(H), cf. Definition 5. This hypergraph H has vertex set

V (H) = E(Kn) and edge set

E(H) =
{{
f1, . . . , fe(H)

}
⊂ E(Kn) :

{
f1, . . . , fe(H)

}
= E(H)

}
.

We claim that there exists a constant c = c(H) such that (3) holds with τ = n−1/m2(H). Indeed,

note that

v(H) = Θ
(
n2
)
, e(H) = Θ

(
nv(H)

)
and τ e(F )−1nv(F )−2 > 1

12Recall that m2(H) = max
{ e(F )−1

v(F )−2
: F ⊂ H, v(F ) > 3

}
.
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for every F ⊆ H. Since we have

∆`(H) = O(1) ·max
{
nv(H)−v(F ) : F ⊂ H with e(F ) = `

}
for each 1 6 ` 6 k, it follows that

∆`(H) ·
(
τ `−1 e(H)

v(H)

)−1

= O(1) · max
F⊂H : e(F )=`

{
τ1−e(F )n2−v(F )

}
= O(1),

as required.

We will also need the following supersaturated version of the Erdős-Simonovits stability theorem,

which follows (for example) from the Szemerédi regularity lemma combined with the graph removal

lemma. Note that when H = K3 it follows from Exercise 3 of Lecture 1.

Theorem 27. For every graph H and every ε > 0, there exists δ > 0 such that the following holds

for every n ∈ N. If G is a graph on n vertices with

e(G) >

(
1− 1

χ(H)− 1
− δ
)(

n

2

)
,

then either G is εn2-close to being
(
χ(H)− 1

)
-partite, or G contains at least εnv(H) copies of H.

We can now prove the following container theorem for H-free graphs, which implies the three

theorems stated above.

Theorem 28 (A container theorem for H-free graphs). For every graph H and every ε > 0, there

exists δ > 0 and C > 0 such that the following holds. For every n ∈ N, there exists a collection G
of graphs on n vertices, and a function f : P

(
E(Kn)

)
→ G such that:

(a) Each G ∈ G either satisfies

e(G) 6

(
1− 1

χ(H)− 1
− δ
)(

n

2

)
,

or is εn2-close to being
(
χ(H)− 1

)
-partite.

(b) For every H-free graph I on n vertices, there exists a subgraph S ⊂ I with

e(S) 6 Cn2−1/m2(H) and I ⊂ f(S).

Proof. Let I be an H-free graph, and apply the hypergraph container lemma to the hypergraph H
that encodes copies of H in Kn, with τ = n−1/m2(H) and a suitable value of c = c(H). We obtain

graphs S1 ⊂ I and C1 = C1(S1) ⊃ I with |S1| 6 n1−1/m2(H) and |C1| 6 (1− δ)n. We now iterate,

as in the proof of Theorem 21, except placing Ct in G if either

e(Ct) 6

(
1− 1

χ(H)− 1
− δ
)(

n

2

)
,

or Ct is εn2-close to being
(
χ(H) − 1

)
-partite. By Theorem 27, if neither of these holds, then Ct

contains at least εnv(H) copies of H, and so we can apply the hypergraph container lemma to H[Ct].

Since e(Ct) 6 (1− δ)tn2, we will arrive at a member of G after a bounded number of steps. �
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The deduction of Theorems 24, 25 and 26 is now straightforward; we will give a quick sketch of

the proof of Theorem 26, and leave the details to the reader.

Sketch proof of Theorem 26. Let S denote the collection of fingerprints S obtained in Theorem 28(b),

and partition S into

S1 =
{
S ∈ S : f(S) is εn2-close to being

(
χ(H)− 1

)
-partite

}
and S2 = S \S1. Observe that the number of graphs G with n vertices and m edges that are βm-far

from being
(
χ(H)− 1

)
-partite, and are contained in f(S) for some S ∈ S1, is at most∑

S∈S1

(
εn2

βm− |S|

)(
|f(S)|
m− βm

)
6

(
βn2

m

)
if ε = ε(β) is sufficiently small and m > Cn2−1/m2(H) for some sufficiently large constant C > 0.

On the other hand, the total number of graphs G with n vertices and m edges that are contained

in f(S) for some S ∈ S2 is at most∑
S∈S2

(
|f(S)|
m− |S|

)
6 2−δ

2m

(
ex(n,H)

m

)
if m > Cn2−1/m2(H), since |f(S)| 6

(
1 − 1

χ(H)−1 − δ
)(
n
2

)
for every S ∈ S2. Summing these two

bounds, it follows that the number of H-free graphs G with n vertices and m edges that are βm-far

from being
(
χ(H)− 1

)
-partite is at most

2−δ
2m+1

(
ex(n,H)

m

)
�
(

ex(n,H)

m

)
for every m > Cn2−1/m2(H). Since the right-hand side is a lower bound on the number of H-free

graphs with n vertices and m edges, the theorem follows. �

The proof of Theorem 25 is similar, except we replace the counting above with an application of

Chernoff’s inequality in each container (cf. the proof of Theorem 2); we again leave the details to

the reader. Finally, note that Theorem 24 follows from Theorem 25.

Ramsey properties of random graphs. In this section we will show how to use the hypergraph

container lemma prove the following celebrated theorem of Rödl and Ruciński [50], using a nice

argument of Nenadov and Steger [47].

Theorem 29. For every graph H and r ∈ N, if p� n−1/m2(H) then the following holds. With high

probability every r-colouring of the edges of G(n, p) contains a monochromatic copy of H.

We will apply the hypergraph container lemma to the k-uniform hypergraph H that encodes

monochromatic copies of H in r-colourings of E(Kn), where k = e(H). This hypergraph consists

of r disjoint copies of the hypergraph that encodes copies of H in Kn, so

v(H) = r

(
n

2

)
and e(H) = Θ

(
nv(H)

)
.

It follows from our earlier calculation that there exists a constant c = c(H, r) such that (3) holds

with τ = n−1/m2(H). The definition of this hypergraph motivates the following definition.
15



Definition 30. An [r]-coloured graph is a graph G together with a function c : E(G)→ P(r) that

associates a non-empty subset of [r] to each edge. We say that an [r]-coloured graph is H-free if it

contains no monochromatic copy of H, i.e., if there does not exist a copy of H in G whose edges

have the following property: their associated sets have non-empty intersection.

We will need the following straightforward extension of Ramsey’s theorem, cf. Exercise 5 of

Lecture 1.

Theorem 31. For every graph H and r ∈ N, there exists a δ > 0 such that the following holds

for all sufficiently large n ∈ N. If G is a graph with n vertices and e(G) > (1/2− δ)n2 edges, then

every [r]-colouring of G contains at least δnv(H) monochromatic copies of H.

Now, to prove Theorem 29 we simply run the usual proof for each independent set I ∈ I(H)

(that is, for every H-free [r]-colouring of a graph on n vertices), applying the hypergraph container

lemma repeatedly to produce subsets St ⊂ I and Ct = Ct(St) ⊃ I, and placing Ct in our collection

of containers as soon as the graph G (of edges that receive at least one colour in Ct) satisfies

e(G) 6 (1/2− δ)n2. Doing so, we obtain the following container theorem for H-free colourings.

Theorem 32 (A container theorem for H-free colourings). For every graph H, and every r ∈ N
and ε > 0, there exists δ > 0 and C > 0 such that the following holds. For every n ∈ N, there exists

a collection G of [r]-coloured graphs on n vertices, and a function f : P
(
E(Kn)

)r → G such that:

(a) Each G ∈ G has at most (1− δ)
(
n
2

)
edges.

(b) For every H-free [r]-coloured graph I on n vertices, there exists a sub-colouring13 S ⊂ I

with

e(S) 6 Cn2−1/m2(H) and I ⊂ f(S).

The Rödl–Ruciński theorem now follows easily.

Proof of Theorem 29. Let S denote the collection of fingerprints S obtained in Theorem 32(b). If

there exists an r-colouring I of the edges of G(n, p) containing no monochromatic copy of H, it

follows that E(S) ⊂ E(G(n, p)) and E(G(n, p)) ⊂ E(f(S)), and also that e(f(S)) 6 (1 − δ)
(
n
2

)
,

since f(S) ∈ G. By the union bound, it follows that this has probability at most∑
S∈S

pe(S)
(
1− p

)δ(n2) 6 ∑
s6Cn2−1/m2(H)

(
n2

s

)
ps
(
1− p

)δ(n2)
6

∑
s6Cn2−1/m2(H)

(
epn2

s

)s
exp

(
− δp

(
n

2

))
→ 0

as n→∞, as required, since p� n−1/m2(H). �

Note that here, and in the other applications considered in this lecture, we obtain bounds on the

probability of failure / the size of the exceptional set that are exponential in pn2 / m.

13This means an [r]-colouring c′ : E(S)→ P(r) satisfying c′(e) ⊂ c(e) for every e ∈ E(S) ⊂ E(I).
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Exercises

1. The following supersaturation version of Sperner’s theorem was proved by Kleitman in 1968.

Theorem 33. Let n, k ∈ N, and let A ⊂ P(n). If |A| >
(
n
n/2

)
+ k, then A contains at least kn/2

pairs A,B ∈ A with A ⊂ B.

(a) By adding one edge at a time, deduce the following ‘balanced’ version of Theorem 33.

Theorem 34. For every ε > 0, there exists δ > 0 such that the following holds. If A ⊂ P(n)

satisfies |A| > (1 + ε)
(
n
n/2

)
, then there exist a collection H of δ2n

(
n
n/2

)
pairs A,B ∈ A with A ⊂ B,

such that each set A ∈ A is contained in at most δn elements of H.

(b) Use Theorem 34 and the graph container lemma to prove the following theorem, which is

also due to Kleitman [38].14

Theorem 35. There are 2
(1+o(1))( n

n/2) antichains in P(n).

(c) Let P(n, p) denote the random set-system obtained by including each set A ∈ P(n) indepen-

dently at random with probability p. Prove the following conjecture15 of Osthus from 2000.

Theorem 36. If p� 1/n, then with high probability the largest antichain in P(n, p) has size(
1 + o(1)

)
p

(
n

n/2

)
.

(d) What do you expect to happen for smaller values of p? Can you prove it?

2. (a) Prove the following supersaturation theorem for pairs with equal sums.

Theorem 37. There exist constants C > 0 and δ > 0 such that the following holds. If A ⊂ [n] is

a set of size |A| > C
√
n, then A contains at least δm4/n sets {x, y, z, w} with x+ y = z + w.

(b) A set A ⊂ Z is said to be a Sidon set if it contains no solutions of the equation x+ y = z+w

with {x, y} 6= {z, w}. Deduce the following theorem of Kohayakawa, Lee, Rödl and Samotij, and

also (independently) Saxton and Thomason.

Theorem 38. There are 2O(
√
n) Sidon sets in {1, . . . , n}.

(c) Use similar ideas to prove the following theorem about C4-free graphs.16

Theorem 39. There are 2O(n3/2) C4-free graphs on n vertices.

(d) What bounds can you prove on ex
(
G(n, p), C4

)
?

14This proof appears in the survey by Balogh, Treglown and Wagner [19], which contains a number of further

applications to problems involving P(n).
15This conjecture was proved by Balogh, Mycroft and Treglown, and independently by Collares and Morris.
16This theorem was in fact the original application of the container method, by Kleitman and Winston [40].
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3. (a) Observe that a graph whose vertex set can be partitioned into a clique and an independent

set17 contains no induced copy of C4. The following ‘supersaturated stability theorem’ for induced

C4s in coloured graphs was proved by Keevash and Lochet.

Theorem 40. For every ε > 0 there exists δ > 0 such that the following holds. Suppose GR and

GB are ‘red’ and ‘blue’ graphs on n vertices, and suppose that

e(GR) + e(GB) >

(
3

4
− δ
)
n2.

Either there are at least δn4 copies of C4 whose edges are in GR and whose non-edges are in GB,

or GR4GB is εn2-close to being two disjoint copies of Kn/2, one of each colour.

(b) Use Theorem 40 and the hypergraph containers lemma to prove the following theorem of

Prömel and Steger from 1991.

Theorem 41. Almost all induced-C4-free graphs on n vertices are εn2-close to being a split graph.

(c) For which p = p(n) do you expect G(n, p), conditioned to contain no induced copy of C4, to

be close to a split graph?

4. (a) Kuhn, Osthus, Townsend and Zhao [44] proved the following supersaturated stability theorem

for transitive triangles in directed graphs. Given a directed graph G, let us write e1(G) and e2(G)

for the number of single and double edges respectively.

Theorem 42. For ε > 0, there exists δ > 0 such that the following holds. If G is an directed graph

on n vertices and

e1(G) + log2 3 · e2(G) >

(
log2 3

4
− δ
)
n2,

then either G contains at least δn3 transitive triangles, or is εn2-close to being bipartite.

(b) Use hypergraph containers to deduce the following theorem, proved in [44].

Theorem 43. Almost all oriented graphs on n vertices with no transitive triangle are o(n2)-close

to being bipartite.

(c) For which functions m = m(n) can you prove that almost all oriented graphs with n vertices,

m edges and no transitive triangle are o(m)-close to being bipartite?

5. (a) Prove the following classical supersaturation theorem of Erdős and Simonovits.

Theorem 44. For every r ∈ N and ε > 0, and every r-uniform hypergraph H, there exists δ > 0

such that the following holds. If G is an r-uniform hypergraph with at least ex(n,H) + εnr edges,

then G contains at least δnr copies of H.

(b) Use hypergraph containers to deduce the following theorem of Nagle, Rödl and Schacht.

Theorem 45. If H is an r-uniform hypergraph, then the number of H-free r-uniform hypergraphs

on n vertices is 2ex(n,H)+o(nr).

17A graph with this property is usually called a ‘split graph’.
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Lectures 3 and 4: Some more advanced applications

In the final two lectures, we will see a selection of more complicated applications of the hypergraph

container method. We begin with the original application of Kleitman and Winston [40], and its

recent generalisations by Balogh and Samotij [18] and Morris and Saxton [46].

Ks,t-free and C2k-free graphs. The following theorems were proved by Balogh and Samotij (in

2011), and by Morris and Saxton (in 2016), respectively.

Theorem 46. There are at most 2O(n2−1/s) Ks,t-free graphs on n vertices.

Theorem 47. There are at most 2O(n1+1/k) C2k-free graphs on n vertices.

Both theorems follow from the container lemma (in fact, the proof of Balogh and Samotij was an

important step in the development of the hypergraph container method), together with a suitable

‘balanced’ supersaturation theorem. In order to illustrate the method while avoiding too many

technical difficulties, we’ll focus of the case of C4-free graphs.

Theorem 48. There exist constants δ > 0 and k0 ∈ N such that the following holds for every k > k0

and every n ∈ N. Given a graph G with n vertices and kn3/2 edges, there exists a collection H of

copies of C4 in G, satisfying:

(a) |H| > δ3k4n2,

(b) Each edge is used in at most δ2k3√n members of H,

(c) Each pair of edges is used in at most δk
√
n members of H.

We will give the proof of Theorem 48, since it provides a template for similar proofs in various

other settings, where one would like to ‘balance’ a supersaturation result.

Proof of balanced supersaturation for C4s. Observe first that it is easy to find a collection H satis-

fying part (a): following Erdős’ argument from 1935, we simply count paths of length two and use

convexity. To be precise, since G has at least kn3/2 edges, it follows that G contains at least∑
v∈V (G)

(
d(v)

2

)
> n ·

(
2k
√
n

2

)
> k2n2

paths of length two, and hence at least

1

2

(
n

2

)(
2k2

2

)
>
k4n2

4

C4s. In order to find a collection which also satisfies (b) and (c), we apply this argument many

times, at each step finding one new copy of C4 that may be added to the current collection without

violating the bounds in (b) and (c). In fact, for technical reasons we will need to ‘colour’ the two

sides of each K2,2 = C4, and maintain a different bound for P2s centred on each side.

Indeed, suppose we have already found a collection H of ‘coloured’18 copies of C4 = K2,2 in G

which satisfies condition (b) and the following condition (c′), but not (a):

18This just means when we find a copy of K2,2, we label two non-adjacent vertices ‘red’ and the other two ‘blue’.
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(c′) Each path of length two with centre vertex v is used in at most δk2 members of H in which

v is red, and at most δk
√
n members of H in which v is blue.

(Note that, for example, the empty collection has this property.) The first step is to remove from

G all ‘saturated’ edges, i.e., all edges that are already used in bδ2k3√nc members of H. Since we

have |H| < δ3k4n2 (as otherwise we are already done), it follows that we remove at most

4δ3k4n2

bδ2k3
√
nc
6 5δkn3/2

edges of G, and thus we still have at least kn3/2/2 edges. Let us call the remaining edges G′.

Claim: There exist in G′ at least 2δk4n2 coloured copies of K2,2 = C4, such that if any one of

them is added to H, the resulting hypergraph still satisfies conditions (b) and (c′).

Note that if we can prove the claim then we will be done, since at most δk4n2 of the C4s are

already members of H, so at least one of them must be new, and by the claim we can add it to H
without violating (b) or (c′).

Proof of Claim. To find such a collection of C4s, we count paths of length two, as before, removing

those that are already ‘saturated’. More precisely, let us say that a path of length two whose centre

vertex v is red (respectively blue) is saturated if it is contained in exactly bδk2c (resp. bδk
√
nc)

members of H in which v is red (resp. blue). We first find k4n2/4 paths of length two (whose centre

points we colour red) in G′, none of which is saturated. To do so note that each edge is in at most

2δ2k3√n
bδk2c

6 3δk
√
n

saturated paths of length two with centre vertex red, since each edge e ∈ E(G′) is used in at most

δ2k3√n members of H, each such path containing e is in at least bδk2c of them, and each C4

contains at most two of these paths. By convexity, it follows that G′ contains at least

1

2

∑
v∈V (G′)

d(v)
(
d(v)− 3δk

√
n
)
>

1

3n

( ∑
v∈V (G′)

d(v)

)2

>
k2n2

4

non-saturated paths of length two with centre vertex red, as claimed.

Now, fix two vertices u and w (which we will colour blue), and consider the collection P (u,w)

of such paths with leaves u and w. Let {uv, vw} ∈ P (u,w) and consider the set of v′ such that

{uv′, v′w} ∈ P (u,w), for which the C4 made by joining these two paths cannot be included in our

collection. This implies that either {vu, uv′} or {vw,wv′} is saturated (with centre vertex blue),

and hence each is used in at least bδk
√
nc members of H. However, each edge of G′ is used in at

most δ2k3√n members of H, so there are at most

2δ2k3√n
bδk
√
nc
6 3δk2

such vertices v′. By convexity, it follows that G′ contains at least

1

2

(
n

2

)
k4

4

(
k4

4
− 3δk2

)
> 2δk4n2

C4s in G′ containing no saturated path of length two, as required. �
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As noted above, the theorem follows from the claim. �

We will next use Theorem 48 and the hypergraph container lemma to prove the following con-

tainer theorem for C4-free graphs, which immediately implies the claimed bound on the number of

C4-free graphs, and which will moreover allow us to bound ex
(
G(n, p), C4

)
.

Theorem 49. There exist constants k0 > 0 and C > 0 such that the following holds for all n ∈ N
and k0 6 k 6 n1/6/ log n. There exists a collection G(n, k) of at most

exp

(
C log k

k
· n3/2

)
graphs on n vertices such that

e(G) 6 kn3/2

for every G ∈ G(n, k), and every C4-free graph on n vertices is a subgraph of some G ∈ G(n, k).

Proof. As usual, we will apply the hypergraph container lemma repeatedly, each time refining the

set of containers obtained at the previous step. However, it will be important that the value of τ

varies, depending on the current size of the container, so that the later steps (when the container

is small) matter much more than the early steps (when it is still big).

More precisely, suppose that after t steps we have constructed a family Ct such that

|Ct| 6 exp

(
n3/2

ε

t∑
i=1

max

{
log k(i)

k(i)
,

log n

n1/6

})
,

e(G) 6 k(t)n1+1/` for every G ∈ Ct, and every C4-free graph is a subgraph of some G ∈ Ct, where

k(i) = max
{

(1− ε)i
√
n, k0

}
and k0 and ε are sufficiently large and small constants respectively. (Note that C0 = {Kn} satisfies

these conditions.) We will construct a family Ct+1 by applying Theorem 48 and the hypergraph

container lemma to each graph G ∈ Ct with more than k(t+ 1)n1+1/` edges.

Let G ∈ Ct be a graph with kn3/2 edges, where k > k0. We claim that there exists a collec-

tion C(G) of at most

exp

(
n3/2

ε
·max

{
log k

k
,

log n

n1/6

})
subgraphs of G such that:

(a) Every C4-free subgraph of G is a subgraph of some C ∈ C(G), and

(b) e(C) 6 (1− ε)e(G) for every C ∈ C(G).

Indeed, this follows easily by applying the container lemma to the 4-uniform hypergraph H with

vertex set E(G) and edge set given by the collection of copies of C4 given by Theorem 48. Observe

that

v(H) = kn3/2, e(H) > δk4n2, ∆1(H) 6 k3√n and ∆2(H) 6 δ−1k
√
n.

Since ∆3(H) = ∆4(H) = 1, it follows that (3) holds with c = δ−1 and

τ = max

{
δ

k2
,

1

kn1/6

}
.
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Hence, by the hypergraph container lemma, there exists a collection of at most(
e(G)

τe(G)

)
6

(
O(1)

τ

)kn3/2

6 exp

(
n3/2

ε
·max

{
log k

k
,

log n

n1/6

})
,

as required. Now simply set Ct+1 =
⋃
G∈Ct C(G), and observe that Ct+1 satisfies the required

conditions.

Finally, let us show that if k 6 n1/6/ log n and m is chosen to be minimal so that k(m) 6 k, then

|Cm| 6 exp

(
O(1) · log k

k
· n3/2

)
as required. To see this, note first that m = O(log n), and that

(log n)2

n1/6
= O

(
log k

k

)
,

by our upper bound on k. Since k(i) decreases exponentially in i, it follows that

m∑
i=1

max

{
log k(i)

k(i)
,

log n

n1/6

}
= O

(
log k

k

)
,

as claimed, and so the theorem follows. �

As noted above, we can now bound the number of C4-free graphs simply by choosing k to be a

suitably large constant. We also obtain the following bound on ex
(
G(n, p), C4

)
, which is not far

from best possible.

Theorem 50. For every ` > 2, and every function p = p(n)� n−1/3(log n)3,

ex
(
G(n, p), C4

)
6 p1/2n3/2 log n

with high probability as n→∞.

Proof. Choose k ∈ N so that
log k

k2
= p� (log n)3

n1/3
,

and note that this implies that k 6 n1/6/ log n. Let G(n, k) be the collection of graphs given by

Theorem 49. Observe that, if there exists a C4-free subgraph of G(n, p) with m edges, then some

graph in G(n, k) must contain at least m edges of G(n, p). If , then we may apply Theorem 49 and

deduce that the expected number of such graphs is at most

exp

(
C log k

k
· n3/2

)
·
(
kn3/2

m

)
· pm 6

(
O
(
pkn3/2

)
m

)m
→ 0

as n→∞, if

m� pkn3/2 =
log k

k
· n3/2.

Since this inequality holds if m > p1/2n3/2 log n, the result follows. �

To see that Theorem 50 is close to best possible (apart for the log factors), consider the following

two constructions:
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1. Choose a random subgraph G ⊂ G(n, p) by retaining each edge independently with proba-

bility

q := min
{
εp−1n−2/3, 1

}
,

and remove one edge from each copy of C4 in G.

2. Let G be a C4-free bipartite graph on N = n/a vertices, where a = ε/p, with at least εN3/2

edges. Now blow up each vertex of G into a set of size a, and retain from G(n, p) a maximal

matching between each pair that corresponds to an edge of G.

We leave it to the reader to check that these constructions prove almost lower bounds in the following

theorem. The upper bounds follow by using the full power of the container lemma, see [46].

Theorem 51. There exists a constant C > 0 such that, with high probability,

n4/3 6 ex
(
G(n, p), C4

)
6 n4/3(log n)2

if n−2/3 � p 6 n−1/3(log n)4, and

ex
(
G(n, p), C4

)
= Θ

(
p1/2n3/2

)
if p > n−1/3(log n)4.

We remark that the lower bound of n4/3 is not sharp, as Kohayakawa, Kreuter and Steger showed

that, with high probability,

ex
(
G(n, p), C4

)
= Θ

(
n4/3(logα)1/3

)
(4)

if p = αn−4/3 and 2 6 α 6 n1/9.

We remark that the proof above can be adapted to count Ks,t-free graphs without great difficulty.

For longer even cycles, on the other hand, the proof in [46] of the corresponding supersaturation

theorem is significantly more complicated, and for general bipartite graphs we have no idea how to

prove a suitable supersaturation theorem. In [46] we made the following general conjecture, and

showed that (for each H) it implies that the number of H-free graphs on n vertices is 2O(ex(n,H).

Conjecture 52 (Balanced supersaturation conjecture for general bipartite H). Given a bipartite

graph H, there exist constants C > 0, ε > 0 and k0 ∈ N such that the following holds. Let k > k0,

and suppose that G is a graph on n vertices with k ·ex(n,H) edges. Then there exists a (non-empty)

collection H of copies of H in G, satisfying

dH(σ) 6
C · |H|

k(1+ε)(|σ|−1)e(G)
for every σ ⊂ E(G) with 1 6 |σ| 6 e(H), (5)

where dH(σ) = |{A ∈ H : σ ⊂ A}| denotes the ‘degree’ of the set σ in H.

Finally, we remark that similar results were proved in the closely-related setting of “Bh-sets” by

Dellamonica, Kohayakawa, Lee, Rödl and Samotij [27, 28, 29] using only graph containers (together

with a number of new ideas). It would be very interesting to apply their techniques to graphs.
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The K LR conjecture. In this section we will show how to use the container method to prove the

following famous conjecture of Kohayakawa,  Luczak, and Rödl [43]. Let us write G(H,n,m, p, ε)

for the collection of all graphs G constructed as follows:

(a) V (G) = V1 ∪ · · ·Vv(H), where the Vi are disjoint sets of size n.

(b) For each ij ∈ E(H), choose an (ε, p)-regular19 bipartite graph with m edges between Vi and

Vj . The edge set of G is the union of these graphs.

The following theorem can be though of as a probabilistic embedding lemma for sparse graphs.

Theorem 53 (The K LR conjecture). For every graph H and every β > 0, there exist constants

C > 0, n0 ∈ N and ε > 0 such that the following holds. For every n ∈ N with n > n0 and m ∈ N
with m > Cn2−1/m2(H), there are at most

βm
(
n2

m

)e(H)

H-free graphs in G(H,n,m, p, ε).

We remark that  Luczak observed that, somewhat surprisingly, for any graph H that contains a

cycle and any function p satisfying p = o(1), there are graphs in G(H,n, pn2, p, ε) with no canonical

copy of H. To prove the K LR conjecture, we will (as usual) combine the hypergraph container

lemma with a suitable supersaturation lemma, which in this case is essentially just the usual

embedding lemma for dense graphs. To state the version we need, let us write G(H;n1, . . . , nv(H))

the collection of all graphs G with vertex set V1∪ . . .∪Vv(H), where the Vi are disjoint and |Vi| = ni,

and all edges of G lie between those pairs of sets (Vi, Vj) such that {i, j} is an edge of H. The proof

of the following lemma follows from the usual proof of the embedding lemma; we leave the details

to the reader.

Lemma 54. Let H be a graph and let δ : (0, 1]→ (0, 1) be an arbitrary function. There exist con-

stants α0, ξ, n0 > 0 such that for every n1, . . . , nv(H) > n0 and every graph G ∈ G(H;n1, . . . , nv(H)),

one of the following holds:

(a) G contains at least ξn1 . . . nv(H) canonical copies of H.

(b) There exist α > α0, an edge ij ∈ E(H), and sets Ai ⊂ Vi, Aj ⊂ Vj such that

|Ai| > αni, |Aj | > αnj and dG(Ai, Aj) < δ(α).

We next show that, by choosing δ sufficiently small, we can easily count the (ε, p)-regular sub-

graphs of a graph with a ‘hole’ as in Lemma 54(b). To be precise, for each β ∈ (0, 1) let us

define

δ(x) =
1

4e

(
β

2

)2/x2

(6)

for each x ∈ (0, 1]. The following lemma says that a graph G that has a hole of size αn and density

at most δ(α) has very few subgraphs in G(K2, n,m,m/n
2, ε).

19This means that for every X ⊂ Vi and Y ⊂ Vj with |X| > ε|Vi| and |Y | > ε|Vj |, the density d(X,Y ) of edges

between X and X satisfies
∣∣d(X,Y )− d(Vi, Vj)

∣∣ 6 εp.
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Lemma 55. For every α0 > 0 and β > 0, there exists ε > 0 such that the following holds. Let

G ⊆ Kn,n be such that there exist subsets A ⊆ V1(G) and B ⊆ V2(G) with

min{|A|, |B|} > αn and dG(A,B) < δ(α)

for some α ∈ [α0, 1], and let S ⊆ G. Then, for every m with |S|/ε 6 m 6 n2, there are at most

βm
(

n2

m− |S|

)
subgraphs of G̃ that belong to G(K2, n,m,m/n

2, ε) and contain S.

The proof of Lemma 55 is just some straightforward counting, so we again leave the details to

the reader. We can now easily deduce the following “K LR container theorem” by applying the

hypergraph container lemma to the e(H)-uniform hypergraph whose edges are the nv(H) canonical

copies of H in the (unique) graph G∗n ∈ G(H,n, n2, 1, 1).

Theorem 56 (The K LR container theorem). For every graph H and every β > 0, there exist

α0 > 0 and C > 0 such that the following holds. For every n ∈ N, there exists a collection

G ⊂ G(H,n, n2, 1, 1), and a function f : P
(
E(G∗n)

)
→ G such that:

(a) For each G ∈ G, there exist ij ∈ E(H) and sets Ai ⊂ Vi, Aj ⊂ Vj such that

|Ai| > αni, |Aj | > αnj and dG(Ai, Aj) < δ(α)

for some α > α0, where δ is as defined in (6).

(b) For every H-free graph I on n vertices, there exists a subgraph S ⊂ I with

e(S) 6 Cn2−1/m2(H) and I ⊂ f(S).

We leave the proof of Theorem 56, and the deduction of the K LR conjecture, to the reader.
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[28] D. Dellamonica, Y. Kohayakawa, S. Lee, V. Rödl and W. Samotij, The number of B3-sets of a given cardinality,

J. Combin. Theory, Ser. A, 142 (2016), 44–76.
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