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Abstract. Szemerédi’s Regularity Lemma is an important tool in di-
screte mathematics. It says that, in some sense, all graphs can be ap-
proximated by random-looking graphs. Therefore the lemma helps in
proving theorems for arbitrary graphs whenever the corresponding re-
sult is easy for random graphs. In the last few years more and more new
results were obtained by using the Regularity Lemma, and also some
new variants and generalizations appeared. Komlós and Simonovits have
written a survey on the topic [96]. The present survey is, in a sense, a
continuation of the earlier survey. Here we describe some sample appli-
cations and generalizations. To keep the paper self-contained we decided
to repeat (sometimes in a shortened form) parts of the first survey, but
the emphasis is on new results.

Preface

The Regularity Lemma [127] is one of the most powerful tools of (extremal)
graph theory. It was invented as an auxiliary lemma in the proof of the famous
conjecture of Erdős and Turán [53] that sequences of integers of positive upper
density must always contain long arithmetic progressions. Its basic content could
be described by saying that every graph can, in some sense, be well approximated
by random graphs. Since random graphs of a given edge density are much easier
to treat than all graphs of the same edge-density, the Regularity Lemma helps us
to carry over results that are trivial for random graphs to the class of all graphs
with a given number of edges. It is particularly helpful in “fuzzy” situations, i.e.,
when the conjectured extremal graphs have no transparent structure.

Remark. Sometimes the Regularity Lemma is called Uniformity Lemma,
see e.g., [61] and [4].

Notation. In this paper we only consider simple graphs – undirected graphs
without loops and multiple edges: G = (V,E) where V = V (G) is the vertex-set
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of G and E = E(G) ⊂ (V2) is the edge-set of G. v(G) = |V (G)| is the number
of vertices in G (order), e(G) = |E(G)| is the number of edges in G (size).
Gn will always denote a graph with n vertices. deg(v) is the degree of vertex
v and deg(v, Y ) is the number of neighbours of v in Y . δ(G), ∆(G) and t(G)
are the minimum degree, maximum degree and average degree of G. χ(G) is the
chromatic number ofG.N(x) is the set of neighbours of the vertex x, and e(X,Y )
is the number of edges between X and Y . A bipartite graph G with color-classes
A and B and edge-set E will sometimes be written as G = (A,B,E), E ⊂ A×B.
For disjoint X,Y , we define the density

d(X,Y ) =
e(X,Y )
|X| · |Y | .

G(U) is the restriction of G to U and G−U is the restriction of G to V (G)−U .
For two disjoint subsets A,B of V (G), we write G(A,B) for the subgraph with
vertex set A ∪ B whose edges are those of G with one endpoint in A and the
other in B.

For graphs G and H, H ⊂ G means that H is a subgraph of G, but often we
will use this in the looser sense that G has a subgraph isomorphic to H (H is
embeddable into G), that is, there is a one-to-one map (injection) ϕ : V (H) →
V (G) such that {x, y} ∈ E(H) implies {ϕ(x), ϕ(y)} ∈ E(G). ‖H → G‖ denotes
the number of labelled copies of H in G. The cardinality of a set S will mostly
be denoted by |S|, but sometimes we write #S. We will be somewhat sloppy by
often disregarding rounding.

1 Introduction

1.1 The Structure of This Survey

We will start with some historical remarks, then we state the Regularity Lemma.
After that we introduce the basic notion of the Reduced Graph of a graph
corresponding to a partition of the vertex-set, and state a simple but useful
tool (Embedding Lemma). The much stronger version called Blow-up Lemma is
mentioned later. The latter has found many applications since [96] was published.
(For a short survey on the Blow-up Lemma, see [87].)

We will also touch upon some algorithmic aspects of the Regularity Lemma,
its relation to quasi-random graphs and extremal subgraphs of a random graph.
We also shortly mention a sparse version.

The results quoted here only serve as illustrations; we did not attempt to
write a comprehensive survey. An extended version is planned in the near future.

1.2 Regular Pairs

Regular pairs are highly uniform bipartite graphs, namely ones in which the
density of any reasonably sized subgraph is about the same as the overall density
of the graph.
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Definition 1 (Regularity condition). Let ε > 0. Given a graph G and two
disjoint vertex sets A ⊂ V , B ⊂ V , we say that the pair (A,B) is ε-regular if
for every X ⊂ A and Y ⊂ B satisfying

|X| > ε|A| and |Y | > ε|B|
we have

|d(X,Y )− d(A,B)| < ε.

The next one is the most important property of regular pairs.

Fact 1 (Most degrees into a large set are large) Let (A,B) be an ε-regu-
lar pair with density d. Then for any Y ⊂ B, |Y | > ε|B| we have

#{x ∈ A : deg(x, Y ) ≤ (d− ε)|Y |} ≤ ε|A|.
For other basic properties of regular pairs see [96].
We will also use another version of regularity:

Definition 2 (Super-regularity). Given a graph G and two disjoint vertex
sets A ⊂ V , B ⊂ V , we say that the pair (A,B) is (ε, δ)-super-regular if for
every X ⊂ A and Y ⊂ B satisfying

|X| > ε|A| and |Y | > ε|B|
we have

e(X,Y ) > δ|X||Y |,
and furthermore,

deg(a) > δ|B| for all a ∈ A, and deg(b) > δ|A| for all b ∈ B.

1.3 The Regularity Lemma

The Regularity Lemma says that every dense graph can be partitioned into a
small number of regular pairs and a few leftover edges. Since regular pairs behave
as random bipartite graphs in many ways, the Regularity Lemma provides us
with an approximation of a large dense graph with the union of a small number
of random-looking bipartite graphs.

Theorem 2 (Regularity Lemma, Szemerédi 1978 [127]). For every ε > 0
there exists an integer M = M(ε) with the following property: for every graph G
there is a partition of the vertex set into k classes V = V1 + V2 + . . .+ Vk such
that

– k ≤M ,
– |Vi| ≤ ε|V |� for every i,
– ||Vi| − |Vj || ≤ 1 for all i, j (equipartition),
– (Vi, Vj) is ε-regular in G for all but at most εk2 pairs (i, j).

The classes Vi will be called groups or clusters.
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If we delete the edges within clusters as well as edges that belong to irregular
pairs of the partition, we get a subgraph G′ ⊂ G that is more uniform, more
random-looking, and therefore more manageable. Since the number of edges
deleted is small compared to |V |2, the Regularity Lemma provides us with a
good approximation of G by the random-looking graph G′. Of course, if we have
a sequence (Gn) of graphs with e(Gn) = o(n2), the Regularity Lemma becomes
trivial: Gn are approximated by empty graphs. Thus the Regularity Lemma is
useful only for large, dense graphs.

Remark 1. A drawback of the result is that the bound obtained for M(ε) is
extremely large, namely a tower of 2’s of height proportional to ε−5. That this
is not a weakness of Szemerédi’s proof but rather an inherent feature of the
Regularity Lemma was shown by Timothy Gowers [70] (see also [9]).

The Regularity Lemma asserts in a way that every graph can be approxima-
ted by generalized random graphs.

Definition 3 ([118]). Given an r× r symmetric matrix (pij) with 0 ≤ pij ≤ 1,
and positive integers n1, . . . , nr, we define a generalized random graph Rn
(for n = n1 + · · · + nr) by partitioning n vertices into classes Vi of size ni and
then joining the vertices x ∈ Vi, y ∈ Vj with probability pij, independently for all
pairs {x, y}.
Remark 2. Often, the application of the Regularity Lemma makes things trans-
parent but the same results can be achieved without it equally easily. One would
like to know when one can replace the Regularity Lemma with “more elemen-
tary” tools and when the application of the Regularity Lemma is unavoidable.
The basic experience is that when in the conjectured extremal graphs for a
problem the densities in the regular partition are all near to 0 or 1, then the Re-
gularity Lemma can probably be eliminated. On the other hand, if these densities
are strictly bounded away from 0 and 1 then the application of the Regularity
Lemma is often unavoidable.

1.4 The Road to the Regularity Lemma

The following is a basic result in combinatorial number theory.

Theorem 3 (van der Waerden 1927 [131]). Let k and t be arbitrary positive
integers. If we color the integers with t colors, at least one color-class will contain
an arithmetic progression of k terms.

A standard compactness argument shows that the following is an equivalent
form.

Theorem 4 (van der Waerden - finite version). For any integers k and t
there exists an n such that if we color the integers {1, . . . , n} with t colors, then
at least one color-class will contain an arithmetic progression of k terms.
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This is a Ramsey type theorem in that it only claims the existence of a given
configuration in one of the color classes without getting any control over which
class it is. It turns out that the van der Waerden problem is not a true Ramsey
type question but of a density type: the only thing that matters is that at least
one of the color classes contains relatively many elements. Indeed, answering
a very deep and difficult conjecture of P. Erdős and P. Turán from 1936 [53],
Endre Szemerédi proved that positive upper density implies the existence of an
arithmetic progression of k terms.

Theorem 5 (Szemerédi 1975 [126]). For every integer k > 2 and ε > 0
there exists a threshold n0 = n0(k, ε) such that if n ≥ n0, A ⊂ {1, . . . , n} and
|A| > εn, then A contains an arithmetic progression of k terms.

Remark. For k = 3 this is a theorem of K.F. Roth [103] that dates back
to 1954, and it was already an important breakthrough when Szemerédi suc-
ceeded in proving the theorem in 1969 for k = 4 [124]. One of the interesting
questions in this field is the speed of convergence to 0 of rk(n)/n, where rk(n)
is the maximum size of a subset of [n] not containing an arithmetic progression
of length k. Szemerédi’s proof used van der Waerden’s theorem and therefore
gave no reasonable bound on the convergence rate of r4(n)/n. Roth found an
analytical proof a little later [104,105] not using van der Waerden’s theorem and
thus providing the first meaningful estimates on the convergence rate of r4(n)/n
[104].

Szemerédi’s theorem (for general k) was also proved by Fürstenberg [66] in
1977 using ergodic theoretical methods. It was not quite clear first how different
the Fürstenberg proof was from that of Szemerédi, but subsequent generalizati-
ons due to Fürstenberg and Katznelson [68] and later by Bergelson and Leibman
[7] convinced the mathematical community that Ergodic Theory is a natural tool
to attack combinatorial questions. The narrow scope of this survey does not al-
low us to explain these generalizations. We refer the reader to the book of R.L.
Graham, B. Rothschild and J. Spencer, Ramsey Theory [71], which describes
the Hales-Jewett theorem and how these theorems are related, and its chapter
“Beyond Combinatorics” gives an introduction into related subfields of topology
and ergodic theory. Another good source is the paper of Fürstenberg [67].

2 Early Applications

Among the first graph theoretical applications, the Ramsey-Turán theorem for
K4 and the (6, 3)-theorem of Ruzsa and Szemerédi were proved using (an earlier
version of) the Regularity Lemma.

2.1 The (6,3)-Problem

The (6, 3)-problem is a special hypergraph extremal problem: Brown, Erdős and
T. Sós asked for the determination of the maximum number of hyperedges an
r-uniform hypergraph can have without containing ) hyperedges the union of
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which is at most k [17,16]. One of the simplest cases they could not settle was
this (6, 3)-problem.

Theorem 6 (The (6, 3)-theorem, Ruzsa-Szemerédi 1976 [111]). If Hn is
a 3-uniform hypergraph on n vertices not containing 6 points with 3 or more
triples, then e(Hn) = o(n2).

(Since the function M(ε) grows incredibly fast, this would only give an upper
bound r3(n) = O(n/ log∗ n), much weaker than Roth’s r3(n) = O(n/ log log n),
let alone the often conjectured r3(n) = O(n/ log n). The best known upper bound
is due to Heath-Brown [80] and to Szemerédi [128] improving Heath-Brown’s
result, according to which r3(n) ≤ O(n/ log1/4−ε n).)

The (6, 3) theorem was generalized by Erdős, Frankl and Rödl as follows.
Let gr(n, v, e) denote the maximum number of r-edges an r-uniform hypergraph
may have if the union of any e edges span more than v vertices.

Theorem 7 (Erdős-Frankl-Rödl [38]). For all (fixed) r, gr(n, 3r − 3, 3) =
o(n2).

For another strengthening of the (6, 3) theorem, see [32].

2.2 Applications in Ramsey-Turán Theory

Theorem 8 (Ramsey-Turán for K4, Szemerédi 1972 [125]). If Gn con-
tains no K4 and only contains o(n) independent vertices, then e(Gn) < 1

8n
2 +

o(n2).

Remark. Since most people believed that in Theorem 8 the upper bound
n2/8 can be improved to o(n2), it was quite a surprise when in 1976 Bollobás
and Erdős [10] came up with an ingenious geometric construction which showed
that the constant 1/8 in the theorem is best possible. That is, they showed the
existence of a graph sequence (Hn) for which

K4 �⊂ Hn, α(Hn) = o(n) and e(Hn) >
n2

8
− o(n2).

Remark. A typical feature of the application of the regularity lemma can
be seen above, namely that we do not distinguish between o(n) and o(m), since
the number k of clusters is bounded (in terms of ε only) and m ∼ n/k.

Remark. The problem of determining max e(Gn) under the condition

Kp �⊂ Gn and α(Gn) = o(n)

is much easier for odd p than for even p. A theorem of Erdős and T. Sós [51]
describing the odd case was a starting point of the theory of Ramsey-Turán
problems. The next important contribution was the above-mentioned theorem
of Szemerédi (and then the counterpart due to Bollobás and Erdős). Finally the
paper of Erdős, Hajnal, T. Sós and Szemerédi [45] completely solved the problem
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for all even p by generalizing the above Szemerédi-Bollobás-Erdős theorems. It
also used the Regularity Lemma.

One reason why the Regularity Lemma can be used here is that if we know
that the reduced graph contains some graph L, (e.g., a K3), then using the o(n)-
condition we can guarantee a larger subgraph (e.g., a K4) in the original graph.
According to our philosophy, one reason why probably the use of the Regularity
Lemma is unavoidable is that the edge-density in the conjectured extremal graph
is 1/2; bounded away from 0 and 1.

There are many related Ramsey-Turán theorems; we refer the reader to [43]
and [44], or to the survey [121]. The very first Ramsey-Turán type problem can
be found in the paper [122] of Vera T. Sós.

2.3 Building Small Induced Subgraphs

While the reduced graph R of G certainly reflects many aspects of G, when
discussing induced subgraphs the definition should be changed in a natural way.
Given a partition V1, . . . , Vk of the vertex-set V of G and positive parameters
ε, d, we define the induced reduced graph as the graph whose vertices are the
clusters V1, . . . , Vk and Vi and Vj are adjacent if the pair (Vi, Vj) is ε-regular in
G with density between d and 1− d.

Below we will describe an application of the regularity lemma about the
existence of small induced subgraphs of a graph, not by assuming that the graph
has many edges but by putting some condition on the graph which makes its
structure randomlike, fuzzy.

Definition 4. A graph G = (V,E) has the property (γ, δ, σ) if for every subset
S ⊂ V with |S| > γ|V | the induced graph G(S) satisfies

(σ − δ)
(|S|

2

)
≤ e(G(S)) ≤ (σ + δ)

(|S|
2

)
.

Theorem 9 (Rödl 1986 [107]). For every positive integer k and every σ > 0
and δ > 0 such that δ < σ < 1 − δ there exists a γ and a positive integer n0
such that every graph Gn with n ≥ n0 vertices satisfying the property (γ, δ, σ)
contains all graphs with k vertices as induced subgraphs.

Rödl also points out that this theorem yields an easy proof (see [101]) of the
following generalization of a Ramsey theorem first proved in [28,42] and [106]:

Theorem 10. For every graph L there exists a graph H such that for any 2-
coloring of the edges of H, H must contain an induced monochromatic L.

The next theorem of Rödl answers a question of Erdős [8,36].

Theorem 11. For every positive integer k and positive σ and γ there exists a
δ > 0 and a positive integer n0 such that every graph Gn with at least n0 vertices
having property (γ, δ, σ) contains all graphs with k vertices as induced subgraphs.

(Erdős asked if the above theorem holds for 1
2 , δ,

1
2 and Kk.)
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The reader later may notice the analogy and the connection between this
theorem and some results of Chung, Graham andWilson on quasi-random graphs
(see Section 8).

2.4 Diameter-Critical Graphs

We shall need a notation: If H is an arbitrary graph with vertex set {x1, . . . , xk}
and a1, . . . , ak are non-negative integers, then H(a1, . . . , ak) denotes the graph
obtained from Hk by replacing xj by a set Xi of ai independent vertices, and
joining each x ∈ Xi to each x′ ∈ Xj for 1 ≤ i < j ≤ k exactly if (xi, xj) ∈ E(H).

Consider all graphs Gn of diameter 2. The minimum number of edges in such
graphs is attained by the star K(1, n − 1). There are many results on graphs
of diameter 2. An interesting subclass is the class of 2-diameter-critical graphs.
These are minimal graphs of diameter 2: deleting any edge we get a graph of
diameter greater than 2. The cycle C5 is one of the simplest 2-diameter-critical
graphs. If H is a 2-diameter-critical graph, then H(a1, . . . , ak) is also 2-diameter-
critical. So Tn,2, and more generally of K(a, b), are 2-diameter-critical. Indepen-
dently, Murty and Simon (see in [21]) formulated the following conjecture:

Conjecture 12 If Gn is a minimal graph of diameter 2, then e(G) ≤ �n2/4�.
Equality holds if and only if Gn is the complete bipartite graph K�n/2�,�n/2�.

Füredi used the Regularity Lemma to prove this.

Theorem 13 (Füredi 1992 [65]). Conjecture 12 is true for n ≥ n0.

Here is an interesting point: Füredi did not need the whole strength of the
Regularity Lemma, only a consequence of it, the (6, 3)-theorem.

3 How to Apply the Regularity Lemma

3.1 The Reduced Graph

Given an arbitrary graph G = (V,E), a partition P of the vertex-set V into
V1, . . . , Vk, and two parameters ε, d, we define the Reduced Graph (or Cluster
graph) R as follows: its vertices are the clusters V1, . . . , Vk and Vi is joined to
Vj if (Vi, Vj) is ε-regular with density more than d. Most applications of the
Regularity Lemma use Reduced Graphs, and they depend upon the fact that
many properties of R are inherited by G.

The most important property of Reduced Graphs is mentioned in the follo-
wing section.
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3.2 A Useful Lemma

Many of the proofs using the Regularity Lemma struggle through similar tech-
nical details. These details are often variants of an essential feature of the Re-
gularity Lemma: If G has a reduced graph R and if the parameter ε is small
enough, then every small subgraph H of R is also a subgraph of G. In the first
applications of the Regularity Lemma the graph H was fixed, but the greedy
algorithm outlined in the section “Building up small subgraphs” works smoo-
thly even when the order of H is proportional with that of G as long as H has
bounded degrees. (Another standard class of applications - embedding trees into
dense graphs - will be discussed later.)

The above mentioned greedy embedding method for bounded degree graphs
is so frequently used that, just to avoid repetitions of technical details, it is worth
while spelling it out in a quotable form.

For a graph R and positive integer t, let R(t) be the graph obtained from R
by replacing each vertex x ∈ V (R) by a set Vx of t independent vertices, and
joining u ∈ Vx to v ∈ Vy iff (x, y) is an edge of R. In other words, we replace the
edges of R by copies of the complete bipartite graph Kt,t.

Theorem 14 (Embedding Lemma). Given d > ε > 0, a graph R, and a
positive integer m, let us construct a graph G by replacing every vertex of R by
m vertices, and replacing the edges of R with ε-regular pairs of density at least
d. Let H be a subgraph of R(t) with h vertices and maximum degree ∆ > 0, and
let δ = d− ε and ε0 = δ∆/(2 +∆). If ε ≤ ε0 and t− 1 ≤ ε0m, then H ⊂ G. In
fact,

‖H → G‖ > (ε0m)h.

Remark. Note that v(R) didn’t play any role here.

Remark. Often we use this for R itself (that is, for t = 1): If ε ≤ δ∆(R)/(2+
∆(R)) then R ⊂ G, in fact, ‖R→ G‖ ≥ (εm)v(R).

Remark. Using the fact that large subgraphs of regular pairs are still regular
(with a different value of ε), it is easy to replace the condition H ⊂ R(ε0m) with
the assumptions

(*) every component of H is smaller than ε0m,
(**) H ⊂ R((1− ε0)m).

Most of the classical proofs using the Regularity Lemma can be simplified by
the application of the Embedding Lemma. However, this only helps presentabi-
lity; the original proof ideas – basically building up subgraphs vertex-by-vertex
– are simply summarized in the Embedding Lemma.

One can strengthen the lemma tremendously by proving a similar statement
for all bounded degree subgraphs H of the full R(m). This provides a very
powerful tool (Blow-up Lemma), and it is described in Section 4.6.

Proof of the Embedding Lemma. We prove the following more general esti-
mate.

If t− 1 ≤ (δ∆ −∆ε)m then ‖H → G‖ > [(δ∆ −∆ε)m− (t− 1)
]h

.
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We embed the vertices v1, . . . , vh of H into G by picking them one-by-one. For
each vj not picked yet we keep track of an ever shrinking set Cij that vj is
confined to, and we only make a final choice for the location of vj at time j. At
time 0, C0j is the full m-set vj is a priori restricted to in the natural way. Hence
|C0j | = m for all j. The algorithm at time i ≥ 1 consists of two steps.

Step 1 - Picking vi. We pick a vertex vi ∈ Ci−1,i such that

degG(vi, Ci−1,j) > δ|Ci−1,j | for all j > i such that {vi, vj} ∈ E(H). (1)

Step 2. - Updating the Cj’s. We set, for each j > i,

Cij =
{
Ci−1,j ∩N(vi) if {vi, vj} ∈ E(H)
Ci−1,j otherwise.

For i < j, let dij = #{) ∈ [i] : {v�, vj} ∈ E(H)}.
Fact. If dij > 0 then |Cij | > δdijm. (If dij = 0 then |Cij | = m.)

Thus, for all i < j, |Cij | > δ∆m ≥ εm, and hence, when choosing the exact
location of vi, all but at most ∆εm vertices of Ci−1,i satisfy (1). Consequently,
we have at least

|Ci−1,i| −∆εm− (t− 1) > (δ∆ −∆ε)m− (t− 1)

free choices for vi, proving the claim.

Remark. We did not use the full strength of ε-regularity for the pairs (A,B)
of m-sets replacing the edges of H, only the following one-sided property:

X ⊂ A, |X| > ε|A|, Y ⊂ B, |Y | > ε|B| imply e(X,Y ) > δ|X||Y |.
We already mentioned that in a sense the Regularity Lemma says that all

graphs can be approximated by generalized random graphs. The following ob-
servation was used in the paper of Simonovits and T. Sós [118] to characterize
quasi-random graphs.

Theorem 15. Let δ > 0 be arbitrary, and let V0, V1, . . . , Vk be a regular partition
of an arbitrary graph Gn with ε = δ2 and each cluster size less than δn. Let Qn

be the random graph obtained by replacing the edges joining the classes Vi and
Vj (for all i �= j) by independently chosen random edges of probability pi,j :=
d(Vi, Vj), and let H be any graph with ) vertices. If n ≥ n0, then

‖H → Qn‖ − C�δn
� ≤ ‖H → Gn‖ ≤ ‖H → Qn‖+ C�δn

�.

almost surely, where C� is a constant depending only on ).

Most applications start with applying the Regularity Lemma for a graph
G and finding the corresponding Reduced Graph R. Then usually a classical
extremal graph theorem (like the König-Hall theorem, Dirac’s theorem, Turán’s
theorem or the Hajnal-Szemerédi theorem) is applied to the graph R. Then an
argument similar to the Embedding Lemma (or its strengthened version, the
Blow-up Lemma) is used to lift the theorem back to the graph G.
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3.3 Some Classical Extremal Graph Theorems

This is only a brief overview of the standard results from extremal graph theory
most often used in applications of the Regularity Lemma. For a detailed descrip-
tion of the field we refer the reader to [8,117,64].

The field of extremal graph theory started with the historical paper of Pál
Turán in 1941, in which he determined the minimal number of edges that gua-
rantees the existence of a p-clique in a graph. The following form is somewhat
weaker than the original theorem of Turán, but it is perhaps the most usable
form.

Theorem 16 (Turán 1941 [130]). If Gn is a graph with n vertices and

e(G) >
(
1− 1

p− 1

)
n2

2
,

then Kp ⊂ Gn.

In general, given a family L of excluded graphs, one would like to find
the maximum number of edges a graph Gn can have without containing any
subgraph L ∈ L. This maximum is denoted by ex(n,L) and the graphs attaining
the maximum are called extremal graphs. (We will use the notation ex(n,L)
for hypergraphs, too.) These problems are often called Turán type problems,
and are mostly considered for simple graphs or hypergraphs, but there are
also many results for multigraphs and digraphs of bounded edge- or arc-
multiplicity (see e.g. [13,14,15,18,114]).

Using this notation, the above form of Turán’s theorem says that

ex(n,Kp) ≤
(
1− 1

p− 1

)
n2

2
.

The following theorem of Erdős and Stone determines ex(n,Kp(t, . . . , t)) asym-
ptotically.

Theorem 17 (Erdős-Stone 1946 [52] - Weak Form). For any integers p ≥
2 and t ≥ 1,

ex(n,Kp(t, . . . , t)) =
(
1− 1

p− 1

)(
n

2

)
+ o(n2).

(For strengthened versions, see [25,26].) This is, however, much more than
just another Turán type extremal result. As Erdős and Simonovits pointed out
in [46], it implies the general asymptotic description of ex(n,L).
Theorem 18. If L is finite and min

L∈L
χ(L) = p > 1, then

ex(n,L) =
(
1− 1

p− 1

)(
n

2

)
+ o(n2).
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So this theorem plays a crucial role in extremal graph theory. (For structural
generalizations for arbitrary L see [33,34,115].)

The proof of the Embedding Lemma gives the following quantitative form
(see also Frankl-Pach [60], and [118]).

Theorem 19 (Number of copies of H). Let H be a graph with h vertices
and chromatic number p. Let β > 0 be given and write ε = (β/6)h. If a graph
Gn has

e(Gn) >
(
1− 1

p− 1
+ β

)
n2

2

then

‖H → Gn‖ >
(

εn

M(ε)

)h
.

It is interesting to contrast this with the following peculiar fact observed by
Füredi. If a graph has few copies of a sample graph (e.g., few triangles), then
they can all be covered by a few edges:

Theorem 20 (Covering copies of H). For every β > 0 and sample graph H
there is a γ = γ(β,H) > 0 such that if Gn is a graph with at most γnv(H) copies
of H, then by deleting at most βn2 edges one can make Gn H-free.

The above mentioned theorems can be proved directly without the Regularity
Lemma, e.g., using sieve-type formulas, see [97,98,48,18].

4 Building Subgraphs

4.1 Building Small Subgraphs

It is well-known that a random graph Gn with fixed edge-density p > 0 contains
any fixed graph H almost surely (as n→∞). In some sense this is trivial: we can
build up this H vertex by vertex. If we have already fixed ) vertices of H then
it is easy to find an appropriate () + 1-th vertex with the desired connections.
The Regularity Lemma (and an application of the Embedding Lemma) achieves
the same effect for dense graphs.

4.2 Packing with Small Graphs

The Alon-Yuster Conjecture

The conjecture of Noga Alon and Raphael Yuster [4] generalizes the Hajnal-
Szemerédi theorem [73] from covering with cliques to covering with copies of an
arbitrary graph H:
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Conjecture 21 (Alon-Yuster) For every graph H there is a constant K such
that

δ(Gn) ≥
(
1− 1

χ(H)

)
n

implies that Gn contains a union of vertex-disjoint copies of H covering all but
at most K vertices of Gn.

A simple example in [4] shows that K = 0 cannot always be achieved even
when v(H) divides v(G). After approximate results of Alon and Yuster [4,5], an
exact solution for large n has been given in [95].

Komlós [88] has fine-tuned these covering questions by finding a different
degree condition that is (asymptotically) necessary and sufficient. It uses the
following quantity:

Definition 5. For an r-chromatic graph H on h vertices we write σ = σ(H)
for the smallest possible color-class size in any r-coloring of H. The critical
chromatic number of H is the number

χcr(H) = (r − 1)h/(h− σ).

Theorem 22 (Tiling Turán Theorem [88]). For every graph H and ε > 0
there is a threshold n0 = n0(H, ε) such that, if n ≥ n0 and a graph Gn satisfies
the degree condition

δ(Gn) ≥
(
1− 1

χcr(H)

)
n,

then Gn contains an H-matching that covers all but at most εn vertices.

4.3 Embedding Trees

So far all embedding questions we discussed dealt with embedding bounded
degree graphs H into dense graphs Gn. General Ramsey theory tells us that
this cannot be relaxed substantially without putting strong restrictions on the
structure of the graph H. (Even for bipartite H, the largest complete bipartite
graph K�,� that a dense graph Gn can be expected to have is for ) = O(log n).)
A frequently used structural restriction on H is that it is a tree (or a forest).
Under this strong restriction even very large graphs H can be embedded into
dense graphs Gn.

The two extremal cases are whenH is a large star, and whenH is a long path.
Both cases are precisely and easily handled by classical extremal graph theory
(Turán theory or Ramsey theory). The use of the Regularity Lemma makes it
possible, in a sense, to reduce the case of general treesH to these two special cases
by splitting the tree into “long” and “wide” pieces. After an application of the
Regularity Lemma one applies, as always, some classical graph theorem, which
in most cases is the König-Hall matching theorem, or the more sophisticated
Tutte’s theorem (more precisely, the Gallai-Edmonds decomposition).
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The Erdős-Sós Conjecture for Trees

Conjecture 23 (Erdős-Sós 1963 [50]) Every graph on n vertices and more
than (k − 1)n/2 edges contains, as subgraphs, all trees with k edges.

In other words, if the number of edges in a graph G forces the existence of a
k-star, then it also guarantees the existence of every other subtree with k edges.
The theorem is known for k-paths (Erdős-Gallai 1959 [40]).

This famous conjecture spurred much activity in graph theory in the last 30
years.

Remark. The assertion is trivial if we are willing to put up with loosing a
factor of 2: If G has average degree at least 2k − 2 > 0, then it has a subgraph
G′ with δ(G′) ≥ k, and hence the greedy algorithm guarantees that G′ contains
all k-trees.

Using an ad hoc sparse version of the Regularity Lemma, Ajtai, Komlós,
Simonovits and Szemerédi solved the Erdős-Sós conjecture for large n. ([1], in
preparation.)

The Loebl Conjecture

In their paper about graph discrepancies P. Erdős, Z. Füredi, M. Loebl and V.
T. Sós [39] reduced some questions to the following conjecture of Martin Loebl:

Conjecture 24 (Loebl Conjecture) If G is a graph on n vertices, and at
least n/2 vertices have degrees at least n/2, then G contains, as subgraphs, all
trees with at most n/2 edges.

J. Komlós and V. T. Sós generalized Loebl’s conjecture for trees of any size.
It says that any graph G contains all trees with size not exceeding the medium
degree of G.

Conjecture 25 (Loebl-Komlós-Sós Conjecture) If G is a graph on n ver-
tices, and at least n/2 vertices have degrees greater than or equal to k, then G
contains, as subgraphs, all trees with k edges.

In other words, the condition in the Erdős-Sós conjecture that the average
degree be greater than k−1, would be replaced here with a similar condition on
the median degree.

This general conjecture is not easier than the Erdős-Sós conjecture. Large
instances of both problems can be attacked with similar methods.

4.4 Embedding Large Bipartite Subgraphs

The following theorem is implicit in Chvátal-Rödl-Szemerédi-Trotter 1983 [24]
(according to [2]).

Theorem 26. For any ∆,β > 0 there is a c > 0 such that if e(Gn) > βn2,
then Gn contains as subgraphs all bipartite graphs H with |V (H)| ≤ cn and
∆(H) ≤ ∆.
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4.5 Embedding Bounded Degree Spanning Subgraphs

This is probably the most interesting class of embedding problems. Here the
proofs (when they exist) are too complicated to quote here, but they follow a
general pattern. When embedding H to G (they have the same order now!), we
first prepare H by chopping it into (a constant number of) small pieces, then
prepare the host graph G by finding a regular partition of G, throw away the
usual atypical edges, and define the reduced graph R. Then typically we apply
to R the matching theorem (for bipartite H) or the Hajnal-Szemerédi theorem
(for r-partite H). At this point, we make an assignment between the small pieces
of H and the “regular r-cliques” of the partitioned R. There are two completely
different problems left. Make the connections between the r-cliques, and embed
a piece of H into an r-clique. The first one is sometimes easy, sometimes very
hard, but there is no general recipe to apply here. The second part, however,
can typically be handled by referring to the so-called Blow-up Lemma - a new
general purpose embedding tool discussed below.

The Pósa-Seymour Conjecture

Paul Seymour conjectured in 1973 that any graph G of order n and minimum
degree at least k

k+1n contains the k-th power of a Hamiltonian cycle. For k = 1,
this is just Dirac’s theorem. For k = 2, the conjecture was made by Pósa in 1962.
Note that the validity of the general conjecture would imply the notoriously hard
Hajnal-Szemerédi theorem.

For partial results, see the papers [58,54,55,57,56]. (Fan and Kierstead also
announced a proof of the Pósa conjecture if the Hamilton cycle is replaced by
Hamilton path.) We do not detail the statements in these papers, since they do
not employ the Regularity Lemma.

The Seymour conjecture was proved in [94] for every fixed k and large n.

4.6 The Blow-Up Lemma

Several recent results exist about embedding spanning graphs into dense graphs.
Some of the proofs use the following new powerful tool. It basically says that
regular pairs behave as complete bipartite graphs from the point of view of em-
bedding bounded degree subgraphs. Note that for embedding spanning subgra-
phs, one needs all degrees of the host graph to be large. That’s why using regular
pairs is not sufficient any more, we need super-regular pairs. The Blow-up Lemma
plays the same role in embedding spanning graphs H into G as the Embedding
Lemma played in embedding smaller graphs H (up to v(H) < (1− ε)v(G)).

Theorem 27 (Blow-up Lemma - Komlós-Sárközy-Szemerédi 1994
[91]).
Given a graph R of order r and positive parameters δ,∆, there exists an ε > 0
such that the following holds. Let n1, n2, . . . , nr be arbitrary positive integers and
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let us replace the vertices of R with pairwise disjoint sets V1, V2, . . . , Vr of si-
zes n1, n2, . . . , nr (blowing up). We construct two graphs on the same vertex-set
V = ∪Vi. The first graph R is obtained by replacing each edge {vi, vj} of R with
the complete bipartite graph between the corresponding vertex-sets Vi and Vj.
A sparser graph G is constructed by replacing each edge {vi, vj} with an (ε, δ)-
super-regular pair between Vi and Vj. If a graph H with ∆(H) ≤ ∆ is embeddable
into R then it is already embeddable into G.

The proof of the Blow-up Lemma starts with a probabilistic greedy algorithm,
and then uses a König-Hall argument to finish the embedding. The proof of
correctness is quite involved, and we will not present it here.

5 Applications in Ramsey Theory

5.1 The Milestone

The following theorem is central in Ramsey theory. It says that the Ramsey
number of a bounded degree graph is linear in the order of the graph. In other
words, there is a function f such that the graph-Ramsey number r(H) of any
graph H satisfies r(H) ≤ f(∆(H))v(H). This was probably the first deep ap-
plication of the Regularity Lemma, and certainly a milestone in its becoming a
standard tool.

Theorem 28 (Chvátal-Rödl-Szemerédi-Trotter 1983 [24]). For any ∆ >
0 there is a c > 0 such that if Gn is any n-graph, and H is any graph with
|V (H)| ≤ cn and ∆(H) ≤ ∆, then either H ⊂ Gn or H ⊂ Gn.

5.2 Graph-Ramsey

The following more recent theorems also apply the Regularity Lemma.

Theorem 29 (Haxell-Luczak-Tingley 1999 [79]). Let Tn be a sequence of
trees with color-class sizes an ≥ bn, and let Mn = max{2an, an + 2bn} − 1
(the trivial lower bound for the Ramsey number r(Tn)). If ∆(Tn) = o(an) then
r(Tn) = (1 + o(1))Mn.

Theorem 30 (DLuczak 1999 [99]). R(Cn, Cn, Cn) ≤ (3 + o(1))n for all even
n, and R(Cn, Cn, Cn) ≤ (4 + o(1))n for all odd n.

5.3 Random Ramsey

Given graphs H1, . . . , Hr and G, we write G → (H1, . . . , Hr) if for every r-
coloring of the edges of G there is an i such that G has a subgraph of color i
isomorphic to Hi (‘arrow notation’). The typical Ramsey question for random
graphs is then the following. What is the threshold edge probability p = p(n)
for which G(n, p)→ (H1, . . . , Hr) has a probability close to 1.
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Rödl and Ruciński [110] answered this in the symmetric case G1 = · · · = Gr.
A first step toward a general solution was taken by Kohayakawa and Kreuter
[83] who used the Regularity Lemma to find the threshold when each Gi is a
cycle.

6 New Versions of the Regularity Lemma

6.1 The Frieze-Kannan Version

Alan Frieze and Ravi Kannan [62] use a matrix decomposition that can replace
the Regularity Lemma in many instances, and creates a much smaller number
of parts. The authors describe their approximation algorithm as follows:

Given an m × n matrix A with entries between -1 and 1, say, and an error
parameter ε between 0 and 1, a matrix D is found (by a probabilistic algorithm)
which is the sum of O(1/ε2) simple rank 1 matrices so that the sum of entries of
any submatrix (among the 2m+n) of (A−D) is at most εmn in absolute value.
The algorithm takes time dependent only on ε and the allowed probability of
failure (but not on m,n).

The rank one matrices in the Frieze-Kannan decomposition correspond to
regular pairs in the Regularity Lemma, but the global error term o(mn) is much
larger than the one in Szemerédi’s theorem. That explains the reasonable sizes
(O(1/ε2) instead of tower functions).

The decomposition is applied to various standard graph algorithms such as
the Max-Cut problem, the Minimum Linear Arrangement problem, and the Ma-
ximum Acyclic Subgraph problem, as well as to get quick approximate solutions
to systems of linear equations and systems of linear inequalities (Linear Pro-
gramming feasibility).

The results are also extended from 2-dimensional matrices to r-dimensional
matrices.

6.2 A Sparse-Graph Version of the Regularity Lemma

It would be very important to find extensions of the Regularity Lemma for sparse
graphs, e.g., for graphs where we assume only that e(Gn) > cn2−α for some
positive constants c and α. Y. Kohayakawa [81] and V. Rödl [108] independently
proved a version of the Regularity Lemma in 1993 that can be regarded as a
Regularity Lemma for sparse graphs. As Kohayakawa puts it: “Our result deals
with subgraphs of pseudo-random graphs.” He (with co-authors) has also found
some interesting applications of this theorem in Ramsey theory and in Anti-
Ramsey theory, (see e.g. [75,76,77,78,84,86,83]).

To formulate the Kohayakawa-Rödl Regularity Lemma we need the following
definitions.
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Definition 6. A graph G = Gn is (P0, η)-uniform for a partition P0 of V (Gn)
if for some p ∈ [0, 1] we have

|eG(U, V )− p|U ||V || ≤ ηp|U ||V |,

whenever |U |, |V | > ηn and either P0 is trivial, U, V are disjoint, or U, V belong
to different parts of P0.

Definition 7. A partition Q = (C0, C1, . . . , Ck) of V (Gn) is (ε, k)-equitable if
|C0| < εn and |C1| = · · · = |Ck|.

Notation.

dH,G(U, V ) =
{
eH(U, V )/eG(U, V ) if eG(U, V ) > 0
0 otherwise.

Definition 8. We call a pair (U, V ) (ε,H,G)-regular if for all U ′ ⊂ U and
W ′ ⊂W with |U ′| ≥ ε|U | and |W ′| ≥ ε|W |, we have

|dH,G(U,W )− dH,G(U ′,W ′)| ≤ ε.

Theorem 31 (Kohayakawa 1993 [81]). Let ε and k0, ) > 1 be fixed. Then
there are constants η > 0 and K0 > k0 with the following properties. For any
(P0, η)-uniform graph G = Gn, where P0 = (Vi)�i is a partition of V = V (G),
if H ⊂ G is a spanning subgraph of G, then there exists an (ε,H,G)-regular,
(ε, k)-equitable partition of V refining P0, with k ≤ k0 ≤ K0.

For more information, see Kohayakawa 1997 [82].

7 Algorithmic Questions

The Regularity Lemma is used in two different ways in computer science. Firstly,
it is used to prove the existence of some special subconfigurations in given graphs
of positive edge-density. Thus by turning the lemma from an existence-theorem
into an algorithm one can transform many of the earlier existence results into
relatively efficient algorithms. The first step in this direction was made by Alon,
Duke, Leffman, Rödl and Yuster [2] (see below). Frieze and Kannan [63] offered
an alternative way for constructing a regular partition based on a simple lemma
relating non-regularity and largeness of singular values.

In the second type of use, one takes advantage of the fact that the regularity
lemma provides a random-like substructure of any dense graph. We know that
many algorithms fail on randomlike objects. Thus one can use the Regularity
Lemma to prove lower bounds in complexity theory, see e.g., W. Maass and Gy.
Turán [72]. One of these randomlike objects is the expander graph, an important
structure in Theoretical Computer Science.
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7.1 Two Applications in Computer Science

A. Hajnal, W. Maass and Gy. Turán applied the Regularity Lemma to estimate
the communicational complexity of certain graph properties [72]. We quote their
abstract:

“We prove Θ(n log n) bounds for the deterministic 2-way communication
complexity of the graph properties CONNECTIVITY, s, t-CONNECTIVITY
and BIPARTITENESS. ... The bounds imply improved lower bounds for the
VLSI complexity of these decision problems and sharp bounds for a generalized
decision tree model that is related to the notion of evasiveness.”

Another place where the Regularity Lemma is used in estimating communi-
cational complexity is an (electronic) paper of Pudlák and Sgall [102]. In fact,
they only use the (6,3)-problem, i.e., the Ruzsa-Szemerédi theorem.

7.2 An Algorithmic Version of the Regularity Lemma

The Regularity Lemma being so widely applicable, it is natural to ask if for a
given graph Gn and given ε > 0 and m one can find an ε-regular partition of
G in time polynomial in n. The answer due to Alon, Duke, Lefmann Rödl and
Yuster [2] is surprising, at least at first: Given a graph G, we can find regular
partitions in polynomially many steps, however, if we describe this partition to
someone else, he cannot verify in polynomial time that our partition is really
ε-regular: he has better produce his own regular partition. This is formulated
below:

Theorem 32. The following decision problem is co-NP complete: Given a graph
Gn with a partition V0, V1, . . . , Vk and an ε > 0. Decide if this partition is ε-
regular in the sense guaranteed by the Regularity Lemma.

Let Mat(n) denote the time needed for the multiplication of two (0, 1) ma-
trices of size n.

Theorem 33 (Constructive Regularity Lemma). For every ε > 0 and
every positive integer t > 0 there exists an integer Q = Q(ε, t) such that every
graph with n > Q vertices has an ε-regular partition into k + 1 classes for some
k < Q and such a partition can be found in O(Mat(n)) sequential time. The
algorithm can be made parallel on an EREW with polynomially many parallel
processors, and it will have O(log n) parallel running time.

7.3 Counting Subgraphs

Duke, Lefmann and Rödl [30] used a variant of the Regularity Lemma to design
an efficient approximation algorithm which, given a labelled graph G on n ver-
tices and a list of all the labelled graphs on k vertices, provides for each graph
H in the list an approximation to the number of induced copies of H in G with
small total error.
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8 Regularity and Randomness

8.1 Extremal Subgraphs of Random Graphs

Answering a question of P. Erdős, L. Babai, M. Simonovits and J. Spencer [6]
described the Turán type extremal graphs for random graphs:

Given an excluded graph L and a probability p, take a random graph
Rn of edge-probability p (where the edges are chosen independently) and
consider all its subgraphs Fn not containing L. Find the maximum of
e(Fn).

Below we formulate four theorems. The first one deals with the simplest case.
We will use the expression “almost surely” in the sense “with probability

1 − o(1) as n → ∞”. In this part a p-random graph means a random graph of
edge-probability p where the edges are chosen independently.

Theorem 34. Let p = 1/2. If Rn is a p-random graph and Fn is a K3-free
subgraph of Rn containing the maximum number of edges, and Bn is a bipar-
tite subgraph of Rn having maximum number of edges, then e(Bn) = e(Fn).
Moreover, Fn is almost surely bipartite.

Definition 9 (Critical edges). Given a k-chromatic graph L, an edge e is
critical if L− e is k − 1-chromatic.

Many theorems valid for complete graphs were generalized to arbitrary L
having critical edges (see e.g., [116]). Theorem 34 also generalizes to every 3-
chromatic L containing a critical edge e, and for every probability p > 0.

Theorem 35. Let L be a fixed 3-chromatic graph with a critical edge e (i.e.,
χ(L − e) = 2). There exists a function f(p) such that if p ∈ (0, 1) is given and
Rn ∈ G(p), and if Bn is a bipartite subgraph of Rn of maximum size and Fn is
an L-free subgraph of maximum size, then

e(Bn) ≤ e(Fn) ≤ e(Bn) + f(p)

almost surely, and almost surely we can delete f(p) edges of Fn so that the
resulting graph is already bipartite. Furthermore, there exists a p0 < 1/2 such
that if p ≥ p0, then Fn is bipartite: e(Fn) = e(Bn).

Theorem 35 immediately implies Theorem 34. The main point in Theorem
35 is that the observed phenomenon is valid not just for p = 1/2, but for slightly
smaller values of p as well.

If χ(L) = 3 but we do not assume that L has a critical edge, then we get
similar results, having slightly more complicated forms. Here we formulate only
some weaker results.
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Theorem 36. Let L be a given 3-chromatic graph. Let p ∈ (0, 1) be fixed and let
Rn be a p-random graph. Let ω(n)→ 0 as n→∞. If Bn is a bipartite subgraph
of Rn of maximum size and Fn contains only ω(n) · nv(L) copies of L and has
maximum size under this condition, then almost surely

e(Bn) ≤ e(Fn) ≤ e(Bn) + o(n2)

and we can delete o(n2) edges of Fn so that the resulting graph is already bipartite.

The above results also generalize to r-chromatic graphs L.
Some strongly related important results are hidden in the paper of Haxell,

Kohayakawa and WLuczak [77].

8.2 Quasirandomness

Quasi-random structures have been investigated by several authors, among
others, by Thomason [129], Chung, Graham, Wilson, [23]. For graphs, Simo-
novits and T. Sós [118] have shown that quasi-randomness can also be characte-
rized by using the Regularity Lemma. Fan Chung [22] generalized their results
to hypergraphs.

Let N∗G(L) and NG(L) denote the number of induced and not necessarily
induced copies of L in G, respectively. Let S(x, y) be the set of vertices joined to
both x and y in the same way. First we formulate a theorem of Chung, Graham,
and Wilson, in a shortened form.

Theorem 37 (Chung-Graham-Wilson [23]). For any graph sequence (Gn)
the following properties are equivalent:
P1(ν): for fixed ν, for all graphs Hν

N∗G(Hν) = (1 + o(1))nν2−(
ν
2).

P2(t): Let Ct denote the cycle of length t. Let t ≥ 4 be even.

e(Gn) ≥ 1
4
n2 + o(n2) and NG(Ct) ≤

(n
2

)t
+ o(nt).

P5: For each subset X ⊂ V, |X| = �n2 � we have e(X) =
( 1

16n
2 + o(n2)

)
.

P6:
∑
x,y∈V

∣∣|S(x, y)| − n
2

∣∣ = o(n3).

Graphs satisfying these properties are called quasirandom. Simonovits and
T. Sós formulated a graph property which proved to be equivalent with the above
properties.
PS : For every ε > 0 and κ there exist two integers, k(ε, κ) and n0(ε, κ) such
that for n ≥ n0, Gn has a regular partition with parameters ε and κ and k
classes U1, . . . , Uk, with κ ≤ k ≤ k(ε, κ), so that

(Ui, Uj) is ε− regular, and
∣∣∣∣d(Ui, Uj)− 1

2

∣∣∣∣ < ε

holds for all but at most εk2 pairs (i, j), 1 ≤ i, j ≤ k.
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It is easy to see that if (Gn) is a random graph sequence of probability 1/2,
then PS holds for (Gn), almost surely. Simonovits and T. Sós [118] proved that
PS is a quasi-random property, i.e. PS ⇐⇒ Pi for all the above properties Pi.

8.3 Hereditarily Extended Properties

Randomness is a hereditary property: large subgraphs of random graphs are
fairly randomlike. In [119] and [120] Simonovits and T. Sós proved that some
properties which are not quasi random, become quasirandom if one extends them
to hereditary properties. This “extension” means that the properties are assumed
not only for the whole graph but for all sufficiently large subgraphs. Their most
interesting results were connected with counting some small subgraphs L ⊆ Gn.

Obviously, P1(ν) of Theorem 37 says that the graph Gn contains each sub-
graph with the same frequency as a random graph.

Let ν = v(L), E = e(L). Denote by βL(p) and γL(p) the “densities” of
labelled induced and labelled not necessarily induced copies of L in a
p-random graph:

βL(p) = pE(1− p)(
ν
2)−E and γL(p) = pE . (1)

Theorem 38 (Simonovits-Sós). Let Lν be a fixed sample-graph, e(L) > 0,
p ∈ (0, 1) be fixed. Let (Gn) be a sequence of graphs. If (for every sufficiently
large n) for every induced Fh ⊆ Gn,

N(Lν ⊆ Fh) = γL(p)hν + o(nν), (2)

then (Gn) is p-quasi-random.

Observe that in (2) we used o(nν) instead of o(hν), i.e., for small values of h
we allow a relatively much larger error-term. As soon as h = o(n), this condition
is automatically fulfilled.

For “Induced Copies” the situation is much more involved, because of the
lack of monotonicity. Below we shall always exclude e(Lν) = 0 and e(Lν) = 0.
One would like to know if for given (Lν , p) the following is true or not:

(#) Given a sample graph Lν and a probability p, if for a graph
graph sequence (Gn) for every induced subgraph Fh of Gn

N∗(Lν ⊆ Fh) = βL(p)hν + o(nν) (3)

then (Gn) is p-quasi-random.

(#) is mostly false in this form, for two reasons:
• the probabilities are in conjugate pairs;
• There may occur strange algebraic coincidences.
Clearly, βL(p) (in (1)) is a function of p which is monotone increasing in[

0, e(Lν)/
(
ν
2

)]
, monotone decreasing in

[
e(Lν)/

(
ν
2

)
, 1
]
and vanishes in p = 0
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and in p = 1. For every p ∈ (0, e(Lν)/(ν2)) there is a unique probability p ∈(
e(Lν)/

(
ν
2

)
, 1
)
yielding the same expected value. Therefore the hereditarily as-

sumed number of induced copies does not determine the probability uniquely,
unless p = e(Lν)/

(
ν
2

)
. Given a graph Lν , the probabilities p and p are called

conjugate if βL(p) = βL(p). We can mix two such sequences: (Gn) obviously
satisfies (3) if

(*) (Gn) is the union of a p-quasi random graph sequence and
a p-quasi random graph sequence.

One can create such sequences for P3 or its complementary graph. Simonovits
and Sós think that there are no other real counterexamples:

Conjecture 39 Let Lν be fixed, ν ≥ 4 and p ∈ (0, 1). Let (Gn) be a graph
sequence satisfying (3). Then (Gn) is the union of two sequences, one being p-
quasi-random, the other p-quasi-random (where one of these two sequences may
be finite, or even empty).

To formulate the next Simonovits-Sós theorem we use

Construction 40 (Two class generalized random graph) Define the
graph Gn = G(V1, V2, p, q, s) as follows: V (Gn) = V1∪V2. We join independently
the pairs in V1 with probability p, in V2 with probability q and the pairs (x, y) for
x ∈ V1 and y ∈ V2 with probability s.

Theorem 41 (Two-class counterexample). If there is a sequence (Gn)
which is a counterexample to Conjecture 39 for a fixed sample graph L and a
probability p ∈ (0, 1), then there is also a 2-class generalized random counterex-
ample graph sequence of form Gn = G(V1, V2, p, q, s) with |V1| ≈ n/2, p ∈ (0, 1),
s �= p. (Further, either q = p or q = p.)

This means that if there are counterexamples then those can be found by
solving some systems of algebraic equations. The proof of this theorem heavily
uses the regularity lemma.

Theorem 42. If Lν is regular, then Conjecture 39 holds for Lν and any p ∈
(0, 1).

For some further results of Simonovits and T. Sós for induced subgraphs see
[120].
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[2] N. Alon, R. Duke, H. Leffman, V. Rödl, R. Yuster, The algorithmic aspects of the
regularity lemma, FOCS 33 (1992), 479-481, Journal of Algorithms 16 (1994),
80-109.

106 J. Komlós et al.



[3] N. Alon, E. Fischer, 2-factors in dense graphs, Discrete Math.
[4] N. Alon, R. Yuster, Almost H-factors in dense graphs, Graphs and Combinato-

rics 8 (1992), 95-102.
[5] N. Alon, R. Yuster, H-factors in dense graphs, J. Combinatorial Theory B66

(1996), 269-282.
[6] L. Babai, M. Simonovits, J. Spencer, Extremal subgraphs of random graphs,

Journal of Graph Theory 14 (1990), 599-622.
[7] V. Bergelson, A. Leibman, Polynomial extension of van der Waerden’s and Sze-
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[39] P. Erdős, Z. Füredi, M. Loebl, V. T. Sós, Studia Sci. Math. Hung. 30 (1995), 47-
57. (Identical with the book Combinatorics and its applications to regularity and
irregularity of structures, W. A. Deuber and V. T. Sós eds., Akadémiai Kiadó,
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[40] P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad.
Sci. Hung. 10 (1959), 337-356.

[41] P. Erdős, A. Hajnal, On complete topological subgraphs of certain graphs, An-
nales Univ. Sci. Budapest 7 (1969), 193-199.
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[44] P. Erdős, A. Hajnal, M. Simonovits, V. T. Sós, E. Szemerédi, Turán-Ramsey
theorems for Kp-stability numbers, Proc. Cambridge, also in Combinatorics,
Probability and Computing 3 (1994) (P. Erdős birthday meeting), 297-325.
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[82] Y. Kohayakawa, Szemerédi’s regularity lemma for sparse graphs, Foundations of
computational mathematics (Rio de Janeiro) (1997), 216-230, Springer, Berlin.

[83] Y. Kohayakawa, B. Kreuter, Threshold functions for asymmetric Ramsey pro-
perties involving cycles, Random Structures Algorithms 11 (1997), 245-276.

[84] Y. Kohayakawa, T. OLuczak, V. Rödl, Arithmetic progressions of length three in
subsets of a random set, Acta Arithmetica, 75 (1996), 133-163.
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[89] J. Komlós, G. N. Sárközy, E. Szemerédi, Proof of a packing conjecture of Bol-

lobás, AMS Conference on Discrete Mathematics, DeKalb, Illinois (1993), Com-
binatorics, Probability and Computing 4 (1995), 241-255.
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complete graphs into two monochromatic cycles, Combin. Probab. Comput. 7
(1998), 423-436.
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