The inverse problem of variational calculus and the problem of mixed endpoint conditions

Pedro Gonçalves Henriques

Abstract. P. A. Griffiths established the so-called mixed endpoint conditions for variational problems with non-holonomic constraints. We will present some results in this context and discuss the inverse problem of calculus of variations.

Keywords: Inverse problem of calculus of variations.

1. Introduction

The study of Calculus of Variations for multiple integrals was first developed by Caratheodory [1929], while Weil-De Donder [1936], [1935] advanced a different theory later. The two approaches were unified by Lepage [1936-1942], Dedecker [1953-1977] and Liesen [1967] in a framework using the n-Grassmannian manifold of a C^∞ manifold. Important contributions in the Calculus of Variations on smooth manifolds were made by R. Hermann [1966], H. Goldschmidt and S. Sternberg [1973] with their Hamilton-Cartan formalism, as well as by Ouzilou [1972], D. Krupka [1970-1975] and I. M. Anderson [1980]. The symplectic approach of P. L. Garcia and A. Pérez-Rendón [1969-1978], the multisymplectic version of Kijowski and Tulczyjew [1979] based on the theory of Dedecker, the polysymplectic approach of C. Günther [1987], Edelen [1961] and Rund [1966] are also important references in this field. Here we deal with the broader problem of finding extrema of a functional on a set of n-dimensional integral manifolds of a Pfaffian differential system.

In 1983, Griffiths proposed a new approach to variational problems based on techniques from the theory of exterior differential systems. His work dealt with the problem of finding extrema for a functional ϕ defined on the set of one-dimensional integral manifolds of a differential system (T^*, L^*).

Supported by the Center for Mathematical Analysis, Geometry, and Dynamical Systems.
This approach was established using intrinsic entities. In this work we present a general setting based on [25] (sections 2 to 8), and we deal with the inverse problem (section 9).

In 1887 Helmholtz addressed the following problem: given

$$P_i = P_i(x, u^j, u_x^j, u_{xx}^j),$$

is there a Lagrangian $L(x, u^j, u_x^j)$ such that

$$E_i(L) = \frac{\partial L}{\partial u^i} - D_x \frac{\partial L}{\partial u_x^i} = P_i$$

where

$$D_x = \frac{\partial}{\partial x} + u_i^j \frac{\partial}{\partial u^i} + u_{x}^j \frac{\partial}{\partial u_x^i}.$$ He found necessary conditions for P_i to form an Euler-Lagrange system of equations (see (9.1), (9.2) and (9.3)). Some years later, these conditions were proved to be locally sufficient. I. M. Anderson [1992; 1980], P. J. Olver [1986], F. Takens [1979], W. M. Tulczyjew [1980] and A. M. Vinogradov [1984] generalized Helmholtz’s conditions for both higher order systems of partial differential equations and multiple integrals.

2. Integral manifolds of a differential system and valued differential systems

We assume that a Pfaffian differential system (I^*, L^*) is given on a real-manifold X by:

1) a subbundle $I^* \subset T^*X$,
2) another subbundle $L^* \subset T^*X$ with $I^* \subset L^* \subset T^*X$,

such that the rank $(L^*/I^*) = n$ (with n being a natural number).

An integral manifold of (I^*, L^*) is given by an oriented connected compact n-dimensional smooth manifold N (possibly with a piecewise smooth boundary ∂N) together with a smooth mapping

$$f : N \to X$$

satisfying

$$I_{f(x)}^* \perp = L_{f(x)}^* \perp + f_*(TN),$$ \hspace{1cm} (2.1)

for all $x \in N$, where $f_* : T_xN \to T_{f(x)}X$ is the differential of f at x.

We denote by $V(I^*, L^*)$ the collection of integral manifolds f of (I^*, L^*).

A valued differential system is a triple (I^*, L^*, φ), where (I^*, L^*) is a Pfaffian differential system and φ is an n-form on X.

We define the functional ϕ associated with (I^*, L^*, φ) in $V(I^*, L^*)$ by:

$$\phi : V(I^*, L^*) \to R,$$
Inverse problem of variational calculus and problem of mixed endpoint conditions

3. Local embeddability

The following definition is a general setting for the study of problems in the Calculus of Variations. In [25] we proved that there exist locally defined mappings that induce (I^*, L^*) from the canonical system in $J^1(R^n, R^s)$ possibly with some constraints, establishing a local correspondence between these differential systems. Let us assume that $d(C^\infty(X, L^*)) \subset C^\infty(X, L^* \wedge T^*X)$, and let $d' = \dim X; \quad s = \text{rank} I^* (d(C^\infty(X, L^*)))$ is the set of images produced by the exterior derivative of $C^\infty(X, L^*)$. Using the Frobenius theorem, we can set for every $p \in X$ a chart coordinate system \(\{u^1, ..., u^{s+n}, v^1, ..., v^{d'-s-n}\} \) so that

\[
\begin{align*}
(i) & \quad L^* = \text{span}\{du^\alpha|1 \leq \alpha \leq s+n\}, \\
(ii) & \quad L^{*\perp} = \text{span}\{\partial \partial v^i|1 \leq i \leq d'-s-n\}
\end{align*}
\]

for an open subset U of X with $p \in U$.

Definition 3.1. Let (I^*, L^*) be a Pfaffian differential system with $d(C^\infty(X, L)) \subset C^\infty(X, L^* \wedge T^*X)$.

We say that (I^*, L^*) is locally embeddable if for every $p \in X$ there exist an open neighborhood U of p and local coframes $\text{CF} = \{\theta_1, ..., \theta_s\}$ (3.3)

for I^* and $\text{CF}' = \{\theta_1, ..., \theta_s, du'^n + 1, du'^n + n\}$ (3.4)

for L^*_U, satisfying the following conditions:

(i) \(\delta(I^*_U \wedge \Omega) \subset T^* \wedge \Lambda^n(L^*_U)/(T^*U \wedge I^*_U \wedge \Lambda^{n-1}(L^*)) \) (3.5)

(ii) Ker δ is a constant rank subbundle of $I^* \wedge \Omega$,

where $\Omega = \text{span}\{du'^{n+1} \wedge ... \wedge du'^{n+s} \wedge ... \wedge du'^{s+n}\}; \quad du'^{n+s} - \text{means deletion of the s + b factor (for n = 1, du'^{n+1} = 1)}. \quad \text{We use u'' since we may have to reorder these coordinates.}$
The map \(\delta : I^* \wedge \Omega \to \Lambda^{n+1}(T^*U)/I_u^* \wedge (\Lambda^n(T_* U)) \) is induced by
\[
d : C^\infty(U, I^* \wedge \Omega) \to C^\infty(U, \Lambda^{n+1}(T^*U))
\]
on \(I^* \wedge \Omega \).

This definition means that if \(I^* \) has no Cauchy characteristics, the structure equations are locally:
\[
d\theta_i \equiv \pi^i_{\alpha j} \wedge \theta^\alpha + B_i^{\alpha \beta} \wedge \theta^\alpha \bmod I \quad (3.6)
\]
\(1 \leq i, i', \alpha \leq s, 1 \leq j, j', \beta \leq n, I = C^\infty(X, I^*) \).

4. The Cartan system of \(\Psi \)

Let \((I^*, L^*, \varphi)\) be a valued differential system on \(X \), and \(W \) be the total space of \(I^* \). Let \(\chi \) be the canonical form on \(T^*X \), and \(i \) the inclusion map \(W \hookrightarrow T^*X \).

Let us assume that there exists a local \(n \)-form \(\omega \) inducing a nonzero section of \(\Lambda^n(L^*/I^*) \) and has the following form:
\[
\omega = \omega^1 \wedge \ldots \wedge \omega^n. \quad (4.1)
\]
We define:
\[
\omega_i = (-1)^{i-1} \omega^1 \wedge \ldots \wedge \hat{\omega}_i \ldots \wedge \omega^n. \quad (4.2)
\]

Let \(W^n \) be the \(n \)-Cartesian power of \(W \), and \(Z \) be a subset of \(W^n \) defined by \(Z = \{ z \in W^n : \pi^i(z) \in \Delta X^n \} \), where \(\pi^i \) is the natural projection \(\pi^i : W^n \to X^n \), and \(\Delta X^n \) is the diagonal submanifold of \(X^n \). The subset \(Z \) is a vector subbundle over \(X \) and \(\dim Z = d + sn \). We define
\[
\Psi = d\psi \quad (4.3)
\]
where \(\psi \) is given by
\[
\psi = \pi^* \varphi + (\pi^j \circ i')^* \{ i^* (\chi) \} \wedge \pi^* \omega_j. \quad (4.4)
\]
\(\pi^j \) is the natural projection into the \(j \)th component \(\pi^j : W^n \to W \), \(i' \) is the inclusion map \(Z \to W^n \) and \(\pi \) is the natural projection \(\pi : Z \to X \).

Definition 4.1. Given the \(n + 1 \)-form \(\Psi \), the Cartan system \(C(\Psi) \) is the ideal generated by the set of \(n \)-forms
\[\{ v \wedge \Psi \ \text{where} \ v \in C^\infty(Z, TZ) \} \]

An integral manifold of \((C(\Psi), \omega)\) is given by an oriented connected compact \(n \)-dimensional smooth manifold \(N \) (possibly with a piecewise smooth boundary \(\partial N \)) together with a smooth mapping
\[f : N \to X \]
satisfying:

Inverse problem of variational calculus and problem of mixed endpoint conditions

\[f^* \theta = 0 \quad \text{for every} \quad \theta \in C(\Psi) \quad (4.5) \]

and

\[f^*(\omega) \neq 0. \quad (4.6) \]

A solution of \((C(\Psi), \omega)\) projected in \(X\) will give an extremum of \(\phi\).

5. The momentum space, prolongation of \((C(\Psi), R^*\omega)\) in the momentum space, non-degeneracy

The momentum space is constructed in the following way. Suppose we are given on \(\mathbb{Z}\) (see section 4):

(i) a closed \((n+1)\)-form \(\Psi\) with the associated Cartan system \(C(\Psi)\),

(ii) \(R^*\) the pull back to \(\mathbb{Z}\) of the \(\omega\) \(n\)-form which induces a nonzero section on \(\Lambda^n(L^*/R^*)\).

Integral elements of \((C(\Psi), R^*\omega)\) are defined in a similar way as the integral elements of \((R^*, L^*)\). The set of integral elements \([x_0, E^n]\) gives a subset \(\mathbb{V}_n(C(\Psi), R^*\omega) \subset G_n(\mathbb{Z})\) (\(G_n(\mathbb{Z})\) is the \(n\)-Grassmanian).

Denoting by \(R^*\) the projection \(G_n(\mathbb{Z}) \to \mathbb{Z}\) and assuming regularity at each step, one inductively defines:

\[Z_1 = \pi''(V_n(C(\Psi), R^*\omega), V'_n(C(\Psi), R^*\omega)) = \{ E \in V_n(C(\Psi), R^*\omega) : E \text{ tangent to } Z_1 \}, \quad (5.1) \]

\[Z_2 = \pi''(V'_n(C(\Psi), R^*\omega), V''_n(C(\Psi), R^*\omega)) = \{ E \in V'_n(C(\Psi, R^*\omega)) : E \text{ tangent to } Z_2 \}. \quad (5.2) \]

Definition 5.1. Suppose \((R^*, L^*, \varphi)\) is a valued differential system, with \((R^*, L^*)\) being a locally embeddable differential system and \(\omega = \omega^1 \wedge \ldots \wedge \omega^n\).

If there exists a \(k_0 \in \mathbb{N}\) such that \(Z_{k_0} = Z_{k_0+1} = \ldots = Z_{k_0+n'(n' \in \mathbb{N})}\) in the above construction, with

(i) \(Z_{k_0}\) being a manifold of dimension \((n+1)m + n\) for \(m \in \mathbb{N}\), and

(ii) \((C(\Psi), R^*\omega)_{Z_{k_0}}\) being a differential system in \(Z_{k_0}\) with \(r_n = 0\) (Cartan number in Cartan-Kähler Theorem) for all \(V_{n-1}(C(\Psi), R^*\omega)\);

(for \(n = 1\) we follow \([23]\) and replace this condition by \(\psi \wedge \Psi^n \neq 0\) on \(Z_{k_0}\)).

Then \((R^*, L^*, \varphi)\) is a non-degenerate valued differential system, and \(Z = Y\) is called the momentum space.

We call \((C(Ψ), π^∗ω)_Y\) the prolongation of \((C(Ψ), π^∗ω)\) in the momentum space. By construction, the differential system \((C(Ψ), π^∗ω)_Y\) satisfies:

(i) the projection \((C(Ψ), π^∗ω) → Y\) is surjective,
(ii) the integral manifolds of \((C(Ψ), π^∗ω)\) on \(Z\) coincide with those of \((C(Ψ), π^∗ω)\) on \(Y\).

6. Well-posed valued differential systems

Definition 6.1. \((I^∗, L^∗, ϕ, P^∗, M^∗)\) is a well-posed valued differential system, if the following conditions are satisfied:

(i) \((I^∗, L^∗, ϕ)\) is a non-degenerate valued differential system (with \(\text{dim} Y = (n + 1)m + n\)) and \(ϕ = Lω\) for a smooth function \(L\) on \(X\);
(ii) there exists a subbundle \(P^∗\) of \(I^∗\) of rank \(m\) and a subbundle \(M^∗\) of \(L^∗\) of rank \(m + n\), such that:

\[I^∗ \subset L^∗ \subset T^∗X \]

(a) \(\bigcup P^∗ \subset M^∗\),
(b) the locally given \(n\)-form \(ω\) also induces a nonzero section on \(Λ^n(M^∗/P^∗)\),
(c) \(Y \subset (P^∗)^n|_{ΔX^n}\), with \(Y\) a subbundle of \((P^∗)^n|_{ΔX^n}\),
(iii) \(π^∗M^∗ = \text{span}\{π^∗θ | C^∞(X, M^∗)\}\) is completely integrable on \(Y\), where \(π^* = π \circ i\). As before \(i\) denotes the inclusion mapping \(Y \to Z\) and \(π\) the projection \(Z \to X\).

Let us assume that there exists a coframe \(CF = \{θ^α, du^s+j, π^∗_j, π^∗_j | 1 ≤ α ≤ s, 1 ≤ j ≤ L'_v, s_{t+1} ≤ j' ≤ s, 1 ≤ j ≤ n\}\) for \(T^∗X\) with \(L'_v \subset \{k ∈ N, 1 ≤ k ≤ n\}\) such that

(i) \(I^∗ = \text{span}\{θ^α | 1 ≤ α ≤ s\}\); \hspace{1cm} (6.1)
(ii) \(L^∗ = \text{span}\{θ^α, du^s+j | 1 ≤ α ≤ s, 1 ≤ j ≤ n\}\); \hspace{1cm} (6.2)
(iii) \(T^∗X = L^∗ \oplus R^∗\) (\(\oplus\) denotes a direct sum) with \(R^∗ = \text{span}\{π^∗_j, π^∗_j | 1 ≤ j' ≤ s_t, s_{t+1} ≤ j'' ≤ s, 1 ≤ j ≤ n\}\);
(iv) \(dθ^∗_{j'} ≡ 0 \mod I, \text{ for } j'' ∉ L'_v\); \hspace{1cm} (6.3)
(v) \(dθ^∗_{j'} ≡ π^∗_j \wedge ω \mod I, \text{ for } j' \in L'_v\); \hspace{1cm} (6.4)
(vi) \(dθ^∗_j ≡ π^∗_j \wedge ω \mod I, \text{ when } 1 ≤ j ≤ n\); \hspace{1cm} (6.5)
Inverse problem of variational calculus and problem of mixed endpoint conditions

(vii) π_j^i, π_j'' are linearly independent mod L.

We define $\theta_j^\alpha = \theta^\alpha \wedge \omega_j$.

Let $d\varphi \equiv L_{i,j}^\alpha \pi_i^\alpha + L_{j,i}^\alpha \pi_j^\alpha \mod I$ and $dL_{i,j}^\alpha \equiv L_{i,j}^{\alpha\nu} \pi_i^\nu \mod \pi L^*$.

Quadratic form A: Let $(I^*, L^*, \varphi, P^*, M^*)$ be a well-posed valued differential system and A be a quadratic form defined in T^*X given by $A(v, w) = L_{i,j}^{\alpha\nu} v^\alpha \pi_i^\nu w^\alpha \pi_j^\nu$, where $v = v^\alpha \theta^\alpha \partial / \partial \theta^\alpha + v^\nu \pi^\nu \partial / \partial \pi^\nu$ and $w = w^\alpha \theta^\alpha \partial / \partial \theta^\alpha + w^\nu \pi^\nu \partial / \partial \pi^\nu$. This quadratic form plays an important role in establishing necessary conditions for a local extremum.

6.1. Generalized Lagrange Problem. Let us describe the following problem:

Generalized Lagrange Problem. Let $X = J^1(R^n, R^m)$ (the 1 jet manifold), with the canonical system I^* defined on X (i.e. $I^* = \text{span}\{\theta^\alpha = dy^\alpha - y^\alpha_i dx^i\}$). Let $\varphi = L\omega$ with $\omega = dx^1 \wedge ... \wedge dx^n$. We choose $x^1, ..., x^n$ to be coordinates for R^n, and $y^1, ..., y^m$ to be coordinates for R^m.

We proved in [26] that a Lagrange problem for $n = 1$ with $L\det L_{i,j}^{\alpha\nu} \neq 0$, and with constraints not involving more than one variable y in each equation of restriction is a well posed valued differential system.

7. The Euler-Lagrange differential system for a well-posed valued differential system

When we compute the first variation of φ, we find an integral over N and another over the boundary ∂N. The volume integral will vanish for projections of integral manifolds of the Cartan system $(C(\Psi), \pi^*\omega)$ into X. Choosing suitably the set of boundary conditions we can make the integral over the boundary to vanish as well, providing stationary integral manifolds for generalized Lagrange problems (see [25]).

7.1. The Euler-Lagrange differential system.

Definition 7.1. Let (I^*, L^*, φ) be a valued differential system. The Cartan system $(C(\Psi), \pi^*\omega)$ is called the Euler-Lagrange differential system associated with (I^*, L^*, φ).

Assuming that (I^*, L^*, φ) is non-degenerate, we now consider the restriction to Y of the Euler-Lagrange differential system associated with (I^*, L^*, φ). The following proposition is easy to prove (see [25]):

Proposition 7.1. If g is an integral manifold of $(C(\Psi), \pi^*\omega)$, then $\pi \circ g \in V(I^*, L^*)$, where π is the natural projection $\pi : Z \rightarrow X$.

We denote by \((V(C(\Psi), \pi^*\omega))\) the set of integral manifolds of \((C(\Psi), \pi^*\omega))\).

8. Examples

Example 1. Strings [41], [42]

Let \(X = J^1(N, R^m)\), \(N\) being a two-dimensional manifold. In this case \(I^* = \text{span}\{dx^\alpha - x'^\alpha dt - \dot{x}'^\alpha d\tau | 0 \leq \alpha \leq m - 1, x'^\alpha\}\) are coordinates in \(R^m\), and \(\sigma, \tau\) are coordinates of \(N\), \(x'^\alpha = \frac{\partial x^\alpha}{\partial \sigma}\), \(\dot{x}'^\alpha = \frac{\partial x^\alpha}{\partial \tau}\). In \(R^m\) we take a metric defined in \(TR^m\) by \(g_{00} = -g^{11} = 1, 1 \leq i \leq m\) and \(g^{ij} = 0\) for \(i \neq j\). The set \(X\) is given by: \(X = \{x \in X_0 | (\dot{x} \cdot \dot{x}) \geq 0\} \) (where \((\cdot)\) denotes the inner product with respect to the metric \(g\)). The form \(\omega\) is \(\omega = d\sigma \land d\tau\). We have

\[\varphi = L \omega = [(x' \cdot \dot{x})^2 - (\dot{x} \cdot \dot{x})(x' \cdot x')]^{1/2} d\sigma \land d\tau. \quad (8.1)\]

Note: \(L\) is a function of \(\dot{x}\) and \(x'\) only.

First variation of \(\phi\). Let \(\phi = \int f^*(\varphi)\), where \(f \in V(I^*, L^*)\). Then

\[\delta \phi = \int f^*(v_\sigma d\varphi + d(v_\tau \varphi)), \quad (8.2)\]

where \(v(\sigma, \tau) = F_t(\partial/\partial t)(t, \sigma, \tau)|_{t=0}, (\sigma, \tau) \in N, t \in [0, 1]\) and \(F\) is the one parameter variation of \(f\). i.e., \(F(t, \sigma, \tau)|_{t=1} \in V(I^*, L^*)\) for all \(0 \leq t_1 \leq 1\). Hence the Lie derivative of \(dx^\alpha - x'^\alpha dt - \dot{x}'^\alpha d\tau\) by \(v\) along \(f(N)\) vanishes,

\[d(v_\sigma(dx^\alpha - x'^\alpha dt - \dot{x}'^\alpha d\tau)) + (v_\tau(-dx'^\alpha \land d\sigma - d\dot{x}'^\alpha \land d\tau))|_{f(N)} = 0. \quad (8.3)\]

The form \(\Psi_Z\) is given by

\[\Psi_Z = (L_{x^\alpha} - \dot{\lambda}_\alpha)\pi^*(dx^\alpha \land \omega) + (L_{x'^\alpha} - \lambda'_\alpha)\pi^*(dx'^\alpha \land \omega) + (d\lambda'_\alpha \land \pi^*d\sigma - d\lambda'_\alpha \land \pi^*d\tau) \land \pi^* dx'^\alpha + (\dot{x}'^\alpha d\dot{\lambda}_\alpha - x'^\alpha d\lambda'_\alpha) \land \pi^* \omega \quad (8.3)\]

The Cartan system in \(Z\) is:

(i) \(\partial/\partial \dot{\lambda}_\alpha \Psi_Z = -\pi^*(dx^\alpha - \dot{x}'^\alpha d\tau) \land \pi^* d\sigma) = 0, \quad (8.4)\]

(ii) \(\partial/\partial \lambda'_\alpha \Psi_Z = -\pi^*(dx'^\alpha - x'^\alpha d\tau) \land \pi^* d\sigma) = 0, \quad (8.5)\]

(iii) \(\partial/\partial \dot{x}'^\alpha \Psi_Z = -\pi^*(L_{x'^\alpha} - \dot{\lambda}_\alpha) \omega = 0, \quad (8.6)\]

(iv) \(\partial/\partial x'^\alpha \Psi_Z = -\pi^*(L_{x'^\alpha} - \lambda'_\alpha) \omega = 0, \quad (8.7)\]

(v) \(\partial/\partial x^\alpha \Psi_Z = -\pi^*d\dot{\lambda}_\alpha \land \pi^*d\sigma - d\lambda'_\alpha \land \pi^*d\tau) = 0. \quad (8.8)\]
Hence

\[Z_1 = Z|L_{2\alpha} - \lambda_0, L_{\alpha} - \lambda^0. \] (8.9)

Note that from (i) and (ii) we have \(\theta^0 = 0 \);
from (iii), (iv) and (v) we have \(E[L]|\omega = (\partial L/\partial x^a - D_\sigma \partial L/\partial x^a - D_{\tau} \partial L/\partial \dot{x}^a)\omega = 0 \) for \(D_\tau = \partial/\partial \tau + \dot{x}^a \partial/\partial x^a + \ddot{x}^a \partial/\partial \dot{x}^a \) and \(D_\sigma = \partial/\partial \sigma + x^a \partial/\partial x^a + x'^a \partial/\partial x^a \).

The generalized momenta are given by

\[\dot{\lambda}_a = \frac{x^a(x' \cdot \dot{x}) - (x' \cdot x') \dot{x}^a}{(x' \cdot \dot{x})^2 - (\dot{x} \cdot \dot{x})(x' \cdot x')}^{1/2}. \] (8.10)

\[\lambda' = \frac{\dot{x}^a(x' \cdot \dot{x}) - (x' \cdot \dot{x}) \dot{x}^a}{(x' \cdot \dot{x})^2 - (\dot{x} \cdot \dot{x})(x' \cdot x')}^{1/2}. \] (8.11)

Let \(R^{2m}|(\dot{x} \cdot \dot{x}) \geq 0, (x' \cdot x') \leq 0 \) and \(F' = R^{2m} \) be given by

\[F'(x^a, x'^a) = (\lambda'_a(x^a, x'^a), \dot{\lambda}_a(x, x')). \]

In this case \(F' \) has an inverse in \(R^{2m}|(\dot{x} \cdot \dot{x}) \geq 0, (x' \cdot x') \leq 0 \) and \(F'^{-1} \) is given by:

\[x^a = \frac{\lambda'_a(\lambda' \cdot \dot{\lambda}) - (\lambda' \cdot \lambda') \dot{\lambda}}{(\lambda' \cdot \dot{\lambda})^2 - (\dot{\lambda} \cdot \dot{\lambda})(\lambda' \cdot \lambda')^{1/2}}, \] (8.12)

\[x'^a = \frac{\dot{\lambda}_a(\lambda' \cdot \dot{\lambda}) - (\dot{\lambda} \cdot \dot{\lambda}) \lambda'_a}{(\lambda' \cdot \dot{\lambda})^2 - (\dot{\lambda} \cdot \dot{\lambda})(\lambda' \cdot \lambda')^{1/2}}. \] (8.13)

The Cartan system in \(Z_1 = Z_1|((\dot{\lambda} \cdot \lambda) \geq 0, (\lambda' \cdot \lambda') \leq 0 \) is given by (i),(ii), (iv) and (v) of the Cartan system in \(Z \). Let \(Y = Z_1 \). The prolongation of \((C(\Psi), \pi^* \omega) \) ends at \(Z_1 \). The dimension of \(Y \) is \(\dim Y = 3m + 2 \). Every point in \(Y \) is a zero-dimensional integral element of \((C(\Psi), \pi^* \omega) \), and \(r_1 = 2m + 1 \).

The Cartan system is in involution at \(\tau \) if \(\det C(v)|_{X_0} \neq 0 \), and

\[C(v) = \begin{bmatrix} < v, d\tau > I & < v, d\sigma > I \\ m \times m & m \times m \\ A & B \end{bmatrix} \] (8.14)

for every \(v \neq 0 \) along \(E^1 \), with \([x_0, E^1]\) being any integral element of \((C(\Psi), \pi^* \omega) \), where

\[A = < v, d\sigma > L_{x^a \dot{x} \beta} - < v, d\tau > L_{x^a \dot{x} \beta} \] (8.15)

and

\[B = < v, d\sigma > L_{x^a x^b \beta} - < v, d\tau > L_{x^a x^b \beta}, \] with \(0 \leq \beta \leq m - 1. \] (8.16)
Let us define the energy momentum current $P = (P^0, ..., P^{m-1})$ on the surface $\gamma = \{x^\alpha(\sigma, \tau), \sigma, \tau | 0 \leq \alpha \leq m-1\}$ by

$$P^\alpha = \int P^\alpha d\sigma + P^\alpha d\tau$$

where $\dot{P}^\alpha = -L_{\dot{x}^\alpha}, P^\alpha = -L_{x^\alpha}$.

Case 1. Open strings. Let $N = [0, \pi] \times [t_1, t_2], (t_1, t_2) \in R^2, t_1 < t_2$. We will impose the following constraints on variations of $f \in \mathcal{V}(I^*, L^*)$:

a) $g^*(v \cdot \pi^* \omega)_{\partial N} = 0,$

b) $g^*(v \cdot \pi^*(dx^\alpha - \dot{x}^\alpha d\tau - x^\alpha d\sigma))_{B} = 0$

where $B = [0, \pi] \times t_1 \cup [0, \pi] \times t_2$.

c) $\lambda'_{\alpha} = 0$ on $g(A)$ where $A = N \setminus B.$

In this case, G is any smooth lift of F to Y with $G|_{t=0} = g, (\pi \circ g = f)$, and v is a vector field defined along g with $v = G_{\alpha}(\partial / \partial t)|_{t=0}$. The constraint c) forces the boundary term in the first variation of $\phi(f)$ vanish.

Case 2. Closed strings. Let $N = S_1 \times [t_1, t_2]$, with S_1 being the unit circle. Its coordinate $\sigma \in [0, 2\pi]$, and $(t_1, t_2) \in R^2, t_1 < t_2$. We will replace the constraints on variations of $f \in \mathcal{V}(I^*, L^*)$ of the previous case with the following:

a) $g^*(v \cdot \pi^* \omega)_{\partial N} = 0,$

b) $g^*(v \cdot \pi^*(dx^\alpha - \dot{x}^\alpha d\tau - x^\alpha d\sigma))_{B} = 0$

where $B = S_1 \times t_1 \cup [0, \pi] \times t_2$.

The quadratic form A. The cone $X' = X |(\dot{x} \cdot \dot{x}) \geq 0, (x' \cdot x') \leq 0$ is convex. F' has an inverse in X' with $F' : X'' F'^{-1} R^{2m}$ where $X'' = R^{2m}|(\dot{\lambda} \cdot \dot{\lambda}) \geq 0, (\lambda' \lambda') \leq 0$. Hence the matrix

$$A' = \begin{bmatrix} L_{\dot{x}^\alpha \dot{x}^\beta} & L_{\dot{x}^\alpha x^\beta} \\ L_{x^\alpha \dot{x}^\beta} & L_{x^\alpha x^\beta} \end{bmatrix}$$

has an inverse. Therefore, the eigenvalues of A' do not vanish on X'. Thus, it suffices to know the eigenvalues of A' at an interior point of X' to determine the number of positive eigenvalues of A' in every point of X'.
Let
\[a = \{ x^0 = 1, x^i = 0, x'^1 = 1, x'^j = 0 \quad \text{with} \quad 1 \leq i \leq m - 1, j = 0 \]
\[\text{or} \quad 2 \leq j \leq m - 1 \}. \]
Then
\[L_{x^0 x'^1}(a) = -L_{x'^1 x^0}(a) = -L_{x^i x'^i}(a) = 1, 2 \leq i \leq m - 1, \]
(8.24)
and all the other elements of \(A' \) are zero. We conclude that the matrix has \(m \)-positive eigenvalues and \(m \)-negative eigenvalues in \(X' \) and the quadratic form \(A \) is neither positive nor negative definite.

Example 2. Let \(X_0 = J^1(\mathbb{R}^2, \mathbb{R}^m), N \subset \mathbb{R}^2, \) with \(N \) being a two-dimensional manifold with boundary. Let also
\[\mathcal{I}^* = \text{span}\{ dx^\alpha - x'^\alpha d\sigma - \dot{x}'^\alpha d\tau | 1 \leq \alpha \leq m \}, \]
\(x^\alpha \) are coordinates in \(\mathbb{R}^m \) and \(x'^\alpha = \frac{\partial x^\alpha}{\partial \sigma}, \dot{x}'^\alpha = \frac{\partial x^\alpha}{\partial \tau}. \)
Moreover, let
\[\varphi = L\omega = \sum_{\alpha=1}^{m} (x'^\alpha)^2 + (\dot{x}'^\alpha)^2 d\sigma \wedge d\tau. \]
(8.25)

The Cartan system in \(Z \) is

(i) \[\partial/\partial \dot{\lambda}_\alpha \cdot \Psi_Z = -\pi^* ((dx^\alpha - \dot{x}'^\alpha) \wedge \pi^* d\sigma) = 0, \]
(8.26)

(ii) \[\partial/\partial \lambda'_\alpha \cdot \Psi_Z = -\pi^* ((dx^\alpha - x'^\alpha d\tau) \wedge \pi^* d\sigma) = 0, \]
(8.27)

(iii) \[\partial/\partial \dot{x}'^\alpha \cdot \Psi_Z = -\pi^* (2\dot{x}'^\alpha - \dot{\lambda}_\alpha) \omega = 0, \]
(8.28)

(iv) \[\partial/\partial x'^\alpha \cdot \Psi_Z = -\pi^* (2x'^\alpha - \lambda'_\alpha) \omega = 0, \]
(8.29)

(v) \[\partial/\partial x^\alpha \cdot \Psi_Z = -\pi^* d\dot{\lambda}_\alpha \wedge \pi^* d\sigma - d\dot{\lambda}'_\alpha \wedge \pi^* d\tau = 0. \]
(8.30)

Hence
\[Z_1 = Z| L_{x'^\alpha} = \dot{\lambda}_\alpha, L_{x'^\alpha} = \lambda'_\alpha. \]
(8.31)
The prolongation ends at \(Z_1 \) with \((C(\Psi), \pi^* \omega) \) on \(Z_1 \) given by (8.26), (8.27) and (8.30). It is easy to prove that \((C(\Psi), \pi^* \omega) \) in \(Y \) is in involution and \((\mathcal{I}^*, L^*, \varphi, \mathcal{I}, L^*) \) is a well-posed valued differential system.
Boundary conditions. The constraints on one-parameter variations F of f in $V(I^*, L^*)$ are:

a)
\[g^*(v_{,\pi}^*\omega)_{\partial N} = 0, \]
(8.32)

b)
\[g^*(v_{,\pi}^*(dx^\alpha - \dot{x}^\alpha d\tau - x''^{\alpha}d\sigma))_{\partial N} = 0. \]
(8.33)

In this case, too, G is any smooth lift of F to Y with $G|_{t=0} = g, (\pi \circ g = f)$, and v is a vector field defined along g with $v = G|_{t=0} (\partial/\partial t)$.

The quadratic form A. A simple computation yields

\[L\dot{x}^\alpha \dot{x}^\beta = 2\delta^\alpha_\beta, \quad L\dot{x}^\alpha x'^\beta = 0, \quad Lx'^\alpha x'^\beta = 2\delta^\alpha_\beta. \]
(8.34)

Thus, the quadratic form A is positive definite.

Example 3. Let $X_0 = J^1(R^2, R^m)$. We associate coordinates σ, τ to R^2, x^i, $1 \leq i \leq m$ to R^m, and $x'^i = \frac{\partial x^i}{\partial \sigma}, \dot{x}^i = \frac{\partial x^i}{\partial \tau}$. Let $X = X_0|_{g_1 = 0}$, where $g_1(\dot{x}^1, x^2) = \dot{x}^1 - x^2 = 0$. Let $N = B_1$ be a ball with radius 1 centered at $(0, 0)$. Then

\[x^1(t, b) - x^1(a, b) = \int_a^t \frac{\partial x^1}{\partial \tau} d\tau = \int_a^t x^2 d\tau, \]
(8.35)

where $a \leq 0$ and $a^2 + b^2 = 1$.

Boundary condition $h_{A'}$. We have the following system for $v = F_*(\partial/\partial t)(t, x)|_{t=0}$ where F is a one-parameter variation of f:

\[\frac{\partial v_{x^1}}{\partial \tau} - v_{x^1} = 0, \]
(8.36)

\[\frac{\partial v_{x^1}}{\partial \sigma} - v_{x^1} = 0, \]
(8.37)

\[\frac{\partial v_{x^1}}{\partial \tau} - v_{x^2} = 0, \]
(8.38)

\[\frac{\partial v_{x^1}}{\partial \sigma} - v_{x^1} = 0. \]
(8.39)

Let $A' = \{ (\tau, \sigma) \in R^2 | (\tau)^2 + (\sigma)^2 = 1 \quad \text{and} \quad \tau \leq 0 \}$. A' is nowhere characteristic for (8.38) and the values of v_{x^1} at A' and v_{x^2} in N determine uniquely a solution in N for the system of equations. Let $h_{A'}: A' \to R$ and $h_{\partial N}^j: \partial N \to R$ ($2 \leq j \leq m$) be a smooth function. Assume $f \in V(I^*, L^*)$, and let I^*, L^* be as before. Then, f satisfies the boundary condition $[h_{A'}]$ if

\[x_{A'}^1 = h_{A'}^1 \quad \text{and} \quad x_{\partial N}^j = h_{\partial N}^j. \]
(8.40)
In this case,

\[\phi[f] = \int f^* \varphi, \quad \text{where } f \in V(I^*, L^*, [h_A]), \quad (8.41) \]

and

\[\varphi = Lw = [(x^i)^2 + \sum_j (\dot{x}^j)^2 + \sum_j (x^j)^2] d\sigma \land d\tau. \quad (8.42) \]

Momentum space. The Cartan system in \(Z \) is:

(i) \[\partial/\partial \dot{\lambda}_i \Psi_Z = -\pi^*(dx_i - \dot{x}_i d\tau) \land \pi^* d\sigma = 0, \quad (8.43) \]

(ii) \[\partial/\partial \dot{x}^j \Psi_Z = -\pi^*(2\dot{x}^j - \dot{\lambda}_j) \omega = 0, \quad (8.45) \]

(iii) \[\partial/\partial x_i \Psi_Z = -\pi^*(d\dot{\lambda}_i \land \pi^* d\sigma + d\lambda_i \land \pi^* d\tau) = 0. \quad (8.47) \]

From (8.46) and (8.47) we also have

\[Y = Z_1 = Z \vert_{2\dot{x}^i = \dot{\lambda}_i, 2x^i = \lambda'_i}. \]

This Cartan system \((C(\Psi), \pi^* \omega)\) is non-degenerate. Let us transfer the boundary condition to \(Q_i = Y \vert_{\pi^* L_i}, \) where \(L_i^* = \text{span}\{dx^i - \dot{x}^i d\tau - x^i d\sigma, d\sigma, d\tau\}. \) Then, \(f \in V(I^*, L^*) \) satisfies the boundary condition \(h_A', \) if for any lift \(g \) of \(f \) to \(Y \) we have:

\[(\omega'_1 \circ g) \vert_{A'} = h^1_{A'} \quad \text{and} \quad (\omega'_j \circ g) \vert_{\partial N} = h^j_{\partial N}, \quad (8.48) \]

where \(h^1_{A'}: A' \rightarrow Q_1 \) with \(\pi_1 \circ h^1_{A'} = h^1_{A'} \) and the projection \(\pi_1: Q_1 \rightarrow R \) given by \(\pi_1(g) = x^i(q). \)

Furthermore, \(g \) is a solution to the Euler-Lagrange system satisfying the mixed boundary condition \([h_{A'}], \) if \(g \) satisfies (8.43), (8.44) and (8.47), and

\[\nu \cdot \dot{\lambda}_i \pi^*[dx^i - \dot{x}^i d\tau - x^i d\sigma] \land d\tau + \lambda'_i \pi^*[dx^i - \dot{x}^i d\tau - x^i d\sigma] \land d\sigma \vert_\partial(\partial N \setminus A') = 0 \quad (8.49) \]

for any element, \(v = F_*(\partial/\partial t)(t, x) \vert_{t=0} \) where \(F \) is a one parameter variation of \(\pi \circ g \) satisfying \(\nu_1 \vert_{A'=0} \) and \(\nu_2 \vert_{N=0}. \)

Finally, the quadratic form \(A \) is positive definite.
9. Inverse problem for calculus of variations

Example 4. In 1887, Helmholtz solved the following problem:

It is given \(P_i = P_i(x, u^i, u_x^i, u_{xx}^i) \). Is there a Lagrangian \(L(x, u^i, u_{xx}^i) \) such that \(E_i(L) = \partial L/\partial u^i - D_x \partial L/\partial u_x^i = P_i \), where \(D_x = \partial/\partial x + u_x^i \partial/\partial u^i + u_{xx}^i \partial/\partial u_{xx}^i \)? He found the following necessary conditions for \(P_i \):

(i) \[\partial P_i / \partial u_{xx}^i = \partial P_j / \partial u_x^j, \] (9.1)

(ii) \[\partial P_i / \partial u_x^i = \partial P_j / \partial u_x^j + 2D_x \partial P_j / \partial u_{xx}^j, \] (9.2)

(iii) \[\partial P_i / \partial u^i = \partial P_j / \partial u^j - D_x \partial P_j / \partial u_x^j + D_{xx} \partial P_j / \partial u_{xx}^j. \] (9.3)

This problem led to the following studies ([2]):

(i) - the derivation and analysis of Helmholtz conditions as necessary and (locally) sufficient conditions for a differential operator to coincide with the Euler-Lagrange operator for some Lagrangian;

(ii) - the characterization of the obstructions to the existence of global variational principles for different operators defined on manifolds;

(iii) - the invariant inverse problem for different operators with symmetry;

and

(iv) - the variational multiplier problem wherein variational principles are found, not for a given differential operator, but rather for the differential equations determined by that operator.

That is: find a matrix \(B = [B^j_i] \) such that \(B^j_i P_j = E_i(L) \) for some \(L \) with \(B \) being non-singular.

Let \(E \to M \) be a fibered manifold. \(J^\infty(E) \) is the infinite jet of \(E \).

Let

\[\theta^i = du^i - u_x^i dx \] (9.4)
\[\theta_x^i = du_x^i - u_{xx}^i dx \] (9.5)

and

\[\Omega_P = P_i \theta^i \wedge dx + 1/2 [\partial P_i / \partial u_x^i - D_x \partial P_i / \partial u_{xx}^i] \theta^i \wedge \theta_x^i \]
\[+ 1/2 [\partial P_i / \partial u_x^i + \partial P_j / \partial u_{xx}^i] \theta^i \wedge \theta_x^j. \] (9.6)

If \(P \) satisfies the Helmholtz conditions, then \(d\Omega_P = 0 \). If the \(H^{n+1}(E) - n+1 \) de Rham cohomology group of \(E \) is trivial, then \(\Omega_P \) is exact. This fact implies that \(P_i \) is globally variational. If \(\theta_L = L dx + \partial L / \partial u_x^i \theta^i \),

Let of one independent variable and to equations

\[\text{Theorem 9.1.} \]

Then we have a global solution for the inverse problem in the case of one independent variable and to equations \(P_1 = 0 \) of second order.

Vaingberg [1969] generalized this result; however his Lagrangian is usually of a much higher order than necessary.

In [2] we can find the following theorem.

Theorem 9.1. Let \(P_1 \) be a differential operator of order \(2k \)

\[P_1 = P_1(x, u^1, u^1_1, \ldots, u^1_{2k}). \]

Then \(P_1 \) is the Euler-Lagrange operator of a \(k \)-th order Lagrangian \(L = L(x, u^1, u^1_1, \ldots, u^1_{2k}) \) if and only if the functions \(P_1 \) satisfy the higher order Helmholtz conditions, and the functions

\[p_1(t) = P_1(x, u^1, u^1_1, \ldots, u^1_{2k}) \]

are polynomials in \(t \) of degree less or equal to \(k \).

Example 5. Let us now look to another example where we have a function of three independent variables \(x, y \) and \(z \), with a single dependent variable \(u \). Let \(T = T(x, y, z, u, u_x, u_y, u_z, u_{xx}, u_{xy}, u_{xz}, \ldots, u_{zz}) \) be a second order operator.

\[E[L] = \partial L/\partial u - D_x\partial L/\partial u_x - D_y\partial L/\partial u_y - D_z\partial L/\partial u_z \]

Let \(\psi = \psi^* \omega + (\psi^* \chi)^*[i^*(\chi)] \) and \(\pi^* \omega_j \) by \(v \) is

\[v_\pi d\psi + d(v_\pi \psi) = E[L](u)\pi^*(dx \wedge dy \wedge dz) \]

\[+ d(\partial L/\partial u_x v^1 \pi^*(dy \wedge dz) - \partial L/\partial u_y v^1 \pi^*(dx \wedge dz) + \partial L/\partial u_z v^1 \pi^*(dx \wedge dy)). \]

Suppose that for some vector \(w \) with \(\pi^*w \in T \mathcal{V}(T^*, L^*, \varphi, [h]) \) (i.e. \(w_\pi d\theta + d(w_\pi \theta) \) for \(\theta = du - u_x dx - u_y dy - u_z dz \) and \(w_\pi \theta |_{\partial N} = 0 \) we have \(v_\pi d\psi + d(v_\pi \psi) = T[u]v^1 \pi^*(dx \wedge dy \wedge dz) + d(\partial L/\partial u_x w^1 \pi^*(dy \wedge dz) - \partial L/\partial u_y w^1 \pi^*(dx \wedge dz) + \partial L/\partial u_z w^1 \pi^*(dx \wedge dy)). \]

Then we have \(T[u] = E[L](u) \)

If we identify \(e_1 \) with \(dy \wedge dz \), \(e_2 \) with \(dz \wedge dx \) and \(e_3 \) with \(dx \wedge dy \) at each point of the integral manifold of \((C(\psi), \pi^*\omega) \), we can write

\[d(\partial L/\partial u_x v^1 \pi^*(dy \wedge dz) - \partial L/\partial u_y v^1 \pi^*(dx \wedge dz) \]
We have
\[V[u] = \partial L/\partial u_x v^1 + \partial L/\partial u_y v^2 + \partial L/\partial u_z v^3. \]
(9.15)

The divergence operator is defined in terms of the total derivatives \(D_x, D_y \) and \(D_z \).

We can conclude that \(v \cdot d\psi + d(v \cdot \psi) = (E[L](u) v + \text{Div}V[u]) \pi^*(dx \wedge dy \wedge dz) \).

We have
\[E[L](u) = 0 \] whenever \(L[u] = \text{Div}W[u] \).

Suppose \(T[u] = E[L](u) \). Then the first variation formula is
\[v \cdot d\psi + d(v \cdot \psi) = (T[u] v^1 + \text{Div}W[u]) \pi^*(dx \wedge dy \wedge dz). \]
(9.17)

By applying the Euler-Lagrange operator (i.e. \(E[\alpha[u] \pi^*(dx \wedge dy \wedge dz)] = E[\alpha[u] \pi^*(dx \wedge dy \wedge dz)] \)), we obtain
\[E[v \cdot d\psi + d(v \cdot \psi)] = E[T[u] v] \pi^*(dx \wedge dy \wedge dz), \] since \(E(\text{Div}W)(u) = 0 \).

We have
\[E[v \cdot d\psi + d(v \cdot \psi)] = (v \cdot dE[L](u) + d(v \cdot dE[L](u))) \pi^*(dx \wedge dy \wedge dz) \]
(9.19)
\[= (v \cdot dT + d(v \cdot dT)) \pi^*(dx \wedge dy \wedge dz). \]
(9.20)

Therefore
\[E[T[u] v] \pi^*(dx \wedge dy \wedge dz) = (v \cdot dT + d(v \cdot dT)) \pi^*(dx \wedge dy \wedge dz). \]
(9.21)

Let
\[\psi' = \pi^* T \omega + (\pi^* \alpha')^* [\pi^* (\chi)] \pi^* \omega_j, \]
(9.22)
and
\[v \cdot d\psi' + d(v \cdot \psi') = E[T[u] v] \pi^*(dx \wedge dy \wedge dz). \]
(9.23)

If we define
\[H[T[v]] \pi^*(dx \wedge dy \wedge dz) = v \cdot d\psi' + d(v \cdot \psi') - E[T(u) v] \pi^*(dx \wedge dy \wedge dz), \]
then \(H(T) = 0 \) if \(T[u] \) is Euler-Lagrange. Helmholtz equations are:

(i) \[\partial T/\partial u_x = D_x \partial T/\partial u_{xx} + 1/2D_y \partial T/\partial u_{xy} + 1/2D_z \partial T/\partial u_{xz}, \]
(9.25)

(ii) \[\partial T/\partial u_y = D_y \partial T/\partial u_{yy} + 1/2D_x \partial T/\partial u_{yx} + 1/2D_z \partial T/\partial u_{yz}, \]
(9.26)

(iii) \[\partial T/\partial u_z = D_z \partial T/\partial u_{zz} + 1/2D_x \partial T/\partial u_{zx} + 1/2D_y \partial T/\partial u_{zy}. \]
(9.27)
We have a sequence of spaces

\[
0 \rightarrow \mathbb{R} \rightarrow F[u] \rightarrow V(u) \rightarrow F(u) \rightarrow F(u) \rightarrow V(u)
\]

that is a cochain complex, the Euler-Lagrange complex. Since this complex is exact, the inverse problem is globally solved in this second example.

9.1. Variational Bicomplex. Let us introduce now a very important tool for a globalization of the inverse problem.

Definition 9.1. A \(p \) form \(\omega \) on \(J^\infty(E) \) is said to be of type \((r,s)\), where \(r + s = p \), if at each point \(x \) of \(J^\infty(E) \)

\[
\omega(X_1, X_2, \ldots, X_p) = 0,
\]

whenever either

(i) more than \(s \) of the vectors \(X_1, X_2, \ldots, X_p \) are \(\pi^\infty_M \) vertical, or

(ii) more than \(r \) of the vectors \(X_1, X_2, \ldots, X_p \) annihilate all contact one forms.

Note: \(\Omega^{r,s} \) denotes the space of type \((r,s)\) forms on \(J^\infty(E) \).

(i) \(\pi : E \rightarrow M \) be a fiber bundle.

(ii) Let us assume that there exists a transformation group \(G \) acting on \(E \), and

(iii) that there exists a set of differential equations on sections of \(E \).

\[
d = d_H + d_V,
\]

\[
d_H : \Omega^{r,s}(J^\infty(E)) \rightarrow \Omega^{r+1,s}(J^\infty(E)), \quad (9.30)
\]

\[
d_V : \Omega^{r,s}(J^\infty(E)) \rightarrow \Omega^{r,s+1}(J^\infty(E)), \quad (9.31)
\]

\[
d_H^2 = 0, \quad d_H d_V = - d_V d_H, \quad d_V^2 = 0. \quad (9.32)
\]

In local coordinates

\[
d_H f = [\partial f / \partial x^i + u\alpha_i \partial f / \partial u^\alpha + u^\alpha_j \partial f / \partial u^\alpha_j + \ldots] dx^i \quad (9.33)
\]

\[
d_V f = \partial f / \partial u^\alpha \theta^\alpha + \partial f / \partial u^\alpha \theta^\alpha + \ldots \quad (9.34)
\]

The sequences of spaces

\[
0 \rightarrow \Omega^{0,0} \rightarrow \Omega^{1,0} \rightarrow \Omega^{2,0} \rightarrow \Omega^{3,0} \rightarrow \ldots
\]

\[
\uparrow d_V \quad \uparrow d_V
\]

\[
0 \rightarrow \Omega^{0,1} \rightarrow \Omega^{1,1} \rightarrow \Omega^{2,1} \rightarrow \Omega^{3,1} \rightarrow \ldots
\]

\[
\uparrow d_V \quad \uparrow d_V
\]

\[
0 \rightarrow R \rightarrow \Omega^{0,0} \rightarrow \Omega^{1,0} \rightarrow \Omega^{2,0} \rightarrow \Omega^{3,0} \rightarrow \ldots
\]

\[
\uparrow d_V \quad \uparrow d_V
\]
is the Variational Bicomplex.

Therefore the generalization of (9.28) is:

\[
0 \rightarrow R \rightarrow \Omega^{0,0} \rightarrow \Omega^{1,0} \rightarrow \Omega^{2,0} ... \rightarrow \Omega^{n-1,0} \rightarrow \Omega^{n,0} \rightarrow E \delta \nu \delta \nu \rightarrow F^1 \rightarrow F^2 \rightarrow F^3.
\]

9.2. Lagrange problem with non-holonomic constraints. Let us recall from [26] the Lagrange problem with non-holonomic constraints. We showed that a well-posed variational problem with mixed endpoint conditions for \(n = 1 \) is locally a Lagrange problem with non-holonomic constraints.

Proposition 9.1. Let us assume that a Lagrange problem with non-holonomic constraints \(g^\sigma(x, u, \dot{u}) = 0 \), with \(\text{rank}[\partial \theta^\sigma/\partial \dot{u}^\alpha] = m - l \) with \(1 \leq j \leq m \) and \(1 \leq \rho \leq m - l, l \geq 0 \) is given. If \(\det[L_{\mu\nu}] \neq 0 \) and \(L \det[A_{\mu\nu}] \neq 0 \) for all \((\lambda_1, \ldots, \lambda_{m-1}) \in \mathbb{R}^{m-1} \), then \((I^*, L^*, \varphi, L^*) \) is a well-posed valued differential system, where \(I^* = \text{span} \{\theta^\alpha|1 \leq \alpha \leq m\} \), and \(L^* = \text{span} \{\theta^\alpha, dx|1 \leq \alpha \leq m\} \)

\[
\theta^\mu = d\theta^\mu \leq u^\mu\sigma dx + g^\mu_{\sigma\lambda} (u^\mu - u^\mu_0 dx) \quad 1 \leq \sigma \leq m - l, \quad (9.35)
\]

\[
\theta^\alpha = u^\alpha dx \quad m - l + 1 \leq \mu, \nu \leq m. \quad (9.36)
\]

In this setting we have

\[
\theta^\mu = -du^\mu_0 \wedge dx, \quad (9.37)
\]

\[
d\theta^\nu \equiv -A^\nu_{\mu\rho} du^\mu_0 \wedge \theta^\rho - B^\nu_{\sigma\alpha} dx \wedge \theta^\alpha \mod\{\theta^\alpha \wedge \theta^\alpha | 1 \leq \alpha, \alpha' \leq m\}, \quad (9.38)
\]

\[
A^\rho_{\mu\rho'} = g_{u^\mu_0 u^\rho_0} a^\rho_{\mu'} a^\rho_{\rho'} g^\mu_{\rho\rho'} + g_{u^\mu_0 u^\rho_0} a^\rho_{\rho'}, \quad (9.39)
\]

\[
A^\nu_{\mu\nu'} = g_{u^\mu_0 u^\nu_0} a^\nu_{\mu'} a^\nu_{\nu'} \beta^\rho_{\mu\rho'} g^\rho_{\nu\nu'} - g_{u^\mu_0 u^\nu_0} a^\nu_{\mu'} a^\nu_{\nu'} \beta^\rho_{\nu\rho'} g^\rho_{\mu\mu'} + g_{u^\mu_0 u^\nu_0} a^\nu_{\nu'}, \quad (9.40)
\]

\[
B^\rho_{\sigma} = g_{u^\rho_0 u^\rho_0} a^\rho_{\sigma} + g_{u^\rho_0 u^\rho_0} g^\rho_{\sigma} (g^\rho_{\rho_0} - g^\rho_{u^\rho_0 u^\rho_0}) + g_{u^\rho_0 u^\rho_0} a^\rho_{\sigma} u^\rho_0 - g_{u^\rho_0 u^\rho_0} a^\rho_{\sigma} x^\rho_0 + g_{u^\rho_0 u^\rho_0} a^\rho_{\sigma} u^\rho_0, \quad (9.41)
\]

\[
B^\rho_{\mu} = -g_{u^\rho_0 u^\rho_0} a^\rho_{\mu} g^\rho_{u^\rho_0 u^\rho_0} g^\rho_{\mu} (g^\rho_{\rho_0} - g^\rho_{u^\rho_0 u^\rho_0}) - g_{u^\rho_0 u^\rho_0} a^\rho_{\mu} g^\rho_{u^\rho_0 u^\rho_0} u^\rho_0 x^\rho_0 + g_{u^\rho_0 u^\rho_0} a^\rho_{\mu} g^\rho_{u^\rho_0 u^\rho_0} u^\rho_0 + g_{u^\rho_0 u^\rho_0} a^\rho_{\mu} u^\rho_0.
\]
\[-g^\rho_\sigma \alpha^\rho_{\omega^\tau} \gamma^\tau_{\omega^\rho} + g^\rho_\sigma \alpha^\rho_{\omega^\tau} \alpha^\rho_{\omega^\rho} (g^\rho_\sigma - g^\rho_\omega \alpha^\rho_{\omega^\rho}) + g^\rho_\sigma \alpha^\rho_{\omega^\rho} \alpha^\rho_{\omega^\rho} - g^\rho_\omega \gamma^\tau_{\omega^\rho} \alpha^\rho_{\omega^\rho} \gamma^\tau_{\omega^\rho} \]

\[L_\mu = \frac{\partial}{\partial u^\rho_\mu} - a^\rho_{\omega^\rho} g^\rho_\omega \frac{\partial}{\partial u^\rho_\omega} L, \quad L_{\mu \nu} = \frac{\partial}{\partial u^\rho_\mu} - a^\rho_{\omega^\rho} g^\rho_\omega \frac{\partial}{\partial u^\rho_\omega} L_{\mu}, \]

and

\[A_{\mu \nu} (\lambda_1, \ldots, \lambda_{m-l}) = \rho \in \rho, \rho', \rho'', \sigma, \sigma' \leq m - l \text{ and } m - l + 1 \leq \mu, \nu \leq m.\]

\[\psi \equiv (L_\mu - \lambda_\mu) \pi^*(du^\mu \wedge dx) + (d\lambda_\mu - (A_\mu + \lambda_\mu B_\mu) \pi^* dx + \lambda_\mu A_\mu \pi^* du^\mu) \wedge \pi^* \theta^\mu + (d\lambda_\sigma - (A_\sigma + \lambda_\sigma B_\sigma) \pi^* dx + \lambda_\sigma A_\sigma \pi^* du^\mu) \wedge \pi^* \theta^\sigma \]

\[\mod \{\pi^*(\theta^\rho \wedge \theta^\sigma)|1 \leq \alpha, \alpha' \leq m\}, \]

with

\[A_\mu = L_{\alpha} - \omega_{\omega^\rho} a^\rho_{\omega^\rho} g^\rho_\omega + L_{\omega^\rho} a^\rho_{\omega^\rho} g^\rho_\omega + g^\rho_\omega a^\rho_{\omega^\rho} g^\rho_\omega - L_{\omega^\rho} a^\rho_{\omega^\rho} g^\rho_\omega \]

\[A_\sigma = L_{\alpha} \sigma^\rho_{\omega^\rho} - L_{\omega^\rho} a^\rho_{\omega^\rho} g^\rho_\omega a^\rho_{\omega^\rho}. \]

The Cartan system is

\[\pi^* \theta^\alpha \quad (1 \leq \alpha \leq m), \]

\[(L_\mu - \lambda_\mu) \pi^* dx \quad (m - l + 1 \leq \mu \leq m), \]

\[(d\lambda_\mu - (A_\mu + \lambda_\mu B_\mu) \pi^* dx + \lambda_\mu A_\mu \pi^* du^\mu) \quad (m - l + 1 \leq \mu \leq m), \]

\[(d\lambda_\sigma - (A_\sigma + \lambda_\sigma B_\sigma) \pi^* dx + \lambda_\sigma A_\sigma \pi^* du^\mu) \quad (1 \leq \sigma \leq m - l). \]
Proposition 9.2. Let \((I^*, L^*)\) be a locally embeddable differential system defined in \(X = J^1(R, R^m)|g^\alpha(x, w, u^\beta) = 0\), rank \(\partial g^\alpha/\partial u^\beta_i = m - l, 1 \leq j \leq m\) and \(1 \leq \rho \leq m - l, l \geq 0\), where \(I^* = \text{span} \{\theta^\alpha|1 \leq \alpha \leq m\}\) and \(L^* = \text{span} \{\theta^\alpha, dx|1 \leq \alpha \leq m\}\).

\[
\theta^\alpha = g^\alpha_{\nu} (du^\nu - u^\nu_x dx) + g^\alpha_{\nu\mu} (du^\mu - u^\mu_x dx)
\]

\[1 \leq \sigma, \rho \leq m - l,
\]

(9.54)

\[
\theta^\mu = du^\mu - u^\mu_x dx
\]

\[m - l + 1 \leq \mu, \nu \leq m.
\]

(9.55)

Let \(Q_i = Q_i(x, w^j, u^\mu_j, u^\nu_x, \lambda_p \lambda_{\rho_x}), 1 \leq i \leq m\), with \(Q_i(x, w^j, u^\mu_j, tu^\mu, \lambda_p \lambda_{\rho_x})\) being polynomial in \(t\) of degree less or equal to 1, and

\[
P^\mu = Q^\mu + \lambda_p B^\mu_p - \lambda_p A^\mu_p \frac{du^\nu}{dx},
\]

(9.56)

\[
R^\sigma = Q^\sigma - \lambda_{\sigma x} + \lambda_p B^\sigma_p - \lambda_p A^\sigma_p \frac{du^\nu}{dx},
\]

(9.57)

and

\[
R^\mu = P^\mu + D_x (\partial P^\mu/\partial u^\nu_{xx}).
\]

(9.58)

Furthermore, let us assume that the functions \(P^\mu\) satisfy the Helmholtz conditions, that the functions \(R^\mu\) do not depend on \(\lambda_p\) and \((\lambda_p)_x\) coordinates, and the 1-form \(\Theta = R_t(x, w^j, u^\mu_j, u^\nu_x)\theta^\alpha\) is closed mod \(R\), where \(R = C^\infty(Z, R^*)\), \(Z = J^1(R, R^m)|g^\alpha(x, w^j, u^\mu_j) = 0\) with coordinates \(\{x, w^j, u^\mu_j, u^\nu_x\}\) and \(R^* = \text{span} \{dx, du^\mu, du^\nu_x\}\). Then, \(Q_i\) is locally a Euler-Lagrange operator for a Lagrangian \(L(x, w^j, u^\mu_j)\).

Proof: From Theorem 9.1 we know that a function \(F(x, w^j, u^\mu_j)\) can be found that does not depend on \(u^\nu_{xx}\), such that \(E^\mu(F) = \partial F/\partial u^\mu - D_x \partial F/\partial u^\nu_{xx} = F^\mu\) (note that if \(R^\mu\) does not depend on \(\lambda_p\), then neither does \(P^\mu\)).

Therefore,

\[
\partial P^\mu/\partial u^\nu_{xx} = F^\mu,
\]

(9.59)

where

\[
F^\mu_{\nu\nu} = \partial /\partial u^\mu_x - a^\sigma_p g^\rho_{\nu\sigma} \partial /\partial u^\rho_x F^\nu,
\]

(9.60)

and

\[
F^\mu = \partial /\partial u^\mu_x - a^\sigma_p g^\rho_{\nu\sigma} \partial /\partial u^\rho_x F^\nu.
\]

(9.61)

The \(R^\mu\) functions satisfy

\[
R^\mu = \partial /\partial u^\mu - a^\sigma_p g^\rho_{\nu\sigma} \partial /\partial u^\rho_x F^\nu.
\]

(9.62)

Hence, if the \(\Theta\)-form is closed mod \(R\), then locally

\[
R^\sigma = \partial /\partial u^\sigma - a^\rho_p g^\nu_{\sigma\rho} \partial /\partial u^\nu_x F^\mu.
\]

(9.63)

Finally, we make \(F = L\).
In addition, if the domain of the R_n functions is simply connected and

\[
\Omega_P = P\mu \theta^\alpha \wedge dx + 1/2[\partial P_\mu/\partial u^i_x - D_x \partial P_\mu/\partial u_x] \theta^\alpha \wedge \theta^i
+ 1/2[\partial P_\mu/\partial u_x] + \partial P_\mu/\partial u_x] \theta^\alpha \wedge \theta^i.
\] (9.64)

is exact, then we have a global solution for the inverse problem.

Example 6. Let X be the $J^3(R, R^3) g(v, y, z, v_x, y_x, z_x) = 0$, where

\[
g(v, y, z, v_x, y_x, z_x) = mvv_x - mgz_x + R\sqrt{1 + (y_x)^2 + (z_x)^2}.
\] (9.65)

Let

\[
Q_1 = -\lambda_{y_x} - \frac{\sqrt{1 + (y_x)^2 + (z_x)^2}}{mv^3} = 0,
\] (9.66)

and

\[
Q_2 = \frac{Ry_x}{mv^3} - \frac{v(1 + z_x^2)v_{xx} - y_xz_xz_{xx} - v_x^2y_x\sqrt{1 + (y_x)^2 + (z_x)^2}}{v^2(\sqrt{1 + (y_x)^2 + (z_x)^2})^3}
- \lambda_1 \left(\frac{R(1 + z_x^2)v_{xx}}{\sqrt{1 + (y_x)^2 + (z_x)^2}} \right)
- \frac{Rz_x y_x z_{xx}}{\sqrt{1 + (y_x)^2 + (z_x)^2}}
- \frac{v(1 + y_x^2)z_{xx} - y_xz_x v_{xx} - v_x z_x \sqrt{1 + (y_x)^2 + (z_x)^2}}{v^2(\sqrt{1 + (y_x)^2 + (z_x)^2})^3}
- \lambda_1 \left(\frac{R(1 + y_x^2)z_{xx}}{\sqrt{1 + (y_x)^2 + (z_x)^2}} \right) + \frac{Rz_x y_x y_{xx}}{\sqrt{1 + (y_x)^2 + (z_x)^2}} = 0.
\] (9.67)

Hence,

\[
P_2 = -\frac{Ry_x}{mv^3} - \frac{v(1 + z_x^2)v_{xx} - y_xz_xz_{xx} - v_x^2y_x\sqrt{1 + (y_x)^2 + (z_x)^2}}{v^2(\sqrt{1 + (y_x)^2 + (z_x)^2})^3},
\] (9.69)

\[
P_3 = -\lambda_1 \left(\frac{Rz_x y_x z_{xx}}{\sqrt{1 + (y_x)^2 + (z_x)^2}} \right) + \frac{v(1 + y_x^2)z_{xx} - y_xz_x v_{xx} - v_x z_x \sqrt{1 + (y_x)^2 + (z_x)^2}}{v^2(\sqrt{1 + (y_x)^2 + (z_x)^2})^3}.
\] (9.70)
\[
R_1 = -\frac{\sqrt{1 + (y_x)^2 + (z_x)^2}}{mv^3}, \quad (9.71)
\]
\[
R_2 = -\frac{R_{yx}}{mv^3\sqrt{1 + (y_x)^2 + (z_x)^2}}, \quad (9.72)
\]
\[
R_3 = -\frac{\sqrt{1 + (y_x)^2 + (z_x)^2}}{mv^3} \left(mg - \frac{R_{zx}}{\sqrt{1 + (y_x)^2 + (z_x)^2}} \right). \quad (9.73)
\]

It is easy to verify that \(P_2 \) and \(P_3 \) satisfy Helmholtz conditions, and that the 1-form \(\Theta = R_1 \theta^1 + R_2 \theta^2 + R_3 \theta^3 \) is closed mod \(R \), with \(R^* = \text{span} \{ dx, dy_x, dz_x \} \) and \(R = C^\infty(X, R^*) \). The Lagrangian for this example is
\[
L = \frac{\sqrt{1 + (y_x)^2 + (z_x)^2}}{v}. \]

References

Inverse problem of variational calculus and problem of mixed endpoint conditions

[38] —, Applications of Lie groups to differential equations, Springer-Verlag, New York, 1986.