
A Coarse-Grained Parallel Algorithm for

Spanning Tree and Connected Components?

E. N. Cáceres1, F. Dehne2, H. Mongelli1, S. W. Song3, and J. L. Szwarcfiter4

1 Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil,
edson@dct.ufms.br,

http://www.dct.ufms.br/∼edson,
mongelli@dct.ufms.br,

http://www.dct.ufms.br/∼mongelli
2 Carleton University, Ottawa, Canada K1S 5B6,

frank@dehne.net,
http://www.dehne.net

3 Universidade de São Paulo, São Paulo, Brazil,
song@ime.usp.br,

http://www.ime.usp.br/∼song
4 Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,

jayme@nce.ufrj.br,
http://www.cos.ufrj.br/docentes/jayme.html

Abstract. Computing a spanning tree and the connected components
of a graph are basic problems in Graph Theory and arise as subproblems
in many applications. Dehne et al. present a BSP/CGM algorithm for
computing a spanning tree and the connected components of a graph,
that requires O(log p) communication rounds, where p is the number of
processors. It requires the solution of the Euler tour problem which in
turn is based on the solution of the list ranking problem. In this paper
we present a new approach that does not need to solve the Euler tour or
the list ranking problem. It still requires O(log p) communication rounds
and has the practical advantage of avoiding the list ranking computa-
tion. Rather it is based on the integer sorting algorithm which can be
implemented efficiently on the BSP/CGM model.

1 Introduction

Computing a spanning tree and the connected components of a graph are basic
problems in Graph Theory and arise as subproblems in many applications. The
sequential algorithms use depth-first or breadth-first search to solve these prob-
lems efficiently. The parallel solutions for these problems, however, do not use
these search methods because they are not easy to parallelize. They are based
instead on the approach proposed by Hirschberg et al. [1], where super-vertices

? Partially supported by FINEP-PRONEX-SAI Proc. No. 76.97.1022.00, FAPESP
Proc. No. 1997/10982-0, CNPq Proc. No. 30.5218/03-4, 55.2028/02-9, and the Nat-
ural Sciences and Engineering Research Council of Canada.

2

of the graph are successively combined into larger super-vertices. The approach
gives rise to algorithms for PRAM models [2]. The most efficient of these algo-
rithms is on a CRCW PRAM of O(log n) time with O((m + n)α(m, n))/ log n
processors, where α(m, n) is the inverse of the Ackermann’s function [2].

Dehne et al. [3] present a BSP/CGM algorithm for computing a spanning tree
and the connected components of a graph, that requires O(log p) communication
rounds, where p is the number of processors. The algorithm in [3] requires the
solution of the Euler tour problem which in turn is based on the solution of the
list ranking problem.

In this paper we present a new approach that does not need to solve the Euler
tour or the list ranking problem. It still requires O(log p) communication rounds
and has the practical advantage of avoiding the list ranking computation which,
in spite of presenting an O(log p) communication rounds complexity, has been
shown to require large constants in practical implementations. The proposed
algorithm is based on the integer sorting algorithm which can be implemented
efficiently on the BSP/CGM model [4]. We use a special spanning forest, called
strut [5], of a bipartite graph. The proposed algorithm uses a strut to compute a
spanning tree and the connected components of a given graph. We first assume
a bipartite graph as input. Then we show how to handle the case of a general
graph by transforming it into a corresponding bipartite graph. If the obtained
bipartite graph is not connected, the algorithm will compute a spanning tree for
each connected component.

In the next sections we present the parallel computing model, the definitions
used, and the main result of this paper.

2 Coarse-Grained Multicomputer (CGM) Model

We consider a version of the BSP model [6], called the Coarse-Grained Multi-

computer (CGM) model [7]. It uses two parameters: the input size N and the
number of processors p. In comparison to the BSP model, the CGM allows only
bulk messages in order to minimize message overhead.

A CGM consists of a set of p processors each with its local memory. Each
processor is connected by a router that can send messages in a point-to-point
fashion (or shared memory). A CGM algorithm consists of alternating local
computation and global communication rounds separated by a barrier synchro-
nization. In a computing round, we usually use the best sequential algorithm
in each processor to process its data locally. In each communication round each
processor sends O(N/p) data and receives O(N/p) data. Therefore, in terms of
the BSP terminology, each communication round consists of routing a single
h-relation with h = O(N/p). We require that all information sent from a given
processor to another processor in one communication round be packed into one
long message, thereby minimizing the message overhead. In the CGM model,
the communication cost is modeled by the number of communication rounds.

3

3 Some Definitions and the Main Idea

Consider a bipartite graph H = (V1, V2, E) with vertex sets V1 and V2 and edge
set E where each edge joins one vertex of V1 and one vertex in V2. If v is a
vertex of a subgraph H ′ of H , then dH′(v) denotes the degree of v in H ′. Let
the vertices of V1 be u1, u2, · · · , un1

and the vertices of V2 be v1, v2, · · · , vn2
.

We define a strut ST in V1 as a spanning forest of H such that each vi ∈ V2 is
incident in ST with exactly one edge of E, and (uj , vi) is an edge of ST implies
(uk, vi) is not an edge of H , for any uk ∈ V1, k < j.

To define a strut in V2, the roles for the sets V1 and V2 in the above definition
are exchanged.

A vertex u ∈ V1 is called zero-difference in ST if dH(u) − dST (u) = 0.
Otherwise, the vertex is referred to as non-zero-difference.

Before we present the CGM algorithm, let us give some ideas and give a
simple example.

���������

s s

s

5 5’

4’HHHHHHHHH

XXXXXXXXX

s

s

4

6’

���������

s

s

3

1’

HHHHHHHHH

s s2 2’

XXXXXXXXX

HHHHHHHHH

s

s

1

3’

Fig. 1. Bipartite graph H = (V1, V2, E)

Consider the input bipartite graph H = (V1, V2, E) of Fig. 1. We have
V1 = {1, 2, 3, 4, 5}, V2 = {1′, 2′, 3′, 4′, 5′, 6′} and
E = {(1, 1′)(1, 2′)(1, 3′)(2, 2′)(2, 4′)(3, 1′)(4, 5′)(4, 6′)(5, 4′)(5, 5′)}.
We can first compute a spanning forest for H = (V1, V2, E), obtained by

determining a strut ST in H . We obtain a strut (see Fig. 2), which is represented
by solid lines while the remaining edges are represented by dash lines.

Now compute the zero-difference vertices in V1. Consider vertex 1. All the
(three) edges in H incident with this vertex is also in ST . Thus dH(1)−dST (1) =
0 and vertex 1 is zero-difference. Likewise vertex 4 is also zero-difference. Vertex
2 has dH(2) − dST (2) = 2 − 1 = 1 and thus is not zero-difference.

In the example we have two zero-difference vertices. If, however, we have only
one zero-difference vertex, then the problem is easily solved by adding to ST one
arbitrary edge of H − ST incident to each non-zero-difference vertex of ST .

In case there are two or more zero-difference vertices we can do the following.
For each zero-difference vertex u ∈ V1 compact all the vertices vi ∈ V2 incident
with u by compressing all the vertices vi onto the smallest of the vi.

4

s s

s

5 5’

4’HHHHHHHHH

XXXXXXXXX

s

s

4zero-difference

6’

s

s

3

1’

HHHHHHHHH

s s2 2’

XXXXXXXXX

HHHHHHHHH

s

s

1zero-difference

3’

Fig. 2. A strut ST represented by the solid lines.

This can be done repeatedly until only one zero-difference vertex remains.

4 The CGM Algorithm for Bipartite Graphs

Consider a bipartite graph H(V1, V2, E) where |V1| = n1, |V2| = n2 and |E| = m.
Consider p processors with local memory of size O(m/p) or O((n1 + n2)/p). We
present a CGM algorithm (see Algorithm 1) to compute a spanning tree of a
bipartite graph. It takes O(log p) communication rounds and is based essentially
on an integer sorting algorithm. Thus it differs from a previous algorithm [3]
that requires Euler tour and list ranking. Though the presented algorithm still
presents the same complexity on the number of communication rounds, we expect
better experimental results since it depends on the sorting algorithm that can
be implemented efficiently on the CGM model.

It is instructive to consider the example of Fig. 1 to illustrate the several
steps of Algorithm 1.

As storage structures, consider the vectors EDGE and EDGE ′, each con-
taining m elements. Each element is an edge represented by (u, v), with u ∈ V1

and v ∈ V2. The edges of E are stored in vector EDGE. In our example, the
vector EDGE is

(1, 1′)(1, 2′)(1, 3′)(2, 2′)(2, 4′)(3, 1′)(4, 5′)(4, 6′)(5, 4′)(5, 5′)

Initially we make a copy of EDGE in EDGE ′.
Consider first Phase I.
Lines 3 to 6 of Algorithm 1 obtain a strut ST . First we sort the edges in

EDGE′ lexicographically in the following way. Given two edges (i, j) and (k, l)
then (i, j) < (k, l) when j < l or ((j = l) and (i < k)). This is done in line 3 of
Algorithm 1. Vector EDGE ′ contains the sorted edges:

(1, 1′)(3, 1′)(1, 2′)(2, 2′)(1, 3′)(2, 4′)(5, 4′)(4, 5′)(5, 5′)(4, 6′)

Lines 4 to 6 find a strut ST in V1. It is represented by the marked edges (solid
lines of Fig. 2). Vector EDGE ′ represents ST and for our example, we have:

5

Algorithm 1 CGM Algorithm for Spanning Tree

Input: A bipartite graph H(V1, V2, E) where V1 = {u1, . . . , un1
}, V2 = {v1, . . . , vn2

}
and |E| = m. An edge (ui, vi) of E has a vertex ui in V1 and a vertex vi in V2. The m

edges are equally distributed among the p processors at random.
Output: A spanning tree of G.
Phase I:

1: Initialize V̄1 := V1 and V̄2 := V2 and Ē := E.
2: for log p times do

3: Sort the edges (u, v) of Ē by v and then by u.
4: for each vi of V2 do

5: Choose the smallest vertex uj among all edges (u, vi) and mark the edge
(uj , vi). Let ST be the set of the marked edges.

6: end for

7: Compute the degree of each vertex u ∈ V̄1 in H(V̄1, V̄2, Ē).
8: Compute the degree of each vertex u ∈ V̄1 in HST (V̄1, V̄2, ST).
9: Using the degrees computed in the previous steps compute the number of zero-

difference vertices.
10: if number of zero-difference vertices = 1 then

11: the algorithm finishes
12: end if

13: Compact the graph to produce the compacted graph H(V̄1, V̄2, Ē).
14: end for

Phase II:

1: Compute a spanning forest with the edges that do not belong to ST and removing
those with degree(ū)=1 where ū ∈ V̄1.

2: for i:=0 to log p do

3: Processor 2i + 1 sends its spanning forest to Processor 2i.
4: Processor 2i computes a new spanning forest.
5: end for

6

(1, 1′)(1, 2′)(1, 3′)(2, 4′)(4, 5′)(4, 6′)

A strut ST in V1 determines a spanning forest of H .
Lines 7 to 9 find the zero-difference and non-zero-difference vertices of the

strut ST . We determine the degrees of each of the vertices in V1 and store in
DH . In our example DH = (3, 2, 1, 2, 2).

Determine now which vertices of V1 are zero-difference. For this, determine
the degree of each of the vertices of V1 in EDGE′ and store in DST . Again for
our example, DST = (3, 1, 0, 2, 0).

Thus the zero-difference vertices are vertices {1, 4} and the non-zero-difference
vertices are vertices {2, 3, 5}.

Line 13 produces a compacted graph. For each zero-difference vertex u ∈ V1

compact all the vertices vi ∈ V2 incident with u by merging all the vertices vi

onto the smallest of the vi. The new compacted graph H(V̄1, V̄2, Ē) is shown in
Fig. 3. It is instructive to note that vertices 2′ and 3′ are compressed onto vertex
1′ and therefore the original edge (2, 2′) now becomes (2, 1′).

���������

s s

s

5 5’

4’XXXXXXXXX

s4

���������

s

s

3

1’

���������

HHHHHHHHH

s2

s1

Fig. 3. The compacted graph H(V̄1, V̄2, Ē).

5 Spanning Trees for General Graphs and Connected
Components Algorithms

As mentioned earlier we can transform any graph into a bipartite graph. Consider
a non-bipartite graph. We can subdivide each of the edges of the graph by adding
a new vertex on each edge. If we consider the vertices of the original graph as
belonging to set V1 and the new added vertices as V2, then we have a resulting
bipartite graph. Thus given a graph G = (V1, E), substitute the edges (i, j) ∈ E
by two edges (i, k) and (k, j) and consider vertex k ∈ V2. The graph obtained
H = (V1, V2, E

′) is bipartite. Thus we can apply the proposed algorithm. Fig.
4 presents an example with the original graph G = (V1, E) and the bipartite
graph H = (V1, V2, E

′), where V1 = {1, 2, 3, 4, 5} and V2 = {1̄, 2̄, 3̄, 4̄, 5̄, 6̄, 7̄}.
The proposed algorithm for computing a spanning tree can be used to deter-

mine the connected components of a graph.

7

�
�

�
��@

@
@

@@

s
1

s

s2

4 s

s

5

3

�
�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
��@

@
@

@@

s

s s

1

1̄ 4̄

s

s

s s

2

4

7̄ 6̄

s

ss

s 5

3
3̄

5̄
�
�
�
�
�
�
�
�
�
�
�
�
��

s2̄

Fig. 4. Original graph G = (V, E) and bipartite graph H = (V1, V2, E
′)

In each iteration, the spanning tree algorithm determines each of the sublists
of EDGE′ formed by edges (u, v), u = ui that forms a tree, labeled by EDGE ′

ui
.

At the end of the algorithm, we can represent each tree with the smallest vertex.
Each of the different vertices represent a connected component of the graph.

6 Discussion of the Algorithm

Lemma 1. Let H = (V1, V2, E) be a bipartite graph and let S be a strut in

V1. Let H ′ be the graph obtained from H by adding to S exactly one edge from

E − S that is incident to each non zero-difference vertex of V1. Then H ′ is

acyclic. Moreover, if V1 contains exactly one zero-difference vertex then H ′ is a

spanning tree of H.

Proof.

We can see that S is a set of stars whose centers are vertices in V1. When we
add exactly one edge from E − S incident to each non zero-difference vertex of
V1, the star whose center vj is a non-zero-difference vertex will be connected to
at most a different star of center vi. Then, the resultant graph H ′ is acyclic.

By the definition of strut, the vertex degree of each vertex in V2 is exactly one,
so there will be exactly |V2| edges in S. As V1 has exactly one zero-difference
vertex, the number of edges that can be added is |V1| − |V2| − 1 and H ′ is a
spanning tree of H .

Theorem 1. The number of zero-difference vertices in V̄1 after step 13 is at

least divided by 2 in each iteration.

Proof.

Let V̄1

′

and V̄2

′

be the partitions before step 13 and let V̄1 and V̄2 be the
partitions after step 13. Let k be the number of zero-difference vertices in V1.

After step 13, the number of vertices in V̄2 is also k since after compaction,
for each zero-difference vertex in V̄1, only the vertex in V̄2

′

with smallest label
is kept in V̄2.

8

Since all the vertices in V̄1 have degree greater than 1, the number of zero-
difference vertices in V̄1 is |V̄2|, e.g., k/2.

Theorem 2. The Algorithm 1 computes the spanning tree of H = (V1, V2, E)
with O(log p) communication rounds and O((m + n)/p) local memory.

Proof. Phase I of the algorithm can be executed in O(log p) communication
rounds by using a sorting algorithm that takes constant number of communica-
tion rounds (e.g. [4]) in each iteration.

The m input edges are distributed equally among the p processors. Each
processor thus contains edges (u, v) where u, v ∈ V1 ∪ V2. The size of V1 ∪ V2 is
n1 +n2 which can be larger than the local memory of each individual processor.
It can be shown that after log p iterations, the number of remaining vertices of
V̄1 ∪ V̄2 is bounded by O((n1 + n2)/p). Thus at the end of phase I, since each
processor contains edges (u, v) where u, v ∈ V̄1 ∪ V̄2, all the remaining vertices
are stored in every processor. At this time we proceed to phase II.

Phase II consists of O(log p) communication round during which the individ-
ual spanning trees in the processors are combined.

7 Conclusion

We have presented a CGM algorithm for computing a spanning tree of a graph
and its connected components. It takes O(log p) communication rounds and is
based on an integer sorting algorithm. Thus it differs from a previous algo-
rithm [3] that requires the computation of Euler tour and list ranking. Though
the presented algorithm still presents the same complexity on the number of
communication rounds, we expect it to give good experimental results since it
depends on the sorting algorithm that has efficient CGM implementations.

References

1. Hirschberg, D.S., Chandra, A.K., Sarwate, D.V.: Computing connected components
on parallel computers. Comm. ACM 22 (1979) 461–464

2. Karp, R.M., Ramachandran, V.: 17. In: Handbook of Theoretical Computer Science
- J. van Leeuwen (ed.). Volume A. Elsevier/MIT Press (1990) 869–941

3. Dehne, F., Ferreira, A., Cceres, E., Song, S.W., Roncato, A.: Efficient parallel graph
algorithms for coarse grained multicomputers and bsp. Algorithmica 33 (2002) 183–
200

4. Chan, A., Dehne, F.: A note on coarse grained parallel integer sorting. Parallel
Processing Letters 9 (1999) 533–538

5. Cáceres, E.N., Deo, N., Sastry, S., Szwarcfiter, J.L.: On finding euler tours in
parallel. Parallel Processing Letters 3 (1993) 223–231

6. Valiant, L.: A bridging model for parallel computation. Communication of the ACM
33 (1990) 103–111

7. Dehne, F., Fabri, A., Rau-Chaplin, A.: Scalable parallel geometric algorithms for
coarse grained multicomputers. In: Proc. ACM 9th Annual Computational Geom-
etry. (1993) 298–307

