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ABSTRACT problems of many other problems. Efficient solution of ba-
sic subproblems constitutes the main emphasis of the paral-
Dehne et al. present a BSP/CGM algorithm for computing |el algorithm synthesis method proposed by Reif [13].
a spanning tree and the connected components of a graph,
that requiresO(log p) communication rounds, wheypeis The sequential algorithms use depth-first or breadth-first
the number of processors. It requires the solution of the Eu- search to solve these problems efficiently. As we will show
ler tour problem which in turn is based on the solution of in the next sections, the parallel solutions for these prob-
the list ranking problem. In this paper we present experi- lems, however, do not use these search methods because
mental results of a parallel algorithm that does not depend they are not easy to parallelize [12].
on the solution of the Euler tour or the list ranking prob-
lem. The proposed algorithm has the practical advantage Based on the PRAM algorithm of Shiloach and Vishkin
of avoiding the list ranking computation and is based on [15], Dehneet al [7] propose a BSP/CGM algorithm that
the integer sorting algorithm which can be implemented ef- computes a spanning tree, usi@glog p) communication
ficiently on the BSP/CGM model. We implemented the pro-rounds andO(m + n/p) local computation time in each
posed algorithm on a Beowulf cluster and on a grid running round, where is the number of processors. It requires the
the InteGrade middleware. We obtained encouraging albeit solution of the Euler tour problem which in turn is based on
modest speedup on a small Beowulf cluster and expect goodhe solution of the list ranking problem. In [2] we present a
speedups on the grid for larger size graphs and clusters. ~ brief description of a parallel algorithm to compute a span-
ning tree and connected components of a given graph, that
KEYWORDS: Parallel algorithm, spanning tree, graph is not based on the solution of the Euler tour or the list rank-
problems. ing problem. The proposed algorithm still requit@@og p)
communication rounds and has the practical advantage of
avoiding the list ranking computation which, in spite of pre
1. INTRODUCTION senting arO(log p) communication rounds complexity, has
been shown to require large constants in practical imple-
Computing a spanning tree of a given graph is a basic prob-mentations. In this paper we give a complete presentation
lem. Obtention of an efficient algorithm for such basic of the parallel algorithm, with a detailed discussion of the
problems is very important since they may appear as sub-correctness and complexity of the algorithm, together with



1
experimental results. /
The proposed algorithm is based on the integer sorting 2 3 2

algorithm which can be implemented efficiently on the
BSP/CGM model [4]. We use a special spanning forest,
calledstrut[3], of a bipartite graph, to compute a spanning
tree and the connected components of a given graph. We
first show how we can transform any graph into a bipartite 4 5 4 o5
graph. To solve the spanning tree problem we assume a

bipartite graph as input. If the input bipartite graph is not Figure2. A Graph G and its Spanning TreeT".
connected, the algorithm will compute a spanning tree for

each connected component.

T = (V', E') is a subgraph of7 that is a tree and contains
2. COARSE-GRAINED MULTICOMPUTER all the vertices of, i.e. V' = V andE’ C E.

We consider a simpler version of the Bulk Synchronous Par- Figure 2 (a) shows a gragh and Figure 2 (b) a spanning
allel (BSP) model [16], called th€oarse-Grained Multi-  treeT.

computer(CGM) model [6]. It uses two parameters: the

input size N and the number of processops A CGM

consists of a set of processors each with its local mem- Efficient sequential spanning tree algorithms are based on
Ory_ A CGM a|gorithm consists of a|ternating local com- depth—first or breadth—fil’st Seal‘Ch. The depth—fil’st Seal’Ch,
putation and global communication rounds separated by ahowever, does not present an efficient parallel implemen-
barrier synchronization. (See Figure 1.) In a computation tation [12]. The parallel algorithms to obtain a spanning
round, each processor processes its data locally. In eaciree are based instead on a PRAM CRCW algorithms by
communication round each processor sedd/p) data  Hirschberg et al. [10] that computes the connected compo-
and receive©)(N/p) data. In the CGM model, the com- nents of a graph with vertices inO(log” n) time and using
munication cost is modeled by the number of communica- > Processors. Super-vertices of the graph are successively

tion rounds. The goal is to design a parallel algorithm that Combined into larger super-vertices. This approach gives
minimizes the number of rounds required. rise to several other PRAM algorithms to compute a span-

ning tree of a given graph [11]. The most efficient of these
algorithms is a PRAM CRCW algorithm @b (log n) time
with O((m+n)a(m,n))/logn processors, where(m, n)

is the inverse of the Ackermann’s function [11]. Shiloach
and Vishkin [15] present an algorithm that tal@8og n)
time and usesn + n processors. Halperin and Zwick [9]
present a randomized PRAM EREW algorithm that finds
the connected components of a grapiflog n) time, us-

ing O((m + n)/log n) processors.

Computation-round Communication-round
— Lucatior

% Global-Communication Bader and Cong [1] implemented the algorithms of
Shiloach and Vishkin [15] and Hirschbegg al [10] and
[ sytroniasion Basie designed a new randomized algorithm to compute a span-
| ocarcomputation ning tree, using symmetric multiprocessors. Cong and Xue
[5] present experimental results of an asynchronous span-
Figure 1. Coarse-Grained Multicomputer CGM ning tree algorithm on a cluster of SMPs. Setia et al. [14]
Parallel Computation Model. use a heuristic approach to obtain a parallel minimum span-

ning tree algorithm and present experimental results on a

cluster of SMPs. Notice the number of recent papers that,

in addition to theoretical complexity results, emphasine o
3. PREVIOUSPARALLEL ALGORITHMS implementation and experimental results. In this sense our

paper aims to contribute on the important issue of compar-
We define the spanning tree problem and discuss previousng the performance of parallel algorithms implemented on
parallel algorithms. Consider a gragh = (V, E) with a Beowulf cluster and on a grid running the InteGrade mid-
n = |V| vertices andn = |FE| edges. A spanning tree dleware.



Figure 3. Bipartite Graph H = (V1,V4, E)

4. DEFINITIONSAND MAIN IDEA
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Figure4. A Strut ST Represented by Solid Lines.

In the example we have two zero-difference vertices. If,

Without loss of generality, we give a parallel spanning tree however, we have onlgnezero-difference vertex, then the

algorithm for a given input bipartite graph. It is easy to

transform any graph into a bipartite graph (see [2]).

Consider a bipartite grapii = (V1, Va2, E) with vertex sets

V1 andV; and edge sef where each edge joins one vertex

of V1 and one vertex ifl,. If v is a vertex of a subgraph
H' of H, thendy (v) denotes the degree ofin H'. Let
the vertex sel; = {uy,uq, - ,u,, } and the vertex set
Vo = {v1,v9, + ,Un, }-

We define astrut S7T' in V; as a spanning forest é¢f such
that eachy; € V4 is incident inST with exactly one edge
of E, and(u;,v;) is an edge o5T implies (u, v;) is not
an edge off, for anyu;, € Vi, k < j. To define astrut in
V5, the roles for the set8; and 15 in the above definition
are exchanged.

Avertexu € Vi wheredy (u) # 0 is calledzero-difference
in ST if dgy(u) — dsr(u) = 0. Otherwise, the vertex is
referred to asion-zero-difference

Consider the input bipartite gragth = (V1, V2, F) of Fig-
ure 3. We have

Vi={1,2,3.4,5},V = {1',2",3,4,5 6} and

E={(1,1)(1,2")(1,3)(2,2")(2,4")(3,1")(4,5")
(4,6")(5,47)(5,5")}.

We can first compute a spanning forest féf =
(V1, Vo, E), obtained by determining a strSt" in H. We

problemis easily solved by adding$d" one arbitrary edge
of H — ST incident to each non-zero-difference vertex of
ST.

In case there are two or more zero-difference vertices we
can do the following. For each zero-difference vertex

V; compact all the vertices € V5 incident withu by com-
pressing all the vertices onto the smallest of the;.

This can be done repeatedly until only one zero-difference
vertex remains.

5. SPANNING TREE ALGORITHM

Consider a bipartite grapH (V1, Va, E)) where|V;| = ny,

|[Va| = ng and|E| = m. Considerp processors with local
memory of sizeD(m/p) or O((n1 + n2)/p). We present

a CGM algorithm (see Algorithm 1) to compute a spanning
tree of a bipartite graph. It take&3(log p) communication
rounds and is based essentially on an integer sorting algo-
rithm. Thus it differs from a previous algorithm [7] that
requires Euler tour and list ranking. Though the presented
algorithm still presents the same complexity on the number
of communication rounds, we expect better experimental
results since it depends on the sorting algorithm that can be
implemented efficiently on the CGM model.

The following note can be useful in practice. To take into
consideration the possible different computing speeds of
each of thep processors, the input edges are distributed in
thep processors in amount proportional to the relative speed

obtain a strut (see Figure 4), which is represented by solidof each processor. Also in the Bucket-Sort of line 3, we
lines while the remaining edges are represented by dashuse buckets with sizes proportional to the relative speéds o

lines.

Now compute the zero-difference verticeslin Consider
vertex 1. All the (three) edges ifi incident with this vertex
is also inST. Thusdg (1) — dsr(1) = 0 and vertex 1 is
zero-difference. Likewise vertex 4 is also zero-differenc
Vertex 2 hasly (2) — dsr(2) = 2 — 1 = 1 and thus is not
zero-difference.

each processor. This makes the algorithm adequate for use
in a heterogeneous network of different kinds of computers.

It is instructive to consider the example of Figure 3 to Hlus
trate the several steps of Algorithm 1.

As storage structures, consider the vectet®GE and
EDGE’, each containingr elements. Each element is an
edge represented lfy,, v), with w € V4 andv € V. The



Algorithm 1 CGM Algorithm for Spanning Tree

Input: A bipartite graph H(V;,V2, E) where V; =
{ut, ..., un, }, Vo ={v1,...,v,,} @nd|E| = m. An edge
(u;,v;) Of E' has a vertex; in V4 and a vertex; in V5. The
m edges are equally distributed among thprocessors at
random.

Output: A spanning tree off/. The edges of the spanning
tree are stored in FINAL-SPANNING-TREE.

Phase 0 - preprocessing:

1: Putin FINAL-SPANNING-TREE all edgegu:,v) € E
such that degreej=1. The resulting edge set is de-
notedE’.

Phasel:

1: Initialize V4 :=V; andVs := V5 andE := F'.

2: for log p timesdo

3. Sortthe edgeéu,v) of E by v and then byu.

4:  for eachw; of V5 do

5 Choose the smallest vertex; among all edges

(u,v;) and mark the edg@u;, v;). Let ST be the
set of the marked edges.
. end for
7:  Compute the degree of each vertex € V1 in
H(V1, Vs, E).
8: Compute the degree of each vertex € V7 in
Hsr(V1, Va, ST).

Figure5. The Bipartite Graph after Preprocessing

edges ofE’ are stored in vectoEEDGE. In our example,
the vectorE DGE is

(1,17)(1,2)(1,3)(2,2)(2,4')(3,1")(4,5")(4,6")
(5,4")(5,5")

The preprocessing phase is quite straightforward. All edge
with degree 1 are necessarily in the spanning tree. Thus they
can be removed from the input edges and put in the result
FINAL-SPANNING-TREE. The removal of such edges is
important because otherwise they would give rise to many
zero-difference vertices. Figure 5 shows the resultinglgra
after preprocessing.

9:  Using the degrees computed in the previous stepsConsider now Phase . Initially we make a copylabGE
compute the number of zero-difference vertices. in EDGE’.

Put in FINAL-SPANNING-TREE all edges incident
with zero-difference vertices.

10:  if number of zero-difference vertices tHen

11 the algorithm terminates

12 endif

Lines 3 to 6 of Algorithm 1 obtain a strid7". First we
sortthe edges it DG E' lexicographically in the following
way. Given two edge§i, j) and(k,1) then(i, j) < (k,1)

whenj < lor((j =1)and(i < k)). Thisis donein line 3

13:  Compact the graph to produce the compacted graphOf Algorithm 1. VectorE DGE’ contains the sorted edges:

H(Vy,V,, E): Step 1: for each zero-difference ver-
texu € Vi denote the vertices incident with by

v; € V5. Remove all edgeéu, v;) and put them in
FINAL-SPANNING-TREE. Then merge all the ver-
ticesv; onto the smallest of the;,. Step 2: Rename
the labels of the vertices df; of H. Step 3: Re-

move all repeated edges. Step 4: If there is an edge

(u,v) in H with degree)=1, remove it and putitin
FINAL-SPANNING-TREE.
14: end for

Phasell:

(1,17)(1,2)(2,2)(1,3)(2,4')(5,4")(4,5")
(5,5")(4,6")

Lines 4 to 6 find a strus7" in V5. It is represented by the
markededges (solid lines of Figure 4). VectBtDGE’ rep-
resentsS7" and for our example, we have:

(1,17)(1,2)(1,3)(2,47)(4,5")(4,6")

1: Compute a spanning forest with the edges that do notA strut ST in V; determines a spanning forest&t

belong to ST and removing those with degregtl
whereu € V7.
2: for i:=0 tologp do

Processo?i + 1 sends its spanning forest to Proces-

sor2i.
4:  ProcessoR:; computes a new spanning forest.
5: end for

Lines 7 to 9 find the zero-difference and non-zero-
difference vertices of the stri#7. We determine the de-
grees of each of the vertices¥a and store inDg. In our
exampleDy = (3,2, —, 2, 2).

Determine now which vertices df; are zero-difference.
For this, determine the degree of each of the verticdg of
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Figure 6. The Compacted Graph.

in EDGE’ and store inDsr. Again for our exampleD st
= (37 17 R 27 O)

Thus the zero-difference vertices are verti€est} and the
non-zero-difference vertices are vertidés3, 5}.

Line 13 produces a compacted graph. For the two
zero-difference verticed and 4, step 1 removes edges
(1,17),(1,2"),(1,3), and alsa4, 5'), (4,6’), puts them in
FINAL-SPANNING-TREE. Then verticeg1’,2’,3'} are
merged onto vertek, and verticeg5’, 6’} are merged onto
vertex5’, Step 2 renames vertic@s and3’ as1’ and re-
names6’ as5’. The compacted graph is shown in Figure
6.

6. DISCUSSION OF THE ALGORITHM

Lemmal Let H = (V4, Vs, E) be a bipartite graph and
let S be a strut inV;. Let H' be the graph obtained frorff

by adding toS exactly one edge frod — S that is incident

to each non zero-difference vertexigf ThenH’ is acyclic.
Moreover, ifV; contains exactly one zero-difference vertex
thenH' is a spanning tree off.

Proof.

We can see théf is a set of stars whose centers are vertices
in V1. When we add exactly one edge frdfn- S incident to
each non zero-difference vertexdf, the star whose center
v; is a non-zero-difference vertex will be connected to at
most a different star of centef. Then, the resultant graph
H'is acyclic.

By the definition of strut, the vertex degree of each vertex in
V4 is exactly one, so there will be exactlyz| edges inS.

As V; has exactly one zero-difference vertex, the number
of edges that can be added|1§| — |[V2] — 1 andH' is a
spanning tree off. |

Theorem 1 The number of zero-difference verticesVin
after step 13 is at least divided by 2 in each iteration.

Proof.

Let V;" and V%’ be the partitions before step 13 and &t
and 15 be the partitions after step 13. Letbe the num-

ber of zero-difference vertices ;. After step 13, the
number of vertices if; is alsok since after compaction,

for each zero-difference vertex I, only the vertex inVQ'

with smallest label is kept ifrz. Since all the vertices il

have degree greater than 1, the number of zero-difference
vertices inV; is | V2|, e.g.,k/2. i

Theorem 2 Algorithm 1 computes the spanning tree of
H = (W1, Vo, E) with O(log p) communication rounds and
O((m + n)/p) local computation time in each round.

Proof. Phase | of the algorithm can be execute®ifiog p)
communication rounds by using a sorting algorithm that
takes constant number of communication rounds (e.g. [4])
in each iteration.

Them input edges are distributed equally amongjihpro-
cessors. Each processor thus contains efiges) where

u,v € V1 UV,. The size oft; U V5 is ny + ny which can be
larger than the local memory of each individual processor.
It can be shown that aftésg p iterations, the number of re-
maining vertices of/; U V5 is bounded by)((n; +n2)/p).

Thus at the end of phase I, since each processor contains
edges(u, v) whereu,v € Vi U V4, all the remaining ver-
tices are stored in every processor. At this time we proceed
to phase II.

Phase Il consists aP(log p) communication round during
which the individual spanning trees in the processors are
combined. O

Note that this algorithm can be used to determine the
connected components of a graph. In each iteration, the
spanning tree algorithm determines each of the sublists of
EDGE' formed by edgesu, v),u = u; that forms a tree,
labeled byE DGE;, .. At the end of the algorithm, we can
represent each tree with the smallest vertex. Each of the
different vertices represent a connected component of the
graph.

9. EXPERIMENTAL RESULTS

Table 1. Number of Verticesand Edges of the Bipartite

Graph.
| Instance| [Vi| = Vo[ | [E] |
e 1024] 262.144
Go 2048 | 1.048.576
s 4096 | 4.194.304
G4 8192 | 8.388.608




Table 1 shows the number of vertices and edges for eachin one single processor is the fastest. In instafigethe
graph used as input graphs in the experiments. As the num-execution with one processor is also the fastest. However,
ber of edges is strictly greater than the number of vertices,from p = 2 on, the execution time diminishes as the num-
we assume the graph possesses the same number of verticegr of processors is increased. In instanGgandG,, the

in each of partitions, i.elV; | = |V5|. For the tests, we gen-  running times decrease as we increase the number of pro-
erated the input bipartite graphs at random, as follows. To cessors.

generate a bipartite graph with; | = |V3| vertices andE)|
edges, we choose one vertex fram and one froml; at
random and put an edge connecting both vertices. This is
done until we reach the desirgH| edges.

Table 3 shows the execution times of the spanning tree al-
gorithm on the cluster running the InteGrade middleware.
Here we notice a different behavior. Due to the overhead of
the middleware, as we increase the number of processors,
the running times increase, which is not a desirable behav-

We carried out the experiments on a Beowulf cluster and on 0F in parallel computation.

a cluster running the InteGrade middleware [8]. The Inte- _

Grade middleware allows the implementation of a computa- O the Beowulf cluster, we notice a modest speedup for
tional grid with non-dedicated computing resources, by us- 12rger instances. The compaction of the graph in phase |
ing the idle capacity of existing computer laboratories. We reguires the communication of data among processors, in
compare the execution of the proposed parallel algorithm order to redistribute the compacted edges for the nextitera

on a cluster with only MPI support and on a grid using the tion of the algorithm. The amount and size of the messages
InteGrade middleware and MPI. exchanged among the processors contribute negatively on

the performance of the algorithm on the cluster with the In-
The cluster is composed of AMD 1.6 GHz and P4 2.6 GHz teGrade middleware. Finally, Figure 7 compares the results
processors with 1-2 Gbytes of memory. The communica- of tables 2 and 3.
tion is through a Gigabit Ethernet switch. The MPI used is
the LAM/MPI 7.1.2. The InteGrade middleware used is the

version 0.4.
10. CONCLUSION

9.1. The Platform Used in the Experiments

Table 2. Running Times (in Seconds) on the Beowulf We have presented a CGM algorithm for computing a span-

Cluster. ning tree of a graph and its connected components. It takes
lp] G Gy | Gs | Gy | O(log p) communication rounds and is based on an integer
1| 0.217107| 0.950689| 5.240836| 11.789449 sorting algorithm. Thus it differs from a previous algonith
2 | 0.235769| 1.161584| 4.836589| 10.615158 [7] that requires the computation of Euler tour and list rank
4 | 0.230011| 1.133226| 4.350016| 9.687900 ing. Though the presented algorithm still presents the same
8 | 0.240889| 1.117800| 3.360593| 8.812110 complexity on the number of communication rounds, we

9.2. Resutls Obtained

Table 3. Running Times (in Seconds) on the Cluster
Running InteGrade Middleware.

expect it to give good experimental results since it depends
on the sorting algorithm that has efficient CGM implemen-
tations.

The results on the grid running the InteGrade middleware,
leave much to be desired. However, albeit with modest
speedup, the experimental results on the Beowulf cluster
are encouraging, specially if we use larger clusters.

(p] G | G | G | G

1| 0.251695| 1.099503| 5.090014| 11.643704

2 | 1.677849| 5.432931| 18.379176| 29.222423

4 | 2.361967| 8.001241| 25.201421| 37.953199

8 | 2.600342| 10.314014| 29.228178| 43.632104 ACKNOWLEDGMENTS
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