
Experimental Results of a Coarse-Grained Parallel Algorithm for Spanning Tree
and Connected Components

Edson Norberto Cáceres, Henrique Mongelli, Christiane Nishibe
Universidade Federal de Mato Grosso do Sul,

Campo Grande - MS, Brazil
{edson,mongelli,cnishibe}@dct.ufms.br

Siang Wun Song
Universidade Federal do ABC,

Santo Andŕe - SP, Brazil
and Universidade de S̃ao Paulo,

São Paulo - SP, Brazil
song@ime.usp.br

POSTER PAPER

ABSTRACT

Dehne et al. present a BSP/CGM algorithm for computing
a spanning tree and the connected components of a graph,
that requiresO(log p) communication rounds, wherep is
the number of processors. It requires the solution of the Eu-
ler tour problem which in turn is based on the solution of
the list ranking problem. In this paper we present experi-
mental results of a parallel algorithm that does not depend
on the solution of the Euler tour or the list ranking prob-
lem. The proposed algorithm has the practical advantage
of avoiding the list ranking computation and is based on
the integer sorting algorithm which can be implemented ef-
ficiently on the BSP/CGM model. We implemented the pro-
posed algorithm on a Beowulf cluster and on a grid running
the InteGrade middleware. We obtained encouraging albeit
modest speedup on a small Beowulf cluster and expect good
speedups on the grid for larger size graphs and clusters.

KEYWORDS: Parallel algorithm, spanning tree, graph
problems.

1. INTRODUCTION

Computing a spanning tree of a given graph is a basic prob-
lem. Obtention of an efficient algorithm for such basic
problems is very important since they may appear as sub-

problems of many other problems. Efficient solution of ba-
sic subproblems constitutes the main emphasis of the paral-
lel algorithm synthesis method proposed by Reif [13].

The sequential algorithms use depth-first or breadth-first
search to solve these problems efficiently. As we will show
in the next sections, the parallel solutions for these prob-
lems, however, do not use these search methods because
they are not easy to parallelize [12].

Based on the PRAM algorithm of Shiloach and Vishkin
[15], Dehneet al [7] propose a BSP/CGM algorithm that
computes a spanning tree, usingO(log p) communication
rounds andO(m + n/p) local computation time in each
round, wherep is the number of processors. It requires the
solution of the Euler tour problem which in turn is based on
the solution of the list ranking problem. In [2] we present a
brief description of a parallel algorithm to compute a span-
ning tree and connected components of a given graph, that
is not based on the solution of the Euler tour or the list rank-
ing problem. The proposed algorithm still requiresO(log p)
communication rounds and has the practical advantage of
avoiding the list ranking computation which, in spite of pre-
senting anO(log p) communication rounds complexity, has
been shown to require large constants in practical imple-
mentations. In this paper we give a complete presentation
of the parallel algorithm, with a detailed discussion of the
correctness and complexity of the algorithm, together with

experimental results.

The proposed algorithm is based on the integer sorting
algorithm which can be implemented efficiently on the
BSP/CGM model [4]. We use a special spanning forest,
calledstrut [3], of a bipartite graph, to compute a spanning
tree and the connected components of a given graph. We
first show how we can transform any graph into a bipartite
graph. To solve the spanning tree problem we assume a
bipartite graph as input. If the input bipartite graph is not
connected, the algorithm will compute a spanning tree for
each connected component.

2. COARSE-GRAINED MULTICOMPUTER

We consider a simpler version of the Bulk Synchronous Par-
allel (BSP) model [16], called theCoarse-Grained Multi-
computer(CGM) model [6]. It uses two parameters: the
input sizeN and the number of processorsp. A CGM
consists of a set ofp processors each with its local mem-
ory. A CGM algorithm consists of alternating local com-
putation and global communication rounds separated by a
barrier synchronization. (See Figure 1.) In a computation
round, each processor processes its data locally. In each
communication round each processor sendsO(N/p) data
and receivesO(N/p) data. In the CGM model, the com-
munication cost is modeled by the number of communica-
tion rounds. The goal is to design a parallel algorithm that
minimizes the number of rounds required.

 Local computation

 Synchronization Barrier

 Global Communication

Computation round Communication round

P0

P1

P2

Pp−1

Figure 1. Coarse-Grained Multicomputer CGM
Parallel Computation Model.

3. PREVIOUS PARALLEL ALGORITHMS

We define the spanning tree problem and discuss previous
parallel algorithms. Consider a graphG = (V, E) with
n = |V | vertices andm = |E| edges. A spanning tree

�
�

��@
@

@@

r
1

r

r2

4 r

r

5

3

�
�
�
�
�
�
�
�
��

�
�

��
r
1

r

r2

4 r

r

5

3

�
�
�
�
�
�
�
�
��

Figure 2. A Graph G and its Spanning Tree T .

T = (V ′, E′) is a subgraph ofG that is a tree and contains
all the vertices ofG, i.e. V ′ = V andE′ ⊂ E.

Figure 2 (a) shows a graphG and Figure 2 (b) a spanning
treeT .

Efficient sequential spanning tree algorithms are based on
depth-first or breadth-first search. The depth-first search,
however, does not present an efficient parallel implemen-
tation [12]. The parallel algorithms to obtain a spanning
tree are based instead on a PRAM CRCW algorithms by
Hirschberg et al. [10] that computes the connected compo-
nents of a graph withn vertices inO(log2 n) time and using
n2 processors. Super-vertices of the graph are successively
combined into larger super-vertices. This approach gives
rise to several other PRAM algorithms to compute a span-
ning tree of a given graph [11]. The most efficient of these
algorithms is a PRAM CRCW algorithm ofO(log n) time
with O((m+n)α(m, n))/ log n processors, whereα(m, n)
is the inverse of the Ackermann’s function [11]. Shiloach
and Vishkin [15] present an algorithm that takesO(log n)
time and usesm + n processors. Halperin and Zwick [9]
present a randomized PRAM EREW algorithm that finds
the connected components of a graph inO(log n) time, us-
ing O((m + n)/ log n) processors.

Bader and Cong [1] implemented the algorithms of
Shiloach and Vishkin [15] and Hirschberget al [10] and
designed a new randomized algorithm to compute a span-
ning tree, using symmetric multiprocessors. Cong and Xue
[5] present experimental results of an asynchronous span-
ning tree algorithm on a cluster of SMPs. Setia et al. [14]
use a heuristic approach to obtain a parallel minimum span-
ning tree algorithm and present experimental results on a
cluster of SMPs. Notice the number of recent papers that,
in addition to theoretical complexity results, emphasize on
implementation and experimental results. In this sense our
paper aims to contribute on the important issue of compar-
ing the performance of parallel algorithms implemented on
a Beowulf cluster and on a grid running the InteGrade mid-
dleware.

�������

r r

r

5 5’

4’HHHHHHH

XXXXXXX

r

r

4

6’

�������

r

r

3

1’

HHHHHHH

r r2 2’

XXXXXXX
HHHHHHH

r

r

1

3’

Figure 3. Bipartite Graph H = (V1, V2, E)

4. DEFINITIONS AND MAIN IDEA

Without loss of generality, we give a parallel spanning tree
algorithm for a given input bipartite graph. It is easy to
transform any graph into a bipartite graph (see [2]).

Consider a bipartite graphH = (V1, V2, E) with vertex sets
V1 andV2 and edge setE where each edge joins one vertex
of V1 and one vertex inV2. If v is a vertex of a subgraph
H ′ of H , thendH′(v) denotes the degree ofv in H ′. Let
the vertex setV1 = {u1, u2, · · · , un1

} and the vertex set
V2 = {v1, v2, · · · , vn2

}.

We define astrut ST in V1 as a spanning forest ofH such
that eachvi ∈ V2 is incident inST with exactly one edge
of E, and(uj , vi) is an edge ofST implies (uk, vi) is not
an edge ofH , for anyuk ∈ V1, k < j. To define astrut in
V2, the roles for the setsV1 andV2 in the above definition
are exchanged.

A vertexu ∈ V1 wheredH(u) 6= 0 is calledzero-difference
in ST if dH(u) − dST (u) = 0. Otherwise, the vertex is
referred to asnon-zero-difference.

Consider the input bipartite graphH = (V1, V2, E) of Fig-
ure 3. We have

V1 = {1, 2, 3, 4, 5}, V2 = {1′, 2′, 3′, 4′, 5′, 6′} and
E = {(1, 1′)(1, 2′)(1, 3′)(2, 2′)(2, 4′)(3, 1′)(4, 5′)
(4, 6′)(5, 4′)(5, 5′)}.

We can first compute a spanning forest forH =
(V1, V2, E), obtained by determining a strutST in H . We
obtain a strut (see Figure 4), which is represented by solid
lines while the remaining edges are represented by dash
lines.

Now compute the zero-difference vertices inV1. Consider
vertex 1. All the (three) edges inH incident with this vertex
is also inST . ThusdH(1) − dST (1) = 0 and vertex 1 is
zero-difference. Likewise vertex 4 is also zero-difference.
Vertex 2 hasdH(2) − dST (2) = 2 − 1 = 1 and thus is not
zero-difference.

r r

r

5 5’

4’HHHHHHH

XXXXXXX

r

r

4zero-difference

6’

r

r

3

1’

HHHHHHH

r r2 2’

XXXXXXX
HHHHHHH

r

r

1zero-difference

3’

Figure 4. A Strut ST Represented by Solid Lines.

In the example we have two zero-difference vertices. If,
however, we have onlyonezero-difference vertex, then the
problem is easily solved by adding toST one arbitrary edge
of H − ST incident to each non-zero-difference vertex of
ST .

In case there are two or more zero-difference vertices we
can do the following. For each zero-difference vertexu ∈
V1 compact all the verticesvi ∈ V2 incident withu by com-
pressing all the verticesvi onto the smallest of thevi.

This can be done repeatedly until only one zero-difference
vertex remains.

5. SPANNING TREE ALGORITHM

Consider a bipartite graphH(V1, V2, E) where|V1| = n1,
|V2| = n2 and|E| = m. Considerp processors with local
memory of sizeO(m/p) or O((n1 + n2)/p). We present
a CGM algorithm (see Algorithm 1) to compute a spanning
tree of a bipartite graph. It takesO(log p) communication
rounds and is based essentially on an integer sorting algo-
rithm. Thus it differs from a previous algorithm [7] that
requires Euler tour and list ranking. Though the presented
algorithm still presents the same complexity on the number
of communication rounds, we expect better experimental
results since it depends on the sorting algorithm that can be
implemented efficiently on the CGM model.
The following note can be useful in practice. To take into
consideration the possible different computing speeds of
each of thep processors, the input edges are distributed in
thep processors in amount proportional to the relative speed
of each processor. Also in the Bucket-Sort of line 3, we
use buckets with sizes proportional to the relative speeds of
each processor. This makes the algorithm adequate for use
in a heterogeneous network of different kinds of computers.

It is instructive to consider the example of Figure 3 to illus-
trate the several steps of Algorithm 1.

As storage structures, consider the vectorsEDGE and
EDGE′, each containingm elements. Each element is an
edge represented by(u, v), with u ∈ V1 andv ∈ V2. The

Algorithm 1 CGM Algorithm for Spanning Tree

Input: A bipartite graphH(V1, V2, E) where V1 =
{u1, . . . , un1

}, V2 = {v1, . . . , vn2
} and|E| = m. An edge

(ui, vi) of E has a vertexui in V1 and a vertexvi in V2. The
m edges are equally distributed among thep processors at
random.
Output: A spanning tree ofH . The edges of the spanning
tree are stored in FINAL-SPANNING-TREE.
Phase 0 - preprocessing:

1: Put in FINAL-SPANNING-TREE all edges(u, v) ∈ E
such that degree(u)=1. The resulting edge set is de-
notedE′.

Phase I:
1: Initialize V̄1 := V1 andV̄2 := V2 andĒ := E′.
2: for log p timesdo
3: Sort the edges(u, v) of Ē by v and then byu.
4: for eachvi of V2 do
5: Choose the smallest vertexuj among all edges

(u, vi) and mark the edge(uj, vi). Let ST be the
set of the marked edges.

6: end for
7: Compute the degree of each vertexu ∈ V̄1 in

H(V̄1, V̄2, Ē).
8: Compute the degree of each vertexu ∈ V̄1 in

HST (V̄1, V̄2, ST).
9: Using the degrees computed in the previous steps

compute the number of zero-difference vertices.
Put in FINAL-SPANNING-TREE all edges incident
with zero-difference vertices.

10: if number of zero-difference vertices = 1then
11: the algorithm terminates
12: end if
13: Compact the graph to produce the compacted graph

H(V̄1, V̄2, Ē): Step 1: for each zero-difference ver-
tex u ∈ V1 denote the vertices incident withu by
vi ∈ V2. Remove all edges(u, vi) and put them in
FINAL-SPANNING-TREE. Then merge all the ver-
ticesvi onto the smallest of thevi. Step 2: Rename
the labels of the vertices ofV2 of H . Step 3: Re-
move all repeated edges. Step 4: If there is an edge
(u, v) in H with degree(u)=1, remove it and put it in
FINAL-SPANNING-TREE.

14: end for
Phase II:

1: Compute a spanning forest with the edges that do not
belong toST and removing those with degree(ū)=1
whereū ∈ V̄1.

2: for i:=0 to log p do
3: Processor2i + 1 sends its spanning forest to Proces-

sor2i.
4: Processor2i computes a new spanning forest.
5: end for

�������

r r

r

5 5’

4’HHHHHHH

XXXXXXX

r

r

4

6’

r

r

3

1’

HHHHHHH

r r2 2’

XXXXXXX
HHHHHHH

r

r

1

3’

Figure 5. The Bipartite Graph after Preprocessing

edges ofE are stored in vectorEDGE. In our example,
the vectorEDGE is

(1, 1′)(1, 2′)(1, 3′)(2, 2′)(2, 4′)(3, 1′)(4, 5′)(4, 6′)
(5, 4′)(5, 5′)

The preprocessing phase is quite straightforward. All edges
with degree 1 are necessarily in the spanning tree. Thus they
can be removed from the input edges and put in the result
FINAL-SPANNING-TREE. The removal of such edges is
important because otherwise they would give rise to many
zero-difference vertices. Figure 5 shows the resulting graph
after preprocessing.

Consider now Phase I. Initially we make a copy ofEDGE
in EDGE′.

Lines 3 to 6 of Algorithm 1 obtain a strutST . First we
sort the edges inEDGE′ lexicographically in the following
way. Given two edges(i, j) and(k, l) then(i, j) < (k, l)
whenj < l or ((j = l) and(i < k)). This is done in line 3
of Algorithm 1. VectorEDGE′ contains the sorted edges:

(1, 1′)(1, 2′)(2, 2′)(1, 3′)(2, 4′)(5, 4′)(4, 5′)
(5, 5′)(4, 6′)

Lines 4 to 6 find a strutST in V1. It is represented by the
markededges (solid lines of Figure 4). VectorEDGE′ rep-
resentsST and for our example, we have:

(1, 1′)(1, 2′)(1, 3′)(2, 4′)(4, 5′)(4, 6′)

A strutST in V1 determines a spanning forest ofH .

Lines 7 to 9 find the zero-difference and non-zero-
difference vertices of the strutST . We determine the de-
grees of each of the vertices inV1 and store inDH . In our
exampleDH = (3, 2,−, 2, 2).

Determine now which vertices ofV1 are zero-difference.
For this, determine the degree of each of the vertices ofV1

�������

r r

r

5 5’

4’r4

r

r

3

1’

�������

HHHHHHH

r2

r1

Figure 6. The Compacted Graph.

in EDGE′ and store inDST . Again for our example,DST

= (3, 1,−, 2, 0).

Thus the zero-difference vertices are vertices{1, 4} and the
non-zero-difference vertices are vertices{2, 3, 5}.

Line 13 produces a compacted graph. For the two
zero-difference vertices1 and 4, step 1 removes edges
(1, 1′), (1, 2′), (1, 3′), and also(4, 5′), (4, 6′), puts them in
FINAL-SPANNING-TREE. Then vertices{1′, 2′, 3′} are
merged onto vertex1′, and vertices{5′, 6′} are merged onto
vertex5′, Step 2 renames vertices2′ and3′ as1′ and re-
names6′ as5′. The compacted graph is shown in Figure
6.

6. DISCUSSION OF THE ALGORITHM

Lemma 1 Let H = (V1, V2, E) be a bipartite graph and
let S be a strut inV1. LetH ′ be the graph obtained fromH
by adding toS exactly one edge fromE−S that is incident
to each non zero-difference vertex ofV1. ThenH ′ is acyclic.
Moreover, ifV1 contains exactly one zero-difference vertex
thenH ′ is a spanning tree ofH .

Proof.
We can see thatS is a set of stars whose centers are vertices
in V1. When we add exactly one edge fromE−S incident to
each non zero-difference vertex ofV1, the star whose center
vj is a non-zero-difference vertex will be connected to at
most a different star of centervi. Then, the resultant graph
H ′ is acyclic.

By the definition of strut, the vertex degree of each vertex in
V2 is exactly one, so there will be exactly|V2| edges inS.
As V1 has exactly one zero-difference vertex, the number
of edges that can be added is|V1| − |V2| − 1 andH ′ is a
spanning tree ofH .

Theorem 1 The number of zero-difference vertices in̄V1

after step 13 is at least divided by 2 in each iteration.

Proof.

Let V̄1

′

andV̄2

′

be the partitions before step 13 and letV̄1

and V̄2 be the partitions after step 13. Letk be the num-
ber of zero-difference vertices inV1. After step 13, the
number of vertices inV̄2 is alsok since after compaction,
for each zero-difference vertex in̄V1, only the vertex inV̄2

′

with smallest label is kept in̄V2. Since all the vertices in̄V1

have degree greater than 1, the number of zero-difference
vertices inV̄1 is |V̄2|, e.g.,k/2.

Theorem 2 Algorithm 1 computes the spanning tree of
H = (V1, V2, E) with O(log p) communication rounds and
O((m + n)/p) local computation time in each round.

Proof. Phase I of the algorithm can be executed inO(log p)
communication rounds by using a sorting algorithm that
takes constant number of communication rounds (e.g. [4])
in each iteration.

Them input edges are distributed equally among thep pro-
cessors. Each processor thus contains edges(u, v) where
u, v ∈ V1∪V2. The size ofV1∪V2 is n1 +n2 which can be
larger than the local memory of each individual processor.
It can be shown that afterlog p iterations, the number of re-
maining vertices of̄V1 ∪ V̄2 is bounded byO((n1 +n2)/p).
Thus at the end of phase I, since each processor contains
edges(u, v) whereu, v ∈ V̄1 ∪ V̄2, all the remaining ver-
tices are stored in every processor. At this time we proceed
to phase II.

Phase II consists ofO(log p) communication round during
which the individual spanning trees in the processors are
combined.

Note that this algorithm can be used to determine the
connected components of a graph. In each iteration, the
spanning tree algorithm determines each of the sublists of
EDGE′ formed by edges(u, v), u = ui that forms a tree,
labeled byEDGE′

ui
. At the end of the algorithm, we can

represent each tree with the smallest vertex. Each of the
different vertices represent a connected component of the
graph.

9. EXPERIMENTAL RESULTS

Table 1. Number of Vertices and Edges of the Bipartite
Graph.

Instance |V1| = |V2| |E|

G1 1024 262.144
G2 2048 1.048.576
G3 4096 4.194.304
G4 8192 8.388.608

Table 1 shows the number of vertices and edges for each
graph used as input graphs in the experiments. As the num-
ber of edges is strictly greater than the number of vertices,
we assume the graph possesses the same number of vertices
in each of partitions, i.e.|V1| = |V2|. For the tests, we gen-
erated the input bipartite graphs at random, as follows. To
generate a bipartite graph with|V1| = |V2| vertices and|E|
edges, we choose one vertex fromV1 and one fromV2 at
random and put an edge connecting both vertices. This is
done until we reach the desired|E| edges.

9.1. The Platform Used in the Experiments

We carried out the experiments on a Beowulf cluster and on
a cluster running the InteGrade middleware [8]. The Inte-
Grade middleware allows the implementation of a computa-
tional grid with non-dedicated computing resources, by us-
ing the idle capacity of existing computer laboratories. We
compare the execution of the proposed parallel algorithm
on a cluster with only MPI support and on a grid using the
InteGrade middleware and MPI.

The cluster is composed of AMD 1.6 GHz and P4 2.6 GHz
processors with 1-2 Gbytes of memory. The communica-
tion is through a Gigabit Ethernet switch. The MPI used is
the LAM/MPI 7.1.2. The InteGrade middleware used is the
version 0.4.

Table 2. Running Times (in Seconds) on the Beowulf
Cluster.

p G1 G2 G3 G4

1 0.217107 0.950689 5.240836 11.789449
2 0.235769 1.161584 4.836589 10.615158
4 0.230011 1.133226 4.350016 9.687900
8 0.240889 1.117800 3.360593 8.812110

9.2. Resutls Obtained

Table 3. Running Times (in Seconds) on the Cluster
Running InteGrade Middleware.

p G1 G2 G3 G4

1 0.251695 1.099503 5.090014 11.643704
2 1.677849 5.432931 18.379176 29.222423
4 2.361967 8.001241 25.201421 37.953199
8 2.600342 10.314014 29.228178 43.632104

Table 2 presents the execution times of the parallel algo-
rithm on the Beowulf cluster for several graph instances. In
instanceG1, as the number of edges is small, the execution

in one single processor is the fastest. In instanceG2, the
execution with one processor is also the fastest. However,
from p = 2 on, the execution time diminishes as the num-
ber of processors is increased. In instancesG3 andG4, the
running times decrease as we increase the number of pro-
cessors.

Table 3 shows the execution times of the spanning tree al-
gorithm on the cluster running the InteGrade middleware.
Here we notice a different behavior. Due to the overhead of
the middleware, as we increase the number of processors,
the running times increase, which is not a desirable behav-
ior in parallel computation.

On the Beowulf cluster, we notice a modest speedup for
larger instances. The compaction of the graph in phase I
requires the communication of data among processors, in
order to redistribute the compacted edges for the next itera-
tion of the algorithm. The amount and size of the messages
exchanged among the processors contribute negatively on
the performance of the algorithm on the cluster with the In-
teGrade middleware. Finally, Figure 7 compares the results
of tables 2 and 3.

10. CONCLUSION

We have presented a CGM algorithm for computing a span-
ning tree of a graph and its connected components. It takes
O(log p) communication rounds and is based on an integer
sorting algorithm. Thus it differs from a previous algorithm
[7] that requires the computation of Euler tour and list rank-
ing. Though the presented algorithm still presents the same
complexity on the number of communication rounds, we
expect it to give good experimental results since it depends
on the sorting algorithm that has efficient CGM implemen-
tations.

The results on the grid running the InteGrade middleware,
leave much to be desired. However, albeit with modest
speedup, the experimental results on the Beowulf cluster
are encouraging, specially if we use larger clusters.

ACKNOWLEDGMENTS

We thank the referees for their comments. This work has
been partially supported by CNPq Proc. No. 55.0895/07-8,
30.1652/09-0, 62.0171/06-5, FUNDECT 41/100.115/2006,
and CAPES PVNS edital 20/2009.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 4 8

T
im

e
(s

)

Processors

Cluster G2
Grid G2

Cluster G3
Grid G3

Cluster G4
Grid G4

Figure 7. Comparing Experimental Results on a Beowulf and on the InteGrade Grid.

REFERENCES

[1] D.A. Bader and G. Cong, “A fast parallel spanning tree al-
gorithm for symmetric multiprocessors (SMPs),”J. Parallel
Distrib. Comput., Vol. 65, No. 9, pp. 994–1006, 2005.

[2] E.N. Cáceres, F. Dehne, H. Mongelli, S.W. Song, and J.L.
Szwarcfiter, “A coarse-grained parallel algorithm for span-
ning tree and connected components,” Euro-Par, Pisa, Italy,
pp. 828–831, 2004.

[3] E.N. Cáceres, N. Deo, S. Sastry, and J.L. Szwarcfiter, “On
finding euler tours in parallel,”Parallel Processing Letters,
Vol. 3, No. 3, pp. 223–231, 1993.

[4] A. Chan and F. Dehne, “A note on coarse grained parallel
integer sorting,” Parallel Processing Letters, Vol. 9, No. 4,
pp. 533–538, 1999.

[5] G. Cong and H. Xue, “A scalable, synchronous spanning tree
algorithm on a cluster of SMPs,” 22nd IEEE International
Symposium on Parallel and Distributed Processing (IPDPS),
pp. 1-6, 2008.

[6] F. Dehne, A. Fabri, and A. Rau-Chaplin, “Scalable paral-
lel geometric algorithms for coarse grained multicomputers,”
Proc. ACM 9th Annual Computational Geometry, San Diego,
CA, pp. 298–307, 1993.

[7] F. Dehne, A. Ferreira, E. Cáceres, S.W. Song, and A. Ron-
cato, “Efficient parallel graph algorithms for coarse grained
multicomputers and BSP,”Algorithmica, Vol. 33, No. 2, pp.
183–200, 2002.

[8] A. Goldchleger, F. Kon, A. Goldman, M. Finger, and G.C.
Bezerra, “InteGrade: object-oriented grid middleware lever-

aging the idle computing power of desktop machines,”Con-
currency and Computation: Practice and Experience, Vol.
16, No. 5, pp. 449–459, 2004.

[9] S. Halperin and U. Zwick, “An optimal randomized logarith-
mic time connectivity algorithm for the EREW PRAM (ex-
tend abstract,)” SPAA ’94: Proceedings of the Sixth Annual
ACM Symposium on Parallel Algorithms and Architectures,
Cape May, NJ, pp. 1–10. 1994.

[10] D.S. Hirschberg, A.K. Chandra, and D.V. Sarwate, “Com-
puting connected components on parallel computers,”Comm.
ACM, Vol. 22, pp. 461–464, 1979.

[11] R.M. Karp and V. Ramachandran, HANDBOOK OF THE-
ORETICAL COMPUTER SCIENCE - J. van Leeuwen (ed.),
volume A, chapter 17, pp. 869–941, Elsevier, Amsterdam,
Netherlands/MIT Press, Cambridge, MA, 1990.

[12] J.H. Reif, “Depth-first search is inherently sequential,” Inf.
Process. Lett., Vol. 20, No. 5, pp. 229–234, 1985.

[13] J.H. Reif, SYNTHESIS OF PARALLEL ALGORITHMS,
Morgan Kaufmann Publishers Inc., San Francisco, CA, 1993.

[14] R. Setia, A. Nedunchezhian, S. Balachandran, “A new par-
allel algorithm for minimum spanning tree problem,” Proc.
International Conference on High Performance Computing
(HiPC), pp. 1-5, 2009.

[15] Y. Shiloach and U. Vishkin, “Ano(log n) parallel connec-
tivity algorithm,” Journal of Algorithms, Vol.3, pp. 57–63,
1982.

[16] L. Valiant, “A bridging model for parallel computation,”
Communications of the ACM, Vol. 33, No. 8, pp. 103–111,
1990.

