
Strong Probabilistic Planning

Silvio do Lago Pereira and Leliane Nunes de Barros – IME-USP

Fábio Gagliardi Cozman – EP-USP

Abstract

We consider the problem of synthesizing policies, in do-
mains where actions have probabilistic effects, that are opti-
mal in the expected-case among the optimal worst-case strong

policies. Thus we combine features from nondeterministic and
probabilistic planning in a single framework. We present an al-
gorithm that combines dynamic programming and model check-
ing techniques to find plans satisfying the problem require-
ments: the strong preimage computation from model checking
is used to avoid actions that lead to cycles or dead ends, reduc-
ing the model to a Markov Decision Process where all possible
policies are strong and worst-case optimal (i.e., successful and
minimum length with probability 1). We show that backward
induction can then be used to select a policy in this reduced
model. The resulting algorithm is presented in two versions
(enumerative and symbolic); we show that the latter version
allows planning with extended reachability goals.

1 Introduction

Planning under uncertainty has many facets; in particular, actions can range
from completely nondeterministic to probabilistic. The latter situation is typ-
ically modelled with Markov Decision Processes (mdps) [Boutilier et al., 1999,
Bonet and Geffner, 2003]. However, it is not always possible to model a real
problem under the assumptions of additive costs and Markovian transitions
demanded by mdps [Dolgov and Durfee, 2005]. In this paper we look into sit-
uations that go beyond the usual theory of mdps but that still lead to efficient
solution algorithms.

Our proposal is inspired on assumptions adopted in nondeterministic plan-
ning; that is, planning where actions have uncertain outcomes but are not as-
sociated with probabilities [Giunchiglia and Traverso, 1999]. Plans are then re-
quired to offer strong guarantees; for example, plans must reach a goal state
for sure and through an acyclic path that has minimum length. We embrace

1



these requirements as they seem most appropriate in many real planning prob-
lems, independently of whether one has probabilities or not. But suppose that
one does have probabilities on transitions and actions have uniform costs. We
ask, How can one find strong policies that maximize expected rewards? If the
reader finds it surprising that a standard mdp may fail to produce such a policy,
consider our Example 1.

We use strong probabilistic planning to refer to situations where one wishes to
produce an optimal worst-case strong policy that minimizes the expected num-
ber of steps to goal states. We show that model checking (mc) techniques can
be employed to great effect in strong probabilistic planning. We start discussing
straightforward reachability goals; i.e., reaching a goal state with certainty while
minimizing the number of steps. However, we also present a symbolic version
of our planner that is even capable of handling extended reachability goals
[Pistore et al., 2001, Lago et al., 2002]. With these goals, we can also impose
constraints on states visited during policy execution.

We should note that in principle we are dealing with a constrained mdp;
that is, an mdp with additional constraints on functionals of the trajectories
[Puterman, 1994, page 229]. There are two difficulties in directly resorting to
the theory of constrained mdps. First, it is not entirely obvious how to model
constraints such as “probability zero that a cycle occurs” in a way that leads to
efficient search for policies. Second, general constrained mdps fail the dynamic
programming principle, and thus are not solved by backward induction; rather,
constrained mdps may depend on randomized policies obtained by linear pro-
gramming [Altman, 1999]. We show that strong probabilistic planning admits
a backward reasoning scheme; thus we find that our model-checking strategy is
more illuminating and yields better results than a general approach based on
constrained mdps.

The remainder of this paper is organized as follows. The next section briefly
points out the differences between nondeterministic and probabilistic actions.
We then present a review of algorithms for mc/mdp-based planning, where we
contribute with a unifying perspective that seeks to compare them on a common
ground. The insights produced by this analysis steer us to our algorithms for
strong probabilistic planning. We describe two algorithms, one enumerative and
one symbolic, and prove that they return a policy that is expected-case optimal
among the strong policies which are worst-case optimal. We also discuss our
implementation and then close the paper.

2 Actions: nondeterministic and probabilistic

Uncertainty generally interferes with two important aspects of the planning
task: observability and determinism. Due to uncertainty, the current state

2



may not be precisely known. Moreover, even when the current state is known,
after executing certain actions, the next state may not be precisely predicted
[Ghallab et al., 2004]. In this work, we will deal only with uncertainty about
the predictability of next states. To model this kind of uncertainty, one can
consider two entities:

• the agent, an entity which plans to achieve its goals; and

• the nature, an entity whose intentions are unknown and whose actions can
interfere with the agent actions.

Suppose that the agent and the nature are in a game: the agent starts by
choosing an action α from the set A and, depending on this action, the nature
chooses its action from the set N (α). For example, consider the scenario de-
picted in Figure 1: when the agent chooses action throw-coin, the nature should
in turn choose its action from the setN (throw-coin) = {turn-tail-up, turn-head-up}.
Since nature actions can interfere with agent actions, the best choice for the
agent depends on what information it has about nature behavior. Clearly, if
the agent knows exactly how nature chooses its actions, there is no uncertainty
about the next state (i.e., deterministic planning). Thus, in planning under un-
certainty about the predictability of next states, we always assume that agent
has not certainty about nature behavior.

s
0

s
0

throw-coin

s
1

s
2

’

turn-tail-up

turn-head-up

possible nature actions

agent action

Figure 1: Uncertainty model as a game against nature.

There are two main uncertainty models [LaValle, 2006] that are usually con-
sidered in planning under uncertainty1:

• nondeterministic: the agent has no idea about how the nature chooses its
action from N (α);

• probabilistic: the agent has observed the nature and gathered statistics
about how frequently the actions in N (α) are chosen by nature.

1In a nondeterministic model, uncertainty is not measured and is also called Knightian

uncertainty; while in a probabilistic model, uncertainty is measurable and is also called risk

[Trevizan et al., 2007].

3



If a nondeterministic model is considered then it is only known that the
nature will make a choice from N (α). In this case, a pessimist strategy for agent
action selection should be appropriate. On the other hand, if a probabilistic
model is considered then, for each agent action α ∈ A, a probability distribution
over N (α) should be specified as part of the model. In this case, the strategy
for agent action selection should be optimal with respect to this information.

3 Approaches for planning under uncertainty

In this section we offer a unified perspective on planning under uncertainty as
we present the necessary background for the latter sections. We would like
to stress that a combined presentation of nondeterministic and probabilistic
planning has rarely appeared in the literature; thus we devote considerable
space to this discussion.

The approaches of interest here are:

• Model checking (mc), used for planning under nondeterministic uncer-
tainty models; and

• Markovian decision processes (mdp), used for planning under probabilistic
uncertainty models.

Both approaches are very attractive, but for different reasons: the main
advantage of mc is the effectiveness of the solutions; while the main advantage
of mdp is the efficiency of the solutions. Nondeterministic planning based on mc

aims the synthesis of effective plans, that are guaranteed to achieve a goal state
regardless of nature behavior. On the other hand, probabilistic planning based
on mdp leads to efficient plans, that yield optimal expected-case performance
with respect to the information about nature behavior, if executed numerous
times for the same problem.

3.1 Nondeterministic planning based on mc

The basic idea underlying nondeterministic planning based on mc is to solve
problems model-theoretically [Giunchiglia and Traverso, 1999].

Definition 1 A nondeterministic planning domain is a tuple D = 〈S,A, T 〉,
where:

• S is a finite nonempty set of states;

4



• A is a finite nonempty set of actions;

• T : S ×A× S 7→ {0, 1} is a state transition function. �

We assume that A contains a trivial action τ such that, for all σ ∈ S, we
have that T (σ, τ, σ′) = 1 if and only if σ = σ′. So, when agent executes action
τ in a certain state, it always remains in this same state. Intuitively, action τ

represents the fact that agent can choose do nothing in any state. Given a state
σ and an action α, the set of α-successors of σ, denoted by T (σ, α), is the set
{σ′ : T (σ, α, σ′) = 1}.

A policy in a nondeterministic planning domain D is a partial function π :
S 7→ A, that maps states to actions. A nondeterministic policy is a partial
function π : S 7→ 2A \∅, that maps states to sets of actions. The set Sπ of states
reached by a policy π is {σ : (σ, α) ∈ π} ∪ {σ′ : (σ, α) ∈ π and σ′ ∈ T (σ, α)}.
Given a policy π, the corresponding execution structure Dπ is the subsystem of
D that has Sπ as set of states and contains all transitions induced by the actions
in policy π.

Definition 2 A nondeterministic planning problem is a tuple P = 〈D, s0,G〉,
where:

• D is a nondeterministic planning domain;

• s0 ∈ S is an initial state;

• G ⊆ S is a set of goal states. �

Given a nondeterministic planning problem, we distinguish among three
kinds of solutions:

• a weak solution is a policy that may achieve the goal, but due to non-
determinism, is not guaranteed to do so. A policy π is a weak solu-
tion if some finite path in Dπ, starting from s0, reaches a state in G
[Cimatti et al., 1997].

• a strong solution is a policy that always achieves the goal, in spite of non-
determinism. A policy π is a strong solution if the subsystem Dπ is acyclic
and all paths starting from s0 reach a state in G [Cimatti et al., 1998].

• a strong-cyclic solution is a policy that always achieves the goal, under
the fairness assumption that execution will eventually exit from cycles. A
policy π is a strong-cyclic solution if all paths in Dπ starting from s0 reach
a state in G [Daniele et al., 1999].

5



The strong nondeterministic planning algorithm. The strong nonde-
terministic planning algorithm, adapted from the work in [Cimatti et al., 1998],
allows us to synthesize plans that are guaranteed to reach a goal state, regardless
of nondeterminism. This algorithm is correct, complete and returns an optimal
worst-case policy π, in the sense that the worst path in the execution structure
Dπ has minimal length.

StrongNondeterministicPlanning(P)
1 π ← ∅
2 π′ ← {(σ, τ) : σ ∈ G}
3 while π 6= π′ do

4 S ← StatesCoveredBy(π′)
5 if s0 ∈ S then return π′

6 π ← π′

7 π′ ← π′∪ Prune(StrongPreimage(S), S)

8 return failure

The basic planning step in this algorithm is performed by function StrongPreimage(S),
which returns the set of pairs (σ, α) such that execution of action α in state σ

necessarily leads to a state in S. This function is defined as:

StrongPreimage(S) = {(σ, α) : ∅ 6= T (σ, α) ⊆ S}

By iterating the strong preimage function, from the set of goal states G, the
algorithm builds up a finite backward search tree (Figure 2). Since the set of
states is finite and this function is monotonic with respect to set inclusion, i.e.,
G ⊆ StrongPreimage

1(G) ⊆ StrongPreimage
2(G) ⊆ . . . ⊆ StrongPreimage

n(G),
after a finite number of iterations, a fixpoint is obtained.

G

Figure 2: A backward search tree built after three iterations of the strong
preimage function.

During this iterative process, the algorithm maps the states in the search
tree to actions (or sets of actions) and, therefore, a policy is synthesized as a
side effect. At each iteration, the set of states covered by π′, the policy under
construction, is obtained by the following function:

6



StatesCoveredBy(π′) = {σ : (σ, α) ∈ π′}

If there exists a strong policy to reach a state in G, from the initial state s0,
then in one of the iterations, the condition s0 ∈ StatesCoveredBy(π′) is satisfied
and the algorithm returns policy π′ as solution to the planning problem.

Finally, to avoid the assignment of new actions to states already covered in
previous iterations (i.e. to avoid cycles and to guarantee optimal worst-case
policies), the algorithm uses the following function:

Prune(R,S) = {(σ, α) ∈ R : σ 6∈ S}

3.2 Probabilistic planning based on mdps

The basic idea underlying probabilistic planning based on mdp is to represent
the planning problem as an optmization problem [Boutilier et al., 1999].

Definition 3 A probabilistic planning domain is a tuple D = 〈S,A, T 〉, where:

• S is a finite nonempty set of states;

• A is a finite nonempty set of actions;

• T : S ×A× S 7→ [0, 1] is a state transition function. �

Given two states σ, σ′ and an action α, the probability of reaching σ′ by
executing α in σ is T (σ, α, σ′). Furthermore, for each state σ ∈ S, if there exists
α and σ′ such that T (σ, α, σ′) 6= 0, then

∑

σ′∈S
T (σ, α, σ′) = 1. Particularly,

for the trivial action τ , we must have:

T (σ, τ, σ′) =

{

0 iff σ 6= σ′

1 iff σ = σ′

Given a state σ, the set of executable actions in σ, denoted by A(σ), is the
set {α : ∃σ′ ∈ S such that T (σ, α, σ′) 6= 0}.

A policy in a probabilistic planning domain D is a total function π : S 7→ A,
that maps states to actions. Given a policy π, the corresponding execution
structure Dπ is the subsystem of D that has S as set of states and contains all
transitions induced by the actions in policy π.

Definition 4 A probabilistic planning problem is a tuple P = 〈D,G〉, where:

7



• D is a probabilistic planning domain;

• G ⊆ S is a set of goal states. �

A reward function R : S 7→ IR+ is a function that maps states to rewards.
Intuitively, when the agent reaches a state σ it receives a reward R(σ). In the
case of probabilistic planning for reachability goals, given a set of goal states G,
a Boolean reward function can be defined as following:

R(σ) =

{

0 iff σ 6∈ G
1 iff σ ∈ G

A reward is an “incentive” that attracts the agent to goal states. Moreover,
to force the agent to prefer shortest paths to goal states, at each executed step,
future rewards are discounted by a factor 0 < γ < 1 (The use of such discount
factor also guarantees convergence of fixpoint computations [Puterman, 1994].).
Hence, if the agent reachs a goal state by following a path with n steps, it
receives a reward of γn. Since the agent wants to maximize its reward, it should
minimize the expected length of paths to goal states.

The optimal expected-value of a state σ can be computed as the fixpoint of
the following equation [Bellman, 1957]:

vn(σ) =

{

R(σ) iff n = 0
max

α∈A(σ)
{ gn(σ, α) } iff n > 0,

where the expected gain in state σ when action α is executed, denoted by g(σ, α),
is defined as:

gn(σ, α) = γ ×
∑

σ′∈S

T (σ, α, σ′)× vn−1(σ
′)

By selecting an action α that produces the optimal value for a state σ, for
each σ ∈ S, we can build an optimal policy:

π?(σ) = arg max
α∈A(σ)

{gn(σ, α)}

A policy π is a solution for a probabilistic planning problem P if and only if
π is an optimal policy for P [Ghallab et al., 2004]. According to this definition,
any probabilistic planning problem has a “solution”, since it is always possible
to find optimal policies. Note, however, that this does not mean that such
solution allows the agent to reach a goal state: an optimal policy is independent
of the initial state of the agent.

The probabilistic planning algorithm. The probabilistic planning algo-
rithm, based on the value-iteration method [Bellman, 1957], allows us to syn-

8



thesize optimal expected-case policies for probabilistic planning problems.

ProbabilisticPlanning(P)
1 foreach σ ∈ S do v0(σ)←R(σ)
2 n← 0
3 loop

4 n← n + 1
5 foreach σ ∈ S do

6 foreach α ∈ A(σ) do

7 gn(σ, α)← γ ×
�

σ′∈S
(T (σ, α, σ′)× vn−1(σ′))

8 vn(σ)← maxα∈A(σ) {gn(σ, α)}
9 πn(s)← arg maxα∈A(σ) {gn(σ, α)}

10 if max
σ∈S
|vn(σ)− vn−1(σ)| < ε then return πn

The probabilistic planning algorithm starts by assigning value R(σ) to each
state σ ∈ S. Then, it iteratively refines this value by selecting an action that
maximizes the expected gain. At each iteration n, and for each state σ, the
value vn(σ) is computed from the value vn−1(σ), that was computed at the
previous iteration. It can be shown that there exists a maximum number of
iterations needed to guarantee that this algorithm returns an optimal policy
[Ghallab et al., 2004]. However, in practical applications, the condition used to
stop iteration is the following:

max
σ∈S

|vn(σ)− vn−1(σ)| < ε

With this condition, the algorithm guarantees that the returned policy is an
ε-optimal policy, i.e., for each state σ ∈ S, the expected value v(σ) does not
differ from the optimum value v?(σ) by more than an arbitrarily small fixed
error ε.

3.3 Comparison between the approaches

In this section, we present a brief comparison between the algorithms for proba-
bilistic planning and for nondeterministic planning based on a planning domain
(Figure 3). By analyzing the solutions that these two algorithms find for sim-
ilar planning problems, we intend to indicate the advantages of each one and
move toward a third alternative, which combines both of them (the resulting
algorithm is presented in the next section).

The next example shows the frailties of probabilistic planning when strong
policies are required.

Example 1 Consider D the planning domain depicted in Figure 3 and G = {s5}
is the set of goal states. For this problem, the algorithm ProbabilisticPlanning(〈D,G〉)
returns the following policy (with γ = 0.9):

9



s
1

s
3

s
0

s
2

a (1.0)

s
5

s
4

d (0.5)

b (0.5)

d (1.0)

b (0.5)

d (0.1)

d (0.9)

b (0.8)
b (0.2)

c (0.7)

b (0.9)
b (0.1)

a (1.0)

c (0.3)

d (0.5)

a (1.0)

c (0.9)
c (0.1)

Figure 3: A domain where actions have uncertain effects.

π(s0) = d

π(s1) = τ

π(s2) = c

π(s3) = c

π(s4) = d

π(s5) = τ

This policy is an optimal expected-case solution, i.e., it has shortest execution
in the expected-case. By executing action d in state s0, we expect that in 90%
of the executions the goal state can be reached with only one step. This is very
efficient and, in some applications, this could be advantageous, even if 10%
of the executions fail to reach the goal state. However, there are many other
practical applications where failures are unacceptable. In such applications, a
plan that may lead to longer executions, but necessarily reaches the goal, is
preferable to a plan that in the optimistic case may reach the goal earlier, but in
the pessimist case may no longer reach the goal. Clearly, the policy returned by
the probabilistic algorithm is weak for state s0, because it cannot guarantee that
the goal state will be reached from this state. Therefore, if an application does
not permit failures, a weak policy is inappropriate. On the other hand, if s2 is
considered as the initial state, the returned policy is a strong-cyclic solution (a
better solution, because it guarantees to reach the goal state from s2). However,
due to cycles, the number of steps that a strong-cyclic policy need to reach a
goal state is unbounded (e.g., in Figure 3, too many steps c could be needed until
agent could leave state s2). Therefore, if an application is critical in terms of
time, a strong-cyclic policy is inappropriate. �

10



The next example illustrate the danger of excessive freedom in nondetermin-
istic planning.

Example 2 Consider D the planning domain depicted in Figure 3, s0 the ini-
tial state and G = {s5} the set of goal states. For this problem, the algorithm
StrongNondeterministicPlanning(〈D, s0,G〉) returns the following nondetermin-
istic policy:

π(s0) = a

π(s2) = {a, b, d}
π(s3) = {a, c}
π(s4) = d

π(s5) = τ

This policy is an optimal worst-case strong solution, i.e., it necessarily reaches
to reach the goal state with a bounded number of steps (that is minimal in
the worst-case). Because in the nondeterministic model there is no preference
among actions, any one of the six policies corresponding to this nondeterministic
solution can be selected for execution:

π1 = {(s0, a), (s2, a), (s3, a), (s4, d), (s5, τ)}
π2 = {(s0, a), (s2, a), (s3, c), (s4, d), (s5, τ)}
π3 = {(s0, a), (s2, b), (s3, a), (s4, d), (s5, τ)}
π4 = {(s0, a), (s2, b), (s3, c), (s4, d), (s5, τ)}
π5 = {(s0, a), (s2, d), (s3, a), (s4, d), (s5, τ)}
π6 = {(s0, a), (s2, d), (s3, c), (s4, d), (s5, τ)}

Although an agent would prefer to select the policy π4, which has the possibility
of reaching the goal with two steps, it can even select the worst of them (π1),
which always needs exactly four steps to reach the goal state. Therefore, if an
application needs an efficient strong policy, a nondeterministic strong policy is
inappropriate. �

Remark. As we have seen, the probabilistic planning algorithm cannot guar-
antee to find policies that avoid failures and cycles (i.e. strong policies); con-
versely, the nondeterministic planning algorithm cannot guarantee to select the
best strong policy. Thus, we propose a third algorithm, named strong probabilis-
tic planning, that can guarantee to find an optimal expected-case policy among
those policies which are optimal in the worst-case.

11



4 Strong probabilistic planning

The strong probabilistic planning combines two common approaches for plan-
ning under uncertainty. In this framework, the mc approach is used to guar-
antee that only optimal worst-case strong solutions can be synthesized during
the planning task, while the mdp approach is used to guarantee that an op-
timal expected-case policy, among those that are optimal in the worst-case, is
returned by the planning algorithm.

We present two versions of the algorithm for strong probabilistic planning:
an enumerative version, where states are explicitly represented and manipulated
by standard set operations, and a symbolic version, where states are implicitly
represented by propositional formulas and can be manipulated by efficient op-
erations on mtbdd’s [Bryant, 1986].

4.1 Enumerative strong probabilistic planning

Given a planning problem P = 〈D, s0,G〉, where D is a probabilistic planning do-
main, the strong probabilistic planning algorithm starts by constructing an ini-
tial policy that maps each goal state σ ∈ G to the trivial action τ , and by assign-
ing optimal expected-value 1 for each one of them. After this, in each subsequent
iteration, the algorithm alternates strong preimage [Mller-Olm et al., 1999] and
optimal expected-value computations. By using the strong preimage computa-
tion, it guarantees that the synthesized policy will necessarily reach a goal state
(without possibility of failure and with a bounded number of steps); and, by
using the optimal expected-value computation, it guarantees that, whenever a
state is mapped to more than one action by the strong preimage computation,
only an optimal action will be chosen in that state. Example 3 gives some
intuition about how the the strong probabilistic planning algorithm works.

Example 3 Let γ = 0.9 and consider the planning problem P = 〈D, s0, {s5}〉,
where D is the planning domain depicted in Figure 3. Initially, we have π =
{(s5, τ)} and v(s5) = 1:

• In the first iteration (Figure 4-a), the pruned strong preimage of {s5}
is {(s4, d)} and the expected gain for executing action d in state s4 is
g(s4, d) = γ × 1.0 × v(s5) = 0.9. Thus, we let v(s4) = 0.9 and π =
{(s4, d), (s5, τ)}.

• In the second iteration (Figure 4-b), the pruned strong preimage of {s4, s5}
is {(s3, a), (s3, c)}. With this strong preimage computation, we can avoid
action b, which could cause a failure (i.e., going from s3 to s1 leads the
agent to a dead end). The expected gain for the remaining actions are:

12



s
5

s
4

d (1.0)

(a) first iteration

s
3

s
5

s
4

d (1.0)

c (0.7)

b (0.9)
b (0.1)

a (1.0)

c (0.3)

(b) second iteration

s
3

s
2

s
5

s
4

d (0.5)

d (1.0)

b (0.8)
b (0.2)

c (0.7)

c (0.3)

d (0.5)

a (1.0)

c (0.9)
c (0.1)

(c) third iteration

b (0.8)

s
3

s
0

s
2

a (1.0)

s
5

s
4b (0.5)

d (1.0)

b (0.5)

d (0.1)

d (0.9)
b (0.2)

c (0.7)

c (0.3)

(d) fourth iteration

Figure 4: Strong probabilistic planning algorithm execution.

g(s3, a) = γ × 1.0× v(s4) = 0.81
g(s3, c) = γ × (0.3× v(s4) + 0.7× v(s5)) = 0.87

With this optimal expected-case value computation, we can give preference
to action c. Now, we let v(s3) = 0.87 and π = {(s3, c), (s4, d), (s5, τ)}.
Thus, when we have to select among actions that certainly lead to the
goal, we choose the one that produces the maximum expected gain.

• In the third iteration (Figure 4-c), the pruned strong preimage of {s3, s4, s5}
is {(s2, a), (s2, b), (s2, d)}. Now, the strong preimage computation avoids
action c, which could cause cycle. The expected gains for the other actions
are:

g(s2, a) = γ × (1.0× v(s3)) = 0.79
g(s2, b) = γ × (0.2× v(s3) + 0.8× v(s5)) = 0.88
g(s2, d) = γ × (0.5× v(s3) + 0.5× v(s4)) = 0.80

13



Being action b the best choice in state s2. Thus, we let v(s2) = 0.88 and
π = {(s2, b), (s3, c), (s4, d), (s5, τ)}

• Finally, in the last iteration (Figure 4-d), the pruned strong preimage of
{s2, s3, s4, s5} is {(s0, a), (s0, b)}. The action d, which could cause failure,
is eliminated. The expected gains are:

g(s0, a) = γ × (1.0× v(s2)) = 0.789
g(s0, b) = γ × (0.5× v(s3) + 0.5× v(s2)) = 0.787

Now, action a is the best choice. Thus, we let v(s0) = 0.80 and π =
{(s0, a), (s2, b), (s3, c), (s4, d), (s5, τ)}. Because the initial state s0 is cov-
ered by this policy, the strong probabilistic planning stops and returns π

as solution (which corresponds to policy π4 in the comparison section). �

The enumerative version. The enumerative version of the strong probabilis-
tic planning algorithm is composed of two functions: the StrongProbabilisticPlanning

function, that performs the strong preimage computation, and the Choose func-
tion2, that performs the optimal expected-value computation.

StrongProbabilisticPlanning(P)
1 foreach σ ∈ G do v(σ)← 1
2 π ← ∅
3 π′ ← {(σ, τ) : σ ∈ G}
4 while π 6= π′ do

5 S ← StatesCoveredBy(π′)
6 if s0 ∈ S then return π′

7 π ← π′

8 π′ ← π′ ∪ Choose(Prune(StrongPreimage(S), S))

9 return failure

Choose(R)
1 π ← ∅
2 foreach σ ∈ StatesCoveredBy(R) do

3 A← {α : (σ, α) ∈ R}
4 foreach α ∈ A do

5 g(σ, α)← γ ×
�

σ′∈T (σ,α)(T (σ, α, σ′)× v(σ′))

6 v(σ)← maxα∈A g(σ, α)
7 π ← π ∪ {(σ, arg maxα∈A g(σ, α))}

8 return π

The following theorems are the main results because they prove that back-
ward induction works for our model.

2Because all paths in a strong policy have a bounded number of steps (finite horizon), a
discount factor is no longer necessary to guarantee convergence; however, it is still necessary
to force the agent to give preference to shortest paths.

14



Theorem 1 If a probabilistic planning problem P has a strong solution, the al-
gorithm StrongProbabilisticPlanning returns an optimal worst-case strong policy
for P.

Proof. We denote by πi the policy built in the i-th iteration of the algorithm.
By definition, a state σ ∈ S is covered by π0 if and only if σ is a goal state;
thus, π0 covers all states from which, in the worst case, there is a path of length
0 to a goal state. In the first iteration, if the initial state s0 is covered by π0,
clearly, the algorithm returns an optimal worst-case policy for P. Otherwise,
the pruned strong preimage of the set S0 of states covered by π0 is computed.
For each pair (σ, α) ∈ Prune(StrongPreimage(S0), S0)), all α-successors of σ

are goal states, independently of the chosen actions; thus, the policy π1 :=
π0 ∪ Choose(Prune(StrongPreimage(S0), S0))) covers all states from which, in
the worst case, there is a path of length 1 to a goal state. By the inductive
hypotesis, for j < i, policy πj covers all states from which, in the worst case,
there exists a path of length j to a goal state. Therefore, in the i-th iteration, if
the initial state s0 is covered by πi−1, the algorithm returns an optimal worst-
case policy for P. Otherwise, the pruned strong preimage of the set Si−1 of states
covered by πi is computed. If (σ, α) ∈ Prune(StrongPreimage(Si−1), Si−1)), then
at least one α-successor of σ takes, in the worst case, i − 1 steps to reach a
goal state (otherwise the state σ would have been covered by policy πi−1 and,
thus, been pruned). Therefore, independently of the chosen actions, the policy
πi := πi−1 ∪ Choose(Prune(StrongPreimage(Si−1), Si−1))) covers all states from
which, in the worst case, there is a path of (optimal) length i to a goal state. �

Theorem 2 The optimal worst-case strong policy returned by algorithm Strong-

ProbabilisticPlanning is optimal in the expected-case.

The expected-case optimality of the policy returned by the algorithm Strong-

ProbabilisticPlanning is derived from the fact that function Choose uses the opti-
mality principle [Bellman, 1957] to choose the best action for each state covered
by this policy.

4.2 Symbolic strong probabilistic planning

The basic idea underlying the symbolic version of the strong probabilistic plan-
ning algorithm is to represent states as sets of propositions and to consistently
work with propositional formulas that characterize sets of states. In order to do
this, a new definition of planning domain is needed:

Definition 5 A symbolic probabilistic planning domain is a tuple D = 〈P,S,A,L, T 〉,
where:

15



• P is a finite nonempty set of atomic propositions;

• S is a finite nonempty set of states;

• A is a finite nonempty set of actions;

• L : S 7→ 2P is a state labeling function;

• T : S ×A× S 7→ [0, 1] is a state transition function. �

Each atomic proposition p ∈ P denotes a state property. The set of atomic
propositions which are satisfied in a state σ ∈ S is denoted by L(σ). The
intension of a propositional formula ϕ in D, denoted by JϕKD, is the set of
states in D which satisfies ϕ. Formally, we have3:

• JϕK = {σ ∈ S : ϕ ∈ L(σ)} if ϕ ∈ P

• J¬ϕK = S \ JϕK

• Jϕ ∧ ϕ′K = JϕK ∩ Jϕ′K

• Jϕ ∨ ϕ′K = JϕK ∪ Jϕ′K

Furthermore, we assume that > ∈ L(σ), for all state σ ∈ S. Therefore, it follows
that J>K = S.

The trivial action τ ∈ A and the transition function T are defined as in the
pure probabilistic case.

Definition 6 A symbolic probabilistic planning problem is a tuple P = 〈D, s0, (ϕ,ϕ′)〉,
where:

• D is a symbolic probabilistic planning domain;

• s0 ∈ S is an initial state;

• (ϕ,ϕ′) is an extended reachability goal. �

An extended reachability goal is a pair of propositional formulas (ϕ,ϕ′): the
preservation condition ϕ specifies a property that should be satisfied in each
state visited through the path to a goal state (excepting the goal state); and
the achievement condition ϕ′ specifies a property that should be satisfied in all
goal states, i.e., G = Jϕ′KD.

Extended goals [Pistore et al., 2001, Lago et al., 2002] represent an improve-
ment on the expressiveness of the reachability planning framework. By using

3For the sake of simplicity, we omit subscript D in J.K.

16



such goals, besides defining acceptable final states, we can also establish prefer-
ence among possible intermediate states. Note that a reward function has the
same expressiveness of extended goals; however, extended goals are high level
specifications.

An example of a symbolic probabilistic domain is depicted in Figure 5. The
shadowed states are the ones that can be covered by a policy for the extended
reachability goal (¬q, p ∧ q ∧ r), which specify that the agent should preserve
property ¬q (equivalently, avoid property q), until reaching a state where the
three properties p, q and r can be satisfied. Other examples of useful extended
reachability goals are:

• (>, r): to achieve property r;

• (p, r): to achieve property r, by preserving property p;

• (¬q, r): to achieve property r, by avoiding property q;

• (p ∧ ¬q, r): to achieve r, by preserving p and avoiding q.

= {p, q, r}

s
6 = {p, q } s

0 = { }    

s
1 = { r }   

s
2 = { q  }  

s
3 = { q, r }

s
4= { p }   

s
5= { p, r }

s
7

a (1.0)

a (1.0)

a (1.0)

b (1.0)d (0.4)

d (0.6)

d (1.0)

d (1.0)

c (0.7)

c (0.3)

b (.8.0) b (0.2)

c (1.0)

Figure 5: A symbolic probabilistic planning domain.
.

The symbolic version. The symbolic version for the algorithm for extended
reachability goals is very similar to the enumerative one. The main difference is
on the “intensional” representation of set of states and on the definition of the
prune function, which is defined as following:

Prune(R,S, ϕ) = {(σ, α) ∈ R : σ ∈ JϕKD and σ 6∈ S}

Given the strong preimage R of a set of states S, as well as a preserving
condition ϕ, the function Prune selects from R all pairs (σ, α), such that state

17



σ has property ϕ and it was not yet mapped to another action in a previous
iteration. By proceeding in this way, the prune function avoids all intermediate
states which does not satisfy the preserving condition ϕ.

The remainder of the planning algorithm is as following:

StrongProbabilisticPlanning(P)
1 foreach σ ∈ Jϕ′KD do v(σ)← 1
2 π ← ∅
3 π′ ← {(σ, τ) : σ ∈ Jϕ′KD}
4 while π 6= π′ do

5 S ← StatesCoveredBy(π′)
6 if s0 ∈ S then return π′

7 π ← π′

8 π′ ← π′ ∪ Choose(Prune(StrongPreimage(S), S))

9 return failure

Choose(R)
1 π ← ∅
2 foreach σ ∈ StatesCoveredBy(R) do

3 A← {α : (σ, α) ∈ R}
4 foreach α ∈ A do

5 g(σ, α)← γ ×
�

σ′∈T (σ,α)(T (σ, α, σ′)× v(σ′))

6 v(σ)← maxα∈A g(σ, α)
7 π ← π ∪ {(σ, arg maxα∈A g(σ, α))}

8 return π

The following theorems prove that backward induction also works for the
symbolic version of our model.

Theorem 3 If a symbolic probabilistic planning problem P has a strong solu-
tion, the symbolic version of algorithm StrongProbabilisticPlanning returns an
optimal worst-case strong policy for P.

Theorem 4 The optimal worst-case strong policy returned by the symbolic ver-
sion of algorithm StrongProbabilisticPlanning is optimal in the expected-case.

The proofs to these theorems are straightforward from proof of Theorem 1.
Noticing that, besides prunning the states already covered by the policy under
construction, the symbolic version of the function Prune also prunes states that
do not satisfy the extended reachability goal.

5 Implementation

All policies for the examples in this paper were synthesized by programs which
we have implemented. The algorithm ProbabilisticPlanning was implemented

18



in Java, while the other two – StrongNondeterministicPlanning and Strong-

ProbabilisticPlanning – were implemented in Prolog. As the comparison of
techniques does not take into account efficiency issues, the use of different pro-
gramming languages for implementations does not affect our analysis.

The code is available from the first author.

6 Conclusion

In this paper we have identified, and solved, the problem of strong probabilis-
tic planning. In essence, this is a situation with features of nondeterministic
and probabilistic planning: requirements on the goals mix worst-case and ex-
pected analysis, and actions with (uniform) costs and (Markovian) probabilities
associated with them.

Our main contribution is to show that the resulting problem can be tackled
by backward induction, thus producing the enumerative and symbolic versions
of the StrongProbabilisticPlanner algorithm. While Theorems 1 and 2 deal
with straightforward reachability goals, Theorems 3 and 4 show that our tech-
niques can be applied in much greater generality to extended reachability goals.
With such goals we can also impose constraints on states visited during policy
execution. Hence the symbolic framework is more expressive than the enumera-
tive one. As expressiveness increases planner usability, the symbolic framework
seems to be more appropriate for practical planning applications.

The desire to combine features of nondeterministic and probabilistic plan-
ning have led us to develop a perspective for planning problems that integrates
these features coherently, as we feel that current literature treats these vari-
eties of planning as too isolated islands. We have tried to convey some of this
perspective in the third section of this paper; we hope that the resulting blend
improves understanding of this multifaceted area.

References

[Altman, 1999] Altman, E. (1999). Constrained Markov Decision Processes.
Chapman & Hall / CRC, Florida.

[Bellman, 1957] Bellman, R. E. (1957). Dynamic Programming. Princeton Uni-
versity Press, USA.

[Bonet and Geffner, 2003] Bonet, B. and Geffner, H. (2003). Labeled RTDP:
Improving the convergence of real-time dynamic programming.

19



[Boutilier et al., 1999] Boutilier, C., Dean, T., and Hanks, S. (1999). Decision-
theoretic planning: Structural assumptions and computational leverage.
Journal of Artificial Intelligence Research, 11:1–94.

[Bryant, 1986] Bryant, R. E. (1986). Graph-based algorithms for Boolean func-
tion manipulation. IEEE Transactions on Computers, 35(8):677–691.

[Cimatti et al., 1997] Cimatti, A., Giunchiglia, F., Giunchiglia, E., and Tra-
verso, P. (1997). Planning via model checking: A decision procedure for AR.
In ECP, pages 130–142.

[Cimatti et al., 1998] Cimatti, A., Roveri, M., and Traverso, P. (1998). Strong
planning in non-deterministic domains via model checking. In Artificial In-
telligence Planning Systems, pages 36–43.

[Daniele et al., 1999] Daniele, M., Traverso, P., and Vardi, M. Y. (1999). Strong
cyclic planning revisited. In ECP, pages 35–48.

[Dolgov and Durfee, 2005] Dolgov, D. A. and Durfee, E. H. (2005). Stationary
deterministic policies for constrained MDPs with multiple rewards, costs, and
discount factors. In IJCAI, pages 1326–1331.

[Ghallab et al., 2004] Ghallab, M., Nau, D., and Traverso, P. (2004). Automated
Planning: Theory and Practice. Morgan Kaufmann Publishers Inc., USA.

[Giunchiglia and Traverso, 1999] Giunchiglia, F. and Traverso, P. (1999). Plan-
ning as model checking. In ECP, pages 1–20.

[Lago et al., 2002] Lago, U. D., Pistore, M., and Traverso, P. (2002). Plan-
ning with a language for extended goals. In Eighteenth national conference
on Artificial intelligence, pages 447–454, Menlo Park, CA, USA. American
Association for Artificial Intelligence.

[LaValle, 2006] LaValle, S. M. (2006). Planning Algorithms. Cambridge Uni-
versity Press, USA.

[Mller-Olm et al., 1999] Mller-Olm, M., Schimidt, D., and Steffen, B. (1999).
Model checking: A tutorial introduction. In SAS’99, LNCS 1694, pages 330–
354.

[Pistore et al., 2001] Pistore, M., Bettin, R., and Traverso, P. (2001). Symbolic
techniques for planning with extended goals in non-deterministic domains.

[Puterman, 1994] Puterman, M. L. (1994). Markov Decision Processes—
Discrete Stochastic Dynamic Programming. John Wiley & Sons, Inc.

[Trevizan et al., 2007] Trevizan, F. W., Cozman, F. G., and de Barros, L. N.
(2007). Planning under Risk and Knightian Uncertainty. In Veloso, M. M.,
editor, IJCAI, pages 2023–2028.

20


