
Planning under Uncertainty

for Extended Reachability Goals

Silvio do Lago Pereira and Leliane Nunes de Barros
Institute of Mathematics and Statistics - University of São Paulo

Abstract. Planning under uncertainty has being increasingly demanded
for practical applications in several areas that require reliable solutions
for complex goals and, therefore, some approaches for automatic plan
synthesis based on formal methods have been proposed in AI Planning.
Among these approaches, planning based on model checking seems to
be a very attractive one, however, it is mainly based on ctl and deals
only with simple reachability goals, as those in classical planning. In this
paper, we introduce a more expressive class of planning goals (extended

reachability goals) and show that, for this class of goals, the ctl’s seman-
tics is not adequate to formalize plan synthesis (or validation) algorithms.
Then, as a way to overcome this limitation, we propose a new variant
of ctl, based on which we implement plan synthesis (and validation)
algorithms capable of solving problems with extended reachability goals,
in totally observable nondeterministic environments.

Student level: PhD
Date of conclusion: November, 2007

International publications from the thesis: [13], [14], [15] and [16].
Link: www.teses.usp.br/teses/disponiveis/45/45134/tde-09042008-105750

1 Introduction

In the last few years, automated planning [7] has being increasingly demanded
for practical applications in several areas that require solutions for complex
goals, including autonomous agents [14]. In this setting, formal method based
approaches [5, 17] are very attractive to guarantee the reliability of the solutions.
In spite of this, the use of formal methods in planning has received relatively little
attention and the few related works [2, 3, 6] are almost all based on model checking
[9]. In this approach, goals are often specified by formulas of the branching time
temporal logic ctl [4], a formalism that is only appropriate to deal with planning
problems for simple reachability goals and for very specific kinds of more complex
goals. An interesting kind of more complex goal, that has not been treated yet
by the planning based on model checking community, is given in Example 1.

Example 1. Roomba is a popular vacuum cleaner robot that, while cleaning a
room, is capable of detecting if its battery is weak, driving itself to a recharging
station, returning to its original location in order to continue its task. In the fu-
ture, a project to integrate this vacuum cleaner with an intelligent carpet, capable
of mapping the environment, will allow for the robot to plan its cleaning route so
that whenever its battery is weak, it would be next to a recharging station. Note
that these stations do not need to be in the planned route, but only be reachable
from it, and this goal cannot be specified as a simple reachability goal. ◆



2 S. L. Pereira

In this paper, we introduce extended reachability goals, a class of planning
goals that has simple reachability goals as subclass. We show that, when this
wider class of planning goals is considered, the temporal logic ctl becomes inad-
equate to specify goals (as well as solution quality requirements) and to formalize
plan synthesis and plan validation algorithms. This happens because the ctl’s
semantics cannot distinguish among the different actions that produce the state
transitions. To overcome this limitation, we propose a new branching time tem-
poral logic, called α-ctl, basead on which we implement a planner capable of
synthesizing reliable plans for extended reachability goals (as a side effect of the
model checking for α-ctl formulas expressing such planning goals).

The remainder of this paper is organized as follows: in Section 2, we present
the background on automated planning in nondeterministic environments and
define the class of extended reachability goals; in Section 3, we discuss how the
model checking framework can be adapted for automated planning and why the
ctl’s semantics is not appropriate to deal with extended reachability goals; in
Section 4, we define the new logic α-ctl and present a model checker based on its
semantics; in Section 5, we present a planner based on the α-ctl model checker;
and finally, in Section 6, we present our conclusions.

2 Automated Planning

Automated planning [7] is the field of the AI that aim at the implementation
of planners. Essentially, a planner is an algorithm that synthesizes a plan of
actions, by analyzing a formal description of the environment’s dynamics and of
the agent’s goal. A plan defines the agent behavior pattern: at each instant, it
observes the environment’s current state and executes the corresponding action,
as specified in the plan. Behaving in this manner, the agent must be capable
of conducting the environment’s evolution, in spite of exogenous events (i.e.,
events over which the agent has no control), still making sure that its goal can
be achieved. The interaction among these components can be seen in Fig. 1.

controller

current state

action

plan

environment’s dynamics

initial state

planner environment

exogenous event

agent

goal

Fig. 1. The components involved in automated nondeterministic planning.

2.1 Domains, problems and solutions

Let P ≠ ∅ be a finite set of atomic propositions, denoting states properties of an
environment, and A ≠ ∅ be a finite set of actions, representing the agent’s abilities
in this environment. A planning domain is a formal model of the environment’s
dynamics and, since the sets P and A are dependent of the specific environment
considered, the pair (P,A) is called the signature of the planning domain.



Planning under Uncertainty for Extended Reachability Goals 3

Definition 1. A planning domain with signature (P,A) is defined by a structure
D = ⟨S,L,T ⟩, where S ≠ ∅ is a finite set of states, L ∶ S ↦ 2P is a state labeling
function, and T ∶ S ×A↦ 2S is a state transition function. ◆

A planning domain can be represented by a transition graph, as in Fig. 2-a.
We assume that, for all s ∈ S, we have ⊺ ∈ L(s) and T (s, τ) = {s}, where τ is
the trivial action. Intuitively, action τ denotes that the agent can always choose
to do nothing. Given a state s ∈ S and an action a ∈ A, the set of a-successors
of s, denoted by T (s, a), contains all states that can be directly reached by
executing a in s. A policy (or plan) for a planning domain D is a partial function
π ∶ S ↦ A that maps states to actions. The set Sπ of states reachable by π is
{s ∶ (s, a) ∈ π} ∪ {s′ ∶ (s, a) ∈ π and s′ ∈ T (s, a)}. The execution structure of π is
the subgraph Dπ⊆ D that has Sπ as set of states and that contains all transitions
induced by the actions in π (Fig. 2-b). During the execution of a policy π, if the
agent reaches a state not covered by π, it continues executing the action τ .

s
0

s
1

s

s
2

3

c

a

b

a

a
r

r

r

s
4

s

s
5

6

g

b

ba

c

a

(a)

PSfrag replacements

π1 = {(s0, a), (s1, b), (s2, c)}

s
0

s
1

s
2 c

a

a
r

r

r s
5g

b a

(b)

PSfrag replacements
π1 = {(s0, a), (s1, b), (s2, c)}

Fig. 2. The planning domain D1 and the execution structure D1

π1
.

Definition 2. A planning problem is defined by a structure P = ⟨D, s0, ϕ⟩, where
D is a domain with signature (P,A), s0 ∈ S is the initial state of the environment,
and ϕ is a propositional formula over P, specifying a simple reachability goal. ◆

There are three classes of solutions for planning problems with simple reach-
ability goals. Intuitively, a weak solution is a policy that can lead to a goal state
but, due to the nondeterminism, does not guarantee this [2]; a strong solution is
a policy that always leads to a goal state, in spite of nondeterminism [3]; and a
strong-cyclic solution is a policy that always leads to a goal, under the fairness
assumption that execution will eventually exit from all existing cycles [6].

2.2 Extended reachability goals

Formally, an extended reachability goal is a pair of formulas (ϕ1, ϕ2), where ϕ1

is a condition to be preserved during the policy execution and ϕ2 is a condition
to be achieved at the end of the policy execution. Extended reachability goals
provide a significant improvement on expressivity to specify planning problems.
Through this kind of goal, besides specifying the desired final states, we can also
establish preferences on the possible intermediate states. For instance, in Fig.
2-b, π1 is a solution for the planning problem which extended reachability goal
is (r, g). Some interesting variations of extended reachability goals are (⊺, ϕ2),
that achieves ϕ2 (i.e., a simple reachability goal); (ϕ1, ϕ2), that achieves ϕ2,
while preserving ϕ1; and (¬ϕ1, ϕ2), that achieves ϕ2, while avoiding ϕ1.



4 S. L. Pereira

Definition 3. Let P = ⟨D, s0, (ϕ1, ϕ2)⟩ be an extended planning problem and π

be a policy in D (with execution structure Dπ). We say that π is a:

– weak solution for P, if some path starting from s0 in Dπ passes only through
states satisfying ϕ1, and reaches a state where ϕ2 holds;

– strong solution for P, if every path starting from s0 in Dπ is acyclic, passes
only through states satisfying ϕ1, and reaches a state where ϕ2 holds;

– strong-cyclic solution for P, if every path starting from s0 in Dπ passes only
through states satisfying ϕ1, and reaches a state where ϕ2 holds. ◆

We should emphasize that a planning problem specifies the agent’s goal, but
it is up to the agent to decide the quality of the problem solution. The question
that arises is: is it also possible to specify the desired solution quality within the
goal specification? In Section 4, we propose a new logic (α-ctl) that can be used
to specify a larger class of extended goals (with built-in desired solution quality).

3 Planning based on Model Checking

Model checking consists of deciding if K ⊧ ϕ, where K is a formal model of a
system and ϕ is a formal specification of a property to be verified in this system.
When applying the model checking framework to automated planning, the model
K describes the planning environment’s dynamics, and the property ϕ describes
the agent’s goal in this environment. Besides the inputs K and ϕ, the planner
has an extra input that is the environment initial state s0. Thus, if (K, s0) ⊧ ϕ,
the planner returns a plan (i.e., a behavior policy that allows for the agent to
achieve its goal); otherwise, the planner returns failure (Fig. 3).

planner

PSfrag replacements

model K

initial state s0

property ϕ

plan or

failure

Fig. 3. Planning as model checking.

3.1 Goal Specification in ctl

The semantics of ctl (Computation Tree Logic) [4] is defined over a Kripke
structure K = ⟨S,L,T ⟩, where S is a set of states, L ∶ S ↦ 2P is a state labeling
function and T ⊆ S × S is a total state transition relation. A path in K is a
sequence ⟨s0, s1, . . . ⟩ such that si ∈ S and (si, si+1) ∈ T , for all i ≥ 0. Given a
Kripke structure K and s0 ∈ S, the semantics of ctl is defined as following1:

(K, s0) ⊧ ϕ iff ϕ ∈ L(s0);
(K, s0) ⊧ ∃◇ ϕ iff for some path ⟨s0, s1, . . . ⟩ in K, ∃i ≥ 0 such that (K, si) ⊧ ϕ;
(K, s0) ⊧ ∀ ◻ ϕ iff for every path ⟨s0, s1, . . . ⟩ in K, ∀i ≥ 0, (K, si) ⊧ ϕ;
(K, s0) ⊧ ∀◇ ϕ iff for every path ⟨s0, s1, . . . ⟩ in K, ∃i ≥ 0 such that (K, si) ⊧ ϕ.

Simple reachability goals with built-in desired solution quality are specified
by the formulas ∃ ◇ ϕ, ∀ ◻ ∃ ◇ ϕ and ∀◇ ϕ, resp., for weak, strong-cyclic and
strong solution. Let P = ⟨D, s0, ϕ⟩ be a planning problem, where ϕ is a goal
specification in ctl. Let π be a policy in D. We say that π is a solution for P
iff (K(Dπ), s0) ⊧ ϕ, where K(Dπ) is the Kripke structure corresponding to the

1 Due to space limitation, we consider only some ctl operators.



Planning under Uncertainty for Extended Reachability Goals 5

execution structure of π. As we can see, ctl’s semantics can easily be used to
formalize plan validation algorithms. However, it is not clear how it can also be
used to formalize the synthesis of a policy π from a formula ϕ.

3.2 Inadequacy of ctl to deal with extended reachability goals

An extended reachability goal (ϕ1, ϕ2), where ϕ1 is a preservation condition and
ϕ2 is an achievement condition, is a wide class of goals that can be partitioned in
two distinct subclasses, according to the type of ϕ1: when ϕ1 is a propositional
formula, we have a linear extended reachability goal, since the validity of ϕ1

depends only on the actual path that leads to the goal state; on the other hand,
when ϕ1 is a temporal formula, we have a branching extended reachability goal,
since the validity of ϕ1 depends not only on the actual path to the goal, but also
on the possible ramifications of this path.

Linear extended reachability goals. In ctl, a linear extended reachability
goal with built-in desired solution quality can be specified as ∃(ϕ1 ⊔ϕ2), ∀(ϕ1 ⊔
ϕ2) or ∀◻∃(ϕ1 ⊔ϕ2), resp., for weak, strong-cyclic or strong solution. Moreover,
if ϕ1 is ⊺, a linear extended reachability goal reduces to a simple reachability
goal and, then, can be equivalently specified as ∃◇ ϕ2, ∀◇ ϕ2, or ∀ ◻ ∃◇ ϕ2.

Let P = ⟨D, s0, φ⟩ be a planning problem, where φ is a linear extended reach-
ability goal specified in ctl. Let Dπ ⊆ D be the execution structure of π. By
deleting the transition labels in Dπ, we obtain a corresponding Kripke structure,
denoted by K(Dπ). Then, the policy π is a solution (with the desired quality)
for P if and only if (K(Dπ), s0) ⊧ φ. As we can see, the ctl’s semantics (built
in the definition of the satisfiability relation ⊧) can indeed be used to formalize
plan validation algorithms for the linear subclass of extended reachability goals.

Suppose that the agent in domain D1 (Fig. 2-a) is at s0 and its goal is to nec-
essarily reach a state where g holds, passing only through states where r holds.
According to the ctl’s semantics, this linear extended reachability goal can be
specified by the formula ∀(r ⊔ g), but (K(D1), s0) /⊧ ∀(r ⊔ g), since in K(D1)
there is a transition from s0 to s3, where r does not hold. This means that,
from the planning domain D1, a planner based on ctl (whose semantics cannot
distinguish different types of transitions) would not be able to synthesize a pol-
icy that achieves the goal specified by formula ∀(r ⊔ g); and, thus, such planner
would stop with failure. To overcome this limitation on the ctl’s semantics, plan-
ners based on model checking often use specialized algorithms [8] to construct
a policy and, then, use the ctl’s semantics only to guarantee that its execution
structure satisfies the goal specification in ctl. For instance, considering policy
π1 = {(s0, a), (s1, b), (s2, c)}, in Fig. 2-b, it is clear that (K(D1

π1
), s0) ⊧ ∀(r ⊔ g).

Therefore, although ctl can be used to specify goals in the linear subclass
of extended reachability goals, as well as to formalize plan validation algorithms
for them, it cannot be used to formalize plan synthesis algorithms for such goals.

Branching extended reachability goals. The branching subclass of extended
reachability goals comprises those goals where the preserving condition ϕ1 is a
temporal formula. For instance, consider domain D2 in Fig. 4-a. In this domain,



6 S. L. Pereira

s
0

s
1

s

s
2

3

a

a

b
c

a
r r

s
4

s

s
5

6

g

b

b

c

a

(a)

PSfrag replacements

π2 = {(s0, b), (s3, c), (s6, b)}

s
0

s
3

b
c

r

s

s
5

6

g

b

(b)

PSfrag replacements

π2 = {(s0, b), (s3, c), (s6, b)}

Fig. 4. The planning domain D2 and the execution structure D2

π2
.

the agent could be a mobile robot, r could describe states where there exists a
battery recharging station and g could describe the final state that the robot
wants to reach. Suppose that the agent’s goal is, starting from s0, necessarily to
reach a state satisfying g, passing only through states from which a recharging
station can be necessarily reached in at most two steps. This extended reachabil-
ity goal could be specified by the following ctl formula: ∀((r∨∀◯r∨∀◯∀◯r)⊔g).
However, there are two problems with this formulation that we need to highlight:
– First of all, since ctl’s semantics cannot distinguish among different types

of transitions, it does not allow reasoning about alternative ramifications in-
duced by actions that will not be actually executed. However, the preserving
condition (r∨∀◯ r∨∀◯∀◯ r) is only contingent. It does not require that the
agent really reaches a battery recharging station, unless this turn out to be
strictly necessary. Thus, it should be clear that the semantics of the formula
∀((r ∨ ∀◯ r ∨ ∀◯ ∀◯ r) ⊔ g) does not specify exactly what we need.

– Second, even if this formula could be used to specify the desired goal, we
would have that (K(D2), s0) /⊧ ∀((r∨∀◯ r∨∀◯∀◯ r)⊔g). However, as we can
easily see in Fig. 4-a:
● there exists a battery recharging station in s0;
● from s3, the battery recharging station in s2 can be reached in two steps;
● from s6, the battery recharging station in s2 can be reached in one step.

Clearly, by following the policy π2 = {(s0, b), (s3, c), (s6, b)}, the agent would
achieve its goal and, therefore, π2 is a solution for the proposed planning
problem. Regardless of this fact, the execution structure D2

π2
(Fig. 4-b) does

not satisfy the goal specified by the ctl formula ∀((r ∨∀◯ r ∨∀◯∀◯ r)⊔ g).

Therefore, we must conclude that ctl cannot deal with branching extended
reachability goals.

4 The new temporal logic α-ctl

In this section, we present the logic α-ctl, based on which we implement a model
checker that, in Section 5, is adapted for planning for extended reachability goals.

4.1 The syntax of α-ctl

In ctl, a formula ∀◯ϕ holds on a state s if and only if ϕ holds on all immediate
successors of s, independently of the actions labeling the transitions from s to
them. In α-ctl, to enforce that actions play an important role in its semantics,
we use a different set of dotted symbols to denote temporal operators: ⊙ (next),
� (invariantly), ⟐ (finally) and D (until).



Planning under Uncertainty for Extended Reachability Goals 7

Definition 4. Let p ∈ P be a proposition. The syntax of α-ctl is defined as
ϕ ∶∶= p ∣ ¬p ∣ (ϕ ∧ϕ′) ∣ (ϕ ∨ϕ′) ∣ ∃ ⊙ϕ ∣∀⊙ϕ ∣ ∃� ϕ∣ ∀� ϕ ∣ ∃(ϕ Dϕ′) ∣∀(ϕ Dϕ′) ◆

According to the α-ctl’s syntax, well-formed formulas are in negative normal
form, where the scope of negation is restricted to the atomic propositions (this
allows to easily define a fixpoint semantics for the formulas). Furthermore, all
temporal operators are prefixed by a path quantifier (∃ or ∀). The temporal
operators derived from ⟐ are defined as ∃⟐ϕ ≐ ∃(⊺ Dϕ) and ∀⟐ϕ ≐ ∀(⊺ Dϕ).

Although actions are essential in the semantics of α-ctl, they are not used
to compose α-ctl’s formulas. In general, when we specify a planning goal, we
wish to impose constraints only over the states visited during the plan execution
(constraints over actions used in the plan are not relevant).

4.2 The semantics of α-ctl

Let P ≠ ∅ be a finite set of atomic propositions and A ≠ ∅ be a finite set
of actions. An α-ctl temporal model over (P,A) is a transition graph where
states are labeled with subsets of P and transitions are labeled with elements of
A. In a temporal model, terminal states (i.e., states where the only executable
action is τ) persist infinitely in time. In short, a temporal model for α-ctl is a
nondeterministic planning domain or a policy execution structure.

Intuitively, a state s in a temporal modelD satisfies a formula ∀⊙ϕ (or ∃⊙ϕ) if
there exists an action α that, when executed in s, necessarily (or possibly) reaches
an immediate successor of s which satisfies the formula ϕ. In other words, the
modality ⊙ represents the set of α-successors of s, for some particular action
α ∈ A (denoted by T (s,α)); the quantifier ∀ requires that all these α-successors
satisfy ϕ; and quantifier ∃ requires that some of these α-successors satisfy ϕ.

Before we can give a formal definition of the α-ctl’s semantics, we need to
define the concept of preimage of a set of states. Intuitively, the strong (weak)
preimage of a set Y of states is the set X of those states from which a state in
Y can necessarily (possibly) be reached with one step. For instance, in domain
D1 (Fig. 2-a), the strong preimage of the set Y = {s2} is the set X = {s1}, since
s1 is the only state in D1 from which we can necessarily reach s2 after one step.

Definition 5. Let Y ⊆ S be a set of states. The weak preimage of Y , denoted
by T −∃ (Y ), is the set {s ∈ S ∶ ∃a ∈ A . T (s, a) ∩ Y ≠ ∅}, and the strong preimage
of Y , denoted by T −∀ (Y ), is the set {s ∈ S ∶ ∃a ∈ A . ∅ ≠ T (s, a) ⊆ Y }. ◆

The semantics of the global temporal operators (∃�, ∀�, ∃D and ∀D) is
derived from the semantics of the local temporal operators (∃⊙ and ∀⊙), by
using least (µ) and greatest (ν) fixpoint operations.

Definition 6. Let D = ⟨S,L,T ⟩ be a temporal model with signature (P,A) and
p ∈ P be an atomic proposition. The intension of an α-ctl formula ϕ in D (or
the set of states satisfying ϕ in D), denoted by JϕKD, is defined as:

– JpKD = {s ∶ p ∈ L(s)} (by definition, J⊺KD = S and J�KD = ∅)

– J¬pKD = S ∖ JpKD

– J(ϕ ∧ ϕ′)KD = JϕKD ∩ Jϕ′KD



8 S. L. Pereira

– J(ϕ ∨ ϕ′)KD = JϕKD ∪ Jϕ′KD

– J∃ ⊙ ϕKD = T
−

∃ (JϕKD)

– J∀⊙ ϕKD = T
−

∀ (JϕKD)

– J∃� ϕKD = νY.(JϕKD ∩ T
−

∃ (Y ))

– J∀� ϕKD = νY.(JϕKD ∩ T
−

∀ (Y ))

– J∃(ϕ D ϕ′)KD = µY.(Jϕ′KD ∪ (JϕKD ∩ T
−

∃ (Y )))

– J∀(ϕ D ϕ′)KD = µY.(Jϕ′KD ∪ (JϕKD ∩ T
−

∀ (Y ))) ◆

4.3 A Model Checker for α-ctl

We have implemented a model checker (Chap. 5 in [12]), directly from the α-ctl’s
semantics. Given a domain D = ⟨S,L,T ⟩ and an α-ctl formula ϕ, the model
checker computes the set C of states that do not satisfy ϕ in D; then, if C is the
empty set, it returns success; otherwise, it returns C as counter-example.

α-ModelChecker(ϕ,D)
1 C ← S ∖ Intension(ϕ,D)
2 if C = ∅ then return success

3 else return C

The basic operation on this model checker is performed by the function Intension,
that inductively computes the intension of the formula ϕ in the model D (see
Definition 6). The following results [12] establish the correctness and the com-
pleteness of the α-ctl model checker.

Theorem 1. Given an α-ctl formula ϕ and a temporal model D with signature
(P,A), the function Intension(ϕ,D) returns the set JϕKD.

Corollary 1. Given an α-ctl formula ϕ and a temporal model D with signature
(P,A), the algorithm α-ModelChecker succeeds if and only if every state in D
satisfies the formula ϕ.

5 Planning with α-CTL

In α-ctl, an extended reachability goal with built-in desired solution quality can
be specified as ∃(φDϕ), ∀�∃(φDϕ) and ∀(φDϕ), respectively, for weak, strong-
cyclic and strong solution. Given a planning problem P = ⟨D, s0, γ⟩, where γ is
an extended reachability goal specified in α-ctl, a solution for P can be obtained
by the following planning algorithm:

α-Planner(P)
1 M ←Model(lfp, γ,D)
2 C ← StatesCoveredBy(M)
3 if s0 ∈ C return Policy(M)
4 else return failure

This algorithm (see details in [12]) starts by synthesizing a submodel M ⊆ D
from ϕ and computing the set C of states covered by this submodel. Then, if
s0 ∈ C, it returns a policy π extracted from M , whose execution allows the agent
to reach the goal γ, from s0, in the domain D; otherwise, it returns failure.



Planning under Uncertainty for Extended Reachability Goals 9

The basic operation on the α-ctl planner is performed by function Model.
To implement this function, we have reformulated the notion of intension of a
formula γ (Definition 6) such that JγKD turns out to be a subgraph of D contain-
ing all the states satisfying γ, as well as all the transitions considered during the
selection of these states (we have essentially redefined preimage functions such
that they collect the pair (s, a), whenever the action a is considered to show
that s satisfies the property γ). With this reformulation we can synthesize plans
as a collateral effect of the verification of property γ in the temporal model D.

To extract a policy from a submodel M synthesized by the function Model,
the planner calls the function Policy(M), that returns a policy π such that:
(i) StatesCoveredBy(π) = StatesCoveredBy(M), and (ii), for all pairs (s, a),
(s′, a′) ∈ π, if s = s′, then a = a′.

The following theorems, whose proofs are presented in [12], establish some
formal properties of the α-ctl planner.

Theorem 2. Let P = ⟨D, s0,∃(ϕ1 D ϕ2)⟩ be a planning problem. If P has a
solution, then the policy returned by α-Planner(P) is a weak solution for P.

Theorem 3. Let P = ⟨D, s0,∀(ϕ1 D ϕ2)⟩ be a planning problem. If P has a
solution, then the policy returned by α-Planner(P) is a strong solution for P.

Theorem 4. Let P = ⟨D, s0,∀� ∃(ϕ1 D ϕ2)⟩ be a planning problem. If P has a
solution, the policy returned by α-Planner(P) is a strong-cyclic solution for P.

Theorem 5. Let P = ⟨D, s0, ϕ⟩ be a planning problem for an extended reacha-
bility goal ϕ. Then, α-Planner(P) fails if and only if P has no solution.

Theorem 6. The shortest execution path of a policy π, returned by the call
α-Planner(⟨D, s0,∃(ϕ1 D ϕ2)⟩), is minimum in the best case.

Theorem 7. The longest execution path of a policy π, returned by the call
α-Planner(⟨D, s0,∀(ϕ1 D ϕ2)⟩), is minimum in the worst case.

6 Conclusion

Practical applications for automated planning require reliable plans for complex
goals [7]. However, although such requirement can only be guaranteed by mean
of formal specification and analysis, few works in the planning literature make
use of formal methods for plan synthesis and plan validation [2, 3, 6]. Besides, in
general, those works are related to planning based on model checking techniques,
for simple reachability goals in nondeterministic environments.

In this work, we introduce the class of extended reachability goals and show
that the ctl’s semantics is inadequate to specify goals in this class (with built-
in desired solution quality: weak, strong or strong-cyclic) and to formalize plan
synthesis and validation as well. Motivated by this scenario, we have proposed
a new temporal logic, named α-ctl. Unlike other existing action logics found in
literature [10, 11], the proposed logic does not make use of actions to compose
formulas. Nevertheless, the actions play an important role in α-ctl’s semantics
by allowing the definition of special purpose temporal operators. Based on this



10 S. L. Pereira

new logic, we also implemented a sound and complete planning algorithm capa-
ble of synthesizing policies for extended reachability goals with built-in desired
solution quality. By proceeding in this way, instead of constructing plans in an
ad hoc fashion to be later validated, we can synthesize plans whose validity is an
immediate consequence of a well formalized synthesis process.

It is important to emphasize that the existing works on planning for extended
goals either propose an ad hoc planning algorithm [8], without proving its validity
through formal analysis; or propose a new logic that can be used to specify
extended goals and do plan validation [1], without presenting any plan synthesis
algorithm (making the assumption that policies are given a priori). With this
work, we have provided both: a logic that can be used as a formal language to
specify extended reachability goals and a planning system based on this logic,
whose relevance is attested by the international publications [13, 14, 16, 15].

References

1. C. Baral and J. Zhao. Goal specification, non-determinism and quantifying over
policies. In AAAI, 2006.

2. A. Cimatti, F. Giunchiglia, E. Giunchiglia, and P. Traverso. Planning via model
checking: A decision procedure for AR. In ECP, pages 130–142, 1997.

3. A. Cimatti, M. Roveri, and P. Traverso. Strong planning in non-deterministic
domains via model checking. In AIPS, pages 36–43, 1998.

4. E. M. Clarke. Design and synthesis of synchronization skeletons using branching-
time temporal logic. In Logic of Programs, pages 52–71. Springer, 1982.

5. E. M. Clarke and J. Wing. Formal methods: state of the art and future directions.
In ACM Computing Systems Surveys, volume 28, 1996.

6. M. Daniele, P. Traverso, and M. Y. Vardi. Strong cyclic planning revisited. In
ECP, pages 35–48, 1999.

7. M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and Practice.
Morgan Kaufmann Publishers Inc., USA, 2004.

8. U. Dal Lago, M. Pistore, and P. Traverso. Planning with a language for extended
goals. In 8th NCAI, pages 447–454, Menlo Park, CA, USA, 2002.

9. M. Muller-Olm, D. Schimidt, and B. Steffen. Model checking: A tutorial introduc-
tion. In SAS’99, LNCS 1694, pages 330–354, 1999.

10. R. De Nicola and F. Vaandrager. Action versus state based logics for transition
systems. In LITP, pages 407–419, New York, NY, USA, 1990. Springer.

11. C. Pecheur and F. Raimondi. Symbolic model checking of logics with actions. In
MoChArt 2006, pages 1215–1222. Springer Verlag, 2006.

12. S. L. Pereira. Planning under uncertainty for extended reachability goals. In PhD

thesis, IME-USP, 2007.
13. S. L. Pereira and L. N. Barros. Using α-ctl to specify complex planning goals. In

WoLLIC’2008, volume 5110 of LNAI, pages 250–260.
14. S. L. Pereira and L. N. Barros. A logic-based agent that plans for extended reach-

ability goals. Autonomous Agents and Multi-Agent Systems, 9034:327–344, 2008.
15. S. L. Pereira, L. N. Barros, and F. G. Cozman. Strong probaliblistic planning

(accepted). In MICAI’2008, pages 1–8.
16. S. L. Pereira, L. N. Barros, and F. G. Cozman. Strong probaliblistic planning

(poster presentation). In ICAPS’2008, pages 1–8.
17. H. Saiedian. An invitation to formal methods. IEEE Computer, 29(4):16–30, 1996.


