Introdução à Inteligência Artificial

Prof. Dr. Silvio do Lago Pereira

slago@ime.usp.br

1 O que é Inteligência Artificial?

Em geral, os dicionários da língua portuguesa (e.g., [3]) definem inteligência como sendo a "faculdade de aprender, compreender e adaptar-se" e apresentam pelo menos mais três acepções distintas para esse termo:

- teológica: "dom divino que nos torna semelhantes ao Criador";
- filosófica: "princípio abstrato que é a fonte de toda a intelectualidade";
- psicológica: "capacidade de resolver problemas novos com rapidez e êxito".

Como podemos perceber, não há consenso sobre o significado de inteligencia e, dessa forma, definir precisamente o que é inteligencia artificial é uma tarefa, se não impossível, pelo menos extremamente difícil. Entretanto, podemos definir Inteligencia Artificial (IA), enquanto disciplina do conhecimento humano. Segundo Russell & Norvig [5], as definições de IA, encontradas na literatura científica, podem ser agrupadas em quatro categorias principais:

- (a) sistemas que pensam como humanos
- (b) sistemas que agem como humanos
- (c) sistemas que pensam logicamente¹
- (d) sistemas que agem logicamente

As duas primeiras categorias (a&b) são, essencialmente, empíricas e envolvem formulação de hipóteses e confirmação experimental, enquanto as outras duas (c&d) são teóricas e envolvem matemática e engenharia. Embora essas categorias de definições muitas vezes pareçam antagônicas, todas têm contribuído muito para o desenvolvimento da área de IA.

1.1 O Teste de Turing

Para contornar o problema da falta de definição precisa para inteligência artificial, *Alan Turing* (1950) propôs um teste capaz de determinar se uma máquina demonstra ou não inteligência (artificial), baseado no seguinte argumento:

¹ Ou seja, de acordo com as leis da Lógica Formal.

Não sabemos definir precisamente o que é *inteligência* e, conseqüentemente, não podemos definir o que é *inteligência artificial*. Entretanto, embora não tenhamos uma definição de *inteligência*, podemos assumir que o ser humano é inteligente. Portanto, se uma máquina fosse capaz de se comportar de tal forma que não pudéssemos distingui-la de um ser humano, essa máquina estaria demonstrando algum tipo de inteligência que, nesse caso, só poderia ser *inteligência artificial*.

Essencialmente, o teste proposto por Allan Turing era que, por meio de um terminal², um ser humano deveria entrevistar "alguém" num local remoto (como num chat); se, após um determinado tempo, ele não fosse capaz de perceber que esse "alguém" era uma máquina, então a hipótese da existência de inteligência artificial estaria confirmada [4].

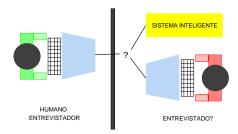


Figura 1. Um cenário para o teste de Turing.

Conforme $Russell \ \& Norvig \ [5]$ observam, programar sistema de computador para passar no $Teste \ de \ Turing \ \acute{e}$ uma tarefa muito difícil. Tal sistema precisaria ter pelo menos as seguintes capacidades:

- processamento de linguagem natural: para comunicar-se com o usuário;
- representação de conhecimento: para armazenar o que sabe ou aprende;
- raciocínio automatizado: para usar o conhecimento armazenado com a finalidade de responder perguntas ou tirar novas conclusões;
- aprendizado de máquina: para adaptar-se a novas circunstâncias, detectar e extrapolar padrões, a fim de atualizar o seu conhecimento armazenado.

1.2 Histórico da Inteligência Artificial

Para termos uma idéia de como a IA vem se desenvolvendo ao longo dos anos, vamos descrever sucintamente as principais fases de pesquisa nessa área [5].

² O teste evita contato direto porque inteligência não depende da aparência física.

(1943-1950) No início, as pesquisas estavam principalmente voltadas ao modelo de neurônios artificiais ($McCulloch \ \mathcal{E}\ Pitts,\ 1943$), que possibilitaria o desenvolvimento de máquinas que fossem capazes de aprender.

(1951-1969) Em seguida, surgiram também os primeiros programas capazes de jogar xadrez (Shannon, 1950 e Turing, 1953), provar teoremas de lógica e imitar a forma de raciocínio do ser humano (Newell & Simon, 1956), planejar tarefas (Green, 1963), comunicar-se em linguagem natural (Weizenbaum, 1965), aprender por analogia (Evans, 1968) e analisar estruturas moleculares (Buchan et al., 1969). Foi uma fase de grande entusiasmo; já que, até bem pouco tempo antes, o computador era visto meramente como uma máquina de calcular.

(1970-1980) Nessa fase, os pesquisadores começaram a esbarrar em problemas relacionados ao armazenamento de dados e ao tempo de processamento. Com o surgimento da *Teoria da Complexidade Computacional* (*Cook*, 1971), ficou comprovado que a solução desses problemas não dependia apenas de memória adicional ou de processadores mais rápidos. Em conseqüência disso, muitas das expectativas iniciais se mostraram impossíveis e o entusiasmo na área diminuiu.

(1981-presente) Em 1981, os japoneses anunciaram um projeto de computador de quinta geração, que teria Prolog como linguagem de máquina e seria capaz de realizar milhões de inferências por segundo. Receando o domínio japonês, grandes investimentos começaram a ser feitos na Europa e nos Estados Unidos. Em decorrência desse fato, a IA voltou a ser uma área de pesquisa muito ativa; sendo que, atualmente, está voltada principalmente para aplicações práticas em áreas específicas, tais como manufatura, robótica, visão, etc.

1.3 Abordagens em Inteligência Artificial

Há três abordagens principais em IA [1]:

- Conexionista: baseia-se na hipótese de causa-efeito, segundo a qual um modelo suficientemente preciso do cérebro humano é suficiente para reproduzir a inteligência que o homem possui. Essa abordagem trata de problemas imprecisos, mas que podem ser definidos através de exemplos (e.g., reconhecimento de caligrafia), e sua principal contribuição são as redes neurais.
- Simbólica: baseia-se na hipótese do sistema de símbolos físicos, segundo a qual um conjunto de estruturas simbólicas e um conjunto de regras de manipulação dessas estruturas são os meios necessários e suficientes para se criar inteligência. Essa abordagem trata problemas bem definidos (e.g., planejamento de tarefas) e sua principal contribuição são os sistemas especialistas.
- Evolucionária: baseia-se na teoria evolutiva de Darwin, a hipótese é que podemos modelar sistemas inteligentes simulando a evolução de uma população de indivíduos (aleatórios), que carregam genes com informação suficiente para dar origem à solução de um problema, usando operações genéticas

de recombinação e mutação. Essa abordagem trata de problemas de otimização (e.g., escalonamento de produção) e sua principal contribuição são os algoritmos genéticos.

Há também uma quarta abordagem, denominada *IA Híbrida* [1], na qual se combina ferramentas de diferentes abordagens para se obter uma solução para um determinado problema.

1.4 Áreas de aplicação da Inteligência Artificial

Algumas das áreas de aplicação da Inteligência Artificial são, por exemplo:

- jogos e brinquedos eletrônicos
- robótica e automação industrial
- verificação automática de software
- otimização e controle de processos
- processamento de linguagem natural
- bancos de dados dedutivos e mineração de dados
- aprendizagem, planejamento e escalonamento de tarefas
- reconhecimento de faces, de voz, de cheiros e de sabores

1.5 Consideração final

Na verdade, Inteligência Artificial é uma ampla área de pesquisa que subdividese em diversas sub-áreas, cada uma delas adotando diferentes abordagens e tratando diferentes problemas que, em geral, são de alta complexidade (para os quais ainda não temos soluções satisfatórias). Assim, nesse curso introdutório, adotaremos a abordagem simbólica e enfocaremos raciocínio automatizado; especialmente, apresentaremos os fundamentos lógicos [2] dessa sub-área de pesquisa.

Referências

- 1. Barreto, J. M. Inteligência Artificial no Limiar do Século XXI Abordagem Híbrida, Simbólica, Conexionista e Evolucionária, UFSC, 2001.
- 2. Genesereth, M. R. & Nilsson, N. J. Logical Fundations of Artificial Intelligence, Morgan Kaufmann Publishers, 1988.
- 3. Michaelis Dicionário da Língua Portuguesa, Cia. Melhoramentos, 1998.
- 4. Rich, E. & Knight, K. Inteligência Artificial, 2^a ed., Makron Books, 1995.
- Russell, S. & Norvig, P. Artificial Intelligence A Modern Approach, Prentice-Hall, 1995.