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Definition (Pfaffian Chains)

A finite sequence of C 1 functions (they are actually real analytic),
f1, . . . , fk : Rn → R is a Pfaffian chain if there are real polynomials
Pi ,j(X1, . . . ,Xn,Y1, . . . ,Yj), 1 ≤ j ≤ k , such that

∂fj
∂xi

= Pi ,j(x , f1, . . . , fj),

for all 1 ≤ i ≤ n and 1 ≤ j ≤ k , where x = (x1, . . . , xn).

Note that these equations can be written as

dy1 =
∑n

i=1 Pi1(x , y1)dxi

dy2 =
∑n

i=1 Pi2(x , y1, y2)dxi
...

...

dyk =
∑n

i=1 Pik(x , y1, . . . , yk)dxi .
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Definition (Pfaffian Functions)

Given a Pfaffian chain f1, . . . , fk : Rn → R, a Pfaffian function is a
function of the form g(x) = Q(x , f1, . . . , fk).

It is easy to see that a Pfaffian function also belongs to a Pfaffian chain,
but this definition is easier to use.

Definition (Their Complexity)

The complexity of g is the tuple containing the degrees of Q, Pi ,j ’s, and
the number of variables.
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Example

1 any rational function is Pfaffian: if f = p/q, a Pfaffian chain for f is
f1 = 1/q and f2 = f : f ′1 = −q′f 21 , f ′2 = (p′q − pq′)f 21 ;

2 f (x) = exp x : f ′ = f ;

3 f1(x) = (1 + x)−1, f2(x) = arctan x : f ′1 = 2xf 21 , f ′2 = f1.

Example

Some more elaborate examples come from the real and imaginary parts of
elliptic integrals.

Example

The composition of Pfaffian functions is a Pfaffian function, for instance:
f = exp arctan x , f ′ = f /(1 + x2).
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Theorem (Khovanskii, 1980)

Let F1, . . . ,Fm : Rn → R be Pfaffian functions (with m ≤ n), obtained
from a Pfaffian chain g1, . . . , gk , Fj(x) = Qj(x , g). The sum of the Betti
numbers of the zero set of F = (F1, . . . ,Fm) is bounded by a
(computable) function on the complexity of F1, . . . , Fn.

Actually, the bound is exponential on the numbers appearing in their
complexity.

Example

Note that this theorem rules out sin and cos as Pfaffian functions. But if
we drop out the restrictions on the domains to be the whole R, then
f = tan x is Pfaffian in the interval (−π

2 ,
π
2 ): f ′ = 1 + f 2. Then both sine

and cossine can be made into Pfaffian functions in this interval because

sin 2x =
2 tan x

1 + tan2 x
, and cos 2x =

1− tan2 x

1 + tan2 x
.
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Proof.

The idea of the proof is to reduce the Theorem to the case of m = n via
Morse Theory and then compute a bound to the number of non singular
zeros of (F1, . . . ,Fn). A simple Morse function is included as a Pfaffian
function.
To find such a bound, we proceed by induction on the length of the
corresponding Pfaffian chain, reducing the chain by increasing the number
of functions and of variables until we end with a system of polynomial
equations.
Finally, Bézout Theorem then gives the desired bound (which is the
product of the total degrees of those polynomials).
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Example

Some applications:

1 Real Algebraic Geometry: number of zeros of polynomial equations
depending on the number of monomials but not the degree
(Khovanskii).

2 Dynamical Systems: Dulac’s Problem (Moussu-Roche).

3 Model Theory: o-minimality (Wilkie, Speissegger,etc).

Example (Noetherian Functions)

Noetherian functions compose a class containing the Pfaffian functions.

Noetherian chains satisfy
∂fj
∂xi

= Pi ,j(x , f1, . . . , fk), (no restriction to

depend only on previous functions). Open Problem: find a bound to the
number of connected components of their zero sets (restricted to a
convenient region). Because of Cauchy-Riemann equations, some
harmonic functions are Noetherian.
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