Complemented copies of $c_0(\tau)$ in tensor products of Banach spaces

Vinícius Morelli Cortes

Joint work with Elói Medina Galego (IME-USP) and Christian Samuel (Aix-Marseille Université)

São Paulo, May 14 2021

Definition

Let X be a Banach space. A subspace Y of X is *complemented* in X if there exists a projection P from X onto Y, that is, a bounded linear operator $P: X \to X$ such that P(X) = Y and $P \circ P = P$.

Definition

Let X be a Banach space. A subspace Y of X is *complemented* in X if there exists a projection P from X onto Y, that is, a bounded linear operator $P: X \to X$ such that P(X) = Y and $P \circ P = P$.

Definition

- Let X and Y be Banach spaces.
 - We say that X contains a copy of Y, and write Y → X, if X contains a subspace isomorphic to Y.
 - We say that X contains a complemented copy of Y, and write
 Y → X, if X contains a complemented subspace isomorphic to Y.

We are interested in (complemented) copies of the spaces $c_0(I)$, where I is an infinite set. Recall that $c_0(I)$ is the Banach space of all families of scalars $(\alpha_i)_{i \in I}$ such that, for every $\varepsilon > 0$, the set $\{i \in I : |\alpha_i| \ge \varepsilon\}$ is finite, equipped with the supremum norm. When $I = \mathbb{N}$, this space will be denoted simply by c_0 (the classical space of all scalar sequences that converge to zero). We are interested in (complemented) copies of the spaces $c_0(I)$, where I is an infinite set. Recall that $c_0(I)$ is the Banach space of all families of scalars $(\alpha_i)_{i \in I}$ such that, for every $\varepsilon > 0$, the set $\{i \in I : |\alpha_i| \ge \varepsilon\}$ is finite, equipped with the supremum norm. When $I = \mathbb{N}$, this space will be denoted simply by c_0 (the classical space of all scalar sequences that converge to zero).

Since $c_0(I)$ and $c_0(J)$ are isomorphic whenever I and J have the same cardinality, it is enough to consider the spaces $c_0(\tau)$, where τ is an infinite cardinal.

We are interested in (complemented) copies of the spaces $c_0(I)$, where I is an infinite set. Recall that $c_0(I)$ is the Banach space of all families of scalars $(\alpha_i)_{i \in I}$ such that, for every $\varepsilon > 0$, the set $\{i \in I : |\alpha_i| \ge \varepsilon\}$ is finite, equipped with the supremum norm. When $I = \mathbb{N}$, this space will be denoted simply by c_0 (the classical space of all scalar sequences that converge to zero).

Since $c_0(I)$ and $c_0(J)$ are isomorphic whenever I and J have the same cardinality, it is enough to consider the spaces $c_0(\tau)$, where τ is an infinite cardinal.

This is an active field of research in Banach space theory, with roots in Bessaga-Pełczyński's fundamental work in the fifties.

Some classical results

A family $(x_i)_{i \in I}$ in a Banach space X is *unconditionally summable* if for every $\varepsilon > 0$ there exists a finite subset F of I such that

$$\left|\sum_{i\in G} x_i\right| < \varepsilon,$$

for any finite subset G of I with $F \cap G = \emptyset$.

A family $(x_i)_{i \in I}$ in a Banach space X is *unconditionally summable* if for every $\varepsilon > 0$ there exists a finite subset F of I such that

$$\left|\sum_{i\in G} x_i\right| < \varepsilon$$

for any finite subset G of I with $F \cap G = \emptyset$. We say that $(x_i)_{i \in I}$ is weakly unconditionally summable if $(x^*(x_i))_{i \in I}$ is unconditionally summable for every $x^* \in X^*$.

A family $(x_i)_{i \in I}$ in a Banach space X is *unconditionally summable* if for every $\varepsilon > 0$ there exists a finite subset F of I such that

$$\left|\sum_{i\in G} x_i\right| < \varepsilon$$

for any finite subset G of I with $F \cap G = \emptyset$.

We say that $(x_i)_{i \in I}$ is weakly unconditionally summable if $(x^*(x_i))_{i \in I}$ is unconditionally summable for every $x^* \in X^*$.

A family $(x_i^*)_{i \in I}$ in X^* is weak*-null if $(x_i^*(x))_{i \in I}$ belongs to $c_0(I)$ for every $x \in X$.

Some classical results

The canonical basis of $c_0(I)$ is the family $\{e_i : i \in I\}$, where $e_i(j) = \delta_{ij}$ for each $j \in I$.

The canonical basis of $c_0(I)$ is the family $\{e_i : i \in I\}$, where $e_i(j) = \delta_{ij}$ for each $j \in I$.

A family $(x_i)_{i \in I}$ is *equivalent* to the canonical basis of $c_0(I)$ if there exist constants $0 < \delta \le M$ such that

$$\delta \sup_{i \in F} |\alpha_i| \le \left\| \sum_{i \in F} \alpha_i x_i \right\| \le M \sup_{i \in F} |\alpha_i|,$$

for each finite subset F of I and all families of scalars $(\alpha_i)_{i \in F}$.

The canonical basis of $c_0(I)$ is the family $\{e_i : i \in I\}$, where $e_i(j) = \delta_{ij}$ for each $j \in I$.

A family $(x_i)_{i \in I}$ is *equivalent* to the canonical basis of $c_0(I)$ if there exist constants $0 < \delta \le M$ such that

$$\delta \sup_{i \in F} |\alpha_i| \le \left\| \sum_{i \in F} \alpha_i x_i \right\| \le M \sup_{i \in F} |\alpha_i|,$$

for each finite subset F of I and all families of scalars $(\alpha_i)_{i \in F}$. Equivalently, $(x_i)_{i \in I}$ is equivalent to the canonical basis of $c_0(I)$ if there exists $T : c_0(I) \to X$ such that $T(e_i) = x_i$ for every $i \in I$ and T is an isomorphism onto its image.

Some classical results

Theorem (Bessaga-Pełczyński, 1958)

Let X be Banach space. Then $c_0 \hookrightarrow X$ if, and only if, there exists a sequence $(x_n)_{n\geq 1}$ in X that is weakly unconditionally summable but not unconditionally summable.

Theorem (Bessaga-Pełczyński, 1958)

Let X be Banach space. Then $c_0 \hookrightarrow X$ if, and only if, there exists a sequence $(x_n)_{n\geq 1}$ in X that is weakly unconditionally summable but not unconditionally summable.

Theorem (Schlumprecht, 1988)

Let X be Banach space. Then $c_0 \stackrel{c}{\hookrightarrow} X$ if, and only if, there exist sequences $(x_n)_{n\geq 1}$ in X and $(x_n^*)_{n\geq 1}$ in X* such that $(x_n)_{n\geq 1}$ is equivalent to the canonical basis of c_0 , $(x_n^*)_{n\geq 1}$ is weak*-null and $x_n^*(x_n) \neq 0$.

Some classical results

Theorem (Emmanuele, 1988 (p = 1); Bombal, 1992 ($1 \le p < \infty$); Leung-Räbiger, 1990 ($p = \infty$))

Given X a Banach space and $1 \le p \le \infty$, we have

$$c_0 \stackrel{c}{\hookrightarrow} \ell_p(\mathbb{N}, X) \iff c_0 \stackrel{c}{\hookrightarrow} X.$$

Theorem (Emmanuele, 1988 (p = 1); Bombal, 1992 ($1 \le p < \infty$); Leung-Räbiger, 1990 ($p = \infty$))

Given X a Banach space and $1 \le p \le \infty$, we have

$$c_0 \stackrel{c}{\hookrightarrow} \ell_p(\mathbb{N}, X) \iff c_0 \stackrel{c}{\hookrightarrow} X.$$

Theorem (Kwapień 1974; Emmanuele, 1988; Díaz, 1994)

Given X a Banach space and $1 \le p \le \infty$, we have

$$c_0 \stackrel{c}{\hookrightarrow} L_p([0,1],X) \iff c_0 \hookrightarrow X.$$

Theorem (Emmanuele, 1988 (p = 1); Bombal, 1992 ($1 \le p < \infty$); Leung-Räbiger, 1990 ($p = \infty$))

Given X a Banach space and $1 \le p \le \infty$, we have

$$c_0 \stackrel{c}{\hookrightarrow} \ell_p(\mathbb{N}, X) \iff c_0 \stackrel{c}{\hookrightarrow} X.$$

Theorem (Kwapień 1974; Emmanuele, 1988; Díaz, 1994)

Given X a Banach space and $1 \le p \le \infty$, we have

$$c_0 \stackrel{c}{\hookrightarrow} L_p([0,1],X) \iff c_0 \hookrightarrow X.$$

In the previous theorem, the forward implication is due to Kwapień $(1 \le p < \infty)$ and Díaz $(p = \infty)$ and the converse is due to Emmanuele.

Tensor products of Banach spaces

Let X and Y be real or complex vector spaces. Denote by $B(X \times Y)$ the space of all bilinear forms $A : X \times Y \to \mathbb{K}$. Given $x \in X$ and $y \in Y$, let $x \otimes y$ be the linear functional on $B(X \times Y)$ defined by

$$(x \otimes y)(A) = A(x, y)$$

for each $A \in B(X \times Y)$.

Let X and Y be real or complex vector spaces. Denote by $B(X \times Y)$ the space of all bilinear forms $A : X \times Y \to \mathbb{K}$. Given $x \in X$ and $y \in Y$, let $x \otimes y$ be the linear functional on $B(X \times Y)$ defined by

$$(x\otimes y)(A)=A(x,y)$$

for each $A \in B(X \times Y)$.

Definition

The *tensor product* of X and Y, denoted by $X \otimes Y$, is the subspace of the (algebraic) dual of $B(X \times Y)$ spanned by the functionals $x \otimes y$, where $x \in X$ and $y \in Y$.

Tensor products of Banach spaces

Given Banach spaces X and Y, we will consider the following two norms on $X \otimes Y$.

Given Banach spaces X and Y, we will consider the following two norms on $X \otimes Y$.

The *injective norm* of $u \in X \otimes Y$ is defined by

$$\|u\|_{\varepsilon} = \sup\left\{\left|\sum_{i=1}^n x^*(x_i)y^*(y_i)\right| : x^* \in B_{X^*}, y^* \in B_{Y^*}\right\},\$$

where $u = \sum_{i=1}^{n} x_i \otimes y_i$ is an arbitrary representation of u.

Given Banach spaces X and Y, we will consider the following two norms on $X \otimes Y$.

The *injective norm* of $u \in X \otimes Y$ is defined by

$$\|u\|_{\varepsilon} = \sup\left\{\left|\sum_{i=1}^n x^*(x_i)y^*(y_i)\right| : x^* \in B_{X^*}, y^* \in B_{Y^*}\right\},\$$

where $u = \sum_{i=1}^{n} x_i \otimes y_i$ is an arbitrary representation of u. The *projective norm* of $u \in X \otimes Y$ is defined by

$$||u||_{\pi} = \inf \left\{ \sum_{i=1}^{n} ||x_i|| ||y_i|| \right\},$$

where the infimum is taken over all the representations $\sum_{i=1}^{n} x_i \otimes y_i$ of u.

Tensor products of Banach spaces

When X and Y are both infinite dimensional, the spaces $(X \otimes Y, \|\cdot\|_{\varepsilon})$ and $(X \otimes Y, \|\cdot\|_{\pi})$ are never complete.

When X and Y are both infinite dimensional, the spaces $(X \otimes Y, \|\cdot\|_{\varepsilon})$ and $(X \otimes Y, \|\cdot\|_{\pi})$ are never complete.

Definition

The injective tensor product and the projective tensor product of X and Y are the completions of $X \otimes Y$ endowed with the injective and projective norms, respectively. These spaces will be denoted by $X \widehat{\otimes}_{\varepsilon} Y$ and $X \widehat{\otimes}_{\pi} Y$.

When X and Y are both infinite dimensional, the spaces $(X \otimes Y, \|\cdot\|_{\varepsilon})$ and $(X \otimes Y, \|\cdot\|_{\pi})$ are never complete.

Definition

The *injective tensor product* and the *projective tensor product* of X and Y are the completions of $X \otimes Y$ endowed with the injective and projective norms, respectively. These spaces will be denoted by $X \widehat{\otimes}_{\varepsilon} Y$ and $X \widehat{\otimes}_{\pi} Y$.

Some tensor products are particularly simple:
When X and Y are both infinite dimensional, the spaces $(X \otimes Y, \|\cdot\|_{\varepsilon})$ and $(X \otimes Y, \|\cdot\|_{\pi})$ are never complete.

Definition

The *injective tensor product* and the *projective tensor product* of X and Y are the completions of $X \otimes Y$ endowed with the injective and projective norms, respectively. These spaces will be denoted by $X \widehat{\otimes}_{\varepsilon} Y$ and $X \widehat{\otimes}_{\pi} Y$.

Some tensor products are particularly simple:

• If K is a compact Hausdorff space, then $C(K)\widehat{\otimes}_{\varepsilon}X \equiv C(K,X)$.

When X and Y are both infinite dimensional, the spaces $(X \otimes Y, \|\cdot\|_{\varepsilon})$ and $(X \otimes Y, \|\cdot\|_{\pi})$ are never complete.

Definition

The injective tensor product and the projective tensor product of X and Y are the completions of $X \otimes Y$ endowed with the injective and projective norms, respectively. These spaces will be denoted by $X \widehat{\otimes}_{\varepsilon} Y$ and $X \widehat{\otimes}_{\pi} Y$.

Some tensor products are particularly simple:

- If K is a compact Hausdorff space, then $C(K)\widehat{\otimes}_{\varepsilon}X \equiv C(K,X)$.
- If I an infinite set, then $\ell_1(I)\widehat{\otimes}_{\pi}X \equiv \ell_1(I,X)$.

When X and Y are both infinite dimensional, the spaces $(X \otimes Y, \|\cdot\|_{\varepsilon})$ and $(X \otimes Y, \|\cdot\|_{\pi})$ are never complete.

Definition

The injective tensor product and the projective tensor product of X and Y are the completions of $X \otimes Y$ endowed with the injective and projective norms, respectively. These spaces will be denoted by $X \widehat{\otimes}_{\varepsilon} Y$ and $X \widehat{\otimes}_{\pi} Y$.

Some tensor products are particularly simple:

- If K is a compact Hausdorff space, then $C(K)\widehat{\otimes}_{\varepsilon}X \equiv C(K,X)$.
- If I an infinite set, then $\ell_1(I)\widehat{\otimes}_{\pi}X \equiv \ell_1(I,X)$.
- Similarly, $L_1[0,1]\widehat{\otimes}_{\pi}X \equiv L_1([0,1],X)$.

Vinícius Morelli Cortes (IME-USP)

Theorem (Cembranos-Freniche, 1984)

Let X be a Banach space and K be a compact Hausdorff space. If X is infinite dimensional and K is infinite, then $c_0 \stackrel{c}{\hookrightarrow} C(K, X)$.

Theorem (Cembranos-Freniche, 1984)

Let X be a Banach space and K be a compact Hausdorff space. If X is infinite dimensional and K is infinite, then $c_0 \stackrel{c}{\hookrightarrow} C(K, X)$.

This theorem was extended by E. Saab and P. Saab (1986) and, later, by Ryan (1991). Ryan's proof is also simpler.

Theorem (Cembranos-Freniche, 1984)

Let X be a Banach space and K be a compact Hausdorff space. If X is infinite dimensional and K is infinite, then $c_0 \stackrel{c}{\hookrightarrow} C(K, X)$.

This theorem was extended by E. Saab and P. Saab (1986) and, later, by Ryan (1991). Ryan's proof is also simpler. The map $S: X \widehat{\otimes}_{\varepsilon} Y \to \mathcal{K}(X^*, Y)$ defined by

$$S(u)(x^*) = \sum_{i=1}^n x^*(x_i)y_i,$$

for all $x^* \in X^*$ and $u = \sum_{i=1}^n x_i \otimes y_i \in X \otimes Y$, is a well defined linear isometry onto its image. This allows us to identify the injective tensor product with a subspace of $\mathcal{K}(X^*, Y)$.

Vinícius Morelli Cortes (IME-USP)

Theorem (Ryan, 1991)

Let X and Y be Banach spaces. If X is infinite dimensional and $c_0 \hookrightarrow Y$, then $X \widehat{\otimes}_{\varepsilon} Y$ contains a subspace isomorphic to c_0 that is complemented in $\mathcal{K}(X^*, Y)$ (and therefore complemented in $X \widehat{\otimes}_{\varepsilon} Y$).

Theorem (Ryan, 1991)

Let X and Y be Banach spaces. If X is infinite dimensional and $c_0 \hookrightarrow Y$, then $X \widehat{\otimes}_{\varepsilon} Y$ contains a subspace isomorphic to c_0 that is complemented in $\mathcal{K}(X^*, Y)$ (and therefore complemented in $X \widehat{\otimes}_{\varepsilon} Y$).

Theorem (Oja, 1991)

Given X a Banach space and $1 \le p < \infty$, we have

$$c_0 \stackrel{c}{\hookrightarrow} \ell_p \widehat{\otimes}_{\pi} X \iff c_0 \stackrel{c}{\hookrightarrow} X.$$

Theorem (Ryan, 1991)

Let X and Y be Banach spaces. If X is infinite dimensional and $c_0 \hookrightarrow Y$, then $X \widehat{\otimes}_{\varepsilon} Y$ contains a subspace isomorphic to c_0 that is complemented in $\mathcal{K}(X^*, Y)$ (and therefore complemented in $X \widehat{\otimes}_{\varepsilon} Y$).

Theorem (Oja, 1991)

Given X a Banach space and $1 \le p < \infty$, we have

$$c_0 \stackrel{c}{\hookrightarrow} \ell_p \widehat{\otimes}_{\pi} X \iff c_0 \stackrel{c}{\hookrightarrow} X.$$

Theorem (Oja, 1991)

Given X a Banach space and 1 , we have

$$c_0 \stackrel{c}{\hookrightarrow} L_p[0,1] \widehat{\otimes}_{\pi} X \iff c_0 \stackrel{c}{\hookrightarrow} X.$$

Vinícius Morelli Cortes (IME-USP)

What about the uncountable case?

Rosenthal (1970) extended Bessaga-Pełczyński's theorem to the non-separable (uncountable τ) case:

Rosenthal (1970) extended Bessaga-Pełczyński's theorem to the non-separable (uncountable τ) case:

Theorem (Rosenthal, 1970)

Let X be Banach space and τ be an infinite cardinal. The following are equivalent:

$$\bigcirc$$
 $c_0(\tau) \hookrightarrow X;$

- **(D)** There exists a bounded linear operator $T : c_0(\tau) \to X$ such that $\inf_{i \in \tau} \|T(e_i)\| > 0$;
- **(D)** There exists a weakly unconditionally summable family $(x_i)_{i \in \tau}$ such that $\inf_{i \in \tau} ||x_i|| > 0$.

What about the uncountable case?

Schlumprecht's theorem also holds for any infinite cardinal τ :

Schlumprecht's theorem also holds for any infinite cardinal τ :

Theorem (C, 2017)

Let X be a Banach space and τ be an infinite cardinal. Then $c_0(\tau) \stackrel{c}{\hookrightarrow} X$ if, and only if, there exist families $(x_i)_{i\in\tau}$ in X and $(x_i^*)_{i\in\tau}$ in X^* such that $(x_i)_{i\in\tau}$ is equivalent to the canonical basis of $c_0(\tau)$, $(x_i^*)_{i\in\tau}$ is weak*-null and $\inf_{i\in\tau} |x_i^*(x_i)| > 0$.

Since the injective and projective tensor products always contain complemented copies of both X and Y, we will investigate the following problem:

Since the injective and projective tensor products always contain complemented copies of both X and Y, we will investigate the following problem:

Problem

Let X and Y be Banach spaces, τ be an infinite cardinal and α denote either the injective or projective norm. Under which conditions do we have

$$c_0(\tau) \stackrel{c}{\hookrightarrow} X \widehat{\otimes}_{\alpha} Y \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X \text{ or } c_0(\tau) \stackrel{c}{\hookrightarrow} Y?$$

Since the injective and projective tensor products always contain complemented copies of both X and Y, we will investigate the following problem:

Problem

Let X and Y be Banach spaces, τ be an infinite cardinal and α denote either the injective or projective norm. Under which conditions do we have

$$c_0(\tau) \stackrel{c}{\hookrightarrow} X \widehat{\otimes}_{\alpha} Y \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X \text{ or } c_0(\tau) \stackrel{c}{\hookrightarrow} Y?$$

Since the injective and projective tensor products always contain complemented copies of both X and Y, we will investigate the following problem:

Problem

Let X and Y be Banach spaces, τ be an infinite cardinal and α denote either the injective or projective norm. Under which conditions do we have

$$c_0(\tau) \stackrel{c}{\hookrightarrow} X \widehat{\otimes}_{\alpha} Y \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X \text{ or } c_0(\tau) \stackrel{c}{\hookrightarrow} Y?$$

•
$$c_0 \stackrel{c}{\hookrightarrow} \ell_2 \widehat{\otimes}_{\varepsilon} \ell_2$$

Since the injective and projective tensor products always contain complemented copies of both X and Y, we will investigate the following problem:

Problem

Let X and Y be Banach spaces, τ be an infinite cardinal and α denote either the injective or projective norm. Under which conditions do we have

$$c_0(\tau) \stackrel{c}{\hookrightarrow} X \widehat{\otimes}_{\alpha} Y \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X \text{ or } c_0(\tau) \stackrel{c}{\hookrightarrow} Y?$$

•
$$c_0 \stackrel{c}{\hookrightarrow} \ell_2 \widehat{\otimes}_{\varepsilon} \ell_2$$

• $\ell_1 \stackrel{c}{\hookrightarrow} \ell_2 \widehat{\otimes}_{\pi} \ell_2$

Since the injective and projective tensor products always contain complemented copies of both X and Y, we will investigate the following problem:

Problem

Let X and Y be Banach spaces, τ be an infinite cardinal and α denote either the injective or projective norm. Under which conditions do we have

$$c_0(\tau) \stackrel{c}{\hookrightarrow} X \widehat{\otimes}_{\alpha} Y \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X \text{ or } c_0(\tau) \stackrel{c}{\hookrightarrow} Y?$$

- $c_0 \stackrel{c}{\hookrightarrow} \ell_2 \widehat{\otimes}_{\varepsilon} \ell_2$
- $\ell_1 \stackrel{c}{\hookrightarrow} \ell_2 \widehat{\otimes}_{\pi} \ell_2$
- (Pisier, 1983) There exist Banach spaces X and Y such that $c_0 \stackrel{c}{\hookrightarrow} X \widehat{\otimes}_{\pi} Y$ but $c_0 \not\leftrightarrow X$ and $c_0 \not\leftrightarrow Y$.

Since $\mathcal{C}(\beta\mathbb{N})\equiv\ell_\infty$, by the Cembranos-Freniche theorem we have

$$c_0 \stackrel{c}{\hookrightarrow} C(\beta \mathbb{N}, X) \equiv \ell_{\infty} \widehat{\otimes}_{\varepsilon} X,$$

whenever X is an infinite dimensional Banach space.

Since $C(\beta\mathbb{N})\equiv\ell_\infty$, by the Cembranos-Freniche theorem we have

$$c_0 \stackrel{c}{\hookrightarrow} C(\beta \mathbb{N}, X) \equiv \ell_{\infty} \widehat{\otimes}_{\varepsilon} X,$$

whenever X is an infinite dimensional Banach space. On the other hand, $c_0 \not \hookrightarrow \ell_{\infty}$ (Phillips, 1940).

Since $C(\beta\mathbb{N})\equiv\ell_\infty$, by the Cembranos-Freniche theorem we have

$$c_0 \stackrel{c}{\hookrightarrow} C(\beta \mathbb{N}, X) \equiv \ell_{\infty} \widehat{\otimes}_{\varepsilon} X,$$

whenever X is an infinite dimensional Banach space. On the other hand, $c_0 \not\xrightarrow{\zeta} \ell_{\infty}$ (Phillips, 1940).

This means that some kind of hypothesis on τ is needed if we want to prove that

$$c_0(\tau) \stackrel{c}{\hookrightarrow} X \widehat{\otimes}_{\varepsilon} Y \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X \text{ or } c_0(\tau) \stackrel{c}{\hookrightarrow} Y.$$

Since $C(\beta\mathbb{N})\equiv\ell_\infty$, by the Cembranos-Freniche theorem we have

$$c_0 \stackrel{c}{\hookrightarrow} C(\beta \mathbb{N}, X) \equiv \ell_{\infty} \widehat{\otimes}_{\varepsilon} X,$$

whenever X is an infinite dimensional Banach space. On the other hand, $c_0 \not\hookrightarrow \ell_{\infty}$ (Phillips, 1940).

This means that some kind of hypothesis on τ is needed if we want to prove that

$$c_0(\tau) \stackrel{c}{\hookrightarrow} X \widehat{\otimes}_{\varepsilon} Y \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X \text{ or } c_0(\tau) \stackrel{c}{\hookrightarrow} Y.$$

Let's begin by looking at a similar, simpler problem.

Let X be a Banach space and K be a compact Hausdorff space. It is not difficult to show that

$$c_0 \hookrightarrow C(K,X) \implies c_0 \hookrightarrow C(K) \text{ or } c_0 \hookrightarrow X.$$

Let X be a Banach space and K be a compact Hausdorff space. It is not difficult to show that

$$c_0 \hookrightarrow \mathcal{C}(\mathcal{K},X) \implies c_0 \hookrightarrow \mathcal{C}(\mathcal{K}) \ \, ext{or} \ \, c_0 \hookrightarrow X.$$

Sketch: if K is infinite, then C(K) contains a copy of c_0 . If K is finite, then C(K) is linearly isometric to X^n equipped with the supremum norm, where n = |K|, and it is well-known that

$$c_0 \hookrightarrow X^n \implies c_0 \hookrightarrow X.$$

Let X be a Banach space and K be a compact Hausdorff space. It is not difficult to show that

$$c_0 \hookrightarrow \mathcal{C}(\mathcal{K},X) \implies c_0 \hookrightarrow \mathcal{C}(\mathcal{K}) \ \, ext{or} \ \, c_0 \hookrightarrow X.$$

Sketch: if K is infinite, then C(K) contains a copy of c_0 . If K is finite, then C(K) is linearly isometric to X^n equipped with the supremum norm, where n = |K|, and it is well-known that

$$c_0 \hookrightarrow X^n \implies c_0 \hookrightarrow X.$$

Does the same hold for $c_0(\tau)$?

Let X be a Banach space and K be a compact Hausdorff space. It is not difficult to show that

$$c_0 \hookrightarrow \mathcal{C}(\mathcal{K},X) \implies c_0 \hookrightarrow \mathcal{C}(\mathcal{K}) \ \, ext{or} \ \, c_0 \hookrightarrow X.$$

Sketch: if K is infinite, then C(K) contains a copy of c_0 . If K is finite, then C(K) is linearly isometric to X^n equipped with the supremum norm, where n = |K|, and it is well-known that

$$c_0 \hookrightarrow X^n \implies c_0 \hookrightarrow X.$$

Does the same hold for $c_0(\tau)$?

Theorem (Galego-Hagler, 2012)

Let X be a Banach space, K be a compact Hausdorff space and τ be an infinite cardinal. Then

$$c_0(\tau) \hookrightarrow \mathcal{C}(\mathcal{K}, X) \implies c_0(\tau) \hookrightarrow \mathcal{C}(\mathcal{K}) \ \ \text{or} \ \ c_0 \hookrightarrow X.$$

The previous result is optimal, in the sense that even in the case $\tau = \aleph_1$, we cannot replace c_0 by $c_0(\aleph_1)$.
The previous result is optimal, in the sense that even in the case $\tau = \aleph_1$, we cannot replace c_0 by $c_0(\aleph_1)$. Indeed, the implication

$$c_0(leph_1) \hookrightarrow \mathcal{C}(\mathcal{K},X) \implies c_0(leph_1) \hookrightarrow \mathcal{C}(\mathcal{K}) \ \ ext{or} \ \ c_0(leph_1) \hookrightarrow X$$

is

The previous result is optimal, in the sense that even in the case $\tau = \aleph_1$, we cannot replace c_0 by $c_0(\aleph_1)$. Indeed, the implication

$$c_0(leph_1) \hookrightarrow C(K,X) \implies c_0(leph_1) \hookrightarrow C(K) \ \ ext{or} \ \ c_0(leph_1) \hookrightarrow X$$

is

• False, assuming the Continuum Hypothesis (CH);

The previous result is optimal, in the sense that even in the case $\tau = \aleph_1$, we cannot replace c_0 by $c_0(\aleph_1)$. Indeed, the implication

$$c_0(leph_1) \hookrightarrow \mathcal{C}(\mathcal{K},X) \implies c_0(leph_1) \hookrightarrow \mathcal{C}(\mathcal{K}) \ \ ext{or} \ \ c_0(leph_1) \hookrightarrow X$$

is

- False, assuming the Continuum Hypothesis (CH);
- True, assuming Martin's Axiom and the negation of CH.

The previous result is optimal, in the sense that even in the case $\tau = \aleph_1$, we cannot replace c_0 by $c_0(\aleph_1)$. Indeed, the implication

$$c_0(leph_1) \hookrightarrow \mathcal{C}(\mathcal{K},X) \implies c_0(leph_1) \hookrightarrow \mathcal{C}(\mathcal{K}) \ \ ext{or} \ \ c_0(leph_1) \hookrightarrow X$$

is

• False, assuming the Continuum Hypothesis (CH);

• True, assuming Martin's Axiom and the negation of CH. However, we have:

The previous result is optimal, in the sense that even in the case $\tau = \aleph_1$, we cannot replace c_0 by $c_0(\aleph_1)$. Indeed, the implication

$$c_0(leph_1) \hookrightarrow \mathcal{C}(\mathcal{K},X) \implies c_0(leph_1) \hookrightarrow \mathcal{C}(\mathcal{K}) \ \ ext{or} \ \ c_0(leph_1) \hookrightarrow X$$

is

• False, assuming the Continuum Hypothesis (CH);

• True, assuming Martin's Axiom and the negation of CH. However, we have:

Theorem (Galego-Hagler, 2012)

Let X be a Banach space, K be a compact Hausdorff space and τ be an infinite cardinal. If $cf(\tau) > dens(K)$, then

$$c_0(\tau) \hookrightarrow C(K,X) \implies c_0(\tau) \hookrightarrow X.$$

Going back to complemented copies:

Going back to complemented copies:

Theorem (C, 2017)

Let X be a Banach space, K be a compact Hausdorff space and τ be an infinite cardinal. If $cf(\tau) > w(K)$, then

$$c_0(\tau) \stackrel{c}{\hookrightarrow} C(K,X) \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X.$$

This theorem is optimal for any τ . The inequality $cf(\tau) > w(X)$ cannot be replaced by $cf(\tau) \ge w(X)$.

Definition

A Banach space X has the λ -bounded approximation property, $\lambda \ge 1$, if given K a compact subset of X and $\varepsilon > 0$, there exists a finite rank operator $T : X \to X$ satisfying $||T|| \le \lambda$ and $||T(x) - x|| < \varepsilon$, for all $x \in K$. We say that X has the bounded approximation property if it has the λ -bounded approximation property for some $\lambda \ge 1$.

Definition

A Banach space X has the λ -bounded approximation property, $\lambda \ge 1$, if given K a compact subset of X and $\varepsilon > 0$, there exists a finite rank operator $T: X \to X$ satisfying $||T|| \le \lambda$ and $||T(x) - x|| < \varepsilon$, for all $x \in K$. We say that X has the bounded approximation property if it has the λ -bounded approximation property for some $\lambda \ge 1$.

Theorem (C-Galego-Samuel, 2019)

Let X and Y be a Banach spaces and τ be an infinite cardinal. If Y has the bounded approximation property and $cf(\tau) > dens(Y)$, then

$$c_0(\tau) \stackrel{c}{\hookrightarrow} X \widehat{\otimes}_{\varepsilon} Y \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X.$$

Recall that
$$S: X \widehat{\otimes}_{\varepsilon} Y o \mathcal{K}(Y^*, X)$$
 given by
 $S(u)(y^*) = \sum_{i=1}^n y^*(y_i) x_i,$

is a linear isometry onto its image.

Recall that $S: X \widehat{\otimes}_{\varepsilon} Y \to \mathcal{K}(Y^*, X)$ given by

$$S(u)(y^*) = \sum_{i=1}^n y^*(y_i)x_i,$$

is a linear isometry onto its image. Using the fact Y has the bounded approximation property, construct subsets A of Y and B of Y^* satisfying the following properties:

Recall that $S: X \widehat{\otimes}_{\varepsilon} Y \to \mathcal{K}(Y^*, X)$ given by

$$S(u)(y^*) = \sum_{i=1}^n y^*(y_i)x_i,$$

is a linear isometry onto its image. Using the fact Y has the bounded approximation property, construct subsets A of Y and B of Y^* satisfying the following properties:

• $\max(|A|, |B|) \leq \operatorname{dens}(Y);$

Recall that $S: X \widehat{\otimes}_{\varepsilon} Y \to \mathcal{K}(Y^*, X)$ given by

$$S(u)(y^*) = \sum_{i=1}^n y^*(y_i)x_i,$$

is a linear isometry onto its image. Using the fact Y has the bounded approximation property, construct subsets A of Y and B of Y^* satisfying the following properties:

- $\max(|A|, |B|) \leq \operatorname{dens}(Y);$
- Given $u \in X \widehat{\otimes}_{\varepsilon} Y$ and $\delta > 0$, there exist $y_1, \ldots, y_m \in A$ and $\varphi_1, \ldots, \varphi_m \in B$ such that

$$\left\|u-\sum_{n=1}^m S(u)(\varphi_n)\otimes y_n\right\|_{\varepsilon}<\delta.$$

Recall that $S: X \widehat{\otimes}_{\varepsilon} Y \to \mathcal{K}(Y^*, X)$ given by

$$S(u)(y^*) = \sum_{i=1}^n y^*(y_i)x_i,$$

is a linear isometry onto its image. Using the fact Y has the bounded approximation property, construct subsets A of Y and B of Y^* satisfying the following properties:

- $\max(|A|, |B|) \leq \operatorname{dens}(Y);$
- Given $u \in X \widehat{\otimes}_{\varepsilon} Y$ and $\delta > 0$, there exist $y_1, \ldots, y_m \in A$ and $\varphi_1, \ldots, \varphi_m \in B$ such that

$$\left\|u-\sum_{n=1}^m S(u)(\varphi_n)\otimes y_n\right\|_{\varepsilon}<\delta.$$

Next, suppose that $c_0(\tau) \stackrel{c}{\hookrightarrow} X \widehat{\otimes}_{\varepsilon} Y$. Take families $(u_i)_{i \in \tau}$ in $X \widehat{\otimes}_{\varepsilon} Y$ and $(\psi_i)_{i \in \tau}$ in $(X \widehat{\otimes}_{\varepsilon} Y)^*$ such that $(u_i)_{i \in \tau}$ is equivalent to the canonical basis of $c_0(\tau)$, $(\psi_i)_{i \in \tau}$ is weak*-null and $\psi_i(u_i) = 1$ for all $i \in \tau$.

Vinícius Morelli Cortes (IME-USP)

Vinícius Morelli Cortes (IME-USP)

By construction, for each $i \in \tau$ there exist $y_1^i, \ldots, y_{m_i}^i \in A$ and $\varphi_1^i, \ldots, \varphi_{m_i}^i \in B$ such that

$$\frac{1}{2} < \sum_{n=1}^{m_i} |\psi_i(S(u_i)(\varphi_n^i) \otimes y_n^i)|.$$

By construction, for each $i \in \tau$ there exist $y_1^i, \ldots, y_{m_i}^i \in A$ and $\varphi_1^i, \ldots, \varphi_{m_i}^i \in B$ such that

$$\frac{1}{2} < \sum_{n=1}^{m_i} |\psi_i(S(u_i)(\varphi_n^i) \otimes y_n^i)|.$$

Since τ has large cofinality, using a "diagonalization" argument, we can extract a subset τ' of τ , a natural number $M \ge 1$ and two elements $y_0 \in A, \varphi_0 \in B$ with the property that $|\tau'| = \tau$ and

$$\frac{1}{2M} < |\psi_i(S(u_i)(\varphi_0) \otimes y_0)|, \forall i \in \tau'.$$

By construction, for each $i \in \tau$ there exist $y_1^i, \ldots, y_{m_i}^i \in A$ and $\varphi_1^i, \ldots, \varphi_{m_i}^i \in B$ such that

$$\frac{1}{2} < \sum_{n=1}^{m_i} |\psi_i(S(u_i)(\varphi_n^i) \otimes y_n^i)|.$$

Since τ has large cofinality, using a "diagonalization" argument, we can extract a subset τ' of τ , a natural number $M \ge 1$ and two elements $y_0 \in A, \varphi_0 \in B$ with the property that $|\tau'| = \tau$ and

$$\frac{1}{2M} < |\psi_i(S(u_i)(\varphi_0) \otimes y_0)|, \forall i \in \tau'.$$

If we define $x_i = S(u_i)(\varphi_0) \in X$ and $x_i^* = \psi_i(\cdot \otimes y_0) \in X^*$, it is easy to show that the families $(x_i)_{i \in \tau'}$ and $(x_i^*)_{i \in \tau'}$ verify the hypotheses of the generalized Schlumprecht theorem. Thus, $c_0(\tau) \stackrel{c}{\hookrightarrow} X$.

Two corollaries

• dens
$$(C(K)) = w(K)$$
 (K infinite);

- dens(C(K)) = w(K) (K infinite);
- dens $(\ell_p(I)) = |I|$ (I infinite and $1 \le p < \infty$);

- dens(C(K)) = w(K) (K infinite);
- dens $(\ell_p(I)) = |I|$ (I infinite and $1 \le p < \infty$);
- dens $(L_p[0,1]) = \aleph_0 \ (1 \le p < \infty).$

Two corollaries

Thus, the previous theorem has the following consequences:

Thus, the previous theorem has the following consequences:

Corollary (C-Galego-Samuel, 2018)

Let X be a Banach space, I be an infinite set, τ be an infinite cardinal and $1 \le p < \infty$. If with $cf(\tau) > |I|$, then

$$c_0(\tau) \stackrel{c}{\hookrightarrow} \ell_p(I) \widehat{\otimes}_{\varepsilon} X \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X.$$

Thus, the previous theorem has the following consequences:

Corollary (C-Galego-Samuel, 2018)

Let X be a Banach space, I be an infinite set, τ be an infinite cardinal and $1 \le p < \infty$. If with $cf(\tau) > |I|$, then

$$c_0(\tau) \stackrel{c}{\hookrightarrow} \ell_p(I) \widehat{\otimes}_{\varepsilon} X \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X.$$

Corollary (C-Galego-Samuel, 2019)

Let X be a Banach space, τ be an infinite cardinal and $1 \le p < \infty$. If with $cf(\tau) > \aleph_0$, then

$$c_0(\tau) \stackrel{c}{\hookrightarrow} L_{\rho}[0,1] \widehat{\otimes}_{\varepsilon} X \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X.$$

Vinícius Morelli Cortes (IME-USP)

Recall that

$$c_0 \stackrel{c}{\hookrightarrow} \ell_p \widehat{\otimes}_{\pi} X \iff c_0 \stackrel{c}{\hookrightarrow} L_q[0,1] \widehat{\otimes}_{\pi} X \iff c_0 \stackrel{c}{\hookrightarrow} X,$$

for all $1 \le p < \infty$ and $1 < q < \infty$.

Recall that

$$c_0 \stackrel{c}{\hookrightarrow} \ell_p \widehat{\otimes}_{\pi} X \iff c_0 \stackrel{c}{\hookrightarrow} L_q[0,1] \widehat{\otimes}_{\pi} X \iff c_0 \stackrel{c}{\hookrightarrow} X,$$

for all $1 \le p < \infty$ and $1 < q < \infty$. On the other hand,

$$c_0 \stackrel{c}{\hookrightarrow} L_p([0,1],X) \iff c_0 \hookrightarrow X,$$

for all $1 \leq p \leq \infty$.

Recall that

$$c_0 \stackrel{c}{\hookrightarrow} \ell_p \widehat{\otimes}_{\pi} X \iff c_0 \stackrel{c}{\hookrightarrow} L_q[0,1] \widehat{\otimes}_{\pi} X \iff c_0 \stackrel{c}{\hookrightarrow} X,$$

for all $1 \le p < \infty$ and $1 < q < \infty$. On the other hand,

$$c_0 \stackrel{c}{\hookrightarrow} L_p([0,1],X) \iff c_0 \hookrightarrow X,$$

for all $1 \le p \le \infty$. In particular, since $L_1([0,1],X) \equiv L_1[0,1] \widehat{\otimes}_{\pi} X$, we have

$$c_0 \stackrel{c}{\hookrightarrow} L_1[0,1]\widehat{\otimes}_{\pi}\ell_{\infty},$$

although $c_0 \not\hookrightarrow L_1[0,1]$ and $c_0 \not\hookrightarrow \ell_\infty$.

Vinícius Morelli Cortes (IME-USP)
Theorem (C-Galego-Samuel, 2018)

Given X a Banach space, au an infinite cardinal and $1 \leq p < \infty$, we have

$$c_0(\tau) \stackrel{c}{\hookrightarrow} \ell_p \widehat{\otimes}_{\pi} X \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X.$$

Theorem (C-Galego-Samuel, 2018)

Given X a Banach space, au an infinite cardinal and $1 \leq p < \infty$, we have

$$c_0(\tau) \stackrel{c}{\hookrightarrow} \ell_p \widehat{\otimes}_{\pi} X \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X.$$

Theorem (C-Galego-Samuel, 2019)

Given X a Banach space, au an infinite cardinal and 1 , we have

$$c_0(\tau) \stackrel{c}{\hookrightarrow} L_p[0,1] \widehat{\otimes}_{\pi} X \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X.$$

Theorem (C-Galego-Samuel, 2018)

Given X a Banach space, au an infinite cardinal and $1 \leq p < \infty$, we have

$$c_0(\tau) \stackrel{c}{\hookrightarrow} \ell_p \widehat{\otimes}_{\pi} X \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X.$$

Theorem (C-Galego-Samuel, 2019)

Given X a Banach space, au an infinite cardinal and 1 , we have

$$c_0(\tau) \stackrel{c}{\hookrightarrow} L_p[0,1] \widehat{\otimes}_{\pi} X \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X.$$

Theorem (C-Galego-Samuel, 2020)

Let X and Y be a Banach spaces and τ be an infinite cardinal. If Y has the bounded approximation property and $cf(\tau) > dens(Y)$, then

$$c_0(\tau) \stackrel{c}{\hookrightarrow} X \widehat{\otimes}_{\pi} Y \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X.$$

Complemented copies of $c_0(\tau)$ in $L_p(\{-1,1\}^I,X)$

Complemented copies of $c_0(\tau)$ in $L_p(\{-1,1\}^I,X)$

Theorem (C-Galego-Samuel, 2020)

Let X be a Banach space, au be an infinite cardinal and $1 \le p \le \infty$. Then

$$c_0(\tau) \hookrightarrow X \implies c_0(\tau) \stackrel{c}{\hookrightarrow} L_p(\{-1,1\}^{\tau},X).$$

Complemented copies of $c_0(\tau)$ in $L_p(\{-1,1\}^I,X)$

Theorem (C-Galego-Samuel, 2020)

Let X be a Banach space, au be an infinite cardinal and $1 \leq p \leq \infty$. Then

$$c_0(\tau) \hookrightarrow X \implies c_0(\tau) \stackrel{c}{\hookrightarrow} L_p(\{-1,1\}^{\tau},X).$$

Theorem (C-Galego-Samuel, 2020)

Let X be a Banach space, I be an infinite set, τ be an infinite cardinal and $1 \le p < \infty$. If $cf(\tau) > |I|$, then

$$c_0(\tau) \stackrel{c}{\hookrightarrow} L_p(\{-1,1\}^I, X) \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X.$$

In particular, if $\boldsymbol{\tau}$ has uncountable cofinality, then

$$c_0(\tau) \stackrel{c}{\hookrightarrow} L_p([0,1],X) \implies c_0(\tau) \stackrel{c}{\hookrightarrow} X.$$

Final remarks

Vinícius Morelli Cortes (IME-USP)

What more can we say in the case $p = \infty$?

What more can we say in the case $p = \infty$? We don't even know whether $\ell_{\infty}\widehat{\otimes}_{\pi}\ell_{\infty}$ contains a complemented copy of c_0 or not.

What more can we say in the case $p = \infty$? We don't even know whether $\ell_{\infty} \widehat{\otimes}_{\pi} \ell_{\infty}$ contains a complemented copy of c_0 or not. There are other contexts where we can investigate (complemented) copies of $c_0(\tau)$, such as: What more can we say in the case $p = \infty$? We don't even know whether $\ell_{\infty} \widehat{\otimes}_{\pi} \ell_{\infty}$ contains a complemented copy of c_0 or not. There are other contexts where we can investigate (complemented) copies of $c_0(\tau)$, such as:

• Operator spaces;

What more can we say in the case $p = \infty$? We don't even know whether $\ell_{\infty} \widehat{\otimes}_{\pi} \ell_{\infty}$ contains a complemented copy of c_0 or not. There are other contexts where we can investigate (complemented) copies

of $c_0(au)$, such as:

- Operator spaces;
- Vector-valued measure spaces;

What more can we say in the case $p = \infty$? We don't even know whether $\ell_{\infty} \widehat{\otimes}_{\pi} \ell_{\infty}$ contains a complemented copy of c_0 or not.

There are other contexts where we can investigate (complemented) copies of $c_0(\tau)$, such as:

- Operator spaces;
- Vector-valued measure spaces;
- Vector-valued Hardy function spaces.

What more can we say in the case $p = \infty$? We don't even know whether $\ell_{\infty}\widehat{\otimes}_{\pi}\ell_{\infty}$ contains a complemented copy of c_0 or not.

There are other contexts where we can investigate (complemented) copies of $c_0(\tau)$, such as:

- Operator spaces;
- Vector-valued measure spaces;
- Vector-valued Hardy function spaces.

We can also study copies of other spaces: ℓ_1, ℓ_∞ (well-studied, with convenient chacterizations), ℓ_p (much more difficult) or even $L_1[0, 1]$.

Thank you!