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Abstract. We consider twist diffeomorphisms of the torus, f : T2 → T2, and their vertical
rotation intervals, ρV (f̂ ) = [ρ−

V , ρ+
V ], where f̂ is a lift of f to the vertical annulus or

cylinder. We show that Cr -generically, for any r ≥ 1, both extremes of the rotation interval
are rational and locally constant under C0-perturbations of the map. Moreover, when f is
area-preserving, Cr -generically, ρ−

V < ρ+
V . Also, for any twist map f, f̂ a lift of f to the

cylinder, if ρ−
V < ρ+

V = p/q, then there are two possibilities: either f̂ q(•) − (0, p) maps
a simple essential loop into the connected component of its complement which is below
the loop, or it satisfies the curve intersection property. In the first case, ρ+

V ≤ p/q in a
C0-neighborhood of f , and in the second case, we show that ρ+

V (f̂ + (0, t)) > p/q for
all t > 0 (that is, the rotation interval is ready to grow). Finally, in the Cr -generic case,
assuming that ρ−

V < ρ+
V = p/q, we present some consequences of the existence of the free

loop for f̂ q(•) − (0, p), related to the description and shape of the attractor–repeller pair
that exists in the annulus. The case of a Cr -generic transitive twist diffeomorphism (if such
a thing exists) is also investigated.

Key words: twist maps, vertical rotation interval, Cr-genericity, full and partial meshes,
Pixton’s theorem
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1. Introduction and main results
Understanding the relationship between the dynamics of homeomorphisms of closed
oriented surfaces in the identity isotopy class and their (homological) rotation sets has
been a very active field of research. Several results concerning these relations have been
proved, probably starting with [14, 20, 23].

The aim of the present paper is to study this problem in the torus, mostly for
another homotopy class, the so called Dehn twists. In this case, the rotation set is only
one-dimensional (see [12]) and, similarly to the identity class, it is convex. So, the only
possibilities are a point or a non-degenerate closed interval. We will deal mostly with the
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second possibility. In the majority of our results, we assume an additional dynamical prop-
erty, the twist condition. This means that if we consider a lift of the torus map to the plane,
then the image of any vertical line projects injectively onto the horizontal coordinate.

This class of mappings has very rich dynamics, as it contains the well-known standard
mapping, SM : T2 → T2, which writes in flat coordinates as

SM :

⎧⎪⎨
⎪⎩

x′ = x + y + k

2π
sin(2πx) mod 1,

y′ = y + k

2π
sin(2πx) mod 1.

(1.1)

More precisely, our aim is to study the following problems:
• for a Cr -generic (for any r ≥ 1) twist diffeomorphism of T2, what can we say about its

rotation set? Is it locally constant (does mode-locking happen [9])? We also consider
the same questions in the area-preserving world;

• find some property that, when satisfied, implies that a general twist diffeomorphism of
T2 has a locally constant rotation set and, when it is not satisfied, show that the rotation
set can be changed by arbitrarily small perturbations, in any differentiability.

Using the results obtained related to the above questions, we further study some
dynamical consequences of locally constant extremes for the rotation set, in Cr -genericity.
We also present some consequences of the non-existence of periodic open disks, that is, of
transitivity.

2. Notation and definitions
(1) Let (x, y) denote coordinates in the flat torus T2 = IR2/ZZ2, (̂x, ŷ) in the annulus
T1 × IR, and let (̃x, ỹ) denote coordinates in IR2. Let p1, p2 from T2 or T1 × IR or IR2, to
IR be the standard projections, respectively in the horizontal and vertical coordinates, and
let π : IR2 → T1 × IR, τ : T1 × IR → T2 and p : IR2 → T2 be the covering mappings.

(2) Define Diffr
k(IR

2) = {̃f : IR2 → IR2 : f̃ is a Cr -diffeomorphism of the plane
(r ≥ 0) such that for any pair of integers n, m, f̃ (̃x + n, ỹ + m) = f̃ (̃x, ỹ) + (n + km, m)

for all (̃x, ỹ) ∈ IR2, where k is an integer}.
(3) Similarly, let Diffr

k(T
1 × IR) = {̂f : T1 × IR → T1 × IR : f̂ is a Cr -diffeomorphism

(r ≥ 0) lifted by some element f̃ ∈ Diffr
k(IR

2)}, and Diffr
k(T

2) = {f : T2 → T2 : f is
a Cr -diffeomorphism (r ≥ 0) lifted by some element f̃ ∈ Diffr

k(IR
2)}. The union of

Diffr
k(T

2) for all k �= 0 consists of the subset of torus Cr -diffeomorphisms homotopic
to Dehn twists, and Diffr

0(T
2) is the set of torus Cr -diffeomorphisms homotopic to the

identity.
(4) For any f̃ ∈ Diffr

k(IR
2), r ≥ 1 and k �= 0, if k × ∂ỹ (p1 ◦ f̃ (̃x, ỹ)) > 0 everywhere,

then we say that f̃ is the lift of a torus (or annulus) twist map. Twist is to the right if
k > 0 and to the left if k < 0. When k �= 0 and only twist maps are considered in the
previous subsets of diffeomorphisms, we add the letter t : Diffr

t,k(IR
2), Diffr

t,k(T
1 × IR)

and Diffr
t,k(T

2).
(5) For any f̂ ∈ Diff0

k(T
1 × IR), k �= 0, and z ∈ T2, we define the vertical rotation

number of z as (when the limit exists)
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ρV (z) = lim
n→∞

p2 ◦ f̂ n(̂z) − p2(̂z)

n
for any ẑ ∈ τ−1(z) (2.1)

and the vertical rotation interval of f̂ is given by

ρV (f̂ ) =
∞⋂
i=1

⋃
n≥i

{
p2 ◦ f̂ n(̂z) − p2(̂z)

n
: ẑ ∈ T1 × IR

}
, (2.2)

which is a closed interval, possibly a point. Initially, in [4, 12], it was proved that all
rational points p/q in the interior of ρV (f̂ ) are realized by q-periodic orbits in the torus,
similarly to the identity isotopy class. Moreover, in [11], the function Diff0

k(T
1 × IR) 


f̂ �→ ρV (f̂ ) = [ρ−
V , ρ+

V ] was shown to vary continuously (see also [2]).
(6) For any integer k and f̂ ∈ Diff0

k(T
1 × IR), we say that f̂ satisfies the curve

intersection property (C.I.P.) if f̂ (γ ) ∩ γ �= ∅ for all homotopically non-trivial simple
closed curves γ ⊂ T1 × IR.

(7) Let f : X → X be a map from a metric space (X, d), n > 0 be an integer, and
ε > 0 a fixed real number. A sequence {x0, x1, . . . , xn} ⊂ X is an ε-pseudo orbit if
d(f (xi), xi+1) < ε for all i = 0, 1, . . . , n − 1.

(8) We say that D, an open subset of T2, is essential if D contains an homotopically
non-trivial simple closed curve in the torus. We say that D is fully essential if it contains
two homotopically non-trivial simple closed curves which are not in the same homotopy
class. In this case, D contains closed curves in all homotopy classes and Dc is contained in
a disjoint union of open disks. Moreover, we say that D is inessential if it is not essential.

(9) Given a closed subset K of T2, Filled(K) is given by the union of K with all the
connected components of its complement which are inessential.

Now we are ready to state our main results. The first one explains when the vertical
rotation interval can or cannot change under perturbations.

THEOREM 2.1. Let k �= 0 and r ≥ 1 be integers and f̂ ∈ Diffr
t,k(T

1 × IR). The following
assertions are equivalent:
• ρ+

V : Diffr
t,k(T

1 × IR) → IR has a local maximum at f̂ ;
• ρ+

V (f̂ ) is equal to some rational number p/q and f̂ q(•) − (0, p) is an annulus
diffeomorphism which maps a homotopically non-trivial simple closed curve γ into
γ −, the connected component of γ c which is below γ .

So, if ρ+
V : Diffr

t,k(T
1 × IR) → IR has a local maximum at f̂ , it also has a local

maximum at f̂ in Diff0
k(T

1 × IR).

COROLLARY 2.2. Let k �= 0 and r ≥ 1 be integers, and f̂ ∈ Diffr
t,k(T

1 × IR). If ρ−
V (f̂ ) <

ρ+
V (f̂ ) = p/q, then the following equivalences hold:

• ρ+
V does not have a local maximum at f̂ ;

• f̂ q(•) − (0, p) satisfies the curve intersection property (C.I.P.);
• ρ+

V (f̂ + (0, t)) > p/q for all t > 0.
Moreover, when C.I.P. holds, then f̂ q(•) − (0, p) has periodic orbits of all rational

rotation numbers in the annulus.

Of course, analogous versions related to ρ−
V (f̂ ) also hold.
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The next lemma is an important tool in the proof of the above results. It is contained in
[3, Corollary 3] and [2, Lemma 2 and Theorem 10]. The ideas behind its proof rely on the
topological theory for twist maps developed by Le Calvez in [19].

LEMMA 2.3. Let k �= 0 and r ≥ 1 be integers, and f̂ ∈ Diffr
t,k(T

1 × IR). The function
s �→ ρ+

V (f̂ + (0, s)) is continuous and non-decreasing. Moreover, if there exist maps
ĥ ∈ Diff1

t,k(T
1 × IR) arbitrarily C0-close to f̂ such that ρ+

V (̂h) > ρ+
V (f̂ ), then for all

s > 0, ρ+
V (f̂ + (0, s)) > ρ+

V (f̂ ). Analogously, if there exist maps ĥ ∈ Diff1
t,k(T

1 × IR)

arbitrarily C0-close to f̂ such that ρ+
V (̂h) < ρ+

V (f̂ ), then for all s < 0, ρ+
V (f̂ + (0, s)) <

ρ+
V (f̂ ).

Remark 2.4. As above, an analogous statement holds for ρ−
V .

In other words, given a twist diffeomorphism of the torus, for which one extreme of
the vertical rotation interval is not locally constant, then it varies under arbitrarily small
vertical translations of the diffeomorphism. Or equivalently, if s �→ ρ

+(−)
V (f̂ + (0, s))

is locally constant in a neighborhood of zero, then ρ
+(−)
V is locally constant in a

C1-neighborhood of f̂ , which implies by Theorem 2.1 that ρ+(−)
V (f̂ ) is some rational num-

ber p/q and the annulus diffeomorphism f̂ q(•) − (0, p) has a homotopically non-trivial
free simple curve γ , that is, the image of γ under f̂ q(•) − (0, p) is disjoint from γ .

Corollary 2.2 also says that, whenever for a one-parameter family of twist maps of the
torus, (ft )t∈I , with ρ−

V (f̂t ) < ρ+
V (f̂t ) for all t ∈ I , if ρ+

V (f̂t∗) is a rational number p/q and
for all t > t∗, sufficiently close to t∗, ρ+

V (f̂t ) > ρ+
V (f̂t∗), then (f̂t∗)q(•) − (0, p) satisfies

the C.I.P.
Then next two theorems describe vertical rotation intervals for Cr -generic twist maps

of the torus.

THEOREM 2.5. Let k �= 0 and r ≥ 1 be integers. The set Or
t,k(T

1 × IR) of maps
f̂ ∈ Diffr

t,k(T
1 × IR), such that ρV is constant in a neighborhood of f̂ , is open and dense.

Furthermore, the endpoints of ρV (f̂ ) are rational and ρV is constant in a neighborhood
of f̂ ∈ Diff0

k(T
1 × IR).

In other words, for twist maps, Cr -generically, for any r ≥ 1, the vertical rotation
interval is locally constant and its extremes are rational numbers. There is also an

area-preserving version of the above theorem. Note that Diffr
t,k,Leb(T

1 × IR)
def.= {area-

preserving elements of Diffr
t,k(T

1 × IR)}.

THEOREM 2.6. Let k �= 0 and r ≥ 1 be integers. The set Or
t,k,Leb(T

1 × IR) of maps
f̂ ∈ Diffr

t,k,Leb(T
1 × IR), such that ρV is constant in a neighborhood of f̂ , is open and

dense. Furthermore, the endpoints of ρV (f̂ ) are different rational numbers and ρV is
constant in a neighborhood of f̂ ∈ Diff0

k(T
1 × IR).

The only difference between the general setting and the area-preserving is that in the
last one, Cr -generically, vertical rotation intervals have interior.
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Theorems 2.1, 2.5, and 2.6 are the foundation on which our next results rely: a
description of the attractor–repeller pair in the annulus that always exists in the Cr -generic
case.

Let k �= 0 and r ≥ 1 be integers and f̂ ∈ Or
t,k(T

1 × IR) ∩ χr(T2), or in the
area-preserving case, f̂ ∈ Or

t,k,Leb(T
1 × IR) ∩ χr

Leb(T
2), the open and dense sets from

Theorems 2.5 and 2.6 intersected with the residual sets χr(T2) and χr
Leb(T

2) (from
Theorem 3.14), which are contained in general Kupka–Smale, or in area-preserving
Kupka–Smale Cr -diffeomorphisms, respectively, for which closures of stable and unstable
branches of hyperbolic periodic saddles and homoclinic and heteroclinic intersections vary
continuously with perturbations of the diffeomorphisms. See [24, pp. 370–372] for more
information.

So, ρV (f̂ ) = [r/s, p/q] for rational numbers r/s ≤ p/q and ρV is locally constant in
a neighborhood of f̂ . From now on, we assume that r/s < p/q (this is always the case for
area-preserving generic twist diffeomorphisms).

Theorem 2.1 says that f̂ q(•) − (0, p) has a free homotopically non-trivial simple closed
curve γp/q ⊂ T1 × IR, such that

f̂ q(γp/q) − (0, p) ⊂ γ −
p/q .

Something which implies the existence of an attractor–repeller pair for f̂ q(•) − (0, p).
The attractor Ap/q is contained in γ −

p/q and the repeller Rp/q is contained in γ +
p/q . In the

next result, we describe this pair (f ∈ Diffr
t,k(T

2) is the torus map lifted by f̂ ).

THEOREM 2.7. Under the previous hypotheses, there exists a hyperbolic f-periodic saddle
zp/q ∈ T2 of vertical rotation number p/q such that if ẑp/q ∈ T1 × IR is any lift of zp/q

to the annulus, then Wu(̂zp/q) is bounded from above as a subset of the annulus and
unbounded from below, Ws(̂zp/q) is unbounded from above and bounded from below.
Moreover, Wu(̂zp/q) has a transversal intersection with Ws(̂zp/q − (0, 1)), and if ẑp/q

and ẑp/q − (0, 1) are both above γp/q , and ẑp/q − (0, 2) is below, then Ap/q is contained

in Wu(̂zp/q) ∪(Wu(̂zp/q)
b.above

), where the last set is the union of all (open) connected

components of (Wu(̂zp/q))c that are bounded from above. Moreover, Ap/q ⊇ [Wu(̂zp/q) ∪
(Wu(̂zp/q)

b.above
)] − (0, 2). Similarly, if ẑp/q and ẑp/q + (0, 1) are both below γp/q , and

ẑp/q + (0, 2) is above, then Rp/q is contained in Ws(̂zp/q) ∪(Ws(̂zp/q)
b.below

), where the

last set is the union of all connected components of (Ws(̂zp/q))c that are bounded from

below, and Rp/q ⊇ [Ws(̂zp/q) ∪ (Ws(̂zp/q)
b.below

)] + (0, 2).

Our main interest in the previous result is to apply it in the case where f : T2 → T2 is
transitive. Ideally, we would like to understand if such a Cr -generic twist diffeomorphism
(for any r ≥ 1), mostly in the area-preserving case, could be transitive. Our hope is that for
large r , it cannot. This final result can be seen as an attempt to start a list of consequences
of generic transitivity that, ultimately, would lead to a contradiction.

COROLLARY 2.8. Still under the previous theorem’s hypotheses, if we assume f to be
transitive, then the following improvement holds:
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• if ẑp/q and ẑp/q − (0, 1) are both above γp/q , and ẑp/q − (0, 2) is below, then Ap/q

is contained in Wu(̂zp/q) and contains Wu(̂zp/q) − (0, 2);
• similarly, if ẑp/q and ẑp/q + (0, 1) are both below γp/q , and ẑp/q + (0, 2) is above,

then Rp/q is contained in Ws(̂zp/q) and contains Ws(̂zp/q) + (0, 2).

Moreover, both Wu(̂zp/q) and Ws(̂zp/q) have no interior points, and their complements
are connected, although Wu(zp/q) = Ws(zp/q) = T2.

3. Basic tools
3.1. Some results for twist maps.

3.1.1. Le Calvez’s topological theory. The results below can be found in [17, 18]. Let
k �= 0 be an integer, f̂ ∈ Diff1

t,k(T
1 × IR) and f̃ ∈ Diff1

t,k(IR
2) be one of its lifts. For every

pair of integers (s, q), q > 0, we define the following sets:

K lift(s, q) = {(̃x, ỹ) ∈ IR2: p1 ◦ f̃ q (̃x, ỹ) = x̃ + s}
and

K(s, q) = π ◦ K lift(s, q).
(3.1)

Then, we have the following lemma.

LEMMA 3.1. The set K(s, q) is compact and it has a unique connected component C(s, q)

that separates the ends of the annulus.

Next, we define the following functions on T1:

μ−(̂x) = min{p2(̂z): ẑ ∈ K(s, q) and p1(̂z) = x̂},
μ+(̂x) = max{p2(̂z): ẑ ∈ K(s, q) and p1(̂z) = x̂}.

Additionally, similar functions for f̂ q(K(s, q)):

ν−(̂x) = min{p2(̂z): ẑ ∈ f̂ q ◦ K(s, q) and p1(̂z) = x̂},
ν+(̂x) = max{p2(̂z): ẑ ∈ f̂ q ◦ K(s, q) and p1(̂z) = x̂}.

The following lemmas are very important in this theory.

LEMMA 3.2. Defining Graph{μ±} = {(̂x, μ±(̂x)) : x̂ ∈ T1}, we have

Graph{μ−} ∪ Graph{μ+} ⊂ C(s, q).

LEMMA 3.3. The following equalities hold for all x̂ ∈ S1 : f̂ q (̂x, μ−(̂x)) = (̂x, ν+(̂x))

and f̂ q (̂x, μ+(̂x)) = (̂x, ν−(̂x)).

Now, we recall ideas and results from [19]. Fix some f̃ ∈ Diff1
t,k(IR

2) and let f̂ be the
annulus map lifted by f̃ .

Given a triplet of integers (s, p, q) with q > 0, if there is no point (̃x, ỹ) ∈ IR2

such that f̃ q (̃x, ỹ) = (̃x + s, ỹ + p), it can be proved that the sets f̂ q ◦ K(s, q) and
K(s, q) + (0, p) can be separated by the graph of a continuous function σ : T1 → IR,
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essentially because from all the previous results, either one of the following inequalities
must hold:

ν−(̂x) − μ+(̂x) > p, (3.2)

ν+(̂x) − μ−(̂x) < p (3.3)

for all x̂ ∈ T1, where ν+, ν−, μ+, μ− were defined above.
Following Le Calvez [19], we say that the triplet (s, p, q) is positive (respectively

negative) for f̃ if f̂ q ◦ K(s, q) is above, equation (3.2) (respectively below, equation (3.3))
the graph of σ .

Recall that

f̃ (̃x, ỹ) = (̃x′, ỹ′) ⇔ ỹ = g(̃x, x̃′) and ỹ′ = g′(̃x, x̃′), (3.4)

where g, g′ are mappings from IR2 to IR, which satisfy g′(̃x, x̃′) = p2 ◦ f̃ (̃x, g(̃x, x̃′)).
Before stating the next proposition, we need some extra definitions and simple facts.
If we define h̃t (̃x, ỹ) = (̃x, ỹ + t), it is easy to see that for all t ∈ IR, h̃t (̃x, ỹ) con-

jugates (̃x, ỹ) �→ f̃ (̃x, ỹ + t) + (0, t) with f̃t (̃x, ỹ)
def.= f̃ (̃x, ỹ) + (0, 2t). Additionally, if

we denote as gt (̃x, x̃′) and g′
t (̃x, x̃′) the mappings associated to f̃ (̃x, ỹ + t) + (0, t) in the

way of equation (3.4), then gt (̃x, x̃′) = g(̃x, x̃′) − t and g′
t (̃x, x̃′) = g′(̃x, x̃′) + t .

Definitions 3.4. For f̃ , f̃ ∗ ∈ Diff1
t,k(IR

2):

(1) we say that f̃ ≤ f̃ ∗ if g∗ ≤ g and g′ ≤ g∗′ everywhere, where (g, g′) is associated
to f̃ and (g∗, g∗′) is associated to f̃ ∗, as in equation (3.4). Analogously, we say
f̃ � f̃ ∗ if g∗ < g and g′ < g∗′ everywhere;

(2) for all r ≥ 1, given a Cr one-parameter family (f̃t )t∈[a,b] such that for each a ≤ t ≤ b,
f̃t ∈ Diffr

t,k(IR
2), we say the family is strongly increasing if f̃t � f̃t ′ ⇔ t < t ′. We

also say that a Cr one-parameter family (f̂t )t∈[a,b], such that f̂t ∈ Diffr
t,k(T

1×IR) for
all t ∈ [a, b], is strongly increasing if it has a Cr lift (f̃t )t∈[a,b] which is strongly
increasing.

So, the one-parameter family f̃ (̃x, ỹ + t) + (0, t) is strongly increasing.
The next result explains why these partial orders are important.

PROPOSITION 3.5. If (s, p, q) is a positive (respectively negative) triplet for f̃ and if
f̃ ≤ f̃ ∗ (respectively f̃ ≥ f̃ ∗), then (s, p, q) is a positive (respectively negative) triplet
for f̃ ∗.

3.1.2. Some properties of the extremes of ρV (f̂ ). The next results appeared in [3].

THEOREM 3.6. Let f̂ ∈ Diff1
t,k(T

1×IR) be such that ρV (f̂ ) = [ρ−
V , p/q], with

p/q a rational number. Then, there exists a compact set Â⊂T1×IR such that
f̂ q(Â)−(0, p)= Â.

Remark 3.7. The subset Â can be chosen as a minimal set for f̂ q(•) − (0, p), but it is
not true that f̂ q(•) − (0, p) always has periodic points. Something that always holds for
rational extreme points of the rotation set in the homotopic to the identity class.

https://doi.org/10.1017/etds.2025.10204 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.10204


8 S. Addas-Zanata

THEOREM 3.8. Let f̂ ∈ Diff1
t,k(T

1×IR) be such that ρV (f̂ ) = [ρ−
V , p/q], with ρ−

V < p/q,
for some rational number p/q. Then, assuming that the torus diffeomorphism f lifted by f̂

has no periodic point of vertical rotation number p/q, for arbitrarily small chosen values
of t > 0, f̂ + (0, t) is the lift of a torus diffeomorphism with an nq -periodic orbit (for
some n ≥ 1) of vertical rotation number p/q. Moreover, for all t < 0, the following holds:
ρ+

V (f̂ + (0, t)) < p/q.

The above theorem implies that if f̂ ∈ Diff1
t,k(T

1×IR) is such that ρV (f̂ ) = [ρ−
V , p/q],

and f does not have periodic points with vertical rotation number p/q, then f̂ belongs to
the boundary of (ρ+

V )−1(p/q).

THEOREM 3.9. Let f̂ ∈ Diff1
t,k(T

1×IR) be such that ρV (f̂ ) = [ρ−
V , ω], where ω is

irrational. Then, for any t �= 0, we get that ρ+
V (f̂ + (0, t)) �= ω.

Remark 3.10. To prove the above theorem, for all ε > 0, we found f̂ ∗ ∈ Diff1
t,k(T

1×IR),
such that the mappings (g∗, g∗′) associated to f̃ ∗ are ε-C0-close to (g, g′), the mappings
associated to f̃ , where f̃ ∗ and f̃ are nearby planar lifts respectively of f̂ ∗ and f̂ , and
the upper vertical rotation number has grown, that is, ρ+

V (f̂ ∗) > ω. Thus, Proposition 3.5
implies that ρ+

V (f̂ ∗∗) > ρ+
V (f̂ ) = ω for any f̂ ∗∗ ∈ Diff1

t,k(T
1×IR) such that f̂ � f̂ ∗∗.

3.2. Prime ends compactification of open disks. In this subsection, we present an
informal discussion on prime ends, a subject that only appears in the proof of Theorem 4.4.

Assume D is an open topological disk of an oriented surface whose boundary ∂D is not
reduced to a point.

In the case where ∂D is a Jordan curve and f is an orientation-preserving homeomor-
phism of that surface which satisfies f (D) = D, it is immediate to see that f : ∂D → ∂D

is conjugate to a homeomorphism of the circle, and so a real number ρ(D) = rotation
number of f |∂D can be associated to this map (up to adding an integer). Recall that, if
ρ(D) is rational, then there exists a periodic point in ∂D and if it is not, then there are no
such points. This is known since Poincaré. The difficulties arise when we do not assume
∂D to be a Jordan curve.

The prime ends compactification is a way to attach to D a circle called the circle of
prime ends of D, obtaining a space D � T1 with a topology that makes it homeomorphic
to the closed unit disk. If, as above, we assume the existence of an orientation-preserving
homeomorphism f such that f (D) = D, then f |D extends to D � T1. The prime ends
rotation number of f in D, still denoted ρ(D), is the usual rotation number (which, as
before, only exists up to adding integers) of the orientation-preserving homeomorphism
induced on T1 by the extension of f |D . However, things may be quite different in this
setting. In full generality, it is not true that when ρ(D) is rational, there are periodic points
in ∂D and for some examples, ρ(D) is irrational and ∂D is not periodic point free. Here,
we refer to [16, 21] for definitions, as well as to some important theorems.

3.3. On the existence of saddles with a full mesh. In this subsection, we present the main
result of [5].
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Definitions 3.11. If f : T2 → T2 is a diffeomorphism, either homotopic to the identity or
to a Dehn twist, and z ∈ T2 is a periodic hyperbolic saddle, we say that z has a full mesh if
for any z̃ ∈ p−1(z), Wu(̃z) has a topologically transverse intersection with Ws(̃z) + (a, b)

for all pairs of integers (a, b). Here, Wu(̃z) and Ws(̃z) are the connected components of
p−1(Wu(z)) and p−1(Ws(z)) which contain z̃.

We also say that z has a partial mesh if Wu(̃z) has a topologically transverse intersection
with Ws(̃z) + (a, b) for at least two integer vectors (a, b) which are not collinear (and thus,
to infinitely many non-collinear pairs).

Remark 3.12. We say that a connected set K has a topologically transverse intersection
with a stable manifold of a hyperbolic periodic saddle if there exists z in this stable
manifold and r > 0 such that the connected component of the stable manifold intersected
with Br(z) which contains z divides Br(z) into two connected components B+ and B−,
and K ∩ Br(z) has a closed connected component which intersects both B+ and B−
(analogously for unstable manifolds). See for instance [5, 6].

THEOREM 3.13. Let f̂ ∈ Diff2
k(T

1×IR) (for some integer k �= 0) and suppose p/q ∈
interior(ρV (f̂ )). Then, the torus diffeomorphism f lifted by f̂ has a periodic point of
vertical rotation number p/q that is a hyperbolic saddle with a full mesh. In the homotopic
to the identity case, if f̃ ∈ Diff2

0(IR
2) and (p/q, r/q) ∈ interior(ρ(f̃ )), then, the torus

diffeomorphism f lifted by f̃ has a hyperbolic periodic saddle point of rotation vector
(p/q, r/q) with a full mesh.

If z, w ∈ T2 are periodic saddles, both with full or partial meshes, then the C0-λ lemma
(see for instance [10, Proposition 1]) implies that Wu(z) = Wu(w) and Ws(z) = Ws(w).
This happens because Wu(z) ∪ Ws(z) and Wu(w) ∪ Ws(w) both contain closed curves
in all homotopy classes. So, Wu(z) has topologically transverse intersections with both
Ws(z) and Ws(w), the same for Wu(w) with respect to Ws(z) and Ws(w).

3.4. On a version of Pixton’s theorem to the torus. The next result was taken from [8]
and adapted to our notation.

THEOREM 3.14. For every integers k and r ≥ 1, there exist residual subsets of Diffr
k(T

2),
or in the area-preserving case, of Diffr

k,Leb(T
2), denoted respectively χr(T2) and

χr
Leb(T

2), such that whether f is homotopic to the identity, or to a Dehn twist, assuming
f ∈ χr(T2) or f ∈ χr

Leb(T
2) and f has a saddle z with a full mesh, if Y is a stable branch

of a hyperbolic periodic saddle p and X is an unstable branch of a hyperbolic periodic
saddle q, such that X intersects Y , then there exists an integer i such that Y intersects
f i(X) C1-transversely. Moreover, if p and q are in the same orbit, then one may choose
i = 0.

Remarks 3.15.
(1) As explained in §1 after the statement of Theorem 2.6, the subsets χr(T2) and

χr
Leb(T

2) consist of residual sets contained in general Kupka–Smale, or in
area-preserving Kupka–Smale Cr -diffeomorphisms, respectively, for which closures
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10 S. Addas-Zanata

FIGURE 1. Diagram showing the dynamics near a saddle-elliptic periodic point in the C∞-generic case.

of stable and unstable branches of hyperbolic periodic saddles and homoclinic
and heteroclinic intersections vary continuously with perturbations of the
diffeomorphisms. See [24, pp. 370–372].

(2) The above theorem appears in [8, Theorem 15]. Although an area-preserving version
does not exist in that paper (because it was not needed), as is explained in Pixton’s
paper [24], it is easily obtainable: More precisely, [8, Theorem 8 and Lemma 9] are
statements of results from [24] that are true in the area-preserving world. This is all
we need to obtain area-preserving versions of all the results in [8, §3], culminating
in Theorem 3.14 above.

3.5. Generic birth and death of periodic orbits. First, we quote [8, Theorem 20], which,
as explained in that reference, is essentially due to Brunovski, plus an idea of Sotomayor.

THEOREM 3.16. For any r ∈ {2, 3, . . . , ∞}, if (ft )t∈I is a Cr -generic one-parameter
family of diffeomorphisms of a closed Riemmanian manifold, then periodic points are born
from only two different types of bifurcations: saddle-nodes and period doubling. In the case
of saddle-nodes, if the parameter changes, then the saddle-node unfolds into a saddle and
a sink, or source, in one direction, and the periodic point disappears in the other direction.
Moreover, at each fixed parameter, only one saddle-node can exist.

The next result is an area-preserving version of the above one, originally proved by
Meyer [22], with the exception of the local picture in a neighborhood of the saddle-elliptic
point.

THEOREM 3.17. If (ft )t∈I is a C∞-generic one-parameter family of area-preserving
diffeomorphisms of a closed oriented surface, then periodic points are born from only
two different types of bifurcations: saddle-elliptic and period doubling. In the case of
saddle-elliptic, if the parameter changes, then the point unfolds into a saddle and an elliptic
point (one whose eigenvalues belong to the unit circle and are not real) in one direction
and the periodic point disappears in the other direction. The dynamics in a neighborhood
of the saddle-elliptic point is as in Figure 1.

https://doi.org/10.1017/etds.2025.10204 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2025.10204


On Cr -generic twist maps of T2 11

Remark 3.18. The part of the statement on the local dynamics near the saddle-elliptic
bifurcations follows from two things:
(1) for C∞-generic one-parameter families of area-preserving surface diffeomorphisms,

each periodic point is isolated among periodic points of the same period, and all of
them satisfy a Lojaziewicz condition, (see [13, p. 3], of the Summary);

(2) if f is a C∞ area-preserving surface diffeomorphism with an isolated fixed point p
(isolated among the fixed point set of f ), satisfying a Lojaziewicz condition, such
that the topological index of f at p is zero, then both eigenvalues at p are equal to 1
and the local dynamics is as in Figure 1. A proof of this can be found in [9, §2].

4. Proofs
4.1. Proof of Theorem 2.1 and Corollary 2.2.

Sketch of the proofs. The main ideas used here are the following: either for every ε > 0,
f̂ q(•) − (0, p) has ε-pseudo orbits that move vertically in the cylinder by arbitrarily large
amounts, or not. In case for every ε > 0 there are such ε-pseudo orbits, we can find twist
maps ĥi ∈ Diffr

t,k(T
1 × IR) arbitrarily C0-close to f̂ such that ρ+

V (̂hi) > p/q. This fact,
together with Lemma 2.3, implies that ρ+

V (f̂ + (0, t)) > p/q for all t > 0.

Additionally, in the case where for some ε0 > 0, there are no such ε0-pseudo orbits,
then we use the following folklore result.

PROPOSITION 4.1. Let ĥ : T1 × IR → T1 × IR be an orientation and end-preserving
homeomorphism. Assume that for some a < b and ε0 > 0, there is no ε0-pseudo orbit
starting at some point in T1×]−∞, a] and ending at some point in T1×[b, +∞[.
Then, there exists a homotopically non-trivial simple closed curve γ ⊂ T1 × IR such that
ĥ(γ ) ⊂ γ −.

Proof. Consider the following set: U(ε0) = {̂z ∈ T1 × IR : ∃ ε0-pseudo orbit for ĥ starting
at some point in T1×]−∞, a] and ending at ẑ}. The hypothesis of the proposition implies
that the positively invariant, connected open set U(ε0) satisfies U(ε0) ⊂ T1×]−∞, b[.
Also, if S > 0 is defined as S = sup̂z∈T1×{a} dist(̂h(̂z), ẑ), then U(ε0) ⊃ T1×]−∞,
a − S + ε0].

Let us show that

ĥ(closure(U(ε0))) ⊂ U(ε0). (4.1)

To see that this concludes the proof, consider 
̂, the connected component of the
complement of closure(U(ε0)) that contains T1×]b, +∞[. Clearly, 
̂ ⊂ T1×]a − S +
ε0, +∞[ and its (connected) boundary, ∂
̂, separates the ends of the annulus and is
disjoint from its image under ĥ, because ∂
̂ ⊂ ∂U(ε0) and ĥ(∂(U(ε0))) ⊂ U(ε0) (see
equation (4.1)). So, any homotopically non-trivial simple closed curve γ contained in the
open annulus between ∂
̂ and ĥ(∂
̂) is free under ĥ and mapped into γ −.

Thus, we are left to show that equation (4.1) holds. Consider some ŵ ∈ closure(U(ε0)).
Fix δ > 0 such that ĥ(Bδ(ŵ)) ⊂ Bε0 (̂h(ŵ)), and pick a point ŵ∗ ∈ Bδ(ŵ) ∩ U(ε0).
There exists an ε0-pseudo orbit {̂z0, ẑ1, . . . , ẑn−1, ŵ∗} such that ẑ0 ∈ T1×]−∞, a].
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12 S. Addas-Zanata

As ĥ(ŵ∗) ∈ Bε0 (̂h(ŵ)), the set {̂z0, ẑ1, . . . , ẑn−1, ŵ∗, ĥ(ŵ)} is also an ε0-pseudo orbit.
So, ĥ(ŵ) ∈ U(ε0), something that implies that ĥ(closure(U(ε0))) ⊂ U(ε0).

These ideas, when put together properly, prove Theorem 2.1 and Corollary 2.2.
Back to the precise proof. As in the statements, let k �= 0 be an integer which, without

loss of generality, we assume to be positive, f̂ ∈ Diffr
t,k(T

1 × IR), for any r ≥ 1, and let
f̃ ∈ Diffr

t,k(IR
2) be a lift of f̂ to the plane. Clearly,

f̃ (̃x, ỹ) = (̃x + kỹ + φ1(̃x, ỹ), ỹ + φ2(̃x, ỹ)), (4.2)

where φi is a 1-periodic function of x̃ and ỹ for i = 1, 2.
Let us define the following constants, ktw > 0, A > 0, and B > 0 as follows:

k + ∂φ1

∂ỹ
(̃x, ỹ) > ktw for all (̃x, ỹ) ∈ IR2 (twist condition), (4.3)

∣∣∣∣∂φ1

∂x̃
(̃x, ỹ)

∣∣∣∣ < B and |φ2(̃x, ỹ)| < A for all (̃x, ỹ) ∈ IR2. (4.4)

The first assertion in the statement of the theorem implies that there exists a neigh-
borhood of f̂ ∈ Diffr

k(T
1 × IR) such that for any ĥ in this neighborhood, we have

ρ+
V (̂h) ≤ ρ+

V (f̂ ). So Theorem 3.9 implies that ρ+
V (f̂ ) = p/q for some rational number

p/q.
Let us prove the following lemma.

LEMMA 4.2. Under the previous hypotheses, there exists ε0 > 0 such that there is no
ε0-pseudo orbit for f̂ q(•) − (0, p) : T1 × IR → T1 × IR starting at a point below T1 ×
{0} and ending at a point above T1 × {10 + A + |p| + (10 + B)/ktw}.

Proof. By contradiction, assume that for all ε > 0, there exist ε-pseudo orbits for
f̂ q(•) − (0, p), starting at a point below T1 × {0} and ending at a point above
T1 × {10 + A + |p| + (10 + B)/ktw}. Denote such an ε-pseudo orbit by {̂z0, ẑ1, . . . , ẑn},
for n ≥ 1. From its choice, p2(̂z0) < 0 and p2(̂zn) > 10 + A + |p| + (10 + B)/ktw.

To the above ε-pseudo orbit for f̂ q(•) − (0, p), there corresponds the following
ε-pseudo orbit for f̂ :

{̂z0, f̂ (̂z0), . . . , f̂ q−1(̂z0), z1 + (0, p), . . . , f̂ q−1(̂z1) + (0, p), . . . , ẑn + (0, np)}.
(4.5)

Modifying the points in equation (4.5) in an arbitrarily small way, we can obtain another
ε-pseudo orbit for f̂ ,

{ŵ0 = (̂x0, ŷ0), ŵ1 = (̂x1, ŷ1), . . . , ŵqn = (̂xqn, ŷqn)},

where the ŵi = (̂xi , ŷi ) satisfy x̂i �= x̂j , for i �= j . Clearly, p2(ŵ0) < 0 and p2(ŵqn) >

p.n + 10 + A + |p| + (10 + B)/ktw.
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From equation (4.2), we get that

Df̃ |(̃x ,̃y)=
⎛
⎜⎝1 + ∂φ1

∂x̃
(̃x, ỹ) k + ∂φ1

∂ỹ
(̃x, ỹ)

∂φ2
∂x̃

(̃x, ỹ) 1 + ∂φ2

∂ỹ
(̃x, ỹ)

⎞
⎟⎠

has uniformly bounded norm for all (̃x, ỹ) ∈ IR2, the same holding for ‖Df̃ −1 |(̃x ,̃y) ‖.
In T1 × IR, denote this uniform bound for ‖Df̂ |(̂x ,̂y) ‖ and ‖Df̂ −1 |(̂x ,̂y) ‖ by M > 0.
So, for all (̂x1, ŷ1), (̂x2, ŷ2) ∈ T1 × IR,

dist(f̂ ±1(̂x1, ŷ1), f̂ ±1(̂x2, ŷ2)) < M .dist((̂x1, ŷ1), (̂x2, ŷ2)).

Our aim now is to find some twist map f̂ ∗ ∈ Diffr
t,k(T

1 × IR) and some of its lifts
f̃ ∗ ∈ Diffr

t,k(IR
2) for which

f̃ ∗(̃x, ỹ) = (̃x + kỹ + φ1(̃x, ỹ), ỹ + φ∗
2 (̃x, ỹ)), (4.6)

where φ∗
2 is ((M + 1)/ktw + 1)ε-C0-close to φ2, and for some point ẑ ∈ T1 × IR,

p2((f̂
∗)nq (̂z)) − p2(̂z) > p.n + 9 + A + |p| + (10 + B)/ktw.

As max
(̃x ,̃y)∈IR2 |φ∗

2 (̃x, ỹ)| < A + 1 for all 0 < ε < ((M + 1)/ktw + 1)−1, we get
from [1, Lemma 8] that there exists a point ẑ′ ∈ T1 × IR such that one of the following
possibilities holds:

p2((f̂
∗)nq (̂z′)) − p2(̂z

′) > p.n + 2 + |p|,
p1((f̂

∗)nq (̂z′)) = p1(̂z
′)

or

p2((f̂
∗)nq+1(̂z′)) − p2(̂z

′) > p.n + 2 + |p|,
p1((f̂

∗)nq+1(̂z′)) = p1(̂z
′).

So, either the torus map f ∗ has periodic points of vertical rotation number equal to
(p.n + 2 + |p|)/(nq) or to (p.n + 2 + |p|)/(nq + 1), both numbers larger than p/q, or
for some integer s, the triplet (s, np + 2 + |p|, nq) or the triplet (s, np + 2 + |p|, nq + 1)

is positive for f̃ ∗.
However, this last possibility implies that p/q < ρ−

V (f̂ ∗) ≤ ρ+
V (f̂ ∗). So, it is always

the case that p/q < ρ+
V (f̂ ∗).

As the functions g∗(̃x, x̃′) and g∗′(̃x, x̃′) associated to f̃ ∗ will be shown to satisfy
g∗(̃x, x̃′) = g(̃x, x̃′) and

|g∗′(̃x, x̃′) − g′(̃x, x̃′)| < C′ε for C′ = (M + 1)/ktw + 1 > 0, (4.7)

we get from Proposition 3.5 and the comments right before it that

ρ+
V (f̂ + (0, 2C′ε)) > p/q.

As we are assuming that ρ+
V (̂h) ≤ ρ+

V (f̂ ) = p/q for all ĥ ∈ Diffr
t,k(T

1 × IR)

sufficiently Cr -close to f̂ , we arrived at a contradiction because ε > 0 could be arbitrarily
small.

So, to conclude the proof of the present lemma, we are left to show the existence of
f ∗, f̂ ∗, f̃ ∗, as above.
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14 S. Addas-Zanata

Recall that we are assuming the existence of an ε-pseudo orbit for f̂ , denoted

{ŵ0 = (̂x0, ŷ0), ŵ1 = (̂x1, ŷ1), . . . , ŵqn = (̂xqn, ŷqn)},
where x̂i �= x̂j for i �= j and p2(ŵ0) < 0, p2(ŵqn) > pn+10+A+|p|+ (10+B)/ktw.

Clearly from the twist condition, in the vertical segment {̂xqn−1} × [̂yqn−1 − ε/ktw,
ŷqn−1 + ε/ktw], there exists a point ŵ′

qn−1 such that

p1 ◦ f̂ (ŵ′
qn−1) = x̂qn and dist(f̂ (ŵ′

qn−1), ŵqn) < (M/ktw + 1)ε.

Analogously, in the vertical segment {̂xqn−2} × [̂yqn−2 − ε/ktw, ŷqn−2 + ε/ktw], there
exists a point ŵ′

qn−2 such that

p1 ◦ f̂ (ŵ′
qn−2) = x̂qn−1 and dist(f̂ (ŵ′

qn−2), ŵ′
qn−1) < ((M + 1)/ktw + 1)ε.

For i = qn − 3 down to 0, the situation is analogous to i = qn − 2. In the vertical segment
{̂xi} × [̂yi − ε/ktw, ŷi + ε/ktw], there exists a point ŵ′

i such that

p1 ◦ f̂ (ŵ′
i ) = x̂i+1 and dist(f̂ (ŵ′

i ), ŵ′
i+1) < ((M + 1)/ktw + 1)ε.

So, we found a sequence of points ŵ′
0 = (̂x0, ŷ′

0), ŵ′
1 = (̂x1, ŷ′

1), . . . , ŵ′
qn−1 =

(̂xqn−1, ŷ′
qn−1), ŵ′

qn = ŵqn = (̂xqn, ŷqn) such that, for all i = 0, 1, . . . , qn − 1:

• p1 ◦ f̂ (ŵ′
i ) = x̂i+1;

• |̂y′
i − ŷi | < ε/ktw;

• dist(f̂ (ŵ′
i ), ŵ′

i+1) = |p2(ŵ
′
i+1) − p2(f̂ (ŵ′

i ))| < ((M + 1)/ktw + 1)ε.
With the above modification, we constructed an ((M + 1)/ktw + 1)ε-pseudo orbit

ŵ′
0, ŵ′

1, . . . , ŵ′
qn−1, ŵ′

qn = ŵqn such that the image of each point is contained in the
same vertical containing the next point. In other words, to turn this pseudo orbit into a real
orbit for a C0-nearby homeomorphism, we just have to compose f̂ with a diffeomorphism
T̂ : T1 × IR → T1 × IR of the following form:

T̂ (̂x, ŷ) = (̂x, ŷ + ψ(̂x)),

where ψ : T1 → IR is a C∞ function satisfying:
• ψ(̂xi) = p2(ŵ

′
i ) − p2(f̂ (ŵ′

i−1)) for i = 1, 2, . . . , qn;
• ‖ψ‖0 < ((M + 1)/ktw + 1)ε.

Denote by T ∈ Diff∞0 (T2) the torus diffeomorphism induced by T̂ . Also, note that any
lift of T̂ to the plane belongs to Diff∞0 (IR2).

If we define f ∗ = T ◦f , f̂ ∗ = T̂ ◦ f̂ and f̃ ∗ = T̃ ◦ f̃ , where T̃ (̃x, ỹ) = (̃x, ỹ + ψ̃ (̃x))

is a lift of T̂ to the plane, then

f̃ ∗(̃x, ỹ) = (̃x + kỹ + φ1(̃x, ỹ), ỹ + φ2(̃x, ỹ) + ψ̃ (̃x + kỹ + φ1(̃x, ỹ))).

In the above expression, ψ̃ : IR → IR is the 1-periodic C∞ function that lifts ψ . So com-
paring the above to equation (4.6), we get that ‖φ∗

2 −φ2‖0 = ‖ψ̃‖0 < ((M +1)/ktw +1)ε,
as was stated right after equation (4.6).

Moreover,

g∗(̃x, x̃′) = g(̃x, x̃′) and g∗′(̃x, x̃′) = p2 ◦ f̃ (̃x, g(̃x, x̃′)) + ψ̃ (̃x′) = g′(̃x, x̃′)+ ψ̃ (̃x′).
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This implies that C′ > 0 can be expressed as a function of ε > 0 exactly as in
equation (4.7).

If ε > 0 is small enough so that ((M + 1)/ktw + 1)ε < 1, then

p2((f̂
∗)nq(ŵ′

0)) − p2(ŵ
′
0) = ŷqn − ŷ′

0 > p.n + 9 + A + |p| + (10 + B)/ktw.

So, the point ẑ that appears right after equation (4.6) is ŵ′
0. This concludes the proof of

the lemma.

The above lemma implies that assuming the first assertion in the hypotheses of the
theorem, there exists ε0 > 0 such that, defining

U(ε0) = {z ∈ T1 × IR : there exists ε0-pseudo orbit for f̂ q(•) − (0, p)starting at a point in

T1×]−∞, 0] and ending at z},
then U(ε0) is open, connected, contains T1×]−∞, −qA − p], and does not intersect
T1 × [10 + A + |p| + (10 + B)/ktw, +∞[. So, Proposition 4.1 implies that there exists
a f̂ q(•) − (0, p) free homotopically non-trivial simple closed curve γ̂ ⊂ T1 × IR such
that f̂ q(γ̂ ) − (0, p) ⊂ γ̂ −.

This proves that the first assertion in the statement of the theorem implies the second.
For the other implication, note that the second assertion implies that for any continuous
map f̂∗ in a C0-neighborhood of f̂ , f̂

q∗ (γ̂ ) − (0, p) ⊂ γ̂−, and so in a C0-neighborhood
of f̂ , ρ+

V is smaller or equal than p/q.
To prove Corollary 2.2, assume that ρ−

V (f̃ ) < ρ+
V (f̃ ) = p/q.

If f̂ q(•) − (0, p) satisfies the C.I.P., then Proposition 4.1 and the proof of Lemma 4.2
imply that for all t > 0, ρ+

V (f̂ + (0, t)) > p/q, which implies that ρ+
V does not have a

local maximum at f̂ .
Additionally, if ρ+

V does not have a local maximum at f̂ , then f̂ q(•) − (0, p) does not
have free homotopically non-trivial simple closed curves, so f̂ q(•) − (0, p) satisfies the
C.I.P. This proves the equivalence in the statement of the corollary.

Finally, as f̂ q(•) − (0, p) is the lift to the annulus of a torus homeomorphism
homotopic to a Dehn twist, if it satisfies the C.I.P., then [4, Theorem 3] implies that it
has periodic orbits of all rational rotation numbers in the annulus (with respect to the lift
to the plane f̃ q(•) − (0, p)).

4.2. Proof of Theorems 2.5 and 2.6. Let k �= 0 and r ≥ 1 be integers. The sets
Or

t,k(T
1 × IR) and Or

t,k,Leb(T
1 × IR) that appear in the statements of Theorems 2.5

and 2.6, defined as the subsets of maps f̂ ∈ Diffr
t,k(T

1 × IR) or f̂ ∈ Diffr
t,k,Leb(T

1 × IR),
respectively, such that ρV is constant in a neighborhood of f̂ , are both open by definition.
We need to show that they are also dense.

If we define Or
t,k,+(T1 × IR) as the subset of maps ĥ ∈ Diffr

t,k(T
1 × IR) such that ρ+

V is
constant in a neighborhood of ĥ, analogously for Or

t,k,−(T1 × IR) with respect to ρ−
V , as

both sets are clearly open, we have the following.

Step 1. It is enough to show that Or
t,k,+(T1 × IR) and Or

t,k,−(T1 × IR) are both dense
(the same happening in the area-preserving case).
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Proof. This step holds trivially, because

Or
t,k(T

1 × IR) = Or
t,k,+(T1 × IR) ∩ Or

t,k,−(T1 × IR).

So, to conclude the proof, it remains to show that Or
t,k,+(T1 × IR) and Or

t,k,Leb,+(T1 × IR)

are both dense (the proofs in the case of ρ−
V are analogous).

Step 2. Let (f̂t )t∈[a,b] be a continuous one-parameter family of elements of
Diffr

t,k(T
1 × IR), with the additional property that it is a strongly increasing family. Then,

the map t �→ ρ+
V (f̂t ) is non-decreasing.

Proof. To prove the above statement, fix some continuous family f̃t : IR2 → IR2 that
lifts f̂t , and note that if t < t ′, then f̃t � f̃t ′ . So, if some triplet (s, p, q) is non-negative
for f̃t , then it is also non-negative for f̃t ′ . This easily implies that ρ+

V (f̂t ′) ≥ ρ+
V (f̂t ).

Step 3. Still under the hypothesis that (f̂t )t∈[a,b] is a continuous one-parameter family of
elements of Diffrt ,k(T

1 × IR) which is a strongly increasing family, if ω is irrational, then
t �→ ρ+

V (f̂t ) takes the value of ω at most once.

Proof. This proof is contained in the proof of Theorem 3.9 and the remark after its
statement.

Step 4. For all t, f̂ (̂x, ŷ + t) + (0, t) is a strongly increasing family.

Proof. See the comment right before the statement of Proposition 3.5.

Now, let us recall that in the area-preserving case, a result by Zehnder [25] implies that
Diff∞t,k,Leb(T

2) is dense in Diffr
t,k,Leb(T

2) for all r ≥ 1.
In the general case, it is an easy fact that for all r ≥ 1, Diffr+1

t,k (T2) is dense in
Diffr

t,k(T
2); moreover, Diff∞t,k(T2) is also dense in Diffr

t,k(T
2).

From the above, fix some f̂ ∈ Diff∞t,k(T1 × IR) or f̂ ∈ Diff∞t,k,Leb(T
1 × IR). In the

remainder of this proof, we will find a C∞-small perturbation of f̂ , which preserves
area in the case where f̂ preserves area, such that ρ+

V is rational and constant in a
C0-neighborhood of it, this neighborhood contained in Diff0

k(T
1 × IR).

LEMMA 4.3. Applying a C∞-small perturbation to f̂ if necessary, we can assume that
ρV (f̂ ) is either a non-degenerate interval or a single rational number, and in this case, it
is locally constant.

Proof. In [19], it is proved that in the case where f : T2 → T2 (the torus map lifted by f̂ )

does not have periodic points, then for arbitrarily small values of t, f + (0, t) has periodic
points, say of vertical rotation number r/s with respect to the lift f̂ + (0, t). In this case,
by a C∞-small perturbation applied to f + (0, t), one of the previously obtained periodic
orbits can be made topologically non-degenerate (such a perturbation is possible both in
Diff∞t,k(T2) and in Diff∞t,k,Leb(T

2)). This implies that if we denote the perturbed mapping as
f # and its lift which is close to f̂ + (0, t) as f̂ #, then there exists a C0-small neighborhood
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of f̂ # in Diff0
k(T

1 × IR) such that all mappings in this neighborhood induce torus maps
with periodic orbits of vertical rotation number r/s.

To conclude, note that either ρV is locally constant in a neighborhood of f̂ # consisting
of the single rational number r/s, or for arbitrarily small values of |s|, f̂ # + (0, s) has a
non-degenerate vertical rotation interval, containing r/s if |s| is sufficiently small.

So, the above lemma implies that either Theorems 2.5 and 2.6 are proved (with the
exception of the part of a non-degenerate vertical rotation interval in the area-preserving
case), or we can assume that ρV (f̂ ) is a non-degenerate interval.

As we said before, we are left to show that both sets Or
t,k,+(T1 × IR) and

Or
t,k,Leb,+(T1 × IR) are dense. For this, fix some lift f̃ : IR2 → IR2 of f̂ .

If ρ+
V (f̂ + (0, t)) is locally constant for t in a neighborhood of 0, then Lemma 2.3

and Theorems 2.1 and 3.8 imply that ρ+
V (f̂ ) is equal to some rational number p/q, f

has topologically non-degenerate periodic orbits of vertical rotation number p/q, and
f̂ q(•) − (0, p) maps a homotopically non-trivial simple closed curve γ into γ −. So the
work is done: f̂ already belongs to Or

t,k,+(T1 × IR) or to Or
t,k,Leb,+(T1 × IR), and ρ+

V is
constant and rational in a neighborhood of f̂ in Diff0

k(T
1 × IR).

Assume now that ρ+
V (f̂ + (0, t)) is not locally constant in any neighborhood

of 0. Fix some η > 0, an arbitrarily small number such that ρV (f̂ + (0, t)) is a
non-degenerate interval for all |t | < η (the C0-continuity of ρV implies that this is
possible). Either when f preserves area or not, for any 0 < η1 < η and δ > 0, we can find
a C∞-generic family (f̂ ∗

t )t∈[−η1,η1], lifted by f̃ ∗
t , δ-C∞-close to f̂ (̂x, ŷ + t/2) + (0, t/2)

and f̃ (̃x, ỹ + t/2) + (0, t/2), respectively, for all t ∈ [−η1, η1], satisfying some special
properties, see Theorems 3.16 and 3.17.

Step 5. If δ > 0 is sufficiently small, then (f̂ ∗
t )t∈[−η1,η1] is strongly increasing.

Proof. For each t ∈ [−η1, η1], f̃ ∗
t is δ-C∞ -close to f̃ (̃x, ỹ + t/2) + (0, t/2). So the pair

of mappings (g∗
t , g∗′

t ) associated to f̃ ∗
t satisfy the following inequalities:∣∣∣∣ ∂

∂t
g∗

t (̃x, x̃′) − (−1/2)

∣∣∣∣ < C(δ) and
∣∣∣∣ ∂

∂t
g∗′

t (̃x, x̃′) − 1/2
∣∣∣∣ < C(δ)

for all (̃x, x̃′) ∈ IR2 and some constant C(δ) → 0 as δ → 0. So, if δ > 0 is small enough,
(∂/∂t)g∗

t (̃x, x̃′) < 0 and (∂/∂t)g∗′
t (̃x, x̃′) > 0 for all (̃x, x̃′) ∈ IR2, that is, (f̂ ∗

t )t∈[−η1,η1]

is a strongly increasing family. We are using the fact that if the pair (g, g′) is associated to
f̃ , then (g − t/2, g′ + t/2) is associated to f̃ (̃x, ỹ + t/2) + (0, t/2).

From our hypotheses, no matter the value of η1 > 0, ρ+
V (f̂ − (0, η1)) < ρ+

V (f̂ +
(0, η1)). Fix 0 < η1 < η and δ > 0 small enough (among other requirements, δ < η1/4),
so that ρ+

V (f̂ ∗−η1
) < ρ+

V (f̂ ∗
η1

), f̂ ∗
t is η-Cr -close to f̂ for all t ∈ [−η1, η1], (f̂ ∗

t )t∈[−η1,η1] is
a strongly increasing family, and ρV (f̂ ∗

t ) is a non-degenerate interval for all t ∈ [−η1, η1].
Pick a rational ρ+

V (f̂ ∗−η1
) < p/q < ρ+

V (f̂ ∗
η1

) and t ′ ∈ ]−η1, η1[ such that

t ′ = inf{t ∈ [−η1, η1] : ρ+
V (f̂ ∗

t ) ≥ p/q}.
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FIGURE 2. Diagram showing the dynamics in a neighborhood of a trivializable periodic point, after an appropriate
coordinate change.

Clearly, −η1 < t ′ < η1, ρ+
V (f̂ ∗

t ′ ) = p/q, ρ+
V (f̂ ∗

t ) ≥ p/q for all t > t ′, and for t < t ′,
ρ+

V (f̂ ∗
t ) < p/q.

Theorem 3.8 implies that for some t ′′ ≥ t ′, ρ+
V (f̂ ∗

t ′′) = p/q and f ∗
t ′′ has finitely many

nq-periodic points for some integer n > 0 with vertical rotation number p/q which are
all degenerate: saddle-node in the general case or saddle-elliptic in the area-preserving
case (this follows from Theorems 3.16 and 3.17). Moreover, we can assume, decreasing
t ′′ if necessary, that f ∗

t ′′ has no iq-periodic points of vertical rotation number p/q for
i = 1, 2, . . . , n − 1. This follows from the fact that (f̂ ∗

t )t∈[−η1,η1] is a strongly increasing
family.

As the nq-periodic points with vertical rotation number p/q that exist for ft ′′ are all
degenerate, the choice of n implies that, for t < t ′′, f ∗

t does not have periodic points of
vertical rotation number p/q and period smaller or equal to nq, and for all t − t ′′ > 0
sufficiently small, f ∗

t has hyperbolic nq-periodic saddles of vertical rotation number
p/q, as the degenerate nq-periodic points for f ∗

t ′′ bifurcate in the way explained in
Theorems 3.16 and 3.17. In this way, for any t − t ′′ > 0 sufficiently small, there exists
a C0-neighborhood V of f̂ ∗

t in Diff0
k(T

1 × IR), such that all ĥ ∈ V are lifts of torus maps
with nq-periodic points of vertical rotation number p/q, because saddle periodic points are
topologically non-degenerate, they cannot be destroyed by C0-small perturbations. Thus,
the upper extreme of the vertical rotation interval cannot decrease, that is, ρ+

V (̂h) ≥ p/q.
The local dynamics, either in the saddle-node or in the saddle-elliptic case, is what we

called trivializable in [9, §3]. This means that there exists an isolating neighborhood of the
nq-periodic point in question, such that, after a local change of coordinates, all points in
this neighborhood, with the exception of the periodic point itself, move to the right under
iterations of the dynamics which are multiples of nq, see Figure 2.

The proofs that saddle-node and saddle-elliptic periodic points are trivializable appear
in Propositions 6 and 8 of that paper, respectively (although Proposition 8 asks for
area-preservation and real analiticity, the generic family that comes from Theorem 3.17
satisfies everything needed there, namely, for each integer n > 0, there are finitely many
n-periodic points, and each periodic point satisfies a Lojaziewicz condition).

Now, we conclude our proof using [9, Proposition 9]. Adapted to our setting, it says
that there exists a C0-neighborhood W of f̂ ∗

t ′′ in Diff0
k(T

1 × IR) such that for all ĥ ∈ W ,
ρ+

V (̂h) ≤ p/q. So, if we pick t > t ′′ such that f̂ ∗
t ∈ W , we get that for all ĥ ∈ V ∩ W ,

ρ+
V (̂h) = p/q.

Although [9, Proposition 9] is stated for the homotopic to the identity class, it also holds
for maps homotopic to Dehn twists.
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Its proof is based on a series of local deformations and perturbations. To be more
precise, if by contradiction, the adapted statement of the proposition did not hold,
then there would be a deformation ĥ ∈ Diff0

k(T
1 × IR) of the map f̂ ∗

t ′′ , such that
ρ−

V (̂h) < p/q < ρ+
V (̂h), this deformation supported outside neighborhoods of all the

nq-periodic points of f ∗
t ′′ with vertical rotation number p/q. Moreover, if h is the torus

map lifted by ĥ, then the set of h-periodic points with vertical rotation number p/q and
period smaller or equal to nq is equal to the same set for f ∗

t ′′ , in other words, the only
possible period is nq.

This cannot be achieved in general, the proof of [9, Proposition 9] strongly uses the
fact that the dynamics is trivializable in neighborhoods of all the nq-periodic points with
vertical rotation number p/q.

The remaining part of the argument is to perturb h inside the trivializable neighborhoods
to erase the nq-periodic points of vertical rotation number p/q. Denote this perturbation
of h by h′.

The above construction is possible by the choice of n and t ′′ above, and the fact that
it is very easy to destroy trivializable periodic points: any adequate arbitrarily C0-small
local translation supported inside the trivializable neighborhoods will do the job. So, as
ρV varies continuously in the C0-topology, p/q would still be an interior point of ρV (̂h′),
and p/q would not be realized by a q-periodic orbit, as stated in [12, Theorem 5.3]. This
contradiction shows the existence of the open neighborhood W ⊂ Diff0

k(T
1 × IR) of f̂ ∗

t ′′
such that for all ĥ ∈ W , ρ+

V (̂h) ≤ p/q, as explained above.
Summarizing, we found ĥ## ∈ Diff∞t,k(T1 × IR) or ĥ## ∈ Diff∞t,k,Leb(T

1 × IR), such that
ĥ## equals f̂ in the case where ρ+

V is locally constant in a neighborhood of f̂ or ĥ## equals
f̂ ∗

t if it is not, such that:
(1) ĥ##, h̃## are η-Cr -close to f̂ , f̃ ;
(2) ρ+

V (̂h##) = p/q and ρ+
V is locally constant in a C0-neighborhood of ĥ## in

Diff0
k(T

1 × IR).
We are left to show that, in the area-preserving case, ρ−

V < ρ+
V . For this, just consider

the vertical rotation number of the Lebesgue measure (i.e. area).
Namely, for a fixed f̂ ∈ Diffr

t,k,Leb(T
1 × IR) such that ρV (f̂ ) = [r/s, p/q] and the

vertical rotation interval is locally constant in a neighborhood of f̂ , note that Lebesgue
measure’s vertical rotation number of f̂ + (0, s), denoted ρV ,Leb(f̂ + (0, s)), is equal
to ρV ,Leb(f̂ ) + s (for all s ∈ IR). As ρV (f̂ + (0, s)) = ρV (f̂ ) = [r/s, p/q] for all |s|
sufficiently small, and ρV ,Leb(f̂ + (0, s)) ∈ ρV (f̂ + (0, s)) = [r/s, p/q] also for |s|
sufficiently small, it must be the case that r/s < p/q. The proof is over.

4.3. A technical result on the existence of partial mashes. The next result, Theorems 4.4
and 4.4′, is the only one in this paper that also applies to the identity homotopy class. It is
auxiliary to Theorem 2.7 and Corollary 2.8, but it has its own interest.

In [6], we proved a version of Theorem 4.4 for area-preserving homotopic to the identity
maps and, as a consequence, we showed that whenever the rotation set of a generic
one-parameter family of area-preserving diffeomorphisms of the torus homotopic to the
identity changes as the parameter changes, then certain homoclinic tangencies in the torus
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(heteroclinic in the plane) appear and unfold generically, giving rise to all phenomena
associated to such an unfolding, birth of elliptic islands (infinitely many), etc.

Below, we present a simpler proof in the area-preserving case and also one that works
in general. So Theorem 4.4 implies a version of the main result of [6] to any generic
one-parameter family of diffeomorphisms of the torus, either homotopic to Dehn twists or
to the identity.

More precisely, whenever the rotation set (or vertical rotation interval, in the Dehn
twist case) of a generic one-parameter family of diffeomorphisms of the torus changes
as the parameter changes, then certain homoclinic tangencies unfold generically. These
tangencies are between stable and unstable manifolds of hyperbolic periodic saddles of
rational rotation vectors (or numbers) which are eaten by the rotation set as the parameter
changes (by eaten, we mean that as the parameter changes, these points modify their status,
from boundary to interior points).

THEOREM 4.4. (Homotopic to Dehn twists version) For any integers k �= 0 and r ≥ 1,
let f ∈ Diffr

k(T
2) ∩ χ r(T2) or f ∈ Diffr

k,Leb(T
2) ∩ χ r

Leb(T
2) be such that the vertical

rotation interval ρV (f̂ ) has interior for some fixed lift f̂ ∈ Diffr
k(T

1 × IR) of f. Then,
for any rational number ρ in the boundary of the vertical rotation interval such that f has
ρ-periodic orbits, there exist ρ-hyperbolic periodic saddles for f with a partial mesh.

THEOREM 4.4′. (Homotopic to the identity version) For any r ≥ 1, let f ∈ Diffr0(T
2) ∩

χr(T 2) or f ∈ Diffr
0,Leb(T

2) ∩ χ r
Leb(T

2) be such that the rotation set ρ(f̃ ) has interior
for some fixed lift f̃ ∈ Diffr

0(IR
2) of f. Then, for any rational rotation vector ρ in the

boundary of the rotation set such that f has ρ-periodic orbits, there exist ρ-hyperbolic
periodic saddles for f with a partial mesh.

Remarks 4.5.
• If the vertical rotation interval has interior for some lift of a homeomorphism of the

torus homotopic to a Dehn twist, then it has interior for all lifts, same thing happening
in the homotopic to the identity case.

• Recall that χr(T2) and χr
Leb(T

2) come from Theorem 3.14.
• By saying that f has a ρ-periodic orbit, we mean that it has a periodic orbit of vertical

rotation number ρ (or rotation vector ρ, in the case where k = 0).

Proof. The proof is almost identical in the case where k = 0 or k �= 0. We will assume
that k �= 0 in the writing and stress the differences when necessary.

If r ≥ 2, then Theorem 3.13 implies that for all p/q ∈ interior(ρV (f̂ )), there exists an
f -periodic hyperbolic saddle in the torus whose vertical rotation number is p/q, which
has a full mesh. If r = 1, recall that Diff2

k(T
2) is dense in Diff1

k(T
2) and Diff2

k,Leb(T
2) is

also dense in Diff1
k,Leb(T

2), again see [25]. As we are assuming Cr -generic conditions,
topologically transverse intersections are just C1-transverse intersections, which are stable
under C1-small perturbations. As the vertical rotation intervals vary continuously in the C0

topology, there exist open and dense subsets, O1
f .m. ⊂ {h ∈ Diff1

k(T
2) : ρV (̂h) has interior

for ĥ ∈ Diff1
k(T

1 × IR) that lifts h} and O1
Leb,f .m. ⊂ {h ∈ Diff1

k,Leb(T
2) : ρV (̂h) has

interior for ĥ ∈ Diff1
k,Leb(T

1 × IR) that lifts h} such that every h ∈ O1
f .m. or h ∈ O1

Leb,f .m.
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has hyperbolic periodic saddles with full mesh. So, when r = 1, apart from what
was explained in §2.4 on the definition of χ1(T2) and χ1

Leb(T
2), we also assume that

χ1(T2) ⊂ O1
f .m. and χ1

Leb(T
2) ⊂ O1

Leb,f .m.. An analogous situation holds for k = 0.
To prove the present result, assume that p/q ∈ ∂ρV (f̂ ) and the induced torus map

f that belongs to Diffr
k(T

2) ∩ χ r(T2) or Diffr
k,Leb(T

2) ∩ χ r
Leb(T

2) has q-periodic orbits
with vertical rotation number p/q. As the Euler characteristic of T2 is zero, and in both
the identity and the Dehn twist homotopy classes, both eigenvalues of the action of f on
the first homology group of the torus are equal to 1, a Lefschetz–Nielsen type theorem
(see [15]) implies that (when k �= 0)∑

z∈Fix(f̂ q (•)−(0,p))

ind(f q |z) = 0, (4.8)

where Fix(f̂ q(•) − (0, p)) = {z ∈ T2 : f q(z) = z and z has rot. number p/q}, a similar
condition holding in the homotopic to identity case.

As f ∈ χr(T2) or f ∈ χr
Leb(T

2), Fix(f̂ q(•) − (0, p)) is finite (for any rational p/q)
and the topological index of f q on a q-periodic point only assumes the values −1 or 1. As
−1 corresponds to hyperbolic saddles with positive eigenvalues, our hypotheses imply that
Fix(f̂ q(•) − (0, p)) contains n (for some n ≥ 1) hyperbolic q-periodic orbits of saddle
type, each one of topological index −1 (all of them with vertical rotation number p/q),
denoted

{Q1
1, Q1

2, . . . , Q1
q}, {Q2

1, Q2
2, . . . , Q2

q}, . . . , {Qn
1, Qn

2, . . . , Qn
q}. (4.9)

Each {Qi
1, Qi

2, . . . , Qi
q} is a single q-periodic orbit.

If for some Qi
j , both Wu(Qi

j ) and Ws(Qi
j ) are unbounded when lifted to the plane

(meaning that each connected component of their lifts to the plane is unbounded), then:
• for all 1 ≤ l ≤ q, Wu(Qi

l ) and Ws(Qi
l ) are unbounded when lifted to the plane;

• as f has a saddle with a full mesh, we get that Qi
l (for all 1 ≤ l ≤ q) has a partial mesh

(a proof of this when k = 0 appears in [6, §2.1] and works when k �= 0 as well).
So, all we need to show is that there exists i ∈ {1, . . . , n} and 1 ≤ j ≤ q such that both

Wu(Qi
j ) and Ws(Qi

j ) are unbounded when lifted to the plane. As explained above, if this
happens for some i and j , then it happens for all Qi

l , 1 ≤ l ≤ q.
By contradiction, suppose this is not the case. In other words, assume that for every

i ∈ {1, . . . , n} and all 1 ≤ l ≤ q, Wu(Qi
l ) or Ws(Qi

l ) is bounded when lifted to the plane.
We will show that this violates equation (4.8).

Order the periodic orbits in equation (4.9) in the following way: for some 0 ≤ s∗ ≤ n,
and for all 1 ≤ i ≤ s∗, Wu(Qi

l ) (for all 1 ≤ l ≤ q) is bounded when lifted to the plane, and
for all s∗ + 1 ≤ i ≤ n, Ws(Qi

l ) (for all 1 ≤ l ≤ q) is bounded when lifted to the plane and
Wu(Qi

l ) is not. In other words, s∗ < n implies that for all s∗ + 1 ≤ i ≤ n and 1 ≤ l ≤ q,
Wu(Qi

l ) is unbounded when lifted to the plane; if for some periodic orbit in equation
(4.9), both its stable and unstable manifolds are bounded when lifted to the plane, then its
index i is smaller or equal to s∗ (clearly, if s∗ = 0, then for all 1 ≤ i ≤ n and all 1 ≤ l ≤ q,
Wu(Qi

l ) is unbounded when lifted to the plane).
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The above assumption implies that the vertical rotation number of any point in the
f -invariant, closed subset θ ⊂ T2 given by

θ =
( s∗⋃

i=1

q⋃
l=1

Wu(Qi
l )

)
∪

( n⋃
i=s∗+1

q⋃
l=1

Ws(Qi
l )

)
(4.10)

is equal to p/q.
As we are assuming that the vertical rotation interval has interior, we get that the

complement of Filled(θ) is fully essential.
The proof of the present theorem in the area-preserving case is much easier and

is concluded as follows. Let M ⊂ T2 be a connected component of Filled(θ). It is
f q -invariant and Mc is connected and fully essential. The prime ends rotation number
of f q restricted to the boundary of M is irrational (and thus, different from zero), see
[21]. So, the orbit of a point outside, but close to M , is turning around it, and thus the
topological index of f q restricted to any (contractible) simple closed curve α sufficiently
close to ∂M in the Hausdorff topology, interior(α) ⊃ M , is equal to 1.

This means that
∑

z∈Fix(f̂ q (•)−(0,p))∩M ind(f q |z) = 1. As Filled(θ) is non-empty and it
contains all the periodic orbits in equation (4.9), the ones with negative topological indices,
the proof in the area-preserving case is over: a contradiction with equation (4.8) was found.

From now on, assume f ∈ Diffr
k(T

2) ∩ χ r(T2). As in the area-preserving case, we are
going to show that ∑

z∈Fix(f̂ q (•)−(0,p))∩θ ′
ind(f q |z) > 0

for some subset θ ′ ⊃ θ , and thus, containing all periodic orbits in equation (4.9). As
these are the totality of q -periodic points of vertical rotation number p/q and topological
index −1, we again get a contradiction with equation (4.8).

An important remark is the following: for all 1 ≤ i, i′ ≤ n and 1 ≤ l, l′ ≤ q,
Theorem 3.14 implies that if Qi′

l′ ∈ Wu(Qi
l ), then Wu(Qi′

l′′) ⊂ Wu(Qi
l ) for some

1 ≤ l′′ ≤ q, an analogous result holding for the closure of stable manifolds.

LEMMA 4.6. In the above setting, if
⋃m

l=1 Wu(Q
il
jl
) (for some integer m ≥ 1 and

sequences 1 ≤ il ≤ s∗, 1 ≤ jl ≤ q) is connected, then∑
z∈Fix(f̂ q (•)−(0,p))∩Filled(

m⋃
l=1

Wu(Q
il
jl

))

ind(f q |z) = 1,

a similar result holding for stable manifolds whose union is connected and whose lifts to
the plane are bounded.

Proof. From our hypotheses, Filled(
⋃m

l=1 Wu(Q
il
jl
)) has a connected, fully essential

complement. As we did in the area-preserving case, if the prime ends rotation number

of f q restricted to the boundary of Filled(
⋃m

l=1 Wu(Q
il
jl
)) is non-zero, then the sum of

topological indices that appear in the statement of the lemma must be 1.
So, to finish the proof, we are left to understand what happens when the prime ends

rotation number described above is zero. In this case, [8, Theorem D] implies that
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Filled(
⋃m

l=1 Wu(Q
il
jl
)) is an attractor, that is, there exists a contractible simple closed

curve γ ⊂ T2, interior(γ ) ⊃ Filled(
⋃m

l=1 Wu(Q
il
jl
)) such that f q(γ ) ⊂ interior(γ ) and⋂+∞

i=0 f qi(interior(γ )) = Filled(
⋃m

l=1 Wu(Q
il
jl
)). So,∑

z∈Fix(f̂ q (•)−(0,p))∩Filled(
m⋃

l=1
Wu(Q

il
jl

))

ind(f q |z) = ind(f q |γ ) = 1,

and the proof is over.

Remark 4.7. In [8, Theorem D], only the case where m = 1 is considered, but the proof for

the general case, as long as a CONNECTED set of the form
⋃m

l=1 Wu(Q
il
jl
) is considered,

is exactly the same. This is a place where Theorem 3.14 of §3.4 is used: it is essential in
the proof of [8, Theorem D].

The above lemma implies that the theorem is proved when s∗ = 0 or s∗ = n. To see
this, assume s∗ = n. In this case, each connected component of Filled(θ) is of the form

Filled(
⋃m

l=1 Wu(Q
il
jl
)) for some integer m ≥ 1 and sequences 1 ≤ il ≤ n, 1 ≤ jl ≤ q

such that
⋃m

l=1 Wu(Q
il
jl
) is connected. So, the previous lemma implies that the sum of

topological indices of f q at all points in Fix(f̂ q(•) − (0, p)) ∩ Filled(θ) is positive, which
is a contradiction as we already explained. The case where s∗ = 0 is analogous, one just
has to consider stable manifolds instead.

Thus, suppose 0 < s∗ < n.

PROPOSITION 4.8. As in the statement of the above lemma, suppose that
⋃m

l=1 Wu(Q
il
jl
)

(for some integer m ≥ 1 and sequences 1 ≤ il ≤ s∗, 1 ≤ jl ≤ q) is connected. Then, for
any s∗ < i′ ≤ n and 1 ≤ l′ ≤ q, Ws(Qi′

j ′) is contained in a single connected component

of (
⋃m

l=1 Wu(Q
il
jl
))c.

Proof. Otherwise, for some 1 ≤ i ≤ s∗ and 1 ≤ j ≤ q, Wu(Qi
j ) would intersect

Ws(Qi′
j ′) and so, Theorem 3.14 would imply that Wu(Qi

j ) intersects Ws(Qi′
j ′′), for

some 1 ≤ j ′′ ≤ q. Thus, it accumulates on Wu(Qi′
j ′′). This is a contradiction, since

Wu(Qi′
j ′′) is unbounded when lifted to the plane and Wu(Qi

j ) is not. In particular,

Qi′
j ′ /∈ ⋃m

l=1 Wu(Q
il
jl
).

Remark 4.9. Similarly, if
⋃m′

l=1 Ws(Q
i′l
j ′
l

) (for some integer m′ ≥ 1 and sequences s∗ +
1 ≤ i′l ≤ n, 1 ≤ j ′

l ≤ q) is connected, then for any 1 ≤ i ≤ s∗ and 1 ≤ j ≤ q, Wu(Qi
j )

is contained in a single connected component of (
⋃m

l=1 Ws(Q
i′l
j ′
l

))c and, in particular,

Qi
j /∈ ⋃m

l=1 Ws(Q
i′l
j ′
l

).

PROPOSITION 4.10. As above, let
⋃m

l=1 Wu(Q
il
jl
) and

⋃m′
l=1 Ws(Q

i′l
j ′
l

) be connected

subsets for integers m, m′ ≥ 1 and sequences 1 ≤ il ≤ s∗ < i′l ≤ n, 1 ≤ jl , j ′
l ≤ q.
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In the case where (
Filled

( m⋃
l=1

Wu(Q
il
jl
)

))c

⊃
m′⋃
l=1

Ws(Q
i′l
j ′
l

)

and (
Filled

( m′⋃
l=1

Ws(Q
i′l
j ′
l

)

))c

⊃
m⋃

l=1

Wu(Q
il
jl
),

which means that

Interior
(

Filled
( m′⋃

l=1

Ws(Q
i′l
j ′
l

)

))
∩ Interior

(
Filled

( m⋃
l=1

Wu(Q
il
jl
)

))
= ∅,

then the sum of topological indices of f q at all points in

Fix(f̂ q(•) − (0, p)) ∩
(

Filled
( m⋃

l=1

Wu(Q
il
jl
)

)
∪ Filled

( m′⋃
l=1

Ws(Q
i′l
j ′
l

)

))
is 2.

Proof. By contradiction, assume that the above sum of topological indices is less than 2.
As Lemma 4.6 implies that the sum of topological indices of f q at all points in

Fix(f̂ q(•) − (0, p)) ∩ (Filled(
⋃m

l=1 Wu(Q
il
jl
))) is equal to 1 and the sum of topological

indices of f q at all points in Fix(f̂ q(•) − (0, p)) ∩ (Filled(
⋃m′

l=1 Ws(Q
i′l
j ′
l

))) is also

equal to 1, then there exists at least one point w ∈ Fix(f̂ q(•) − (0, p)), of topological

index 1, belonging to both
⋃m

l=1 Wu(Q
il
jl
) and

⋃m′
l=1 Ws(Q

i′l
j ′
l

). As f ∈ χr(T2), w must
be an orientation-reversing saddle, because it neither can be a sink or a source. As
w ∈ Wu(Qi

j ) ∩ Ws(Qi′
j ′), for some 1 ≤ i ≤ s∗ < i′ ≤ n and 1 ≤ j , j ′ ≤ q, Theorem 3.14

implies that Wu(Qi
j ) has a transversal intersection with Ws(f j1(w)) and Wu(f j2(w)) has

a transversal intersection with Ws(Qi′
j ′) for some 1 ≤ j1, j2 ≤ q. So, the λ-lemma implies

that Wu(Qi
j ) accumulates on Wu(Qi′

j ′′), for some 1 ≤ j ′′ ≤ q, which is a contradiction

because Wu(Qi
j ) is bounded when lifted to the plane and Wu(Qi′

j ′′) is not.

Now, let us a consider a connected component of θ , denoted K , which can be
decomposed as K = (Ku

1 ∪ Ku
2 ∪ · · · ∪ Ku

nu
) ∪ (Ks

1 ∪ Ks
2 ∪ · · · ∪ Ks

ns
), where each Ku

i

is connected and given by the union of finitely many sets of the form Wu(Qi
l ), 1 ≤ i ≤ s∗,

and 1 ≤ l ≤ q, and analogously, each Ks
i is connected and given by the union of finitely

many sets of the form Ws(Qi′
l′ ), s

∗ < i′ ≤ n and 1 ≤ l′ ≤ q. The unstable union is pairwise
disjoint (similarly for the stable), that is, Ku

i ∩ Ku
j = ∅ and Ks

i ∩ Ks
j = ∅ for i �= j .

Clearly, either the unstable or the stable part of K could be empty.
Consider Filled(Ku

i ) and Filled(Ku
j ) for i �= j . The possibilities are:

• Filled(Ku
i ) ⊂ Filled(Ku

j );
• Filled(Ku

i ) ⊃ Filled(Ku
j );

• Filled(Ku
i ) ∩ Filled(Ku

j ) = ∅.
Analogously for the stable components.
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So, the set Filled(Ku
1 ) ∪ · · · ∪ Filled(Ku

nu
) might not be a disjoint union anymore.

However, it becomes so, after omitting some elements in the union, re-indexing the sets,
and eventually decreasing the value of nu (an analogous construction can be performed for
the stable union). Alternatively, any set of the form Ws(Qi′

l′ ), contained in the stable union
Ks

1 ∪ Ks
2 ∪ · · · ∪ Ks

ns
, is either contained in Filled(Ku

i ) for some 1 ≤ i ≤ nu or it belongs
to (Filled(Ku

1 ) ∪ · · · ∪ Filled(Ku
nu

))c, see Proposition 4.8.

So we can remove from Ks
1 ∪ Ks

2 ∪ · · · ∪ Ks
ns

all sets of the form Ws(Qi′
l′ ) that are

contained in Filled(Ku
i ) for some 1 ≤ i ≤ nu.

Thus, there is a new stable union, still pairwise disjoint, denoted as K∗s
1 ∪ K∗s

2 ∪ · · · ∪
K∗s

n′
s
, such that each K∗s

i is still connected and given by the union of finitely many sets

of the form Ws(Qi′
l′ ) (s∗ < i′ ≤ n and 1 ≤ l′ ≤ q), satisfying the additional property that

each Ws(Qi′
l′ ) is contained in the closure of (Filled(Ku

1 ) ∪ · · · ∪ Filled(Ku
nu

))c. It is still
possible that Filled(K∗s

j ) ⊃ Filled(Ku
i ) for indices 1 ≤ j ≤ n′

s and 1 ≤ i ≤ nu. In this
case, we just omit Ku

i from the unstable union. After all these modifications, we end up
with the following set:

K̂ = [Filled(Ku
1 ) ∪ · · · ∪ Filled(Ku

nu
)] ∪ [Filled(K∗s

1 ) ∪ · · · ∪ Filled(K∗s
n′

s
)], (4.11)

satisfying the following conditions:
(1) K̂ is closed, connected, and contains K;
(2) its unstable components are still pairwise disjoint, as are the stable;
(3) interior(Filled(Ku

i )) does not intersect interior(Filled(K∗s
j ));

(4) K̂c has a fully essential component.
Any connected component of θ (see equation (4.10)) is either contained in K̂ or is

disjoint from it, because ∂K̂ ⊂ K ⊂ θ .
Now, let M be a connected component of θ which is disjoint from K̂ . We want to show

that the set M̂ , constructed from M exactly in the same way as K̂ was constructed from
K , satisfies either M̂ ∩ K̂ = ∅ or M̂ ⊃ K̂ . However, this is easy: if M̂ ∩ K̂ �= ∅, as we
assumed that M ∩ K̂ = ∅, from the fact that ∂M̂ ⊂ M , we get that ∂M̂ avoids K̂ . So, as
K̂ is connected, M̂ ⊃ K̂ .

Therefore, we can find finitely many disjoint connected closed sets of the form K̂ as
above (see equation (4.11)), such that θ is contained in their union and∑

z∈Fix(f̂ q (•)−(0,p))∩K̂

ind(f q |z) = nu + n′
s . (4.12)

As each K̂ contains some connected component of θ , nu + n′
s ≥ 1.

To show that equation (4.12) holds, note that Lemma 4.6 implies that∑
z∈Fix(f̂ q (•)−(0,p))∩Filled(Ku

i )

ind(f q |z) = 1

and ∑
z∈Fix(f̂ q (•)−(0,p))∩Filled(K∗s

i )

ind(f q |z) = 1.
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If the sum of topological indices in equation (4.12) were strictly less than nu + n′
s ,

as unstable unions are pairwise disjoint (as are the stable ones), a contradiction with
Proposition 4.10 would have been found.

So, from the fact that θ contains all q-periodic saddles of vertical rotation number p/q

and topological index −1, this contradicts equation (4.8) and proves the theorem.

4.4. Proof of Theorem 2.7 and Corollary 2.8. From the introduction: let k �= 0 be an
integer and f̂ ∈ Or

t,k(T
1 × IR) ∩ χr(T2) or f̂ ∈ Or

t,k,Leb(T
1 × IR) ∩ χr

Leb(T
2), the open

and dense sets from Theorems 2.5 and 2.6 intersected with the generic sets from
Theorem 3.14. So, ρV (f̂ ) = [r/s, p/q] for rational numbers r/s ≤ p/q and ρV is locally
constant in a neighborhood of f̂ . Assume that r/s < p/q. Then, f̂ q(•) − (0, p) has a free
homotopically non-trivial simple closed curve γp/q ⊂ T1 × IR, such that

f̂ q(γp/q) − (0, p) ⊂ γ −
p/q .

Something which implies the existence of an attractor–repeller pair for f̂ q(•) − (0, p).
The attractor Ap/q is contained in γ −

p/q and the repeller Rp/q is contained in γ +
p/q . The

statements proved here are the following.
(1) Under the previous hypotheses, there exists a hyperbolic periodic saddle zp/q ∈ T2

of vertical rotation number p/q (and period nq for some n ≥ 1) such that if
ẑp/q ∈ T1 × IR is any lift of zp/q to the annulus, then Wu(̂zp/q) is bounded
from above as a subset of the annulus and unbounded from below, and Ws(̂zp/q)

is unbounded from above and bounded from below. Moreover, Wu(̂zp/q) has a
transversal intersection with Ws(̂zp/q − (0, 1)) = Ws(̂zp/q) − (0, 1), and if ẑp/q

and ẑp/q − (0, 1) are both above γp/q , and ẑp/q − (0, 2) is below, then

Ap/q ⊂ Wu(̂zp/q) ∪ (Wu(̂zp/q)
b.above

),

where the last set is the union of all (open) connected components of (Wu(̂zp/q))c

which are bounded from above.
Moreover, Ap/q ⊇ [Wu(̂zp/q) ∪ (Wu(̂zp/q)

b.above
)] − (0, 2).

Similarly, if ẑp/q and ẑp/q + (0, 1) are both below γp/q , and ẑp/q + (0, 2) is
above, then

Rp/q ⊂ Ws(̂zp/q) ∪ (Ws(̂zp/q)
b.below

),

where the last set is the union of all connected components of (Ws(̂zp/q))c which
are bounded from below.

Analogously, Rp/q ⊇ [Ws(̂zp/q) ∪ (Ws(̂zp/q)
b.below

)] + (0, 2).
(2) If f is transitive, then the following improvement holds:

(a) assuming that ẑp/q and ẑp/q − (0, 1) are both above γp/q , and ẑp/q − (0, 2) is
below, then Ap/q is contained in Wu(̂zp/q) and contains Wu(̂zp/q) − (0, 2);

(b) similarly, if ẑp/q and ẑp/q + (0, 1) are both below γp/q , and ẑp/q + (0, 2) is
above, then Rp/q is contained in Ws(̂zp/q) and contains Ws(̂zp/q) + (0, 2);

(c) moreover, both Wu(̂zp/q) and Ws(̂zp/q) have no interior points and their
complements are connected. In the torus, Wu(zp/q) = Ws(zp/q) = T2.
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Proof of statement (1). As ρV (f̂ ) = [r/s, p/q] is locally constant in a Cr -neighborhood
of f̂ ∈ Diffr

t,k(T
1 × IR), Theorem 3.8 implies that f has nq-periodic points of vertical

rotation number p/q for some integer n ≥ 1. So, Theorem 4.4 implies the existence of
an hyperbolic f -periodic saddle point zp/q of vertical rotation number p/q (and period
nq), with a partial mesh. Thus, f̂ q(•) − (0, p) has an n-periodic hyperbolic saddle point
ẑp/q ∈ T1 × IR, for which, as ρ+

V (f̂ ) = p/q, [7, Corollary 1] implies that Wu(̂zp/q) is
bounded from above as a subset of the annulus and Ws(̂zp/q) is bounded from below.
Clearly, all integer vertical translates of ẑp/q are n -periodic for f̂ q(•) − (0, p) and satisfy
the above properties.

FACT 4.11. The manifolds Wu(̂zp/q) and Ws(̂zp/q) − (0, 1) intersect transversely.

Proof. To see this, note that as zp/q ∈ T2 has a partial mesh and ρ+
V (f̂ ) = p/q, one of the

following possibilities holds (maybe both):
(1) Wu(̂zp/q) ∪ Ws(̂zp/q) contains a homotopically non-trivial closed curve κ in the

annulus;
(2) Wu(̂zp/q) intersects Ws(̂zp/q) − (0, l) for integers l > 0.

These are the only possibilities, because if Wu(̂zp/q) intersected Ws(̂zp/q) + (0, i) for
some integer i > 0, then ρ+

V (f̂ ) would be larger than p/q, because such an intersection
would imply the existence of a rotational horseshoe for f̂ q(•) − (0, p) and this horseshoe
would contain periodic points with positive vertical rotation number with respect to the
map f̂ q(•) − (0, p), which is a contradiction.

In the first case above, if κ and κ − (0, 1) intersect, as f is Kupka–Smale, then κ ∩
Wu(̂zp/q) must have a transversal intersection with (κ − (0, 1)) ∩ (Ws(̂zp/q) − (0, 1))

and we are done. If they do not intersect, as ρ−
V (f̂ ) = r/s < ρ+

V (f̂ ) = p/q, then

(f̂ nq(•) − (0, np))m(κ) ∩ (κ − (0, 1)) �= ∅

for some integer m > 0, and we get the same conclusion as before.
So let us assume by contradiction that Wu(̂zp/q) intersects Ws(̂zp/q) − (0, l0) for some

integer l0 > 1 and Wu(̂zp/q) does not intersect Ws(̂zp/q) − (0, i) for i = 1, 2, . . . , l0 − 1.
First, recall that from the choice of f , it is homotopic to

(x, y) �→
(

1 k

0 1

) (
x

y

)
(mod 1)2.

From our assumption, if z̃p/q is a lift of zp/q to the plane, then there exists an
integer a and a simple arc ζ̃ , starting at z̃p/q and ending at z̃p/q − (a, l0) made
of two connected pieces: the first one, ζ̃1, is contained in Wu(̃zp/q), starts at z̃p/q

and ends at a point w̃ ∈ Wu(̃zp/q) ∩ (Ws(̃zp/q) − (a, l0)), and the second one, ζ̃2, is
contained in Ws(̃zp/q) − (a, l0), starts at w̃ and ends at z̃p/q − (a, l0). Now, fixed some
f̃ : IR2 → IR2 lift of f̂ to the plane, consider the image of ζ̃ under f̃ nq(•) − (s′, np),
where the integer s′ was chosen so that z̃p/q is fixed: f̃ nq (̃ζ1) − (s′, np) contains ζ̃1

and f̃ nq (̃ζ2) − (s′, np) is contained in ζ̃2 − (nqkl0, 0). So, (f̃ nq (̃ζ1) − (s′, np)) ∪ ζ̃2 ∪
(̃ζ2 − (nqkl0, 0)) contains an arc connecting z̃p/q − (a, l0) to z̃p/q − (a + nqkl0, l0).
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Therefore, Wu(̂zp/q) ∪ (Ws(̂zp/q) − (0, l0)) contains a homotopically non-trivial simple
closed curve μ (every homotopically non-trivial closed curve in the annulus contains a
homotopically non-trivial SIMPLE closed curve). Let us consider the point ẑp/q − (0, 1).
As there are no saddle connections, it does not belong to μ. If it is below μ, then as its
stable manifold is unbounded from above, it must intersect μ, and so Wu(̂zp/q) intersects
Ws(̂zp/q) − (0, 1), which is a contradiction. If ẑp/q − (0, 1) is above μ, then as its unstable
manifold is unbounded from below, it must intersect μ, and so Wu(̂zp/q) − (0, 1) intersects
Ws(̂zp/q) − (0, l0), which implies that Wu(̂zp/q) intersects Ws(̂zp/q) − (0, l0 − 1), which
is a contradiction with the choice of l0.

As f̂ nq(•) − (0, np) fixes all integer vertical translates of ẑp/q , and maps γp/q into
γ −
p/q , the lower connected component of γ c

p/q , we get that for all integers i, ẑp/q + (0, i)

does not belong to γp/q . Suppose for some integer i, ẑp/q + (0, i) is below γp/q . Then,
Wu(̂zp/q) + (0, i) is also contained in γ −

p/q . Otherwise, it would intersect γp/q in a
point ẑ′. The negative orbit of ẑ′ under f̂ nq(•) − (0, np) converges to ẑp/q + (0, i), and
is always above γp/q , so ẑp/q + (0, i) belongs to γ +

p/q , which is a contradiction with its
choice. Similarly, if for some integer i, ẑp/q + (0, i) is above γp/q , then Ws(̂zp/q) + (0, i)

is also contained in γ +
p/q .

The following two items describe how the integer vertical translates of ẑp/q behave
when compared with γp/q :
• if for some integer i, ẑp/q + (0, i) is above γp/q , then for all integers j > i, ẑp/q +

(0, j) is also above γp/q .
To see this, recall that for all integers l, Wu(̂zp/q) + (0, l) intersects

Ws(̂zp/q) + (0, l − 1) transversely. So, the λ-lemma implies that Wu(̂zp/q) + (0, l) inter-
sects Ws(̂zp/q) + (0, l′) for all integers l′ < l. Thus, Wu(̂zp/q + (0, l)) = Wu(̂zp/q) +
(0, l) accumulates on Wu(̂zp/q) + (0, l′) for all l′ < l. Therefore, if ẑp/q + (0, i) is above
γp/q and j > i, Wu(̂zp/q) + (0, j) accumulates on Wu(̂zp/q) + (0, i), something that
implies that Wu(̂zp/q) + (0, j) intersects γ +

p/q . So ẑp/q + (0, j) is not below γp/q , and we
are done;
• similarly, if for some integer i, ẑp/q + (0, i) is below γp/q , then for all integers j < i,

ẑp/q + (0, j) is also below γp/q .
The proof is as above.
Summarizing, when considering integer vertical translates of ẑp/q , there exists an

integer i such that for all i ≤ i, ẑp/q + (0, i) is below γp/q and for all i > i, ẑp/q + (0, i)

is above γp/q .
By re-indexing integer vertical translates of ẑp/q , we can assume that ẑp/q and

ẑp/q − (0, 1) are both above γp/q and ẑp/q − (0, 2) is below. From the proof of Fact 4.11
stated above, Wu(̂zp/q) ∪ (Ws(̂zp/q) − (0, 1)) contains a homotopically non-trivial simple
closed curve μ.

For some large integer m∗ > 0, (f̂ nq(•) − (0, np))−m∗
(μ) is above γp/q .

To see this, recall that μ is contained in Wu(̂zp/q) ∪ (Ws(̂zp/q) − (0, 1)). So, if m > 0
is large enough,

(f̂ nq(•) − (0, np))−m(μ) ∩ Wu(̂zp/q)
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is contained in a small neighborhood of ẑp/q , and thus, it is contained in γ +
p/q . As the

whole Ws(̂zp/q) − (0, 1) is above γp/q , the result follows.
However, now, if we denote (f̂ nq(•) − (0, np))−m∗

(μ) as μ∗, then μ∗ is a homotopi-
cally non-trivial simple closed curve such that μ−∗ ⊃ γp/q .

So, for all integers j ≥ 0,

Ap/q :=
+∞⋂
i=0

(f̂ q(•) − (0, p))i(γ −
p/q) ⊂ (f̂ nq(•) − (0, np))j (γ −

p/q) ⊂

⊂ (f̂ nq(•) − (0, np))j (μ−∗ ). (4.13)

Moreover, as ẑp/q − (0, 2) belongs to γ −
p/q , Wu(̂zp/q) − (0, 2) is also contained in γ −

p/q .
As Wu(̂zp/q) − (0, 2) is (f̂ nq(•) − (0, np))-invariant, its closure is contained in the closed
set Ap/q . Clearly, from the definition of Ap/q , as it contains Wu(̂zp/q) − (0, 2), then Ap/q

also contains (Wu(̂zp/q)
b.above

) − (0, 2), where Wu(̂zp/q)
b.above

was previously defined.
To finish the proof of statement (1), we are left to show that equation (4.13) implies that

Wu(̂zp/q) ∪ (Wu(̂zp/q)
b.above

) contains Ap/q .
It clearly implies that

+∞⋂
i=0

(f̂ nq(•) − (0, np))i(closure(μ−∗ )) ⊃ Ap/q ,

so let us show the following.

FACT 4.12. The set θ∗ := ⋂+∞
i=0 (f̂ nq(•) − (0, np))i(closure(μ−∗ )) is contained in

Wu(̂zp/q) ∪(Wu(̂zp/q)
b.above

).

Proof. First, recall that μ∗ ⊂ Wu(̂zp/q) ∪ (Ws(̂zp/q) − (0, 1)) and pick some ŵ ∈ θ∗.
Suppose it does not belong to Wu(̂zp/q). Then it belongs to some connected component

of (Wu(̂zp/q))c. If ŵ /∈ Wu(̂zp/q)
b.above

, then ŵ belongs to a connected component of
(Wu(̂zp/q))c which is not bounded from above. As Wu(̂zp/q) is itself bounded from above,
there is only one connected component of (Wu(̂zp/q))c which is unbounded from above,
denoted Unb. Let a be a real number such that T1 × {a} ⊂ Unb and T1 × {a} avoids
(f̂ nq(•) − (0, np))j (μ∗) for all integers j ≥ 0. Let ψ ⊂ Unb be a simple arc connecting
ŵ to some point above T1 × {a}.

As ẑp/q − (0, 1) ∈ Wu(̂zp/q), if j > 0 is large enough, then

[(f̂ nq(•) − (0, np))j (μ∗) ∩ (Ws(̂zp/q) − (0, 1))] ∩ ψ = ∅. (4.14)

As ŵ ∈ θ∗ and the other endpoint of ψ is above T1 × {a}, we get that ψ intersects
(f̂ nq(•) − (0, np))j (μ∗) for all j ≥ 0. So, if j > 0 is large enough, equation (4.14) implies
that (f̂ nq(•) − (0, np))j (μ∗) ∩ ψ belongs to Wu(̂zp/q), which is a contradiction with the
choice of ψ that finishes the proof.

Statement (1) is thus proved, in the case of the attractor Ap/q . The proof for the repeller
Rp/q is analogous because Rp/q is an attractor for (f̂ q(•) − (0, p))−1.
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Proof of statement (2). The first thing to prove is, in the case where f : T2 → T2 is
transitive, that both Wu(zp/q) and Ws(zp/q) are dense in T2. This is already known
when f preserves area, see for instance [5]. Let us prove it in general. Suppose
f ∈ Diffr

t,k(T
2) ∩ χ r(T2) and, for instance, Wu(zp/q) is not the whole torus. In this case,

as zp/q has a partial mesh, any connected component of its complement is a topological
open disk. Let us consider such a disk D, which can be either periodic or wandering. If f is
transitive, then D cannot be wandering. So, it is n-periodic for some integer n > 0. More-
over, D cannot have homotopically bounded diameter (that is, any connected component
of p−1(D) has the same bounded diameter), because D ∪ f (D) ∪ · · · ∪ f n−1(D) = T2,
and if D has homotopically bounded diameter, then all points in T2 would have the same
vertical rotation number (because points in the boundary of an homotopically bounded
periodic disk have the same vertical rotation number as points in the disk), which is a
contradiction with the assumption that ρV (f̂ ) is a non-degenerate interval. If D is homo-
topically unbounded, [8, Proposition 24] shows that there exists a homotopically bounded
open disk D∗ ⊂ D, such that f n(D∗) ⊂ D∗, where n is the period of D. This again
contradicts the transitivity of f and the assumption that ρV (f̂ ) is a non-degenerate interval.

Let ẑp/q ∈ T1 × IR be any point in the fiber of zp/q . If by contradiction, (Wu(̂zp/q))c is
not connected, then it has a connected component B+ which is bounded from above.
So the whole orbit of B+ under f̂ nq(•) − (0, np) is bounded from above, because
the boundary of any iterate of B+ is contained in Wu(̂zp/q), which is itself bounded
from above. As Wu(zp/q) is dense in T2, and Wu(̂zp/q) is bounded from above and
it has a transverse intersection with Ws(̂zp/q) − (0, 1), we get that for any sufficiently
large integer l > 0, Wu(̂zp/q) + (0, l) intersects B+. So, for all sufficiently large i > 0,
(f̂ nq(•) − (0, np))−i (B+) gets close to ẑp/q + (0, l) by less than one. As l > 0 is
arbitrarily large, this is a contradiction. So (Wu(̂zp/q))c is connected, and an easy
modification of this argument shows that Wu(̂zp/q) has no interior. Analogous results
hold for the stable manifold. This proves sub-statements (a), (b), and (c).
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