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Abstract

To evaluate the goodness of a VaR-model, banks as well as reg-
ulators use backtesting to confirm their judgments. Banks find it of
special interest to know about the outcome of a backtest before it
is conducted by the regulators, thus detecting problems in the VaR-
process in time and preventing fines. This paper summarizes existing
methods, offers improvements to these methods and tries to find an
optimal backtesting strategy.

Introduction

When it comes to backtesting, banks are often interested in simply fulfilling
the regulatory requirements. Therefore, conservative methods are pursued,
which might be more “expensive” than strategies which are close to the mar-
ket and are fined from the regulatory side. Backtesting offers a variety of
methods, which extend way beyond the boundaries of the Basle traffic light.
Specific backtests can identify possible flaws of VaR-models. Backtesting can
also tell us something about the investment strategy of a portfolio manager
and about the dynamics of a portfolio. In chapter I, we will take a closer
look at the existing regulatory requirements. Chapter II introduces some



current backtesting methods. Chapter III presents new improved backtest-
ing methods. Chapter IV shows some results and interpretations and chapter
V summarizes and gives directions for optimal backtesting.

1 Regulatory Requirements

Since 1996, the Basle Committee on Banking Supervision instructs banks
(and other companies, like insurances) to develop their own risk models to
evaluate their portfolio risk. Central to this models is the so-called “Value at
Risk” (VaR), which describes the maximum portfolio loss over a given time
horizon - usually one day - for a given probability. A 99%-VaR of $100.000
for example means that the probability that the portfolio loss on the next
day will exceed $100.000 is less or equal one percent. If the VaR-number is
undershot by the portfolio movement, we speak of an “exception”. According
to the number of exceptions, a scaling factor is identified which, multiplied
by the VaR-number, determines the amount of capital to be held by the
bank or company. If the VaR is calculated at the 99% level, we can expect
an exception every 100 days. This assumption is the base of the Basle traffic
light, the official backtesting model. If the exceptions are independent, the
probability for an exception is 100-(VaR-level)% per day (in our example
1%). The Basle traffic light demands a time series of 250 days (reflecting
one year), thus we can expect between 2 and 3 exceptions over this time
period, given the 99%-VaR. Mathematically speaking, we model the event of
a “VaR-exception” as a binomially distributed B(250;0,01) rv. It’s expected
value is 2,5. Presuming that the expected value will not be matched with
probability 1 and that the result will also be falsified by wrong assumptions
like the independence of the exceptions, we already have a justification for
the Basle traffic light zones. It demands that the multiplication factor is
raised, if we experience more than five exceptions. The following table de-
scribes the scaling factors of the Basle traffic light.

Exceptions | <5 | 5 6 7 8 9 |>9
Scaling factor | 3 |3.4]3.5]3.65|3.7|385| 4

It is apparent, that the Basle traffice light approach cannot be used to eval-
uate the goodness of a VaR-model. It neither considers the measure of the
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exceedance, nor its position. In practice, there are some tests that treat these
subjects. We will briefly present them in the next chapter.

2 Existing methods

We will now have a look at existing backtesting methods. Some of them,
like the Kupiec tests are based on the same binomiality assumption of the
exceptions as the Basle approach. Others take the measure of the exceedance
into account or judge the VaR-model as a whole.

2.1 Kupiec’s POF-Test (Proportion of Failures)

Both of the Kupiec-tests are so-called “Likelihood-Ratio-Tests”. The null
hypothesis for these tests is, that the empirically determined probability
matches the given probability. If we stay with our example and assume, that
the VaR has been calculated at the 99% level, we will test for Hy : p=p =
xz/n = 0.01, where z represents the number of exceptions and n represents
the number of backtesting points. We can now use a Likelihood-Ratio-Test
to check for this assumption. The corresponding LR-statistic is defined as
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It is asymptotically x? distributed with one degree of freedom. If the value
of the LR-statistic exceeds a critical value, e.g. the 95%-quantile of the x?-
distribution, we will decline the Hy-Hypothesis, otherwise we will accept it.
Christoffersen continues this thought and introduces a mixed test which com-
bines the POF-Test with a test for independence. He thus receives a test
statistic which is x? distributed with 2 degrees of freedom. However, his test
for independence is too weak to deliver feasable results. In chapter III, we
will introduce an improved test for independence and coverage.



2.2 Kupiec’s TUFF-Test (Time until First Failure)

This test is based on similar assumptions as the POF-Test. If we take the
exceptions to be binomially distributed, then the probability of an exception
is again the inverse probability of the VaR confidence-level, in our case 1%.
Thus we will also expect an exception every 100 days. We can now use this
to create an LR-Test which measures the time until the first exception. The
null hypothesis is set to Hy = p = p = 1/v = 0.01 where v is the time until
the first exception in our sample. The corresponding LR-statistic is defined as

p(1—p)t
LRpypp = —2In (W :

It is also asymptotically y2-distributed with one degree of freedom and we
can confirm the Hy-hypothesis in the same way as before.

2.3 Point estimator for p

Under the same assumptions as before with the two Kupiec-tests, we can
directly derive an estimator p from the number of exceptions in our sample
and compare it to the given value p. The test results will not differ much
from the Kupiec POF-test, however we can now judge the degree of error of
our model parameter and gain knowledge about the true value of p. Thus
we are using the Maximum-Likelihood-Estimator
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If we now consider the interval [;6 —/V(p),p++/V(p)|, we have derived a
confidence interval for the estimator of p. If p lies within this interval, we
can consider the model to be good, if it lies outside, we can judge which
confidence level our model would have rendered.

2.4 Lopez’ Magnitude Loss Function

Contrary to the other tests, Lopez suggests a testing method which also in-
corporates the magnitude of the exceptions in addition to their number. He
introduces the variable C', which takes the sum of the number of exceptions
and their squared distance from the corresponding VaR as a value:

. h)2 <D
Ciz{ (1)’+(xz %)’ i;;’ ie{1,2,...,n} .

Here, 9; represents the VaR-forecast for the ith day and x; reflects the portfo-
lio movement on day i. We can now compare the value of C' to a benchmark
value. To calculate this benchmark, we simulate many (e.g.1000) P&L time-
series from our model and calculate the corresponding C-value. Then we
take a high quantile from these C-values (e.g. 80%) and check if our actual
value lies below or above this quantile value. If it lies below, we accept the
model, if it lies above, we decline it.

2.5 Test from Crnkovic and Drachman

Contrary to other methods, the CD-test not only evaluates the exceptions
but looks at the entire VaR-model instead. Therefore, empirical percentiles
are calculated for every portfolio movement:

where F' represents the modelling distribution. If the model is well calibrated
we can expect every percentile value in [0, 1] with the same probability. Thus,
if we look at a series of values of p; we should not be able to tell them apart



from a series of realizations of uniformly distributed rvs. Thus our testing
hypothesis is formulated as

P; ~ R(0,1) iid.

We may varify this assumption through a number of tests. Crnkovic and
Drachman suggest a Q-test for the distributional assumptions (this test com-
pares the maximum distances to the uniform distribution with a benchmark)
and a BDS-test for independence.

Introducing a “worry-function”, we can furthermore focus the tails of the
distribution. Crnkovic and Drachman suggest using f(¢) = 0.5In(¢(1 — t)).
The corresponding critical value for the Q-test will then have to be computed
with a Monte-Carlo simulation.



3 Improved Backtesting

To start the discussion about new and improved backtesting methods, let us
have a look at the disadvantages of the existing methods. Both of the Kupiec
tests are by themselves not powerful enough to correctly predict errors in the
VaR-model. Kupiec has already mentioned this problem in his own paper.
The problem of the Lopez test is, that sudden and very extreme events, that
cannot be coped with in any model will create very high values of C' which
will decline every model. If one is interested in an automization of backtest-
ing, the Lopez-Test is probably the least suited. The CD-Test is the most
flexible of the tests mentioned before, however it also has some very strong
requirements, such as knowledge of the distribution function underlying the
model at any given point in time. If the VaR is calculated with a historical
simulation for example, this fact is not given. In these cases, the percentiles
can only be derived numerically, which is computationally challenging as well
as very unprecise. Furthermore, the tests for a uniform distribution are quite
weak and according to Crnkovic and Drachman, sample sizes of at least 1000
points should be used to make reliable judgments. To avoid these problems
we will now reduce the CD-method and deploy a scaled CD-method.

3.1 Scaled CD-Method

Given the distribution function for each day, we can directly calculate the
percentiles for the CD-method. If that is not the case however, this turns
out to be quite challenging. Thus, instead of the exact percentiles, we cal-
culate quantiles (using the VaR-model). We do this for a certain number of
quantiles and thereby split the real axis into a number of intervals which are
all equally likely to be hit by the portfolio movement. Let us illustrate this
with an example. Assuming we divide the real axis into twenty intervals I;
to Iyy. To do so, we use the VaR-model to calculate every quantile with 5
percent distance, starting with the 5%-quantile (then the 10%, 15% and so
on). We derive the following partition:
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Il = (—OO,q2_10), IZO = [CI%;OO)

The actual portfolio movement will now hit one of these twenty intervals.
Similar to the actual CD-method, the probability for the event “Portfolio
movement hits interval 7”7 is the same for all intervals. If we could calculate
the percentiles directly (using the distribution function of the VaR-model),
we can now create a histogram of these percentiles and also derive the interval
hits. Figure 1 shows the plot of a scaled CD-procedure with 500 backtesting
points and 20 intervals using the Exxon-share quotes from to .
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Figure 1: Scaled CD-method of a historical simulation of the Exxon-stock

From this plot, we can already learn about several aspects of the portfolio.
For example, the historical simulation might not be an adequate model in
this case. The first interval, reflecting the 95%-VaR has significantly more
hits than expected. The same can be said about the last interval. From this
plot, we can also judge, that the volatility is increasing during the observed
time span. Comparing the plot of the sorted percentiles to a scaled CD-plot,
we can observe the significance of this method. Figure 2, which is a numer-
ically created plot of the sorted percentiles for the same Var-simulation as
before can barely be told apart from a straight line, representing the uniform



distribution.
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Figure 2: Sorted percentiles of a historical VaR-simulation of the Exxon-stock

The main advantage over the ordinary CD-method is, that we no longer have
to judge a continous distribution, but a discrete one instead. More precisely,
we are now testing for a multinomial distribution M(n,p), where n is the
number of backtesting points, and p is the vector of hitting probabilities for
each of the intervals. In our example, a vector which contains the value %
twenty times. We can now run a number of tests to verify this distributional
assumption. The most suitable test is a x?-distance test. We will be testing

the null hypothesis

Hy: (pr,-.upr) = (91, p))

against the alternative

Hl : (pla"'ap'r) # (p(l)aapg)a



where 7 is the number of intervals. The corresponding test statistic is

QUYL Yupl, . i) =Y e =3

i=1 np;

where Y is the random variable corresponding to y. If we assume, that all
intervals are hit with equal probability, the null hypothesis comes down to

1 1
HO:(pla"':pT): (_a---a_)

T T

and the test statistic to
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Q is asymptotically x2-distributed with 7 — 1 degrees of freedom. If the value
of Q for a realization y of Y exceeds a certain critical value, e.g. the 95%-
quantile of the x2_;-distribution, we decline the model, otherwise we accept
it. Much more meaningful is of course the graphical analysis of the interval
hits, as we have already mentioned before.

Similar to the ordinary CD-test, we can introduce a weighing scheme in order
to focus on the outer quantiles. To do so, we decrease the size of the outer
intervals and receive a new nesting which we can now run a x2-test for. We
have to pay attention though to the fact, that the parameters p; to p, are
now different from each other and correspond to the interval length we have
associated to them.

Let us finish this chapter on the scaled CD-method with an example. We are
looking at stock quotes for the BMW-share and calculate the corresponding
VaR with a VCV-approach for 500 backtesting points with a history of 500
points. Other backtests, like the Kupiec POF-test and a graphical analysis
suggest, that the VCV-approach might render bad results for the given time
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horizon. We will try to confirm this result with the scaled CD-method. We
will begin by looking at a plot of the interval hits for 20 equalsized intervals.
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Figure 3: Scaled CD-method of a VCV-VaR-simulation of the BMW stock

This picture already suggests, that the VCV-model is completely unfit for
the VaR-calculation in this case. The high bar representing the 5%-quantile
and thus the exceedances of the 95%-VaR suggests a gross underestimation
of the risk. At the same time, this mass seems to be missing in the middle,
leading us to believe that in more quite times, the VaR was too conservative.
If we look at the value of the x2-test-statistic, we receive 34.08, which just
barely exceeds the critical value of 30.14, but we still have a decline. We now
use a weighted test by choosing the intervals such that their length is half
that of the adjacent inner interval. The two innermost intervals thus have
the length of i in probability, the two intervals next to it % and so on, with
the outermost intervals taking the value of 6%1 in probability. This yields us
12 intervals and the corresponding y?-statistic now takes a value of 27.19,
exceeding the critical value of 19.68 by quite a margin.

In summary, we can say that the scaled CD-method not only renders new
graphical analyses, but also allows statements about the entire VaR-model,
with or without focussing on the tails, in a simple fashion.

11



3.2 Mixed Kupiec-Test

Secondly, we are suggesting a mixed test which picks up the ideas of Christof-
fersen, but uses more powerful tests to render better results. Let us recapitu-
late the results of the Kupiec TUFF-test. Its test statistic was asymptotically
x?-distributed with one degree of freedom and measures the time until the
first exception. In the same way, we can measure the time between two ex-
ceptions, resulting in the following test statistic:

_ vi—1
LR; = —2In (%) .

p\(l _ ﬁ)‘/i_l

We use the same notation as before, except that v; is now the time between
exception 7 and exception ¢ — 1. If our model is optimal, then we can once
again expect an exception to occur every 100 days. We can thus construct a
“Time between failures”-test for every exception and an additional TUFF-
test for the first one. As a result, we will receive n test statistics, where n
is the number of exceptions. Since our null hypothesis is that the exceptions
are independent from each other, the test statistics are independent as well
and we can sum them up. The x2-distribution is additive as well, so we can
also add the critical values. As a result, we receive a test for independence,
where we test the null hypothesis Hy “The exceptions are independent from
each other”. If we have a total of n exception, the corresponding test statistic
is as follows:

Asymptotically, this is a sum of n rvs, where each is x3-distributed, which
results in a y2-distributed rv. The test statistic from the Kupiec POF-test
is also independent from all the test statistics mentioned above, so we can
add it as well. As a result, we receive a new mixed test for independence and
coverage, which has a test statistic of
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LRz = LRing + LRyos ~ X211

Just like we would do with the other Kupiec tests, we can now compare the
value of LR, to the 95%-quantile of the x2 4p-distribution. If it is lower,
we will accept the model, if it is higher, we decline it. Detailed examples for
this can be found in the next chapter.
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4 Backtesting results

We want to observe how well the previously introduced tests are suited to
judge the quality of a VaR-model. As a standard gauge, we use a graphical
analysis of the exceptions as well as the results of a point estimation and the
Basle traffic light. Point of examination are a VCV-approach as well as a
historical simulation with 250, 500 and 1000 points and a history of 300, 500
and 1000 points respectively. The data used for modelling are stock quotes
from BMW, Exxon and the German DAX index, which were chosen at ran-
dom.

BMW - VCV-Approach

Points 250 500 1000
History
300 | (G)+ 4+ + | (Y-)---] (-)---
500 | (G)+++ | (R)---](-)---
1000 | (G)+ + + | (R)--- | ()---

BMW - hist.Simulation

Points 250 500 1000
History
300 | (G)+++ | (Y)-++ | (-)---
500 | (G)+++ | (Y-)-+4+ | (-)---
1000 | (G)+ - - (R)--- | (5)---

EXXON - VCV-Approach

Points 250 500 1000
History
300 | (G)-++4+ | (GQ)+++ | (+H)+++
500 | (G)+++ | (Y-)-++ | (+)
1000 | (Y)+ +- | (Y-)--- (-)- - -

14



EXXON - hist.Simulation

Points 250 500 1000
History
300 (G)+++ | (YH)+++ | )+ +-
500 | (YH)+++ | (Y-)-++ | ()
1000 | (Y-)- + - (Y-)- - - (-)- - -

DAX - VCV-Approach

Points 250 500 1000
History
300 | (G)+ - - Y)-+4+1]()---
500 | (G)+++ | (Y-)-+-](-)---
1000 | (Y+)+++| (R)--- | (-)---

DAX - hist.Simulation

Points 250 500 1000
History
300 | (G)++- | (YV)-++|()---
500 | (G)+++| (Y)--- | (-)---
1000 | (G)+ ++ | (Y-)--- | (-)---

In brackets are the results of the Basle traffic light. If the result is “Yellow”
or the Basle scheme cannot be utilized to make a judgment (at 1000 points),
a “+” or “” sign indicates if the other tests suggest an acceptance or a dec-
lination. The tests utilizied for this are the point estimator and a graphical
analysis, as mentioned above. The three signs outside the bracket indicate
from left to right the results of the mixed Kupiec test, scaled CD-test with
20 equal-sived intervals and the weighted scaled-CD test with 12 intervals as
explained before.

If we have a look at the results, we can immediately see, that the “red”
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models were also declined by all three of the other tests. The “green” mod-
els were also mostly identified. If the Kupiec-test declines the green model,
it is because dependencies are not compensated in the Basle scheme. De-
clinations in the CD-test are caused by too conservative VaR-models. The
most interesting events however occur, when the traffic light is “yellow” and
the model cannot be quantified as good or bad from a regulatory point of
view. If we consider the results of the other backtests, then those are mostly
confirmed by the Mixed Kupiec test. The scaled CD-test can then tell us
why the judgment was indecisive before. If it is negative, then the model is
badly calibrated altogether. If the weighted scaled CD-test is negative, this
might have several reasons, like a mismodelling of the high gains or the high
quantiles altogether. A graphical analysis usually answers these questions
right away. To finish off this chapter, let us have a look at two explicit ex-
amples, beginning with the result for the historical simulation of BMW with
500 backtesting points and 300 history.The result “(Y) - + +” is indecisive.
From the result we are assuming a cluster of exceptions and an otherwise
well-calibrated model. Looking at figure 4, this judgment is only partially
correct.
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-0.10

Figure 4: 500-day-VaR and P&L for BMW with 300 points history

Apparently, the strongly varying volatility is recorded by the VaR-model too
slowly, thus creating a phase with too many exceptions as well as a phase
with a too conservative VaR. Our first impression is therefore only partially
confirmed, because even though the CD-test was accepted, the model is not
well calibrated - a problem which occured with the regular CD-test as well.
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Secondly, we want to have a look at the results of a historical simulation for
the Exxon stock with 1000 backtesting points and 300 history. They are “(-)
+ + -”. From this, we conclude that the model is well calibrated, but that
the VaR is generally underestimated. This impression is confirmed by figure
5.

-0.05

0 200 400 600 800 1000

Figure 5: 1000-day-VaR and P&L for EXXON with 300 points history

In general, we can say that good or bad results in the mixed Kupiec or scaled-
CD test can also be confirmed through other backtests. When the results
differ however, another test should be included for confirmation.
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5 Summary and outlook

Finally, we would like to use the newly introduced methods to set up strate-
gies for optimal backtesting. We can definitely say, that a single backtest can
never be enough to judge the quality of a VaR-model. Good results in one
test should thus always be confirmed by another test. We will clarify this in
the following diagram:

Cross-Check:
Mixed good -
} Kupiec prop.
Kupiec-Test Weighted SCD
lbad
good Problem:
Kupiec POF ———)] Exceptions
correlated
lbad
Problem: Cluster ::oblen;:
VaR too low p————) >(|::|ng P
-> Excess plot -_ an:_:je
time window
Everywhere
h 4
Problem:
VaR under-
estimated

From the two newly introduced tests, the mixed Kupiec-test appears to be
the strongest, since it can identify both problems with dependencies and the
number of exceptions. The scaled CD-test allows for judgment about the
entire VaR-model, but can easily be fooled by dependencies within the data.
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Combining both tests, we have the possibility of evaluating the model itself
as well as assessing the number of exceptions relevant to the regulators. An
optimal backtest cannot be achieved with these methods either and will al-
ways require an additional graphical analysis.
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