
ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL. 125

Low-Density Parity-Check Codes—A Statistical

Physics Perspective

RENATO VICENTE,1,∗ DAVID SAAD1 AND
YOSHIYUKI KABASHIMA2

1Neural Computing Research Group, University of Aston, Birmingham B4 7ET, United Kingdom
2Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology,

Yokohama 2268502, Japan

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
A. Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . 232
B. Statistical Physics of Coding . . . . . . . . . . . . . . . . . . . . . 236
C. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

II. Coding and Statistical Physics . . . . . . . . . . . . . . . . . . . . . 237
A. Mathematical Model for a Communication System . . . . . . . . . . . 237

1. Data Source and Sink . . . . . . . . . . . . . . . . . . . . . . 238
2. Source Encoder and Decoder . . . . . . . . . . . . . . . . . . . 238
3. Noisy Channels . . . . . . . . . . . . . . . . . . . . . . . . . 239
4. Channel Encoder and Decoder . . . . . . . . . . . . . . . . . . . 241

B. Linear Error-Correcting Codes and the Decoding Problem . . . . . . . . 242
C. Probability Propagation Algorithm . . . . . . . . . . . . . . . . . . 244
D. Low-Density Parity-Check Codes . . . . . . . . . . . . . . . . . . 250
E. Decoding and Statistical Physics . . . . . . . . . . . . . . . . . . . 250

III. Sourlas Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
A. Lower Bound for the Probability of Bit Error . . . . . . . . . . . . . . 254
B. Replica Theory for the Typical Performance of Sourlas Codes . . . . . . . 256
C. Shannon’s Bound . . . . . . . . . . . . . . . . . . . . . . . . . 262
D. Decoding with Probability Propagation . . . . . . . . . . . . . . . . 266

IV. Gallager Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
A. Upper Bound on Achievable Rates . . . . . . . . . . . . . . . . . . 272
B. Statistical Physics Formulation . . . . . . . . . . . . . . . . . . . . 273
C. Replica Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 275
D. Replica Symmetric Solution . . . . . . . . . . . . . . . . . . . . . 277
E. Thermodynamic Quantities and Typical Performance . . . . . . . . . . 278
F. Codes on a Cactus . . . . . . . . . . . . . . . . . . . . . . . . . 282
G. Tree-Like Approximation and the Thermodynamic Limit . . . . . . . . . 287
H. Estimating Spinodal Noise Levels . . . . . . . . . . . . . . . . . . 289

V. MacKay–Neal Codes . . . . . . . . . . . . . . . . . . . . . . . . . 291
A. Upper Bound on Achievable Rates . . . . . . . . . . . . . . . . . . 294
B. Statistical Physics Formulation . . . . . . . . . . . . . . . . . . . . 294

∗Current affiliation: Departamento de Fı́sica Geral, Instituto de Fı́sica, Universidade de
São Paulo, 05315-970, São Paulo–SP, Brazil; to whom correspondence should be addressed
(rvicente@if.usp.br).

231
Copyright 2002, Elsevier Science (USA). All rights reserved.

ISSN 1076-5670/02 $35.00



232 VICENTE ET AL.

C. Replica Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 296
D. Probability Propagation Decoding . . . . . . . . . . . . . . . . . . 301
E. Equilibrium Results and Decoding Performance . . . . . . . . . . . . . 303

1. Analytical Solution: The Case of K ≥ 3 . . . . . . . . . . . . . . . 303
2. The Case of K = 2 . . . . . . . . . . . . . . . . . . . . . . . 307
3. The Case of K = 1 and General L > 1 . . . . . . . . . . . . . . . 307

F. Error Correction: Regular vs. Irregular Codes . . . . . . . . . . . . . . 310
G. The Spinodal Noise Level . . . . . . . . . . . . . . . . . . . . . . 312

1. Biased Messages: K ≥ 3 . . . . . . . . . . . . . . . . . . . . . 312
2. Unbiased Messages . . . . . . . . . . . . . . . . . . . . . . . 315

VI. Cascading Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
A. Typical PP Decoding and Saddle-Point-Like Equations . . . . . . . . . . 319
B. Optimizing Construction Parameters . . . . . . . . . . . . . . . . . 323

VII. Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . 325
Appendix A. Sourlas Codes: Technical Details . . . . . . . . . . . . . . 327

1. Free-Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 327
2. Replica Symmetric Solution . . . . . . . . . . . . . . . . . . . . 329
3. Local Field Distribution . . . . . . . . . . . . . . . . . . . . . 331
4. Zero Temperature Self-Consistent Equations . . . . . . . . . . . . . 332
5. Symmetric Channels Averages at Nishimori’s Temperature . . . . . . . 333
6. Probability Propagation Equations . . . . . . . . . . . . . . . . . 334

Appendix B. Gallager Codes: Technical Details . . . . . . . . . . . . . . 336
1. Replica Theory . . . . . . . . . . . . . . . . . . . . . . . . . 336
2. Replica Symmetric Solution . . . . . . . . . . . . . . . . . . . . 337
3. Energy Density at the Nishimori Condition . . . . . . . . . . . . . 338
4. Recursion Relations . . . . . . . . . . . . . . . . . . . . . . . 339

Appendix C. MN Codes: Technical Details . . . . . . . . . . . . . . . . 340
1. Distribution of Syndrome Bits . . . . . . . . . . . . . . . . . . . 340
2. Replica Theory . . . . . . . . . . . . . . . . . . . . . . . . . 341
3. Replica Symmetric Free-Energy . . . . . . . . . . . . . . . . . . 344
4. Viana–Bray Model: Poisson Constructions . . . . . . . . . . . . . . 348

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

I. Introduction

A. Error Correction

The way we communicate has been deeply transformed during the twentieth
century. Telegraph, telephone, radio, and television technologies have brought
to reality instantaneous long distance communication. Satellite and digital
technologies have made global high-fidelity communication possible.

Two obvious common features of modern digital communication systems
are that typically the message to be transmitted (e.g., images, text, computer
programs) is redundant and the medium used for transmission (e.g., deep-
space, atmosphere, optical fibers, etc.) is noisy. The key issues in modern
communication are, therefore, saving storage space and computing time by
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eliminating redundancies (source coding or compression) and making trans-
missions reliable by employing error-correction techniques (channel coding).
Shannon was one of the first to point out these key issues. In his influential
1948 papers, Shannon proved general results on the natural limits of compres-
sion and error-correction by setting up the framework for what is now known
as information theory.

Shannon’s channel coding theorem states that error-free communication is
possible if some redundancy is added to the original message in the encoding
process. A message encoded at rates R (message information content/code-
word length) up to the channel capacity Cchannel can be decoded with a prob-
ability of error that decays exponentially with the message length. Shannon’s
proof was nonconstructive and assumed encoding with unstructured random
codes and impractical (nonpolynomial time) (Cover and Thomas, 1991) de-
coding schemes. Finding practical codes capable of reaching the natural coding
limits is one of the central issues in coding theory.

To illustrate the difficulties that may arise when trying to construct high
performance codes from first principles, we can use a simple geometric illus-
tration. On the top left of Figure 1 we represent the space of words (a message
is a sequence of words), and each circle represents one sequence of binary
bits. The word to be sent is represented by a black circle in the left side figure.
Corruption by noise in the channel is represented in the top right figure as

Figure 1. In the top figure we illustrate what happens when a word is transmitted without
error correction. White circles represent possible word vectors, the black circle represents the
word to be sent. The channel noise causes corruption of the original word that is represented by
a drift in the top right picture. The dashed circles indicate decision boundaries in the receiver;
in the case depicted, noise corruption leads to a transmission error. In the bottom figure we
show qualitatively the error-correction mechanism. The redundant information changes the space
geometry, increasing the distance between words. The same drift as in the top figure does not
result in a transmission error.
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a drift in the original word location. The circle around each word represent
spheres that provide a decision boundary for each particular word; any signal
inside a certain decision region is recognized as representing the word at the
center of the sphere. In the case depicted in Figure 1 the drift caused by noise
places the received word within the decision boundary of another word vector,
causing a transmission error. Error-correction codes are based on mapping the
original space of words onto a higher dimensional space in such a way that the
typical distance between encoded words (codewords) increases. If the original
space is transformed, the same drift shown in the top of Figure 1 is insufficient
to push the received signal outside the decision boundary of the transmitted
codeword (bottom figure).

Based on this simple picture we can formulate general designing criteria
for good error-correcting codes: codewords must be short sequences of bi-
nary digits (for fast transmission), the code must allow for a large number of
codewords (for a large set of words), and decision spheres must be as large
as possible (for large error-correction capability). The general coding problem
consists of optimizing one of these conflicting requirements given the other
two. So, for example, if the dimension of the lattice and diameter of decision
spheres are fixed, the problem is finding the lattice geometry that allows the
densest possible sphere packing. This sphere packing problem is included in
the famous list of problems introduced by Hilbert (it is actually part of the 18th
problem). This problem can be solved for a very limited number of dimensions
(Conway and Sloane, 1998), but is very difficult in general. As a consequence,
constructive procedures are known only for a limited number of small codes.

For a long time, the best practical codes known were Reed–Solomon codes
(RS) operating in conjunction with convolutional codes (concatenated codes).
The current technological standard are RS codes, proposed in 1960, found
almost everywhere from compact disks to mobile phones and digital tele-
vision. Concatenated codes are the current standard in deep-space missions
(e.g., Galileo mission) (MacWilliams and Sloane, 1977; Viterbi and Omura,
1979). Recently, Turbo codes (Berrou et al., 1993) have been proven to out-
perform concatenated codes and are becoming increasingly more common.
These codes are composed of two convolutional codes working in parallel and
show practical performance close to Shannon’s bound when decoded with it-
erative methods known as probability propagation, first studied in the context
of coding by Wiberg (1996).

Despite the success of concatenated and Turbo codes, the current perfor-
mance record is owned by Gallager’s low-density parity-check codes (e.g.,
Chung, 2000; Davey, 1998, 1999). Gallager codes were first proposed in 1962
(Gallager, 1962, 1963) and then were all but forgotten soon after due to com-
putational limitations of the time and due to the success of convolutional
codes.
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To give an idea of how parity-check codes operate, we exemplify with the
simplest code of this type known as Hamming code (Hamming, 1950). A (7, 4)
Hamming code, where (7, 4) stands for the number of bits in the codeword
and input message, respectively, operates by adding 3 extra bits for each 4
message bits; this is done by a linear transformation G, called the generator
matrix, represented by:

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

When the generator matrix G is applied to a digital message s = (s1, s2, s3, s4),
we get an encoded message defined by t = Gs composed of 4 message bits plus
redundant information (parity-check) as 3 extra bits t5 = s2 ⊕ s3 ⊕ s4, t6 =
s1 ⊕ s3 ⊕ s4 and t7 = s1 ⊕ s2 ⊕ s4 (⊕ indicates binary sums). One interesting
point to note is that the transmitted message is such that t5 ⊕ s2 ⊕ s3 ⊕ s4 = 0
and similarly for t6 and t7, what allows direct check of single corrupted bits. The
decoding procedure relies in a second operator, known as parity-check matrix,
with the property HG = 0. For the generator (1) the parity-check matrix has
the following form:

H =

⎛
⎝

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞
⎠ . (2)

The decoding procedure follows from the observation that the received message
is corrupted by noise as r = Gs ⊕ n. By applying the parity-check matrix we
get the syndrome Hr = Hn = z. In the (7, 4) Hamming code the syndrome
vector gives the binary representation for the position of the bit where an error
has occurred (e.g., if n = (0, 0, 1, 0, 0, 0, 0), z = (0, 1, 1)). Due to this nice
property, decoding is trivial and this code is known as a perfect single-error-
correcting code (Hill, 1986).

Codes in the low-density parity-check family work along the same principles
as the simple Hamming code above, the main differences being that they are
much longer, the parity-check matrix is very sparse, and multiple errors can be
corrected. However, low-density parity-check codes are not perfect and the de-
coding problem is, in general, significantly more difficult. Luckily, the sparse-
ness of the matrix allows for the decoding process to be carried out by probabil-
ity propagation methods similar to those employed in Turbo codes. Throughout
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this chapter we concentrate on low-density parity-check codes (LDPC) that are
state of the art concerning performance and operate along simple principles.
We study four variations of LDPCs known as Sourlas codes, Gallager codes,

MacKay–Neal codes, and Cascading codes.

B. Statistical Physics of Coding

The history of statistical physics application to error-correcting codes started
in 1989 with a paper by Sourlas relating error-correcting codes to spin glass
models (Sourlas, 1989). He showed that the Random Energy Model (Derrida,
1981b; Saakian, 1998; Dorlas and Wedagedera, 1999) can be thought of as
an ideal code capable of saturating Shannon’s bound at vanishing code rates.
He also showed that the SK model (Kirkpatrick and Sherrington, 1978) could
operate as a practical code.

In 1995, convolutional codes were analyzed by employing the transfer-
matrix formalism and power series expansions (Amic and Luck, 1995).

In 1998, Sourlas work was extended for the case of finite code rates
(Kabashima and Saad, 1999a) by employing the replica method. Recently,
Turbo codes were also analyzed using the replica method (Montanari and
Sourlas, 2000; Montanari, 2000).

In this chapter we present the extension of Sourlas work together with
the analysis of other members in the family of LDPCs. We rely mainly on
replica calculations (Kabashima et al., 2000; Murayama et al., 2000; Vicente
et al., 2000b) and mean-field methods (Kabashima and Saad, 1998; Vicente
et al., 2000a). The main idea is to develop the application of statistical physics
tools for analyzing error-correcting codes. A number of results obtained are
rederivations of well known results in information theory, while others put
known results into a new perspective.

The main differences between the statistical physics analysis and traditional
results in coding theory are the emphasis on very large systems from the start
(thermodynamic limit) and the calculation of ensemble typical performances
instead of worst-case bounds. In this sense statistical physics techniques are
complementary to traditional methods. As a byproduct of our analysis we
connect the iterative decoding methods of probability propagation with well-
known mean-field techniques, presenting a framework that might allow a sys-
tematic improvement of decoding techniques.

C. Outline

In the next section we provide an overview of results and ideas from information
theory that are relevant for understanding of the forthcoming sections. We also
discuss more deeply linear encoding and parity-check decoding. We present
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the probability propagation algorithm for computing approximate marginal
probabilities efficiently and finish by introducing the statistical physics point
of view of the decoding problem.

In Section III, we investigate the performance of error-correcting codes
based on sparse generator matrices proposed by Sourlas. We employ replica
methods to calculate the phase diagram for the system at finite code rates. We
then discuss the decoding dynamics of the probability propagation algorithm.
Sourlas codes are regarded as a first step toward developing techniques to
analyze other more practical codes.

Section IV provides a statistical physics analysis for Gallager codes. These
codes use a dense generator and a sparse parity-check matrix. The code is
mapped onto a K-body interaction spin system and typical performance is
obtained using the replica method. A mean-field solution is also provided by
mapping the problem onto a Bethe-like lattice (Husimi cactus), recovering,
in the thermodynamic limit, the replica symmetric results and providing a
very good approximation for finite systems of moderate size. We show that
the probability propagation decoding algorithm emerges naturally from the
analysis, and its performance can be predicted by studying the free-energy
landscape. A simple technique is introduced to provide upper bounds for the
practical performance.

In Section V we investigate MacKay–Neal codes that are a variation of
Gallager codes. In these codes, decoding involves two very sparse parity-
check matrices, one for the signal with K nonzero elements in each row and
a second for the noise with L nonzero elements. We map MN codes onto a
spin system with K + L interacting spins. The typical performance is again
obtained by using a replica symmetric theory.

A statistical description for the typical PP decoding process for cascad-
ing codes is provided in Section VI. We use this description to optimize the
construction parameters of a simple code of this type.

We close, in Section VII, with concluding remarks. Appendices with tech-
nical details are also provided.

II. Coding and Statistical Physics

A. Mathematical Model for a Communication System

In his papers from 1948, Shannon introduced a mathematical model (schemat-
ically represented in Figure 2) incorporating the most basic components of
communication systems, and identified key problems and proved some general
results. In the following we will introduce the main components of Shannon’s
communication model, the mathematical objects involved, as well as related
general theorems.
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Figure 2. Mathematical model for a communication system. Each component is discussed
in the text.

1. Data Source and Sink

A data source can be discrete or continuous. A discrete source is defined by
the pair (S, π ), where S is a set of m symbols (alphabet) and π is a probability
measure over the space of sequences of symbols with any length (messages).
In general, any discrete alphabet can be mapped onto sequences of [log m]
Boolean digits {0, 1}. Continuous sources can always be made discrete at
the expense of introducing some distortion to the signal (Cover and Thomas,
1991). A source is memoryless if each symbol in the sequence is independent
of the preceding and succeeding symbols. A data sink is simply the receiver
of decoded messages.

2. Source Encoder and Decoder

Data sources usually generate redundant messages that can be compressed
to vectors of shorter average length. Source encoding, also known as data
compression, is the process of mapping sequences of symbols from an alphabet
S onto a shorter representation A.

Shannon employed the statistical physics idea of entropy to measure the
essential information content of a message. As enunciated by Khinchin (1957),
the entropy of Shannon is defined as follows:

Definition II.1 (Entropy) Let

(
a1 a2 · · · am

p1 p2 · · · pm

)
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be a finite scheme, where a j are mutually exclusive events and p j are asso-
ciated probabilities with

∑m

j=1 p j = 1. The entropy of the scheme in bits (or
shannons) is defined as

H2(A) = −
m∑

j=1

p j log2 p j . (3)

The entropy is usually interpreted as the amount of information gained by
removing the uncertainty and determining which event actually occurs.

Shannon (1948) posed and proved a theorem that establishes the maximal
shortening of a message by compression as a function of its entropy. The
compression coefficient can be defined as μ ≡ limN→∞〈L N 〉/N , where N is
the original message length and 〈L N 〉 is the average length of compressed
messages. As presented by Khinchin (1957), the theorem states:

Theorem II.1 (Source compression) Given a discrete source with m symbols

and entropy of H bits, for any possible compression code, the compression

coefficient is such that

H

log2 m
≤ μ

and there exists a code such that

μ <
H + ǫ

log2 m
,

for arbitrarily small ǫ.

A compression scheme that yields a coefficient μ within the bounds above,
given that the statistical structure π of the source is known, was proposed in
1952 by Huffman. Several practical algorithms are currently known and the
design of more efficient and robust schemes is still a very active research area
(Nelson and Gailly, 1995).

3. Noisy Channels

Message corruption during transmission can be described by a probabilistic
model defined by the conditional probability P(r | t) where t and r represent
transmitted and received messages, respectively. We can assume that in any of
the channels used, only one component tj, j = 1, . . . , M of the original mes-
sage is being sent. If there is no interference effects between components, the
channel is memoryless and the conditional probability factorizes as P(r | t) =∏M

j=1 P(r j | t j ).
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A memoryless channel model is specified by (T , P(r | t),R), where T
and R are input and output alphabets and P(r | t) transition probabilities. The
information needed to specify t given the received signal r is the conditional
entropy:

H2(T | R) = −
∑

r∈R
P(r )

[
∑

t∈T
P(t | r ) log2 (P(t | r ))

]
. (4)

The information on the original signal t conveyed by the received signal r is
given by the mutual information I (T ; R) = H2(T ) − H2(T | R), where H2(T)
is defined in (3). The maximal information per bit that the channel can transport
defines the channel capacity (Cover and Thomas, 1991).

Definition II.2 (Channel capacity) Given the channel model, the channel
capacity is

Cchannel = max
P(t)

I (T ; R),

where I(T; R) is understood as a functional of the transmitted bits distribution
P(t). Thus, for example, if Cchannel = 1/2, in the best case, 2 bits must be
transmitted for each bit sent.

The following channel model (see MacKay, 1999, 2000a) is of particular
interest in this chapter:

Definition II.3 (Binary symmetric channel) The memoryless binary sym-
metric channel (BSC) is defined by binary input and output alphabets T =
R = {0, 1} and by the conditional probability

P(r �= t | t) = p P(r = t | t) = 1 − p. (5)

The channel capacity of a BSC is given by

CBSC = 1 − H2(p) = 1 + p log(p) + (1 − p) log(1 − p)

In this chapter, we concentrate on the binary symmetric channel due to its
simplicity and straightforward mapping onto an Ising spin system. However,
there are several other channel types that have been examined in the literature
and that play an important role in practical applications (Viterbi and Omura,
1979; Cover and Thomas, 1991). The most important of these is arguably the
Gaussian channel; most of the analysis presented in this paper can be carried
out in the case of the Gaussian channel as demonstrated in Kabashima and
Saad (1999a) and Vicente et al. (1999).
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Figure 3. Codebook for the (7, 4) Hamming code defined by (1).

4. Channel Encoder and Decoder

Highly reliable communication is possible even through noisy channels. It
can be achieved by protecting a message with redundant information using a
channel encoder defined as:

Definition II.4 ((2N, M) Code) A code of rate R = N/M is an indexed list
(codebook) of 2N codewords t(i ) ∈ T each of length M. Each index i in the
codebook corresponds to a possible sequence of message bits.

In a digital system, a code can be regarded as a map of representations of 2N

symbols as Boolean sequences of N bits onto Boolean sequences of M bits. In
Figure 3, we show the codebook for the Hamming code defined by (1) that is
a (24, 7) code. Each sequence of N = 4 message bits is indexed and converted
in a codeword with M = 7 bits.

A decoding function g is a map of a channel output r ∈ R back into a
codeword. The probability that a symbol i is decoded incorrectly is given by
the probability of block error:

pBlock = P{g(r ) �= i | t = t(i)}. (6)

The average probability that a decoded bit ŝ j = g j (r ) fails to reproduce the
original message bits is the probability of bit error:

pb =
1

N

N∑

j=1

P{ŝ j �= s j }. (7)

Shannon’s coding theorem is as follows (Cover and Thomas, 1991; MacKay,
2000a).

Theorem II.2 (Channel coding) The affirmative part of the theorem states:

For every rate R < Cchannel , there exists a sequence of (2MR, M) codes with

maximum probability of block error p
(M)
Block → 0. Conversely, any sequence

of (2MR, M) codes with p
(M)
Block → 0 must have R ≤ Cchannel .
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The negative part of the theorem is a corollary of the affirmative part and

states:

Error-free communication above the capacity Cchannel is impossible. It is not

possible to achieve a rate R with probability of bit error smaller than

pb(R) = H−1
2

(
1 −

Cchannel

R

)
. (8)

This nonconstructive theorem is obtained by assuming ensembles of random
codes and impractical decoding schemes. No practical coding scheme (i.e., that
can be encoded and decoded in polynomial time) that saturates the channel
capacity is known to date. As Shannon’s proof does not deal with complexity
issues, there is no guarantee that such practical scheme exists at all.

B. Linear Error-Correcting Codes and the Decoding Problem

Linear error-correction codes add redundancy to the original message s ∈
{0, 1}N through a linear map like:

t = Gs (mod 2), (9)

where G is an M × N Boolean matrix. The received message r = t + n is a
corrupted version of the transmitted message. In the simplest form, optimal
decoding consists of finding an optimal estimate ŝ(r ) assuming a model for
the noisy channel P(r | t) and a prior distribution for the message source P(s).

The definition of the optimal estimator depends on the particular task and
loss function assumed. An optimal estimator is defined as follows (see Iba,
1999, and references therein):

Definition II.5 (Optimal estimator) An optimal estimator ŝ(r ) for a loss
function L(s, ŝ(r )) minimizes the average of L in relation to the posterior
distribution P(s | r ).

A posterior probability of messages given the corrupted message received
can be easily found by applying Bayes theorem:

P(s | r ) =
P(r | t) δ (t ; Gs) P(s)∑
s P(r | t) δ (t ; Gs) P(s)

, (10)

where δ(x ; y) = 1 if x = y and δ(x ; y) = 0, otherwise.
If we define our task to be the decoding of perfectly correct messages (i.e.,

we are interested in minimizing the probability of block error pBlock), we have
to employ a two-valued loss function that identifies single mismatches:

L(s, ŝ(r )) = 1 −
M∏

j=1

δ(s j; ŝ j ). (11)
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An optimal estimator for this loss function must minimize the following:

〈L(s, ŝ(r ))〉P(s|r ) =
∑

s

P(s | r )L(s, ŝ(r ))

= 1 −
∑

s

P(s | r )
M∏

j=1

δ(s j ; ŝ j )

= 1 − P(ŝ | r ). (12)

Clearly, the optimal estimator in this case is ŝ = argmaxS P(s | r ). This esti-
mator is often called the Maximum a Posteriori estimator or simply MAP.

If we tolerate a certain degree of error in the decoded message (i.e., we
are instead interested in minimizing the probability of bit error pb), the loss
function has to be an error counter like:

L(s, ŝ(r )) = −
M∑

j=1

s j ŝ j , (13)

where we assume for simplicity the binary alphabet s ∈ {±1}N . The optimal
estimator must minimize the following:

〈L(s, ŝ(r ))〉P(s|r ) = −
M∑

j=1

〈s j 〉P(s|r )ŝ j . (14)

An obvious choice for the estimator is

ŝ j =
〈s j 〉P(s|r )

| 〈s j 〉P(s|r ) |

= sgn
(
〈s j 〉P(s|r )

)

= argmaxs j
P(s j | r ), (15)

where P(s j | r ) =
∑

{sk :k �= j} P(s | r ) is the marginal posterior distribution. As
suggested by Eq. (15), this estimator is often called the Marginal Posterior

Maximizer or MPM for short.
Decoding, namely, the computation of estimators, becomes a hard task, in

general, as the message size increases. The MAP estimator requires finding a
global maximum of the posterior over a space with 2N points and the MPM
estimator requires to compute long summations of 2N − 1 terms for finding
the two valued marginal posterior. The exponential scaling makes a naı̈ve
brute force evaluation quickly impractical. An alternative is to use approximate
methods to evaluate posteriors. Popular methods are Monte Carlo sampling and
the computationally more efficient probability propagation. In the sequence we
will discuss the latter.
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C. Probability Propagation Algorithm

The probabilistic dependencies existing in a code can be represented as a bi-
partite graph (Lauritzen, 1996) where nodes in one layer correspond to the
M received bits rμ and nodes in the other layer to the N message bits sj. The
connections between the two layers are specified by the generator matrix G.
Decoding requires evaluation of posterior probabilities when the received
bits r are known (evidence).

The evaluation of the MPM estimator requires the computation of the fol-
lowing marginal joint distribution:

P(s j , r ) =
∑

{si :i �= j}
P(s | r )P(r )

=
∑

{si :i �= j}
P(r | s)P(s)

=
∑

{si :i �= j}

M∏

μ=1

P(rμ | si1
· · · siK

)
N∏

j=1

P(s j ), (16)

where si1
· · · siK

are message bits composing the transmitted bit tμ = (Gs)μ =
si1

⊕ · · · ⊕ siK
and r is the message received. Equation (16) shows a com-

plex partial factorization that depends on the structure of the generator ma-
trix G. We can encode this complex partial factorization on a directed graph
known as a Bayesian network (Pearl, 1988; Castillo et al., 1997; Jensen, 1996;
Kschischang and Frey, 1998; Aji and McEliece, 2000; Frey, 1998, Kschischang
et al., 2001). As an example, we show in Figure 4 a simple directed bipartite
graph encoding the following joint distribution:

P(s1, . . . , s4, r1, . . . , r6) = P(r1 | s1, s2, s3)P(r2 | s3)P(r3 | s1, s2)

×P(r4 | s3, s4)P(r5 | s3)P(r6 | s3)

×P(s1)P(s2)P(s3)P(s4) (17)

Figure 4. Bayesian network representing a linear code of rate 2/3. If there is an arrow from
a vertex sj to a vertex rμ, sj is said to be a parent and rμ is said to be a child.
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The generator matrix for the code in Figure 4 is:

G =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 0
0 1 0 0
1 1 0 0
0 0 1 1
0 0 1 0
0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

. (18)

Given r , an exact evaluation of the marginal joint distribution (16) in a space
of binary variables s ∈ {±1}N would require (N + M)(2N−1 − 1) + 1 opera-
tions. In 1988, Pearl proposed an iterative algorithm that requiresO(N ) compu-
tational steps to calculate approximate marginal probabilities using Bayesian
networks. This algorithm is known as belief propagation (Pearl, 1988), prob-

ability propagation (Kschischang and Frey, 1998), generalized distributive law

(Aji and McEliece, 2000) or sum-product algorithm (Frey, 1998; Kschischang
et al., 2001; see also Opper and Saad, 2001).

The probability propagation algorithm is exact when the Bayesian network
associated to the particular problem is free of loops. To introduce the proba-
bility propagation algorithm we start with the simple chain in Figure 5, which
represents the following joint distribution:

p(s1, s2, s3, s4, s5) = p(s1)p(s2 | s1)p(s3 | s2)p(s4 | s3)p(s5 | s4). (19)

Suppose now that we would like to compute p(s3), we would then have to
compute:

p(s3) =
∑

s1,s2,s4,s5

p(s1)p(s2 | s1)p(s3 | s2)p(s4 | s3)p(s5 | s4). (20)

A brute force evaluation of (20) would take 5 × (24 − 1) + 1 = 61 operations
in a binary field. The probability propagation algorithm reduces significantly
the number of operations needed by rationalizing the order in which they are
performed. For Figure 5 we can start by marginalizing vertex s5 and writing:

R54(s4) =
∑

s5

p(s5 | s4). (21)

Figure 5. Marginal probabilities can be calculated exactly in a Bayesian chain. R-messages

flow from a child to a parent and Q-messages flow from a parent to a child.



246 VICENTE ET AL.

The function R54(s4) can be regarded as a vector (a message) carrying infor-
mation about vertex s5. In a similar way we can write:

R43(s3) =
∑

s4

p(s4 | s3)R54(s4). (22)

Again R43(s3) can be seen as a message carrying information about vertices s4

and s5. Note that we can write (21) in the same form as (22) by assuming that
R5(s5) = 1 if s5 is not given or R5(s5) = δ(s5; s∗) if s5 = s∗, where δ(x ; y) = 1
if x = y and δ(x ; y) = 0, otherwise.

We can also gather information from vertices to the left of s3. Firstly, we
marginalize s1 by introducing:

Q12(s1) = p(s1). (23)

We then propagate the message Q12(s1) to s2 producing a new message:

Q23(s2) =
∑

s1

Q12(s1)p(s2 | s1). (24)

The marginal probability p(s3) can be finally computed by:

p(s3) =
∑

s2

Q23(s2)R43(s3)p(s3 | s2)

=
∑

s2

∑

s1

Q12(s1)p(s2 | s1)
∑

s4

p(s4 | s3)R54(s4)p(s3 | s2)

=
∑

s2

∑

s1

p(s1)p(s2 | s1)
∑

s4

p(s4 | s3)
∑

s5

p(s5 | s4)

=
∑

s1,s2,s4,s5

p(s1)p(s2 | s1)p(s3 | s2)p(s4 | s3)p(s5 | s4). (25)

The evaluation of p(s3) using probability propagation is exact and requires only
16 operations, much less than the 61 operations required for the brute force
calculation.

A slightly more complex situation is shown in Figure 6 representing the
following joint distribution:

p(s1, . . . , s12) = p(s6)p(s8)p(s9)p(s10)p(s11)p(s12)p(s1 | s10)p(s2 | s11, s12)

× p(s3 | s1, s2, s9)p(s4 | s3, s8)p(s5 | s3, s6)p(s7 | s4). (26)

Suppose that the variables are binary, s7 and s5 are given evidence vertices and
we would like to compute the marginal p(s3). A brute force evaluation would
require 11 × (29 − 1) + 1 = 5622 operations.

In general, we can just initialize the messages with random values, or make
use of prior knowledge that may be available, and update the vertices in a
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Figure 6. Marginal probabilities also can be calculated exactly in a Bayesian tree.

random order, but this may require several iterations for convergence to the cor-
rect values. In the particular case of trees there is an obvious optimal scheduling
that takes only one iteration per vertex to converge: start at the leaves (vertices
with a single edge connected to them) and proceed to the next internal level
until the intended vertex. For the tree in Figure 6, the optimal schedule would
be as follows:

� Q11,2, Q12,2, Q10,1, Q65, Q93, Q84 and Q74
� Q13, Q23 and R43, R53

The Q-messages are just the prior probabilities:

Q jμ(s j ) = p(s j ), (27)

where j = 6, 8, 9, 10, 11, 12.
The R-message between s7 and s4 is:

R74(s4) =
∑

s7

R7(s7)p(s7 | s4), (28)

where R7(s7) = δ(s7, s∗7 ) and s∗7 is the value fixed by the evidence.
Following the schedule, we have the following Q-messages:

Q13(s1) =
∑

s10

p(s1 | s10)Q10,1(s10) (29)

Q23(s2) =
∑

s11,s12

p(s2 | s11, s12)Q11,2(s11)Q12,2(s12). (30)
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The remaining R-messages are:

R43(s3) =
∑

s4,s8

p(s4 | s3, s8)Q84(s8)R74(s4) (31)

R53(s3) =
∑

s6,s5

p(s5 | s3, s6)Q65(s6)R5(s5), (32)

where R5(s5) = δ(s5, s∗5 ) and s∗5 is the value fixed by the evidence.
Finally we can fuse all the messages in the vertex s3 as follows:

p(s3) =
∑

s1,s2,s9

p(s3 | s1, s2, s9)Q13(s1)Q23(s2)R43(s3)R53(s3)Q93(s9). (33)

By substituting the expressions for the messages in (33), it is relatively straight-
forward to verify that this expression gives the exact value for the marginal
of (26). In this case, the probability propagation algorithm requires only 432
operations against 5622 operations required by the brute force evaluation.

We can now summarize the rules for calculating the message that flows
through a particular edge:

� Multiply all incoming messages by the local probability table (for exam-
ple: p(s3 | s1, s2, s9) for vertex s3) and sum over all vertices not attached to
the edge that carries the outgoing message.

� Both Q and R messages must be only functions of the parent in the edge
through which the message is flowing.

Probability propagation is only exact if the Bayesian network associated
has no cycles. However, we can blindly apply the same algorithm in a general
graph hoping that convergence to a good approximation is attained. In this kind
of application there is no obvious optimal schedule and nodes can be updated
serially, in parallel, or randomly.

Before writing the probability propagation equations for a general graph,
let us first provide some definitions. Two vertices sj and rμ are adjacent if
there is an edge connecting them. If there is an arrow from sj to rμ, sj is said
to be a parent and rμ a child. The children of sj are denoted by M( j) and
the parents of rμ are L(μ). Linear codes are specified by bipartite graphs
(as in Fig. 4) where all parents are in one layer and all children in the other
layer. A message is a probability vector Q = (Q0, Q1) with Q0 + Q1 = 1.
The probability propagation algorithm in a bipartite graph operates by passing
messages between the two layers through the connection edges, first forward
from the top layer (parents) to the bottom layer (children), then backward, and
so on iteratively. Child-to-parent messages (backward messages in Fig. 4) are
R-messages denoted Rμj , while parent-to-child messages (forward messages)
are Q-messages denoted by Q jμ.
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Figure 7. Left side: forward (Q) message from parent to child. Right side: backward (R)
message from child to parent.

With the help of Figure 7 using the algorithm above, the forward (Q) mes-
sages between a parent sj and child rμ are just (see also Davey, 1999):

Qa
jμ = P(S j = a | {Jν : ν ∈ M( j)μ}) (34)

= αμj p(s j = a)
∏

ν∈M( j)\μ
Ra

ν j , (35)

where αμj is a required normalization, M( j) \ μ stands for all elements in the
set M( j) except μ.

Similarly, we can get the expression for the backward (R) messages between
child rμ and parent sj:

Ra
μj =

∑

{si :i∈L(μ)\ j}
P(rμ | s j = a, {si : i ∈ L(μ) \ j})

∏

i∈L(μ)\ j

Q
si

iμ. (36)

An approximation for the marginal posterior can be obtained by iterating
Eqs. (34) and (36) until convergence or some stopping criteria is attained, and
fusing all incoming information to a parent node by calculating:

Qa
j = α j p(s j = a)

∏

ν∈M( j)

Ra
μj , (37)

where α j is a normalization Qa
j is an approximation for the marginal posterior

P(s j | r ). Initial conditions can be set to the prior probabilities Qs
jμ = p(s).

It is clear (see also Pearl, 1988) that the probability propagation (PP) al-
gorithm is exact if the associated graph is a tree and that the convergence for
the exact marginal posterior occurs within a number of iterations proportional
to the diameter of the tree. However, graphs defining error-correcting codes
always have cycles and it has been observed empirically that decoding with
the PP algorithm also yields good results (Frey and MacKay, 1998; Cheng,
1997) in spite of that.

There are a number of studies of probability propagation in loopy graphs
with a single cycle (Weiss, 1997) and describing Gaussian joint distributions
(Freeman, 1999), but no definite explanation for its good performance in this
case is known to date.
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D. Low-Density Parity-Check Codes

Marginal posteriors can be calculated in O(N K ) steps, where K is the average
connectivity of a child node, by using probability propagation. Therefore, the
use of very sparse generator matrices (

∑
μj Gμj = O(N )) seems favorable.

Moreover, it is possible to prove that the probability of a cycle-free path of
length l in a random graph decays with O(K l/N ), that indicates that small
cycles are harder to find if the generator matrix is very sparse and that PP de-
coding is expected to provide better approximations for the marginal posterior
(no proof is known for this statement). Encoding is also faster if very sparse
matrices are used, requiring O(N ) operations. Despite the advantages, the use
of very sparse matrices for encoding has the serious drawback of producing
codewords that differ in only O(K ) bits from each other, which leads to a
high probability of undetectable errors. Codes with sparse generator matri-
ces are known as Sourlas codes and will be our object of study in the next
section.

A solution for the bad distance properties of sparse generator codes is to use a
dense matrix for encoding (providing a minimum distance between codewords
of O(N )), while decoding is carried out in a very sparse graph, allowing
efficient use of PP decoding. The method known as parity-check decoding
(Hill, 1986; Viterbi and Omura, 1979) is suitable in this situation, as encoding is
performed by a generator matrix G, while decoding is done by transforming
the corrupted received vector r = Gs+n (mod 2) with a suitable parity-check
matrix H having the property HG (mod 2) = 0, yielding the syndrome vector

z = Hn (mod 2).
Decoding reduces to finding the most probable vector n when the syndrome

vector z is known, namely, performing MPM estimates that involve the cal-
culation of the marginal posterior P(n j | z). In 1999, MacKay proved that
this decoding method can attain vanishing block error probabilities up to the
channel capacity if optimally decoded (not necessarily practically decoded).

This type of decoding is the basis for the three families of codes (Gallager,

MacKay–Neal, and cascading) that we study in this chapter.

E. Decoding and Statistical Physics

The connection between spin systems in statistical physics and digital error
correcting codes, first noted by Sourlas (1989), is based on the existence of a
simple isomorphism between the additive Boolean group ({0, 1},⊕) and the
multiplicative binary group ({+1,−1}, ·) defined by:

S · X = (−1)s⊕x , (38)
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where S, X ∈ {+1,−1} and s, x ∈ {0, 1}. Through this isomorphism, every
addition on the Boolean group corresponds to a unique product on the binary
group and vice-versa. A parity-check bit in a linear code is usually formed
by a Boolean sum of K bits of the form

⊕K

j=1 s j that can be mapped onto a
K-spin coupling

∏K

j=1 S j . The same type of mapping can be applied to other
error-correcting codes as convolutional codes (Sourlas, 1994b; Amic and Luck,
1995) and Turbo codes (Montanari and Sourlas, 2000; Montanari, 2000).

The decoding problem depends on posteriors like P(S | J), where J is the
evidence (received message or syndrome vector). By applying Bayes’ theorem
this posterior can, in general, be written in the form:

Pαγ (S | J) =
1

Z (J)
exp

[
ln Pα(J | S) + ln Pγ (S)

]
, (39)

where α and γ are hyperparameters assumed to describe features like the
encoding scheme, source distribution, and noise level. This form suggests the
following family of Gibbs measures:

Pαβγ (S | J) =
1

Z
exp

[
−βHαγ (S; J)

]
(40)

Hαγ (S; J) = − ln Pα(J | S) − ln Pγ (S), (41)

where J can be regarded as quenched disorder in the system. It is not diffi-
cult to see that the MAP estimator is represented by the ground state of the
Hamiltonian (40), i.e., by the sign of thermal averages Ŝ MAP

j = sgn(〈S j 〉β→∞)
at zero temperature. On the other hand, the MPM estimator is provided by the
sign of thermal averages Ŝ MPM

j = sgn(〈S j 〉β=1) at temperature one. We have
seen that if we are concerned with the probability of bit error pe the optimal
choice for an estimator is MPM, this is equivalent to decoding at finite tem-
perature β = 1, known as the Nishimori temperature (Nishimori, 1980, 1993,
2001; Ruján, 1993).

The evaluation of typical quantities involves the calculation of averages over
the quenched disorder (evidence) J, namely, averages over:

Pα∗γ ∗(J) =
∑

S

Pα∗(J | S)Pγ ∗(S), (42)

where α∗ and γ ∗ represent the “real” hyperparameters, in other words, the
hyperparameters actually used for generating the evidence J. Those “real”
hyperparameters are, in general, not known to the receiver, but can be estimated
from the data. To calculate these estimates we can start by writing free-energy
like negative log-likelihoods for the hyperparameters:

〈F(α, γ )〉Pα∗γ ∗ = −〈lnPαγ (J)〉Pα∗γ ∗ . (43)
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This log-likelihood can be regarded as measuring the typical plausibility of
α and γ , given the data J (Berger, 1993). This function can be minimized to
find the most plausible hyperparameters (known as type II maximum likelihood

hyperparameters or just ML-II hyperparameters) (Berger, 1993).
The ML-II hyperparameters correspond in this case to α = α∗ and γ = γ ∗,

i.e., the “real” hyperparameters must be used in the posterior for decoding.
This fact is a consequence of the following inequality:

〈F(α∗, γ ∗)〉Pα∗γ ∗ ≤ 〈F(α, γ )〉Pα∗γ ∗ . (44)

The proof of (44) follows directly from the information inequality (Iba, 1999;
Cover and Thomas, 1991), i.e., the nonnegativity of the KL-divergence:

D(Pα∗γ ∗‖Pαγ ) ≥ 0
〈
ln

(
Pα∗γ ∗(J)

Pαγ (J)

)〉

Pα∗γ ∗

≥ 0

−〈ln Pα∗γ ∗(J)〉Pα∗γ ∗ ≤ −〈ln Pαγ (J)〉Pα∗γ ∗ . (45)

When the true and assumed hyperparameters agree, we say that we are at
the Nishimori condition (Iba, 1999; Nishimori, 2001). At the Nishimori condi-
tion many calculations simplify and can be done exactly (for an example, see
Appendix B.3). Throughout this chapter we assume, unless otherwise stated,
the Nishimori condition.

For background reading about statistical physics methods in general,
Nishimori’s condition, and its relevance to the current calculation we refer
the reader to Nishimori (2001).

III. Sourlas Codes

The code of Sourlas is based on the idea of using a linear operator G (generator

matrix) to transform a message vector s ∈ {0, 1}N onto a higher dimen-
sional vector t ∈ {0, 1}M . The encoded vector is t = Gs (mod 2), each bit
tk being the Boolean sum of K message bits (parity-check). This vector is
transmitted through a noisy channel and a corrupted M dimensional vector r is
received.

Decoding consists of producing an estimate ŝ of the original message. This
estimate can be generated by considering a probabilistic model for the commu-
nication system. Reduced (order N) time/space requirements for the encoding
process and the existence of fast (polynomial time) decoding algorithms are
guaranteed by choosing sparse generator matrices, namely, a matrix G with
exactly K nonzero elements per row and C nonzero elements per column,
where K and C are of order 1. The rate of such a code, in the case of unbiased
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messages, is evidently R = N/M , as the total number of nonzero elements in
G is M K = NC the rate is also R = K/C .

In the statistical physics language a binary message vector ξ ∈ {±1}N is
encoded to a higher dimensional vector J0 ∈ {±1}M defined as J 0

〈i1,i2...iK 〉 =
ξi1

ξi2
· · · ξiK

, where M sets of K indices are randomly chosen. A corrupted ver-
sion J of the encoded message J0 has to be decoded for retrieving the original
message. The decoding process is the process of calculating an estimate ξ̂ to
the original message by minimizing a given expected loss 〈〈L(ξ, ξ̂ )〉P(J |ξ )〉P(ξ )

averaged over the indicated probability distributions (Iba, 1999). The defini-
tion of the loss depends on the particular task; the overlap L(ξ, ξ̂ ) =

∑
j ξ j ξ̂ j

can be used for decoding binary messages. As discussed in Section II.B, an
optimal estimator for this particular loss function is ξ̂ j = sign〈S j 〉P(S j |J ) (Iba,
1999), where S is an N-dimensional binary vector representing the dynamic
variables of the decoding process and P(S j | J) =

∑
Sk ,k �= j P(S | J) is the

marginal posterior probability. Using Bayes theorem, the posterior probability
can be written as:

ln P(S | J) = ln P(J | S) + ln P(S) + const. (46)

The likelihood P(J | S) has the form:

P(J | S) =
∏

chosensets

∑

J 0
〈i1···iK 〉

P
(
J〈i1···iK 〉

∣∣J 0
〈i1···iK 〉

)
P
(
J 0
〈i1···iK 〉

∣∣S
)
. (47)

The term P(J 0
〈i1···iK 〉 | S) models the deterministic encoding process being:

P
(
J 0
〈i1···iK 〉

∣∣S
)
= δ

(
J 0
〈i1···iK 〉; Si1

· · · SiK

)
. (48)

The noisy channel is modeled by the term P(J〈i1···iK 〉 | J 0
〈i1···iK 〉). For the simple

case of a memoryless binary symmetric channel (BSC), J is a corrupted version
of the transmitted message J0 where each bit is independently flipped with
probability p during transmission, in this case (Sourlas, 1994a):

ln P
(
J〈i1···iK 〉

∣∣J 0
〈i1···iK 〉

)
=

1

2

(
1 + J 0

〈i1···iK 〉
)

ln P
(
J〈i1···iK 〉

∣∣+ 1
)

+
1

2

(
1 − J 0

〈i1···iK 〉
)

ln P
(
J〈i1···iK 〉

∣∣− 1
)

= const +
1

2
ln

(
1 − p

p

)
J〈i1···iK 〉 J

0
〈i1···iK 〉. (49)

Putting equations together, we obtain the following Hamiltonian:

ln P(S | J) = −βNH(S) + const (50)

= βN

∑

μ

Aμ Jμ

∏

i∈L(μ)

Si + β ′
N

N∑

j=1

S j + const, (51)
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where a set of indices is denoted L(μ) = 〈i1, . . . iK 〉 and A is a tensor with
the properties Aμ ∈ {0, 1} and

∑
{μ:i∈L(μ)} Aμ = C∀i , which determines the

M components of the codeword J0. The interaction term is at Nishimori’s
temperature βN = 1

2
ln( 1−p

p
) (Nishimori, 1980, 1993; Iba, 1999; Ruján, 1993),

and β ′
N = 1

2
ln(

1−pξ

pξ
) is the message prior temperature, namely, the prior dis-

tribution of message bits is assumed to be P(S j = +1) = 1 − pξ and
P(S j = −1) = pξ .

The decoding procedure translates to finding the thermodynamic spin av-
erages for the system defined by the Hamiltonian (50) at a certain tempera-
ture (Nishimori temperature for optimal decoding); as the original message is
binary, the retrieved message bits are given by the signs of the corresponding
averages.

The performance of the error-correcting process can be measured by the
overlap between actual message bits and their estimates for a given scenario
characterized by code rate, corruption process, and information content of the
message. To assess the typical properties, we average this overlap over all
possible codes A and noise realizations (possible corrupted vectors J) given
the message ξ and then over all possible messages:

ρ =
1

N

〈
N∑

i=1

ξi 〈sign〈Si 〉〉A,J |ξ

〉

ξ

(52)

Here sign〈Si 〉 is the sign of the spins thermal average corresponding to the
Bayesian optimal decoding. The average error per bit is, therefore, given by
pb = (1 − ρ)/2.

The number of checks per bit is analogous to the spin system connectivity
and the number of bits in each check is analogous to the number of spins
per interaction. The code of Sourlas has been studied in the case of extensive
connectivity, where the number of bonds C ∼

(
N−1

K−1

)
scales with the system

size. In this case it can be mapped onto known problems in statistical physics
such as the SK (Kirkpatrick and Sherrington, 1978) (K= 2) and random energy
(REM) (Derrida, 1981a) (K → ∞) models. It has been shown that the REM
saturates Shannon’s bound (Sourlas, 1989). However, it has a rather limited
practical relevance as the choice of extensive connectivity corresponds to a
vanishingly small code rate.

A. Lower Bound for the Probability of Bit Error

It has been observed in Montanari and Sourlas (2000) that a sparse generator
code can only attain vanishing probability of bit error if K → ∞. This fact
alone does not rule out the practical use of such codes as they can still be
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used if a controlled probability of error is allowed or as part of a concatenated
code.

Before engaging in a relatively complex analysis, it is of theoretical interest
to establish a detailed picture of how the minimum bit error attainable decays
with K. This can be done in quite a simple manner suggested in Montanari and
Sourlas (2000). Let us suppose that messages are unbiased and random and
that the channel is a BSC of noise level p. Assume, without loss of generality,
that the message ξ j = 1 for all j is sent. The bit error probability can be
expressed as the sum pb =

∑N

l=1 pb(l), where pb(l) represents the probability
of decoding incorrectly any l bits. Clearly pb ≥ pb(1).

The probability of decoding incorrectly a single bit can be easily evaluated.
A bit j engages in exactly C interactions with different groups of K bits in a
way that their contribution to the Hamiltonian is:

H j = −S j

∑

μ∈M( j)

Jμ

∏

i∈L(μ)\ j

Si , (53)

where M( j) is the set of all index sets that contain j. If all bits but j are set to
Si = 1, an error in j only can be detected if its contribution to the Hamiltonian
is positive; if

∑
μ∈M( j) Aμ Jμ ≤ 0 the error is undetectable. The probability of

error in a single bit is therefore

pb(1) = P

{
∑

μ∈M( j)

Jμ ≤ 0

}
, (54)

where Aμ = 1 for exactly C terms and Jμ can be simply regarded as a random
variable taking values +1 and −1 with probabilities 1 − p and p, respectively;
therefore:

pb ≥
l≤C∑

l∈N,C−2l≤0

C!

(C − l)! l!
(1 − p)C−l pl . (55)

A lower bound for for pb in the large C regime can be obtained by using the
DeMoivre–Laplace limit theorem (Feller, 1950), writing:

pb ≥
1

2
erfc

(
(1 − p)C

8p

)
≈

4p
√

π (1 − p)C
exp

(
−

(1 − p)2C2

64p2

)
, (56)

where erfc(x) = 2√
π

∫∞
x

du exp(−u2) and the asymptotic behavior is given in

Gradshteyn and Ryzhik (1994, page 940). This bound implies that K →∞ is
a necessary condition for a vanishing bit error probability in sparse generator
codes at finite rates R = K/C .
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B. Replica Theory for the Typical Performance of Sourlas Codes

To calculate the typical performance of Sourlas codes we employ the statistical
physics technique known as replica theory.

To simplify analysis we use the gauge transformation (Fradkin et al., 1978)
Si "→ Siξi and J〈i1···iK 〉 "→ J〈i1···iK 〉ξi1

· · · ξiK
that maps any general message to

the configuration defined as ξ ∗
i = 1∀i (ferromagnetic configuration). By in-

troducing the external field F ≡ β ′
N /β we rewrite the Hamiltonian in the

form:

H(S) = −
∑

〈i1···iK 〉
A〈i1···iK 〉 J〈i1···iK 〉Si1

· · · SiK
− F

N∑

j=1

ξ j S j , (57)

With the gauge transformation, the bits of the uncorrupted encoded message
become J 0

〈i1···iK 〉 = 1 and, for the BSC, the corrupted bits can be described as
random variables with probability:

P (J ) = (1 − p) δ(J − 1) + p δ(J + 1), (58)

where p is the channel flip rate. For deriving the typical properties we calculate
the free-energy following the replica theory prescription:

f = −
1

β
lim

N→∞

1

N

∂

∂n

∣∣∣∣
n=0

〈Zn〉A,ξ,J , (59)

where 〈Zn〉A,ξ,J represents an analytical continuation in the interval n ∈ [0, 1]
of the replicated partition function:

〈Zn〉A,ξ,J = Tr{Sα
j }

〈
e

βF
∑

α,k ξk Sα
k +β

∑
α,μ Aμ Jμ Sα

i1
···Sα

iK

〉
A,J,ξ

. (60)

The overlap ρ can be rewritten using gauged variables as:

ρ =
1

N

N∑

i=1

〈
〈sign〈Si 〉〉A,J |ξ∗

〉
ξ
, (61)

where ξ ∗ denotes the transformation of a message ξ into the ferromagnetic
configuration.

To compute the replicated partition function we closely follow Wong and
Sherrington (1987a). We average uniformly over all codes A such that
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∑
〈i1=i,i2···iK 〉 A〈i1···iK 〉 = C∀i to find:

〈Zn〉A,ξ,J = exp

{
NExtrq,q̂

[
C −

C

K
+

C

K

(
n∑

l=0

Tl

∑

〈α1···αl 〉
q K

α1···αl

)

−C

(
n∑

l=0

∑

〈α1···αl 〉
qα1···αl

q̂α1···αl

)

+ ln Tr{Sα}
〈
eβFξ

∑
α Sα 〉

ξ

(
n∑

l=0

∑

〈α1···αl 〉
q̂α1···αl

Sα1 . . . Sαl

)C ]}
,

(62)

where Tl = 〈tanhl(β J )〉J , as in Viana and Bray (1985), q0 = 1 and Extrq,q̂

f (q, q̂) denotes the extremum of f (details in Appendix A.1). At the extremum
of (62) the order parameters acquire a form similar to those of Wong and
Sherrington (1987a):

q̂α1,...,αl
= Tl q K−1

α1,...,αl

qα1,...,αl
=
〈(

l∏

i=1

Sαi

)(
n∑

l=0

∑

〈α1···αl 〉
q̂α1···αl

Sα1 · · · Sαl

)−1〉

X

. (63)

where

X =
〈
eβFξ

∑
α Sα 〉

ξ

(
n∑

l=0

∑

〈α1···αl 〉
q̂α1···αl

Sα1 · · · Sαl

)C

, (64)

and 〈· · ·〉X = Tr{Sα}
[
(· · ·)X

]
/Tr{Sα} [(· · ·)].

To compute the partition function it is necessary to assume a replica sym-
metric (RS) ansätz. It can be done by introducing auxiliary fields π (x) and
π̂(y) (see also Wong and Sherrington, 1987a):

q̂α1···αl
=
∫

dyπ̂(y) tanhl(βy),

qα1···αl
=
∫

dx π (x) tanhl(βx) (65)

for l = 1, 2, . . . .
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Plugging (65) into the replicated partition function (62), taking the limit
n → 0 and using Eq. (59) (see Appendix A.2 for details):

f = −
1

β
Extrπ,π̂ {α ln cosh β

+ α

∫ [
K∏

l=1

dxl π (xl)

]〈
ln

[
1 + tanh β J

K∏

j=1

tanh βx j

]〉

J

−C

∫
dx dy π(x) π̂ (y) ln [1 + tanh βx tanh βy]

−C

∫
dy π̂ (y) ln cosh βy

+
∫ [

C∏

l=1

dyl π̂ (yl)

]〈
ln

[
2 cosh β

(
C∑

j=1

y j + Fξ

)]〉

ξ

⎫
⎬
⎭ , (66)

where α = C/K . The saddle-point equations obtained by calculating func-
tional variatons of Eq. (66) provide a closed set of relations between π (x) and
π̂(y)

π (x) =
∫ [

C−1∏

l=1

dyl π̂(yl)

]〈
δ

[
x −

C−1∑

j=1

y j − Fξ

]〉

ξ

π̂(y) =
∫ [

K−1∏

l=1

dxl π (xl)

]〈
δ

[
y −

atanh
(

tanh β J
∏K−1

j=1 tanh βx j

)

β

]〉

J

.

(67)

Later we will show that this self-consistent pair of equations can be seen as a
mean-field description of probability propagation decoding.

Using the RS ansätz one can find that the local field distribution is (see
Appendix A.3):

P(h) =
∫ [

C∏

l=1

dyl π̂ (yl)

] 〈
δ

[
h −

C∑

j=1

y j − Fξ

]〉

ξ

, (68)

where π̂ (y) is given by the saddle-point equations (67).
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The overlap (52) can be calculated using:

ρ =
∫

dh sign(h) P(h). (69)

The code performance is assessed by assuming a prior distribution for the
message, solving the saddle-point equations (67) numerically and then com-
puting the overlap.

For Eq. (66) to be valid, the fixed point given by (67) must be stable and the
related entropy must be nonnegative. Instabilities within the RS space can be
probed by calculating second functional derivatives at the extremum defining
the free-energy (66). The solution is expected to be unstable within the space
of symmetric replicas for sufficiently low temperatures (large β). For high
temperatures we can expand the above expression around small β values to
find the stability condition:

〈J 〉J 〈x〉K−2
π ≥ 0 (70)

The average 〈x〉π =
∫

dx π(x)x vanishes in the paramagnetic phase and is
positive (nonzero when K is even) in the ferromagnetic phase, satisfying the
stability condition. We now restrict our study to the unbiased case (F = 0),
which is of practical relevance, since it is always possible to compress a biased
message to an unbiased one.

For the case K → ∞, C = αK we can obtain solutions to the saddle-point
equations at arbitrary temperatures. The first saddle-point Eq. (67) can be
approximated by:

x =
C−1∑

l=1

yl ≈ (C − 1)〈y〉π̂ = (C − 1)

∫
dy y π̂(y). (71)

If 〈y〉π̂ = 0 (paramagnetic phase) then π(x) must be concentrated at x = 0
implying that π(x) = δ(x) and π̂ (y) = δ(y) are the only possible solutions.
Equation (71) also implies that x ≈ O(K ) in the ferromagnetic phase.

Using Eq. (71) and the second saddle-point Eq. (67) we find a self-consistent
equation for the mean field 〈y〉π̂ :

〈y〉π̂ =
〈

1

β
tanh[tanh(β J ) [tanh(β(C − 1)〈y〉π̂ )]K−1]

〉

J

. (72)

For the BSC we average over the distribution (58). Computing the average,
using C = αK and rescaling the temperature β = β̃(ln K )/K , we obtain in
the limit K → ∞:

〈y〉π̂ ≈ (1 − 2p)
[
tanh(β̃α〈y〉π̂ ln(K ))

]K
, (73)
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where p is the channel flip probability. The mean field 〈y〉π̂ = 0 is always
a solution to this equation (paramagnetic solution); at βc = ln(K )/(2αK

(1 − 2p)) an extra nontrivial ferromagnetic solution emerges with 〈y〉π̂ =
1 − 2p. The connection with the overlap ρ is given by Eqs. (68) and Eq. (69)
implying that ρ = 1 for the ferromagnetic solution. It is remarkable that the
temperature where the ferromagnetic solution emerges is βc ∼ O(ln(K )/K ).
Paramagnetic–ferromagnetic barriers emerge at reasonably high temperatures,
in a simulated annealing process, implying metastability and, consequently, a
very slow convergence. It seems to advocate the use of small K values in prac-
tical applications. For β > βc both paramagnetic and ferromagnetic solutions
exist.

The ferromagnetic free-energy can be obtained from Eq. (66) using Eq. (71),
resulting in fFERRO = −α(1 − 2p). The corresponding entropy is sFERRO = 0.
The paramagnetic free-energy is obtained by pluggingπ (x) = δ(x) and π̂(y) =
δ(y) into Eq. (66):

fPARA = −
1

β
(α ln(cosh β) + ln 2), (74)

sPARA = α(ln(cosh β) − β tanh β) + ln 2. (75)

Paramagnetic solutions are unphysical for α > (ln 2)/ [β tanh β − ln(cosh β)],
since the corresponding entropy is negative. To complete the picture of the
phase diagram we have to introduce a replica symmetry breaking scenario that
yields sensible physics.

In general, to construct a symmetry breaking solution in finite connectivity
systems (see Monasson, 1998b; Franz et al., 2001) is a difficult task. We choose
as a first approach a one-step replica symmetry breaking scheme, known as the
frozen spins solution, that yields exact results for the REM (Gross and Mezard,
1984; Parisi, 1980).

We assume that ergodicity breaks in such a way that the space of configura-
tions is divided in n/m islands. Inside each of these islands there are m identical
configurations, implying that the system can freeze in any of n/m microstates.
Therefore, in the space of replicas we have the following situation:

1

N

N∑

j=1

Sα
j S

β

j = 1, if α and β are in the same island

1

N

N∑

j=1

Sα
j S

β

j = q, otherwise. (76)
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By assuming the above structure the replicated partition function has the form:

〈
Zn

RSB

〉
A,ξ,J

=
〈

Tr{Sα
j } exp

(
−β

n∑

α=1

H(Sα)

)〉

A,J,ξ

=
〈

Tr{
S1

j ,...,S
n/m

j

} exp

(
−βm

n/m∑

α=1

H(Sα)

)〉

A,J,ξ

=
〈

n/m∏

α

Tr{Sα
j } exp (−βm H(Sα))

〉

A,J,ξ

=
〈
Zn/m

RS

〉
A,ξ,J

, (77)

where in the first line we have used the ansätz with n/m islands with m identical
configurations in each and in the last step we have used that the overlap between
any two different islands is q. From (77) we have:

〈lnZRSB(β)〉A,ξ,J =
∂

∂n

∣∣∣∣
n=0

〈
Zn

RSB(β)
〉
A,ξ,J

=
1

m
〈lnZRS(βm)〉A,ξ,J . (78)

The number of configurations per island m must extremize the free-energy,
therefore, we have:

∂

∂m
〈lnZRSB(β)〉A,ξ,J = 0, (79)

what is equivalent to

sRS(βg) = −β̃2 ∂

∂β̃

∣∣∣∣
β̃=βg

[
1

β̃
〈lnZRS(β̃)〉A,ξ,J

]

= 0, (80)

where we introduced β̃ = βm. In this way m = βg/β, with βg being a root of
the replica symmetric paramagnetic entropy (74), satisfying:

α(ln(cosh βg) − βg tanh βg) + ln 2 = 0 (81)

The RSB-spin glass free-energy is given by fPARA (74) at temperature βg:

fRSB-SG = −
1

βg

(α ln (cosh βg) + ln 2), (82)

consequently the entropy is sRSB-SG = 0. In Figure 8 we show the phase diagram
for a given code rate R in the plane of temperature T and noise level p.
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Figure 8. Phase diagram in the plane of temperature T versus noise level p for K → ∞
and C = αK , with α = 4. The dotted line indicates the Nishimori temperature TN. Full lines
represent phase coexistence. The critical noise level is pc. The necessary condition for stability
of the ferromagnetic phase within the replica symmetric space is satisfied above the dashed line.

C. Shannon’s Bound

The channel-coding theorem asserts that up to a critical code rate Rc, which
equals the channel capacity (Shannon’s bound), it is possible to recover
information with arbitrarily small probability of error. For the BSC:

Rc =
1

αc

= 1 + p log2 p + (1 − p) log2(1 − p). (83)

The code of Sourlas, in the case where K → ∞ and C ∼ O(N K ), can be
mapped onto the REM and has been shown to saturates the channel capacity
in the limit R → 0 (Sourlas, 1989). Shannon’s bound can also be attained by
Sourlas code at zero temperature for K → ∞ but with connectivity C = αK .
In this limit the model is analogous to the diluted REM analyzed by Saakian
(1998). The errorless phase is manifested in a ferromagnetic phase with total
alignment (ρ = 1), only attainable for infinite K. Up to a certain critical noise
level, a noise level increase produces ergodicity breaking leading to a spin
glass phase where the misalignment is maximal (ρ = 0). The ferromagnetic–
spin glass transition corresponds to the transition from errorless decoding to
decoding with errors described by the channel coding theorem. A paramagnetic



LOW-DENSITY PARITY-CHECK CODES 263

phase is also present when the transmitted information is insufficient to recover
the original message (R > 1).

At zero temperature, saddle-point Eq. (67) can be rewritten as:

π (x) =
∫ [

C−1∏

l=1

dyl π̂ (yl)

]
δ

[
x −

C−1∑

j=1

y j

]
(84)

π̂ (y) =
∫ [

K−1∏

l=1

dxl π (xl)

]

×
〈
δ

[
y − sign

(
J

K−1∏

l=1

xl

)
min(| J |, . . . , | xK−1 |)

]〉

J

, (85)

The solutions for these saddle-point equations may result in very structured
probability distributions. As an approximation we choose the simplest self-
consistent family of solutions which are, since J = ±1, given by:

π̂(y) = p+δ(y − 1) + p0δ(y) + p−δ(y + 1) (86)

π(x) =
C−1∑

l=1−C

T[p±,p0;C−1](l) δ(x − l),

with

T[p+,p0,p−;C−1](l) =
′∑

{k,h,m}

(C − 1)!

k! h! m!
pk
+ ph

0 pm
−, (87)

where the prime indicates that k,h,m are such that k − h = l; k + h + m =
C − 1. Evidence for this simple ansätz comes from Monte Carlo integration
of Eq. (67) at very low temperatures, that shows solutions comprising three
dominant peaks and a relatively weak regular part. Plugging this ansätz (86)
in the saddle-point equations, we write a closed set of equations in p± and p0

that can be solved numerically.
Solutions are of three types: ferromagnetic (p+ > p−), paramagnetic

(p0 = 1), and replica symmetric spin glass (p− = p+). Computing free-
energies and entropies enables one to construct the phase diagram. At zero
temperature, the paramagnetic free-energy is fPARA = −α and the entropy is
sPARA = (1 − α) ln 2; this phase is physical only for α < 1, as is expected
since it corresponds exactly to the regime where the transmitted information
is insufficient to recover the actual message (R > 1).

The ferromagnetic free-energy does not depend on the temperature, hav-
ing the form fFERRO = −α(1 − 2p) with entropy sFERRO = 0. We can find the
ferromagnetic–spin glass coexistence line that corresponds to the maximum
performance of a Sourlas code by equating Eq. (82) and fFERRO. Observing



264 VICENTE ET AL.

Figure 9. Phase diagram in the plane code rate R versus noise level p for K → ∞ and
C = αK at zero temperature. The ferromagnetic–spin glass coexistence line corresponds to
Shannon’s bound.

that βg = βN (pc) (as seen in Fig. 8) we find that this transition coincides with
the channel capacity (83). It is interesting to note that in the large K regime
both RS–ferromagnetic and RSB–spin glass free-energies (for T < Tg) do not
depend on the temperature, it means that Shannon’s bound is saturated also
for finite temperatures up to Tg. In Figure 9 we represent the complete zero
temperature phase diagram.

The bound obtained depends on the stability of the ferromagnetic and para-
magnetic solutions within the space of symmetric replicas at zero temperature.
Instabilities are found in the ferromagnetic phase for p > 0. These instabili-
ties within the replica symmetric space puts in question our result of saturating
Shannon’s bound, since a correction to the ferromagnetic solution could change
the ferromagnetic–spin glass transition line. However, the instability vanishes
for high temperatures, which supports the ferromagnetic–spin glass transition
line obtained and possible saturation of the bound in some region.

Shannon’s bound can only be attained in the limit K → ∞; however, there
are some possible drawbacks in using high K values due to large barriers which
are expected to occur between the paramagnetic and ferromagnetic phases. We
now consider the finite K case, for which we can solve the RS saddle-point
Eqs. (67) for arbitrary temperatures using Monte Carlo integration. We can
also obtain solutions for the zero temperature case using Eqs. (86) iteratively.
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Figure 10. Top: zero temperature overlap ρ as a function of the noise level p for various
K values at code rate R = 1/2, as obtained by the iterative method. Bottom: RS-ferromagnetic
free-energies (white circles for K = 2 and from the left: K = 3, 4, 5, and 6) and RSB-spin glass
free-energy (dotted line) as functions of the noise level p. The arrow indicates the region where
the RSB–spin glass phase starts to dominate. Inset: a detailed view of the RS–RSB transition
region.

It has been shown that K > 2 extensively connected models (Gross and
Mezard, 1984) exhibit Parisi-type order functions with similar discontinuous
structure as found in the K →∞ case; it was also shown that the one-step RSB
frozen spins solution, employed to describe the spin glass phase, is locally
stable within the complete replica space and zero field (unbiased messages
case) at all temperatures. We, therefore, assume that the ferromagnetic–spin
glass transition for K > 2 is described by the frozen spins RSB solution.

At the top of Figure 10 we show the zero temperature overlap ρ as a function
of the noise level p at code rate R = 1/2 obtained by using the three-peaks
ansätz. Note that the RSB–spin glass phase dominates for p > pc (see bottom
of Fig. 10). In the bottom figure we plot RS free-energies and RSB frozen
spins free-energy, from which we determine the noise level pc for coexis-
tence of ferromagnetic and spin-glass phases (pointed by an arrow). Above
the transition, the system enters in a paramagnetic or RS spin glass phase
with free-energies for K = 3, 4, 5, and 6 that are lower than the RSB spin
glass free-energy; nevertheless, the entropy is negative and these free-energies
are therefore unphysical. It is remarkable that the coexistence value does not
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change significantly for finite K in comparison to infinite K. Remind that
Shannon’s bound cannot be attained for finite K, since ρ → 1 (pb → 0) only if
K → ∞.

It is known that the K = 2 model with extensive connectivity (SK model) re-
quires a full Parisi solution to recover the concavity of the free-energy (Mezard
et al., 1987). No stable solution is known for the intensively connected model
(Viana–Bray model). Probability propagation only solves the decoding prob-
lem approximately, the approximated solutions are similar to those obtained by
supposing replica symmetry. Thus, the theoretical relevance of the RS results
for K = 2 are to be evaluated by comparison with simulations of probability
propagation decoding.

D. Decoding with Probability Propagation

The decoding task consists of evaluating estimates of the form ξ̂ j =
sign〈S j 〉P(S j |J ). The marginal posterior P(S j | J) =

∑
Sl ,l �= j P(S | J) can be,

in principle, calculated simply by using Bayes theorem and a proper model for
the encoding and corruption processes (namely, coding by a sparse generator
matrix with K bit long parity-checks and a memoryless BSC channel) to write:

P(S j | J) =
1

P(J)

∑

Sl ,l �= j

∏

μ

P(Jμ | Si1
· · · SiK

)
N∏

i=1

P(Si ), (88)

where P(J) is a normalization dependent on J only. A brute force evalua-
tion of the above marginal on a space of binary vectors S ∈ {±1}N with M

checks would take (M + N + 1)2N operations, what becomes infeasible very
quickly. To illustrate how dramatically the computational requirements in-
crease, assume a code of rate R = 1/2, if N = 10 the number of operations
required is 31,744, if one increases the message size to N = 1000, 3 × 10304

operations are required! Monte Carlo sampling is an alternative to brute force
evaluation; it consists of generating a number (much less than 2N) of typical
vectors S. By using this to estimate the marginal posterior, however, the sample
size required can prove to be equally prohibitive.

As a solution to these resource problems, we can explore the structure of
(88) to devise an algorithm that produces an approximation to P(S j | J) in
O(N ) operations. We start by concentrating on one particular site Sj; this site
interacts directly with a number of other sites through C couplings denoted by
J〈i1··· iK 〉 and {Jμ} = Jμ(1), . . . , Jμ(C−1). Suppose now that we isolate only the
interaction via coupling J〈i1···iK 〉, if the bipartite Bayesian network representing
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the dependencies in the problem is a tree, it is possible to write:

P
(
S j | J〈i1···iK 〉

)
=

P(S j )

P
(
J〈i1···iK 〉

)
∑

{Si1
···SiK−1

}
P
(
J〈i1···iK 〉

∣∣S j , Si1
· · · SiK−1

)

×
K−1∏

l=1

P(Sil
| {Jμ : μ ∈ M(il)}). (89)

Terms like P(Sil
| {Jμ}) can be interpreted simply as updated priors for Sil

.

In a tree, these terms factorize like P(Sil
| {Jμ}) =

∏C−1
j=1 P(Sil

| Jμ( j)) and a
recursive relation can be obtained, introducing:

Qx
ν j = P(S j = x | {Jμ : μ ∈ M( j) \ ν}) (90)

and

Rx
ν j =

∑

{Si :i∈L(ν)\ j}
P(Jν | S j , {Si : i ∈ L(ν) \ j})

∏

i∈L(ν)\ j

Q
Si

νi , (91)

where M( j) is the set of couplings linked to site j and L(ν) is the set of sites
linked to coupling ν.

Equation (89) can be rewritten as:

Qx
μj = aμj P(S j = x)

∏

ν∈M( j)\μ
Rx

ν j . (92)

Equations (91) and (92) can be solved iteratively, requiring (2K K C +
2C2)N T operations with T being the (order 1) number of steps needed for
convergence. These computational requirements may be further reduced by
using Markov chain Monte Carlo methods (MacKay, 1999).

An approximation to the marginal posterior (88) is obtained by counting
the influence of all C interactions over each site j and using the assumed
factorization property to write:

Qx
j = a j P(S j = x)

∏

ν∈M( j)

Rx
ν j . (93)

This is an approximation in the sense that the recursion obtained from (89) is
only guaranteed to converge to the correct posterior if the system has a tree
structure, i.e., every coupling appears only once as one goes backwards in the
recursive chain.

By taking advantage of the normalization conditions for the distributions
Q+1

μj + Q−1
μj = 1 and R+1

μj + R−1
μj = 1, one can change variables and reduce

the number of equations by a factor of two mμj = Q+1
μj − Q−1

μj and m̂μj =
R+1

μj − R−1
μj .
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The analogy with statistical physics can be exposed by first observing that:

P(Jμ | S j , {Si : i ∈ L(μ) \ j}) ∼ exp

(
− β Jμ

∏

i∈L(μ)

Si

)
. (94)

That can be also written in the more convenient form:

P(Jμ | S j , {Si : i ∈ L(μ) \ j}) ∼
1

2
cosh(β Jμ)

(
1 + tanh(β Jμ)

∏

j∈L(μ)

S j

)
.

(95)

Plugging Eq. (95) for the likelihood in Eqs. (92), using the fact that the prior
probability is given by P(S j ) = 1

2
(1 + tanh(β ′

N S j )) and computing mμj and
m̂μj (see Appendix A.6) one obtains:

m̂μj = tanh(β Jμ)
∏

l∈L(μ)\ j

mμl

mμj = tanh

(
∑

ν∈M(l)\μ
atanh(m̂ν j ) + β ′

N

)
. (96)

The pseudo-posterior can then be calculated:

m j = tanh

(
∑

ν∈M(l)

atanh(m̂ν j ) + β ′
N

)
, (97)

providing Bayes optimal decoding ξ̂ j = sign(m j ).
Equations (96) depend on the received message J. In order to make the

analysis message independent, we can use a gauge transformation m̂μj "→
ξ j m̂μj and mμj "→ ξ j mμj to write:

m̂μj = tanh(β J )
∏

l∈L(μ)\ j

mμl

mμj = tanh

(
∑

ν∈M(l)\μ
tanh−1(m̂ν j ) + β ′

N ξ j

)
. (98)

In the new variables, a decoding success corresponds to m̂μj > 0 and mμj = 1
for all μ and j. By transforming these variables as m̂ = tanh(βy) and m =
tanh(βx) and considering the actual message and noise as quenched disorder,
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Eqs. (98) can be rewritten as:

y =
1

β

〈
tanh−1

(
tanh(β J )

K−1∏

j=1

tanh(βx j )

)〉

J

x =
〈

C−1∑

j=1

y j + ξ F

〉

ξ

. (99)

For a large number of iterations, one can expect the ensemble of probability
networks to converge to an equilibrium distribution where m̂ and m are random
variables sampled from distributions φ̂(y) and φ(x), respectively. The above
relations lead to a dynamics of the distributions φ̂(y) and φ (x), that is exactly
as the one obtained when solving iteratively RS saddle-point Eqs. (67). The
probability distributions φ̂(y) and φ (x) can be, therefore, identified with π̂ (y)
and π (x), respectively, and the RS solutions correspond to decoding a generic
message using probability propagation averaged over an ensemble of different
codes, noise, and signals.

Equations (96) are now used to show the agreement between the simulated
decoding and analytical calculations. For each run, a fixed code is used to gen-
erate 20000-bit codewords from 10000-bit messages; corrupted versions of the
codewords are then decoded using (96). Numerical solutions for 10 individual
runs are presented in Figures 11 and 12, initial conditions are chosen as m̂μl = 0
and mμl = tanh(β ′

N ) reflecting the prior beliefs. In Figure 11 we show results for
K = 2 and C = 4 in the unbiased case, at code rate R = 1/2 (prior probability
P(S j = +1) = pξ = 0.5) and low temperature T = 0.26 (we avoided T = 0
due to numerical difficulties). Solving the saddle-point Eqs. (67) numerically
using Monte Carlo integration methods we obtain solutions with good agree-
ment to simulated decoding. In the same figure we show the performance for
the case of biased messages (P(S j = +1) = pξ = 0.1), at code rate R = 1/4.
Also here the agreement with Monte Carlo integrations is satisfactory. The third
curve in Figure 11 shows the performance for biased messages at the Nishimori
temperature TN, as expected, it is far superior compared to low temperature
performance and the agreement with Monte Carlo results is even better.

In Figure 12 we show the results obtained for K = 5 and C = 10. For
unbiased messages the system is extremely sensitive to the choice of initial
conditions and does not perform well on average even at the Nishimori tem-
perature. For biased messages (pξ = 0.1, R = 1/4) results are far better and
in agreement with Monte Carlo integration of the RS saddle-point equations.

The experiments show that probability propagation methods may be used
successfully for decoding Sourlas-type codes in practice, and provide solutions
that are consistent with the RS analytical solutions.
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Figure 11. Overlap as a function of the flip probability p for decoding using TAP equa-
tions for K = 2. From the bottom: Monte Carlo solution of the RS saddle-point equations for
unbiased message (pξ = 0.5 at T = 0.26 (line) and 10 independent runs of TAP decoding for
each flip probability (plus signs), T = 0.26 and biased messages (pξ = 0.5) at the Nishimori
temperature TN.

IV. Gallager Codes

In 1962, Gallager proposed a coding scheme which involves sparse linear
transformations of binary messages in the decoding stage, while encoding uses
a dense matrix. His proposal was overshadowed by convolutional codes due
to computational limitations. The best computer available to Gallager in 1962
was an IBM 7090 costing $3 million and with disk capacity of 1 megabyte,
while convolutional codes, in comparison, only demanded a simple system of
shift registers to process one byte at a time.

Gallager codes have been rediscovered recently by MacKay and Neal (1995)
who proposed a closely related code, to be discussed in Section V. This almost
coincided with the breakthrough discovery of high performance Turbo codes
(Berrou et al., 1993). Variations of Gallager codes have displayed performance
comparable (sometimes superior) to Turbo codes (Davey, 1998, 1999), quali-
fying them as state-of-the-art codes.

A Gallager code is defined by a binary matrix A = [C1 | C2], concatenat-
ing two very sparse matrices known to both sender and receiver, with C2 (of
dimensionality (M − N ) × (M − N )) being invertible and C1 of dimension-
ality (M − N ) × N . A non-systematic Gallager code is defined by a random
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Figure 12. Overlap as a function of the flip probability p for decoding using TAP equa-
tions for K = 5. The dotted line is the replica symmetric saddle-point equations Monte Carlo
integration for unbiased messages (pξ = 0.5) at the Nishimori temperature TN. The bottom error
bars correspond to 10 simulations using the TAP decoding. The decoding performs badly on
average in this scenario. The upper curves are for biased messages (pξ = 0.1) at the Nishimori
temperature TN. The simulations agree with results obtained using the replica symmetric ansätz
and Monte Carlo integration.

matrix A of dimensionality (M − N ) × M . This matrix can, in general, be
organized in a systematic form by eliminating a number ǫ ∼ O(1) of rows and
columns.

Encoding refers to the generation of an M dimensional binary vector t ∈
{0, 1}M (M > N ) from the original message ξ ∈ {0, 1}N by

t = GTξ (mod 2), (100)

where all operations are performed in the field {0, 1} and are indicated by
(mod 2). The generator matrix is

G = [I | C
−1
2 C1] (mod 2), (101)

where I is the N × N identity matrix, implying that AGT (mod 2) = 0 and
that the first N bits of t are set to the message ξ. Note that the genera-
tor matrix is dense and each transmitted parity-check carries information
about an O(N ) number of message bits. In regular Gallager codes the num-
ber of nonzero elements in each row of A is chosen to be exactly K . The
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number of elements per column is then C = (1 − R)K , where the code rate
is R = N/M (for unbiased messages). The encoded vector t is then cor-
rupted by noise represented by the vector ζ ∈ {0, 1}M with components inde-
pendently drawn from P(ζ ) = (1 − p)δ(ζ ) + pδ(ζ − 1). The received vector
takes the form

r = GTξ + ζ (mod 2). (102)

Decoding is carried out by multiplying the received message by the matrix
A to produce the syndrome vector

z = Ar = Aζ (mod 2), (103)

from which an estimate τ̂ for the noise vector can be produced. An esti-
mate for the original message is then obtained as the first N bits of r + τ̂

(mod 2). The Bayes optimal estimator (also known as marginal posterior

maximizer, MPM) for the noise is defined as τ̂ j = argmaxτ j
P(τ j | z). The

performance of this estimator can be measured by the bit error probability

pb = 1 − 1/M
∑M

j=1 δ[τ̂ j ; ζ j ], where δ[;] is the Kronecker delta. Knowing the
matrices C2 and C1, the syndrome vector z and the noise level p, it is possible
to apply Bayes theorem and compute the posterior probability

P(τ | z) =
1

Z
χ [z = Aτ (mod 2)] P(τ ), (104)

where χ [X] is an indicator function providing 1 if X is true and 0 otherwise.
To compute the MPM one has to compute the marginal posterior P(τ j | z) =∑

i �= j P(τ | z), which in general requires O(2M ) operations, thus becoming
impractical for long messages. To solve this problem we can take advantage
of the sparseness of A and use probability propagation for decoding, requiring
O(M) operations to perform the same task.

A. Upper Bound on Achievable Rates

It was pointed by MacKay in 1999 that an upper bound for rates achiev-
able for Gallager codes can be found from information theoretic arguments.
This upper bound is based on the fact that each bit of the syndrome vector
z = Aζ(mod 2) is a sum of K noise bits independently drawn from a bimodal
delta distribution P(ζ ) with P(ζ = 0) = 1 − p. The probability of z j = 1 is
p1

z (K ) = 1
2
− 1

2
(1 − 2p)K (see Appendix C.1 for details). Therefore, the max-

imal information content in the syndrome vector is (M − N )H2(p1
z (K )) (in

bits or shannons), where H2(x) is the binary entropy. In the decoding process
one has to extract information from the syndrome vector in order to reconstruct
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Figure 13. (a) Bounds for the rate R as a function of the noise level p for several values of
K . From bottom to top: K = 2 to 10,20 and Shannon limit. (b) Bounds for several values of C.
From bottom to top C = 2, 3, 4, 5 and Shannon limit.

a noise vector ζ which has an information content of MH2(p). It clearly means
that a necessary condition for successful decoding is:

(M − N )H2

(
p1

z (K )
)
≥ M H2(p)

(1 − R)H2

(
p1

z (K )
)
≥ H2(p)

R ≤ 1 −
H2(p)

H2

(
p1

z (K )
) . (105)

In Figure 13a we plot this bound by fixing K and finding the minimum
value for C such that R = 1 − C/K verifies (105). Observe that as K → ∞,
p1

z (K) → 1/2 and R → 1 − H2(p) that corresponds to Shannon’s bound.
In Figure 13b we plot the bound by fixing C and finding the maximum

K such that R = 1 − C/K satisfies (105), recovering the curves presented in
MacKay (1999). Note that K → ∞ implies C → ∞ and vice versa. Gallager
codes only can attain Shannon’s bound asymptotically in the limit of large K

or, equivalently, large C.

B. Statistical Physics Formulation

The connection to statistical physics is made by replacing the field {0, 1} by
Ising spins {±1} and mod 2 sums by products (Sourlas, 1989). The syndrome
vector acquires the form of a multispin coupling Jμ =

∏
j∈L(μ) ζ j where j =

1, . . . , M and μ = 1, . . . , (M − N ). The K indices of nonzero elements in the
row μ of A are given by L(μ) = { j1, . . . , jK }, and in a column l are given by
M(l) = {μ1, . . . , μC}.
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The following family of posterior probabilities can be introduced:

Pγ (τ | J ) =
1

Z
exp[−βHγ (τ ;J )] (106)

Hγ (τ ;J ) = −γ

M−N∑

μ=1

(
Jμ

∏

j∈L(μ)

τ j − 1

)
− F

M∑

j=1

τ j .

The Hamiltonian depends on hyperparameters γ and F. For optimal decoding,
γ and F have to be set to specific values that best represent how the encoding
process and corruption were performed (Nishimori condition (Iba, 1999)).
Therefore, γ must be taken to infinity to reflect the hard constraints in Eq. (104)
and F = atanh(1 − 2p), reflecting the channel noise level p. The temperature
β must simultaneously be chosen to be the Nishimori temperature βN = 1,
that will keep the hyperparameters in the correct value.

The disorder in (106) is trivial and can be gauged to Jμ "→ 1 by using
τ j "→ τ jζ j . The resulting Hamiltonian is a multispin ferromagnet with finite
connectivity in a random field ζ j F :

Hgauge
γ (τ ; ζ) = −γ

M−N∑

μ=1

(
∏

j∈L(μ)

τ j − 1

)
− F

M∑

j=1

ζ jτ j . (107)

At the Nishimori condition γ → ∞ and the model is even simpler, corre-
sponding to a paramagnet with restricted configuration space on a nonuniform
external field:

Hgauge(τ ∈ �; ζ) = −F

M∑

j=1

ζ jτ j , (108)

where

� =
{
τ :

∏

j∈L(μ)

τ j = 1, μ = 1, . . . , M − N

}
. (109)

The optimal decoding process simply corresponds to finding local magne-
tizations at the Nishimori temperature m j = 〈τ j 〉βN

and calculating Bayesian
estimates as τ̂ j = sgn(m j ).

In the {±1} representation the probability of bit error, acquires the form

pb =
1

2
−

1

2M

M∑

j=1

ζ j sgn(m j ), (110)
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connecting the code performance with the computation of local magnetiza-
tions.

C. Replica Theory

In this section we use the replica theory for analyzing the typical performance
of Gallager codes along the same lines discussed for Sourlas codes. We start by
rewriting the gauged Hamiltonian (107) in a form more suitable for computing
averages over different codes:

Hgauge
γ (τ ; ζ) = −γ

∑

〈i1···iK 〉
A〈i1···iK 〉(τi1

· · · τiK
− 1) − F

M∑

j=1

ζ jτ j , (111)

where A〈i1···iK 〉 ∈ {0, 1} is a random symmetric tensor with the properties:
∑

〈i1···iK 〉
A〈i1···iK 〉 = M − N

∑

〈i1,...,i j=l,...,iK 〉
A〈i1,...,iK 〉 = C∀l, (112)

that selects M − N sets of indices (construction). The construction {A〈i1···iK 〉}
and the noise vector ζ are to be regarded as quenched disorder. As usual, the
aim is to compute the free-energy:

f = −
1

β
lim

M→∞

1

M
〈lnZ〉A,ζ , (113)

from which the typical macroscopic (thermodynamic) behavior can be ob-
tained. The partition function Z is:

Z = Trτ exp
(
−βHgauge

γ (τ ; ζ)
)
. (114)

The free-energy can be evaluated calculating following expression

f = −
1

β
lim

M→∞

1

M

∂

∂n

∣∣∣∣
n=0

〈Zn〉A,ζ , (115)

where

〈Zn〉A,ζ =
∑

τ 1,...,τ n

M∏

j=1

〈
exp

(
Fζβ

n∑

α=1

τ α
j

)〉

ζ

×
〈
∏

〈i1···iK 〉

n∏

α=1

exp
[
βγA〈i1···iK 〉

(
τ α

i1
· · · τ α

iK
− 1

)]
〉

A

. (116)
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The average over constructions 〈(· · ·)〉A takes the form:

〈(· · ·)〉A =
1

N

∑

{A}

M∏

j=1

δ

(
∑

〈i1= j,i2,...,iK 〉
A〈i1= j,...,iK 〉 − C

)
(· · ·)

=
1

N

∑

{A}

M∏

j=1

[∮
d Z j

2π i

1

ZC+1
j

Z

∑
〈i1= j,i2 ,...,iK 〉 A〈i1= j,...,iK 〉

j

]
(· · ·),

(117)

and the average 〈(· · ·)〉ζ over the noise is:

〈(· · ·)〉ζ =
∑

ζ=−1,+1

(1 − p)δ(ζ − 1) + pδ(ζ + 1) (· · ·). (118)

By computing the averages above and introducing auxiliary variables
through the identity

∫
dqα1···αm

δ

(
qα1···αm

−
1

M

M∑

i

Z iτ
α1

i · · · τ αm

i

)
= 1 (119)

one finds, after using standard techniques (see Appendix B.1 for details), the
following expression for the replicated partition function:

〈Zn〉A,ζ =
1

N

∫ (
dq0 dq̂0

2π i

)( n∏

α=1

dqα dq̂α

2π i

)
· · ·

× exp

[
M K

K !

n∑

m=0

∑

〈α1···αm 〉
Tmq K

α1···αm

− M

n∑

m=0

∑

〈α1···αm 〉
qα1···αm

q̂α1···αm

]

×
M∏

j=1

Tr{τα}

[〈
exp

[
Fβζ

n∑

α=1

τ α

]〉

ζ

×
∮

d Z

2π i

exp
[
Z
∑n

m=0

∑
〈α1···αm 〉 q̂α1···αm

τ α1 · · · τ αm

]

ZC+1

]
,

(120)

where Tm = e−nβγ coshn(βγ ) tanhm(βγ ). Comparing this expression with that
obtained for the code of Sourlas in Eq. (A.7), one can see that the differences are
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the dimensionality M for Gallager codes instead of N for Sourlas (reflecting
the fact that in the former the noise vector of dimension M is the dynamic
variable) and the absence of disorder in the couplings, yielding a slightly
modified definition for the constants Tm .

D. Replica Symmetric Solution

The replica symmetric ansätz consists of assuming the following form for the
order parameters:

qα1···αm
=
∫

dx π (x) xm q̂α1···αm
=
∫

dx̂ π̂ (x̂ ) x̂ m . (121)

By performing the limit γ →∞, plugging (121) into (120), computing the
normalization constant N , integrating in the complex variable Z and comput-
ing the trace (see Appendix B.2) we find:

〈Zn〉A,ζ = Extrπ,π̂

{
exp

[
−MC

(∫
dx dx̂ π(x) π̂ (x̂) (1 + x x̂)n − 1

)

+
(

MC

K

∫ K∏

j=1

dx j π (x j )

(
1 +

K∏

j=1

x j

)n

− 1

)]

×

⎛
⎝
∫ C∏

j=1

dx̂ j π̂(x̂ j )

〈[
∑

σ=±1

eσβFζ

C∏

j=1

(1 + σ x̂ j )

]n〉

ζ

⎞
⎠

M⎫⎬
⎭ .

(122)

Using (115):

f =
1

β
Extrπ,π̂

{
C

K
ln 2 + C

∫
dx dx̂ π(x) π̂ (x̂) ln(1 + x x̂)

−
C

K

∫ K∏

j=1

dx j π(x j ) ln

(
1 +

K∏

j=1

x j

)

−
∫ C∏

j=1

dx̂ j π̂ (x̂ j )

〈
ln

[
∑

σ=±1

eσβFζ

C∏

j=1

(1 + σ x̂ j )

]〉

ζ

}
. (123)
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The extremization above yields a pair of saddle-point equations:

π̂(x̂) =
∫ K−1∏

j=1

dx j π(x j ) δ

[
x̂ −

K−1∏

j=1

x j

]
(124)

π (x) =
∫ C−1∏

l=1

dx̂ l π̂ (x̂ l)

〈
δ

[
x − tanh

(
βFζ +

C−1∑

l=1

atanh x̂ l

)]〉

ζ

,

where β = 1 (Nishimori temperature) and F = 1
2

ln ( 1−p

p
) for optimal de-

coding.
Following the derivation of Appendix A.3 very closely, the typical overlap

ρ = 〈 1
M

∑M

j=1 ζ j τ̂ j 〉A,ζ between the estimate τ̂ j = sgn(〈τ j 〉β) and the actual
noise ζ j is given by:

ρ =
∫

dh P(h) sgn(h) (125)

P(h) =
∫ C∏

l=1

dx̂ l π̂ (x̂ l)

〈
δ

[
h − tanh

(
βFζ +

C∑

l=1

atanh x̂ l

)]〉

ζ

.

E. Thermodynamic Quantities and Typical Performance

The typical performance of a code as predicted by the replica symmetric theory
can be assessed by solving (124) numerically and computing the overlap ρ

using (125). The numerical calculation can be done by representing distribu-
tions π and π̂ by histograms (we have used representations with 20000 bins),
and performing Monte Carlo integrations in an iterative fashion until a solu-
tion is found. Overlaps can be obtained by plugging the distribution π̂ that is
a solution for (124) into (125).

Numerical calculations show the emergence of two solution types; the first
corresponds to a totally aligned (ferromagnetic) state with ρ = 1 described by:

πFERRO(x) = δ[x − 1] π̂FERRO(x̂) = δ[x̂ − 1]. (126)

The ferromagnetic solution is the only stable solution up to a specific noise
level ps. Above ps another stable solution with ρ < 1 (suboptimal ferromag-
netic) can be obtained numerically. This solution is depicted in Figure 14 for
K = 4, C = 3 and p = 0.20. The ferromagnetic state is always a stable so-
lution for (124) and is present for all choices of noise level or construction
parameters C and K . The stability can be verified by introducing small per-
turbations to the solution and observing that the solution is recovered after a
number of iterations of (124).
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Figure 14. Suboptimal ferromagnetic solution πNFERRO(x) for the saddle-point Eqs. (124)
obtained numerically. Parameters are K = 4, C = 3 and p = 0.20. Circles correspond to an
experimental histogram obtained by decoding with probability propagation in 100 runs for 10
different random constructions.

The free-energy for the ferromagnetic state at Nishimori’s temperature is
simply fFERRO = −F(1 − 2p). In Figure 15 we show free-energies for K =
4 and R = 1/4, pc indicates the noise level where coexistence between the
ferromagnetic and suboptimal ferromagnetic phases occurs. This coexistence
noise level coincides, within the numerical precision, with the information
theoretic upper bound of Section IV.A. In Figure 16 we show pictorially how
the replica symmetric free-energy landscape changes with the noise level p.

In Figure 17 we show the overlap as a function of the noise level, as ob-
tained for K = 4 and R = 1/4 (therefore C = 3). Full lines indicate values
corresponding to states of minimum free-energy that are predicted thermody-
namically. The general idea is that the macroscopic behavior of the system is
dominated by the global minimum of the free-energy (thermodynamic equilib-
rium state). After a sufficiently long time the system eventually visits configu-
rations consistent with the minimum free-energy state staying there almost all
of the time. The whole dynamics is ignored and only the stable equilibrium, in
a thermodynamic sense, is taken into account. Also in Figure 17 we show re-
sults obtained by simulating probability propagation decoding (black circles).
The practical decoding stays in a metastable (in the thermodynamic sense)
state between ps and pc, and the practical maximum noise level corrected is
actually given by ps. Returning to the pictorial representation in Figure 16,
the noise level ps that provides the practical threshold is signalled by the
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Figure 15. Free-energies for K = 4, C = 3 and R = 1/4. The full line corresponds to the
free-energy of thermodynamic states. Up to ps only the ferromagnetic state is present. The ferro-
magnetic state then dominates the thermodynamics up to pc, where thermodynamic coexistence
with suboptimal ferromagnetic states takes place. Dashed lines correspond to replica symmetric
free-energies of nondominant metastable states.

appearance of spinodal points in the replica symmetric free-energy, defined
as points separating (meta)stable and unstable regions in the space of ther-
modynamic configurations (ρ). The noise level ps may, therefore, be called
spinodal noise level.

The solutions obtained must produce nonnegative entropies to be physically
meaningful. The entropy can be computed from the free-energy (123) as s =
β2 ∂ f

∂β
yielding:

s = β(u(β) − f ) (127)

u(β) = −
∫ C∏

j=1

dx̂ j π̂∗(x̂ j )

〈
Fζ

∑
τ=±1 τeτβFζ

∏C

j=1(1 + τ x̂ j )
∑

τ=±1 eτβFζ
∏C

j=1(1 + τ x̂ j )

〉

ζ

,

where π̂∗ is a solution for the saddle-point Eqs. (124) and u(β) corresponds
to the internal energy density at temperature β. For the ferromagnetic state
sFERRO = 0, what indicates that the replica symmetric ferromagnetic solution is
physical and that the number of microstates consistent with the ferromagnetic
state is at most of polynomial order in N. The entropy of the suboptimal
ferromagnetic state can be obtained numerically. Up to the spinodal noise level
ps the entropy vanishes as only the ferromagnetic state is stable. Above ps, the
entropy of the replica symmetric suboptimal ferromagnetic state is negative
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Figure 16. Pictorial representation of the replica symmetric free-energy landscape changing
with the noise level p. Up to ps there is only one stable state F corresponding to the ferromagnetic
state with ρ = 1. At ps, a second stable suboptimal ferromagnetic state F′ emerges with ρ < 1, as
the noise level increases, coexistence is attained at pc. Above pc, F′ becomes the global minimum
dominating the system thermodynamics.

and, therefore, unphysical. At pc, the entropy of the suboptimal ferromagnetic
state becomes positive again. The internal energy density obtained numerically
is depicted in Figure 18 with u = −F(1 − 2p) for both ferromagnetic and
suboptimal ferromagnetic states, justified by assuming Nishimori’s condition
γ → ∞, β = 1 and F = atanh(1 − 2p) (Iba, 1999); (see Appendix B.3).

Figure 17. Overlaps for K = 4, C = 3, and R = 1/4. The full line corresponds to overlaps
predicted by thermodynamic considerations. Up to ps only the ferromagnetic ρ = 1 state is
present, it then dominates the thermodynamics up to pc, where coexistence with suboptimal
ferromagnetic states takes place. Dashed lines correspond to overlaps of nondominant states.
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Figure 18. Internal energy density for K = 4, C = 3 and R = 1/4 for both ferromagnetic
and suboptimal ferromagnetic states. The equality is a consequence of using the Nishimori
condition (see Appendix B.3).

The unphysical behavior of the suboptimal ferromagnetic solution between
ps and pc indicates that the replica symmetric ansätz does not provide the cor-
rect physical description of the system. The construction of a complete one-step
replica symmetry breaking theory turns out to be a difficult task in the family of
models we focus on here (Wong and Sherrington, 1988; Monasson, 1998a,b),
although it may be possible in principle using a new method, recently intro-
duced by Mezard and Parisi (2001). An alternative is to consider a frozen spins
solution. In this case the entropy in the interval ps < p < pc is corrected to
sRSB = 0 and the free-energy and internal energy are frozen to the values at pc.

Any candidate for a physical description for the system would have to be
compared with simulations to be validated. Nevertheless, our aim here is to
predict the behavior of a particular decoding algorithm, namely, probability
propagation. In the next section, we will show that, to this end, the replica
symmetric theory will be sufficient.

F. Codes on a Cactus

In this section we present a statistical physics treatment of Gallager codes
by employing a mean-field approximation based on the use of a generalized
tree structure (Bethe lattice (Wong and Sherrington, 1987b)) known as Husimi
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Figure 19. First step in the construction of Husimi cactus with K = 3 and connectivity
C = 4.

cactus that is exactly solvable (Gujrati, 1995; Bowman and Levin, 1982; Rieger
and Kirkpatrick, 1992; Goldschmidt, 1991).

There are many different ways of building mean-field theories. One can
make a perturbative expansion around a tractable model (Plefka, 1982; Tanaka,
2000) or assume a tractable structure and variationally determine the model
parameters (Saul and Jordan, 1998). In the approximation we employ, the
tractable structure is tree-like and the couplings Jμ are just assumed to be
those of a model with cycles. In this framework the probability propagation
decoding algorithm (PP) emerges naturally, providing an alternative view to
the relationship between PP decoding and mean-field approximations already
observed in (Kabashima and Saad (1998)). Moreover, this approach has the
advantage of being slightly more controlled and easier to understand than
replica calculations.

A Husimi cactus with connectivity C is generated starting with a polygon
of K vertices with one Ising spin in each vertex (generation 0). All spins in a
polygon interact through a single couplingJμ and one of them is called the base
spin. In Figure 19 we show the first step in the construction of a Husimi cactus;
in a generic step, the base spins of the (C − 1) (K − 1) polygons in generation
n − 1 are attached to K − 1 vertices of a polygon in the next generation n.
This process is iterated until a maximum generation nmax is reached; the graph
is then completed by attaching C uncorrelated branches of nmax generations
at their base spins. In this way each spin inside the graph is connected to C

polygons exactly. The local magnetization at the center mj can be obtained
by fixing boundary (initial) conditions in the zeroth generation and iterating
the related recursion equations until generation nmax is reached. Carrying out
the calculation in the thermodynamic limit corresponds to having nmax ∼ ln M

generations and M → ∞.
The Hamiltonian of the model has the form (106) where L(μ) denotes the

polygon μ of the lattice. Due to the tree-like structure, local quantities far from
the boundary can be calculated recursively by specifying boundary conditions.
The typical decoding performance can therefore be computed exactly without
resorting to replica calculations (Gujrati, 1995).
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We adopt the approach presented in Rieger and Kirkpatrick (1992) for ob-
taining recursion relations. The probability distribution Pμk(τk) for the base
spin of the polygon μ is connected to (C − 1) (K − 1) distributions Pν j (τ j ),
with ν ∈ M( j) \ μ (all polygons linked to j but μ) of polygons in the previous
generation:

Pμk(τk) =
1

N
Tr{τ j } exp

[
βγ

(
Jμτk

∏

j∈L(μ)\k

τ j − 1

)
+ βFτk

]

×
∏

ν∈M( j)\μ

∏

j∈L(μ)\k

Pν j (τ j ), (128)

where the trace is over the spins τ j such that j ∈ L(μ) \ k.
The effective field x̂ν j on a base spin j due to neighbors in polygon ν can be

written as:

e−2x̂ν j = e2βF Pν j (−)

Pν j (+)
, (129)

Combining (128) and (129) we find the recursion relation (see Appendix B.4
for details):

e−2x̂μk =
Tr{τ j }e

−βγJμ

∏
j∈L(μ)\k τ j+

∑
j∈L(μ)\k (βF+

∑
ν∈M( j)\μ x̂ν j )τ j

Tr{τ j }e
+βγJμ

∏
j∈L(μ)\k τ j+

∑
j∈L(μ)\k (βF+

∑
ν∈M( j)\μ x̂ν j )τ j

. (130)

By computing the traces and taking γ → ∞ and β = 1 one obtains:

x̂μk = atanh

[
Jμ

∏

j∈L(μ)\k

tanh

(
F +

∑

ν∈M( j)\μ
x̂ν j

)]
(131)

The effective local magnetization due to interactions with the nearest neighbors
in one branch is given by m̂μj = tanh(x̂μj ). The effective local field on a base
spin j of a polygon μ due to C − 1 branches in the previous generation and
due to the external field is xμj = F +

∑
ν∈M( j)\μ x̂ν j ; the effective local mag-

netization is therefore mμj = tanh(xμj ). Equation (131) can then be rewritten
in terms of m̂μj and mμj and the PP equations (MacKay, 1999; Kabashima and
Saad 1998; Kschischang and Frey, 1998) can be recovered:

mμk = tanh

(
F +

∑

ν∈M(k)\μ
atanh(m̂νk)

)

m̂μk = Jμ

∏

j∈L(μ)\k

mμj (132)

Once the magnetization on the boundary (zeroth generation) are assigned,
the local magnetization mj in the central site is determined by iterating (132)
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and computing:

m j = tanh

(
F +

∑

ν∈M( j)

atanh(m̂ν j )

)
(133)

A free-energy can be obtained by integration of (132) (Murayama et al.,

2000; Vicente et al., 2000b; Bowman and Levin, 1982). The Eqs. (132) de-
scribing PP decoding represent extrema of the following free-energy:

F ({mμk, m̂μk}) =
M−N∑

μ=1

∑

i∈L(μ)

ln(1 + mμi m̂μi ) −
M−N∑

μ=1

ln

(
1 + Jμ

∏

i∈L(μ)

mμi

)

−
M∑

j=1

ln

[
eF

∏

μ∈M( j)

(1 + m̂μj ) + e−F
∏

μ∈M( j)

(1 − m̂μj )

]

(134)

The iteration of the maps (132) is actually one out of many different methods
of finding stable extrema of this free-energy.

The decoding process can be performed by iterating the multidimensional
map (132) using some defined scheduling. Assume that the iterations are per-
formed in parallel using the following procedure:

(i) Effective local magnetizations are initialized as mμk = 1 − 2p, reflecting
prior probabilities.

(ii) Conjugate magnetizations m̂μk are updated.
(iii) Magnetizations mμk are computed.
(iv) If convergence or a maximal number of iterations is attained, stop. Other-

wise go to step (ii).

Equations (132) have fixed points that are inconveniently dependent on the
particular noise vector ζ. By applying the gauge transformation Jμ "→ 1 and
τ j "→ τ jζ j we get a map with noise-independent fixed points that has the
following form:

mμk = tanh

(
ζk F +

∑

ν∈M(k)\μ
atanh(m̂νk)

)
(135)

m̂μk =
∏

j∈L(μ)\k

mμj . (136)

In terms of effective fields xμk and x̂μk we have:

xμk = ζk F +
∑

ν∈M(k)\μ
x̂νk x̂μk = atanh

(
∏

j∈L(μ)\k

tanh(xμj )

)
. (137)
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The above equations provide a microscopic description for the dynamics of
a probability propagation decoder; a macroscopic description can be con-
structed by retaining only statistical information about the system, namely, by
describing the evolution of histograms of variables xμk and x̂μk .

Assume that the effective fields xμk and x̂μk are random variables indepen-

dently sampled from the distributions P(x) and P̂(x̂), respectively; in the same
way assume that ζ j is sampled from P(ζ ) = (1 − p) δ(ζ − 1) + δ(ζ + 1). A
recursion relation in the space of probability distributions (Bowman and Levin,
1982) can be found from Eq. (137):

Pn(x) =
∫

dζ P(ζ )

∫ C−1∏

l=1

dx̂ l P̂n−1(x̂ l) δ

[
x − Fζ −

C−1∑

l=1

x̂ l

]

P̂n−1(x̂) =
∫ K−1∏

j=1

dx j Pn−1(x j ) δ

[
x̂ − atanh

(
K−1∏

j=1

tanh(x j )

)]
, (138)

where Pn(x) is the distribution of effective fields at the nth generation due to
the previous generations and external fields, in the thermodynamic limit the
distribution far from the boundary will be P∞(x) (generation n → ∞). The
local field distribution at the central site is computed by replacing C − 1 by
C in the first Eq. (138), taking into account C polygons in the generation just
before the central site, and inserting the distribution P∞(x):

P(h) =
∫

dζ P(ζ )

∫ C∏

l=1

dx̂ l P̂∞(x̂ l) δ

[
x − Fζ −

C∑

l=1

x̂ l

]
. (139)

It is easy to see that P∞(x) and P̂∞(x̂) satisfy Eqs. (124) obtained by the
replica symmetric theory (Kabashima et al., 2000; Murayama et al., 2000;
Vicente et al., 2000b), if the variables describing fields are transformed to
those of local magnetizations through x "→ tanh(βx).

In Figure 14 we show empirical histograms obtained by performing 100 runs
of PP decoding for 10 different codes of size M = 5000 and compare with a
distribution obtained by solving equations like (138). The practical PP decod-
ing is performed by setting initial conditions as mμj = 1 − 2p to correspond to
the prior probabilities and iterating (132) until stationarity or a maximum num-
ber of iterations is attained (MacKay, 1999). The estimate for the noise vector is
then produced by computing τ̂ j = sign(m j ). At each decoding step the system
can be described by histograms of variables (132), this is equivalent to iterating
(138) (a similar idea was presented in MacKay (1999) and Davey (1998)).

In Figure 20 we summarize the transitions obtained for K = 6 and K = 10.
A dashed line indicates Shannon’s limit, the full line represents the information
theoretic upper bound of Section IV.A, white circles stand for the coexistence
line obtained numerically. Diamonds represent spinodal noise levels obtained
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Figure 20. Transitions for Gallager codes with K = 6 (left) and K = 10 (right). Shannon’s
bound (dashed line), information theory upper bound (full line), and thermodynamic transition
obtained numerically (�). Transitions obtained by Monte Carlo integration of Eq. (138) (♦) and
by simulations of PP decoding (+, M = 5000 averaged over 20 runs) are also shown. Black
squares are estimates for practical thresholds based on Sec. IV.H. In both figures, symbols are
chosen larger than the error bars.

by solving (138) numerically and (+) are results obtained by performing 20
runs using PP decoding. It is interesting to observe that the practical perfor-
mance tends to get worse as K grows large, which agrees with the general
belief that decoding gets harder as Shannon’s limit is approached.

G. Tree-Like Approximation and the Thermodynamic Limit

The geometric structure of a Gallager code defined by the matrix A can be
represented by a bipartite graph as in Figure 21 (Tanner graph) (Kschischang

Figure 21. Tanner graph representing the neighborhood of a bit node in an irregular Gallager
code. Black circles represent checks and white circles represent bits.
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and Frey, 1998) with bit and check nodes (in this case, we show an irregular

constraction where the values of K and C are not fixed). Each column j of
A represents a bit node and each row μ represents a check node; Aμj = 1
means that there is an edge linking bit j to check μ. It is possible to show
(Richardson and Urbanke, 2001) that for a random ensemble of regular codes,
the probability of completing a cycle after walking l edges starting from an
arbitrary node is upper bounded by P[l; K , C, M] ≤ l2 K l/M . It implies that
for very large M only cycles of at least order ln M survive. In the thermodynamic
limit M → ∞ and the probability P[l; K , C, M] → 0 for any finite l and the
bulk of the system is effectively tree-like. By mapping each check node to
a polygon with K bit nodes as vertices, one can map a Tanner graph into
a Husimi lattice that is effectively a tree for any number of generations of
order less than ln M. In Figure 22 we show that the number of iterations of
(132) required for convergence far from the threshold does not scale with
the system size, therefore, it is expected that the interior of a tree-like lattice
approximates a Gallager code with increasing accuracy as the system size
increases. Figure 23 shows that the approximation is fairly good even for sizes
as small as M = 100 when compared to theoretical results and simulations for
size M = 5000. Nevertheless, the difference increases as the spinodal noise
level approaches, what seems to indicate the breakdown of the approximation.
A possible explanation is that convergence times larger than O(ln M) may be
required in this region. An interesting analysis of the convergence properties

Figure 22. PP decoding convergence time as a function of the code size (M − N) for
K = 4C = 3 and p = 0.05, therefore, well below the threshold. The convergence time clearly
does not scale with the system size.
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Figure 23. Mean normalized overlap ρ between the actual noise vector ζ and decoded
noise τ̂ for a Gallager code with K = 4 and C = 3 (therefore R= 1/4). Theoretical values ( )
obtained by Monte Carlo integration of Eqs.(138) and averages of 20 simulations of PP decoding
for code word lengths M = 5000 (�) and M = 100 (full line). Symbols are chosen larger than
the error bars.

of probability propagation algorithms for some specific graphical models can
be found in Weiss (1997).

H. Estimating Spinodal Noise Levels

We now estimate the threshold noise level ps by introducing a measure for the
number of parity checks violated by a bit τ l:

El = −
∑

μ∈M(l)

(
Jμτl

∏

j∈L(μ)\l

τ j − 1

)
. (140)

By using gauged variables:

El = −
∑

μ∈M(l)

(
τl

∏

j∈L(μ)\l

τ j − 1

)
. (141)

Suppose that random guesses are generated by sampling the prior distribu-
tion, their typical overlap will be ρ = 1 − 2p. Assume now that the vectors
sampled are corrected by flipping τ l if El = C . If the landscape has a single
dominant minimum, we expect that this procedure will tend to increase the
overlap ρ between τ and the actual noise vector ζ in the first step up to the
noise level ps, where suboptimal microscopic configurations are expected to
emerge. Above ps, there is a large number of suboptimal ferromagnetic mi-
crostates with an overlap around ρ = 1 − 2p (see Fig. 23), and we expect that
if a single bit of a randomly guessed vector is corrected, the overlap will then
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either increase or decrease, staying unchanged on average. A vanishing varia-
tion in the mean overlap would, therefore, signal the emergence of suboptimal
microstates at ps.

The probability that a bit τl = +1 is corrected is:

P(El = C | τl = +1) =
∏

μ∈M(l)

P

{
∏

j∈L(μ)\l

τ j = −1

}
. (142)

For a a bit τl = −1:

P(El = C | τl = −1) =
∏

μ∈M(l)

[
1 − P

{
∏

j∈L(μ)\l

τ j = −1

}]
. (143)

Considering vectors sampled from a prior P(τ ) = (1 − p) δ(τ − 1) +
p δ(τ + 1) we have:

P

{
∏

j∈L(μ)\l

τ j = −1

}
=

1

2
−

1

2
(1 − 2p)K−1. (144)

The gauged overlap is defined as ρ =
∑M

j=1 S j and the variation on the
overlap after flipping a bit l is �ρ = ρ1 − ρ0 = S1

l − S0
l . The mean variation

in the overlap due to a flip in a bit τ l with El = C is therefore:

1

2
〈�ρ〉 = P(τl = +1 | El = C) − P(τl = −1 | El = C)

=
∑

τl=±1 τl P(El = C | τl)P(τl)∑
τl=±1 P(El = C | τl))P(τl)

, (145)

where we applied the Bayes theorem to obtain the last line.
By plugging the prior probability (142) and (144) into the above expression

we get:

1

2
〈�ρ〉 =

[1 − (1 − 2p)K−1]C (1 − p) − [1 + (1 − 2p)K−1]C p

[1 − (1 − 2p)K−1]C (1 − p) + [1 + (1 − 2p)K−1]C p
. (146)

At ps we have 〈�ρ〉 = 0 and:

ps

1 − ps

=
[

1 − (1 − 2ps)
K−1

1 + (1 − 2ps)K−1

]
. (147)

The above equation can be solved numerically yielding reasonably accurate
estimates for practical thresholds ps as can be seen in Figure 20.

MacKay (1999) and Gallager (1962, 1963) introduced probabilistic decod-
ing algorithms whose performance analysis is essentially the same those as
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presented here. However, the results obtained in Section IV.C put the anal-
ysis into a broader perspective: algorithms that generate decoding solutions
in polynomial time, as is the case of probabilistic decoding or probability
propagation, seem to be bounded by the practical threshold ps due to the pres-
ence of suboptimal solutions. On the other hand, decoding in exponential time
is always possible up to the thermodynamic transition at pc (with pc attaining
channel capacity if K→∞), by performing an exhaustive search for the global
minimum of the free-energy (134).

V. MacKay–Neal Codes

MacKay–Neal (MN) codes were introduced in 1995 as a variation on Gallager
codes. As in the case of Gallager codes (see Section IV), MN codes are defined
by two very sparse matrices, but with the difference that information on both
noise and signal is incorporated to the syndrome vector. MN codes are also
decoded using sparse matrices, while encoding uses a dense matrix, which
yields good distance properties and a decoding problem solvable in linear time
by using the methods of probability propagation.

Cascading codes, a class of constructions inside the MN family recently
proposed by Kanter and Saad (1999, 2000a,b) have been shown to outperform
some of the cutting-edge Gallager and turbo code constructions. We will dis-
cuss cascading codes in the next secion, but this fact alone justifies a thorough
study of MN codes.

Theorems showing the asymptotic goodness of the MN family have been
proved in (MacKay, 1999). By assuming equal message and noise biases (for a
BSC), it was proved that the probability of error vanishes as the message length
increases and that it is possible to get as close as desired to channel capacity
by increasing the number of nonzero elements in a column of the very sparse
matrices defining the code.

It can also be shown by a simple upper bound that MN codes, unlike
Gallager codes, might, as well, attain Shannon’s bound for a finite number
of nonzero elements in the columns of the very sparse matrices, given that
unbiased messages are used. This upper bound does not guarantee that chan-
nel capacity can be attained in polynomial time or even that it can be attained
at all. Results obtained using statistical physics techniques (Kabashima et al.,

2000; Murayama et al., 2000; Vicente et al., 2000a,b) seem to indicate that
Shannon’s bound can actually be approached with exponential time decoding.
This feature is considered to be new and somewhat surprising (D. MacKay,
personal communication, 2000).

Statistical physics has been applied to analyze MN codes and its variants
(Kabashima et al., 2000; Murayama et al., 2000; Vicente et al., 2000b). In this
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analysis we use the replica symmetric theory to obtain all relevant thermody-
namic quantities and to calculate the phase diagram. The theory also yields
a noise level where suboptimal solutions emerge that are in connection with
the practical thresholds observed when probability propagation decoding is
used.

Assuming that a message is represented by a binary vector ξ ∈ {0, 1}N sam-
pled independently from the distribution P(ξ ) = (1 − pξ ) δ(ξ ) + pξ δ(ξ − 1),
the MN encoding process consists of producing a binary vector t ∈ {0, 1}M

defined by

t = Gξ (mod 2), (148)

where all operations are performed in the field {0, 1} and are indicated by
(mod 2). The code rate is, therefore, R = N/M .

The generator matrix G is an M×N dense matrix defined by

G = C−1
n Cs (mod 2), (149)

with Cn being an M×M binary invertible sparse matrix and Cs an M×N

binary sparse matrix.
The transmitted vector t is then corrupted by noise. We here assume a

memoryless binary symmetric channel (BSC), namely, noise is represented by
a binary vector ζ ∈ {0, 1}M with components independently drawn from the
distribution P(ζ ) = (1 − p) δ(ζ ) + p δ(ζ − 1).

The received vector takes the form

r = Gξ + ζ (mod 2). (150)

Decoding is performed by preprocessing the received message with the
matrix Cn and producing the syndrome vector

z = Cnr = Csξ + Cnζ (mod 2), (151)

from which an estimate ξ̂ for the message can be directly obtained.
An MN code is called regular if the number of elements set to one in each

row of Cs is chosen to be K and the number of elements in each column is
set to be C. For the square matrix Cn the number of elements in each row
(or column) is set to L. In this case the total number of ones in the matrix Cs is
M K = NC , yielding that the rate can alternatively be expressed as R = K/C .

In contrast, an MN code is called irregular if each row m in Cs and Cn

contains Km and Lm nonzero elements, respectively. In the same way, each
column j of Cs contains Cj nonzero elements and each column l of Cn contains
Dl nonzero elements.
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Counting the number of nonzero elements in the matrices leads to the fol-
lowing relations:

N∑

j=1

C j =
M∑

μ=1

Kμ

M∑

l=1

Dl =
M∑

μ=1

Lμ, (152)

The code rate is, therefore, R = K/C , where:

K =
1

M

M∑

μ=1

Kμ C =
1

N

N∑

j=1

C j . (153)

The Bayes optimal estimator ξ̂ for the message ξ is ξ̂ j = argmaxS j
P(S j | z).

The performance of this estimator is measured by the probability of bit error
pb = 1 − 1/N

∑N

j=1 δ[ξ̂ j ; ξ j ], where δ[; ] is the Kronecker delta. Knowing the
matrices Cs and Cn, the syndrome vector z, the noise level p, and the message
bias pξ , the posterior probability is computed by applying Bayes theorem:

P(S, τ | z) =
1

Z
χ [z = Cs S + Cnτ (mod 2)] P(S)P(τ ), (154)

where χ [X] is an indicator function providing 1 if X is true and 0 otherwise.
To obtain the estimate one has to compute the marginal posterior

P(S j | z) =
∑

{Si :i �= j}

∑

τ

P(S, τ | z), (155)

which requires O(2N ) operations and is impractical for long messages. Again
we can use the sparseness of [Cs | Cn] and the methods of probability propa-
gation for decoding, which requires only O(N ) operations.

When p = pξ , MN and Gallager codes are equivalent under a proper trans-
formation of parameters, as the code rate is R = N/M for MN codes and
R = 1 − N/M for Gallager codes. The main difference between the codes is
in the syndrome vector z. For MN codes, the syndrome vector incorporates
information on both message and noise while for Gallager codes, only infor-
mation on the noise is present (see Eq. (103)). This feature opens the possibility
of adjusting the code behavior by controlling the message bias pξ .

An MN code can be thought of as a nonlinear code (MacKay, 2000b).
Redundancy in the original message could be removed (introduced) by using a
source (de)compressor defined by some nonlinear function ξ = g(ξ0; pξ ), and
encoding would then be t = Gg(ξ0; pξ ) (mod 2). In the following we show
that other new features emerge due to the introduction of the parameter pξ .
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A. Upper Bound on Achievable Rates

In a regular MN code, the syndrome vector z = Cs S + Cnτ (mod 2) is a sum of
K message bits drawn from the distribution P(ξ ) = (1 − pξ ) δ(ξ ) + pξ δ(ξ −
1) and L noise bits drawn from P(ζ ) = (1 − p) δ(ζ ) + p δ(ζ − 1).

The probability of z j = 1 is (see Appendix C.1)

p1
z (K , L) =

1

2
−

1

2
(1 − 2pξ )K (1 − 2p)L . (156)

The maximum information content in the syndrome vector is M H2(p1
z (K , L))

(in bits or shannons), where H2(x) is the binary entropy. The amount of infor-
mation needed to reconstruct both the message vector ξ and the noise vector ζ
is N H2(pξ ) + M H2(p) (in bits or shannons). Thus, it is a necessary condition
for successful decoding that:

M H2

(
p1

z (K , L)
)
≥ N H2(pξ ) + M H2(p)

H2

(
p1

z (K , L)
)
− H2(p) ≥ RH2(pξ )

R ≤
H2

(
p1

z (K , L)
)
− H2(p)

H2(pξ )
. (157)

For the case pξ = p and L = C , we can recover bounds (105) for Gallager
codes with dimensions and parameters redefined as M ′ = M + N , N ′ = N

and K ′ = K + L . In MacKay (1999), a theorem stating that channel capacity
can be attained when K → ∞ was proved for this particular case.

If unbiased (pξ = 1/2) messages are used, H2(pξ ) = 1, H2(p1
z (K , L)) = 1

and the bound (157) becomes

R ≤ 1 − H2(p), (158)

i.e., MN codes may be capable of attaining channel capacity even for finite K

and L, given that unbiased messages are used.

B. Statistical Physics Formulation

The statistical physics formulation for MN codes is a straightforward extension
of the formulation presented for Gallager codes. The field ({0, 1},+(mod 2))
is replaced by ({±1},×) (Sourlas, 1989) and the syndrome vector acquires the
form:

Jμ =
∏

j∈Ls (μ)

ξ j

∏

l∈Ln (μ)

ζl (159)

where j = 1, . . . , N , l = 1, . . . , M and μ = 1, . . . , M .
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The Kμ indices of nonzero elements in the row μ of the signal matrix Cs

are given by Ls(μ) = { j1, . . . , jKμ
}, and in a column j are given by Ms( j) =

{μ1, . . . , μC j
}. In the same way, for the noise matrix Cn, the Lμ indices of

nonzero elements in the row μ are given by Ln(μ) = { j1, . . . , jLμ
}, and in a

column l are given by Mn(l) = {μ1, . . . , μDl
}.

Under the assumption that priors P(S) and P(τ ) are completely factorizable,
the posterior (154) corresponds to the limit γ → ∞ and β = 1 (Nishimori
temperature) of:

Pγ (S, τ | J ) =
1

Z
exp[−βHγ (S, τ ;J )] (160)

Hγ (S, τ ;J ) = −γ

M∑

μ=1

(
Jμ

∏

j∈Ls (μ)

S j

∏

l∈Ln (μ)

τl − 1

)
−Fs

N∑

j=1

S j −Fn

M∑

l=1

τl,

with Fs = 1
2
atanh(

1−pξ

pξ
) and Fn = 1

2
atanh( 1−p

p
) (Nishimori condition (Iba,

1999)).
By applying the gauge transformation S j "→ S jξ j and τl "→ τlζl the cou-

plings can be gauged outJμ "→ 1, eliminating the disorder. The model is free of
frustration (as in Toulouse, 1977, the model is flat). Similar to Gallager codes,
the resulting Hamiltonian consists of two sublattices interacting via multispin
ferromagnetic iterations with finite connectivity in random fields ξ j Fs and ζl Fn:

Hgauge
γ (S, τ ; ξ, ζ) = −γ

M∑

μ=1

(
∏

j∈Ls (μ)

S j

∏

l∈Ln (μ)

τl1

)

− Fs

N∑

j=1

ξ j S j − Fn

M∑

l=1

ζlτl . (161)

At the Nishimori condition γ → ∞, the model can also be regarded as a
paramagnet with restricted configuration space on a nonuniform external field:

Hgauge((S, τ ) ∈ �; ξ, ζ) = −Fs

N∑

j=1

ξ j S j − Fn

M∑

l=1

ζlτl, (162)

where

� =
{

(S, τ ) :
∏

j∈Ls (μ)

S j

∏

l∈Ln (μ)

τl = 1, μ = 1, . . . , M

}
. (163)

Optimal decoding consists of finding local magnetizations at the Nishimori
temperature in the signal sublattice m j = 〈S j 〉βN

and calculating Bayesian

estimates ξ̂ j = sgn(m j ).
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The probability of bit error is

pb =
1

2
−

1

2N

N∑

j=1

ξ j sgn(m j ), (164)

connecting the code performance with the computation of local magneti-
zations.

C. Replica Theory

The replica theory for MN codes is the theory constructed for Gallager codes,
with the introduction of extra dynamic variables S. The gauged Hamiltonian
(161) is written as:

Hgauge
γ (S, τ ; ξ, ζ) = −γ

∑

〈 jl〉
A〈 jl〉(S j1 · · · S jK

τl1
· · · τlL

− 1)

− Fs

N∑

j=1

ξ j S j − Fn

M∑

l=1

ζlτl, (165)

where 〈 jl〉 is a shorthand for 〈 j1 · · · jK l1 · · · lL〉.
Code constructions are described by the tensor A〈il〉∈ {0, 1} that specifies a

set of indices 〈 j1 · · · jK l1 · · · lL〉 corresponding to nonzero elements in a particu-
lar row of the matrix [Cs | Cn]. To cope with noninvertible Cn matrices, we can
start by considering an ensemble with uniformly generated M × M matrices.
The noninvertible matrices can be made invertible by eliminating a ǫ ∼ O(1)
number of rows and columns, resulting in an ensemble of (M − ǫ) × (M − ǫ)
invertible Cn matrices and (M − ǫ) × (N − ǫ)Cs matrices. As we are inter-
ested in the thermodynamic limit, we can neglectO(1) differences and compute
the averages in the original space of M×M matrices. The averages are then
performed over an ensemble of codes generated as follows:

(i) Sets of numbers {C j }N
j=1 and {Dl}M

l=1 are sampled independently from
distributions PC and PD , respectively;

(ii) Tensors A〈 jl〉 are generated such that

∑

〈 jl〉
A〈 jl〉 = M,

∑

〈 j1= j ··· jK l1···lL 〉
A〈 jl〉 = C j

∑

〈 j1··· jK l1=l···lL 〉
A〈 jl〉 = Dl .
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The free-energy is computed by the replica method as:

f = −
1

β
lim

N→∞

1

N

∂

∂n

∣∣∣∣
n=0

〈Zn〉A,ξ,ζ (166)

The replicated partition function is:

〈Zn〉A,ξ,ζ =
∑

S1,...,Sn

∑

τ 1,...,τ n

N∏

j=1

〈
exp

(
Fsξβ

n∑

α=1

Sα
j

)〉

ξ

×
M∏

l=1

〈
exp

(
Fnζβ

n∑

α=1

τ α
l

)〉

ζ

×
〈
∏

〈 jl〉

n∏

α=1

exp
[
βγA〈 jl〉

(
Sα

j1
· · · Sα

jK
τ α

l1
· · · τ α

lL
− 1

)]
〉

A

.

(167)

The average over constructions 〈(· · ·)〉A is:

〈(· · ·)〉A =
∑

{C j ,Dl }

N∏

j=1

PC (C j )
M∏

l=1

PD(Dl)
1

N
δ

(
∑

〈 j1= j,i2,..., jK l〉
A〈 jl〉 − C j

)

× δ

(
∑

〈 jl1=l,l2,...,lK 〉
A〈 jl〉 − Dl

)
(· · ·)

=
∑

{C j ,Dl }

N∏

j=1

PC (C j )
M∏

l=1

PD(Dl)

×
1

N

∑

{A}

N∏

j=1

[∮
d Z j

2π i

1

Z
C j+1

j

Z

∑
〈i1= j,i2 ,...,iK l〉 A〈 j1= j,..., jK l〉

j

]

×
M∏

l=1

[∮
dYl

2π i

1

Y
Dl+1

l

Y

∑
〈 jl1=l,l2 ,...,lL 〉 A〈 jl1=l,...,lL 〉

l

]
(· · ·), (168)

where the first sum is over profiles {Cj, Dl} composed by N numbers drawn
independently from PC (C) and M numbers drawn from PD(D). The second
sum is over constructions A consistent with the profile {Cj, Dl}.

The signal average 〈(· · ·)〉ξ has the form:

〈(· · ·)〉ξ =
∑

ξ=−1,+1

(1 − pξ ) δ(ξ − 1) + pξ δ(ξ + 1) (· · ·). (169)
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Similarly, the noise average 〈(· · ·)〉ζ is:

〈(· · ·)〉ζ =
∑

ζ=−1,+1

(1 − p) δ(ζ − 1) + p δ(ζ + 1) (· · ·). (170)

Along the same steps described for Gallager codes, we compute averages
above and introduce auxiliary variables via

∫
dqα1···αm

δ

(
qα1···αm

−
1

N

N∑

i

Z i S
α1

i · · · S
αm

i

)
= 1 (171)

∫
drα1···αm

δ

(
rα1···αm

−
1

M

M∑

i

Yiτ
α1

i · · · τ αm

i

)
= 1 (172)

Using the same types of techniques employed in the case of Gallager codes
(see Appendix C.2 for details), we obtain the following expression for the
replicated partition function:

〈Zn〉A,ξ,ζ =
N∏

j=1

∑

C j

PC (C j )
M∏

l=1

∑

Dl

PD(Dl)

×
(

dq0dq̂0

2π i

)( n∏

α=1

dqαdq̂α

2π i

)
· · ·

(
dr0dr̂0

2π i

)( n∏

α=1

drαdr̂α

2π i

)
· · ·

× exp

[
M L N K

K !L!

n∑

m=0

∑

〈α1···αm 〉
Tmq K

α1···αm
r L
α1···αm

− N

n∑

m=0

∑

〈α1···αm 〉
qα1···αm

q̂α1···αm
− M

n∑

m=0

∑

〈α1···αm 〉
rα1···αm

r̂α1···αm

]

×
1

N

N∏

j=1

Tr{Sα
j }

[〈
exp

[
Fsβξ

n∑

α=1

Sα
j

]〉

ξ

×
∮

d Z j

2π i

exp
[
Z j

∑n

m=0

∑
〈α1···αm 〉 q̂α1···αm

S
α1

j · · · S
αm

j

]

Z
C j+1

j

]

×
M∏

l=1

Tr{τα
l }

[〈
exp

[
Fnβζ

n∑

α=1

τ α
l

]〉

ζ

×
∮

dYl

2π i

exp
[
Yl

∑n

m=0

∑
〈α1···αm 〉 r̂α1···αm

τ
α1

l · · · τ αm

l

]

Y
Dl+1

l

]
, (173)
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where Tm = e−nβγ coshn(βγ ) tanhm(βγ ). Note that the above expression is an
extension of Eq. (120).

The replica symmetry assumption is enforced by using the ansätze:

qα1···αm
=
∫

dx π (x)xm q̂α1···αm
=
∫

dx̂ π̂ (x̂) x̂m (174)

and

rα1···αm
=
∫

dy φ(y) ym r̂α1···αm
=
∫

d ŷ φ̂(ŷ) ŷm . (175)

By plugging the above ansätze, using the limit γ → ∞ and standard tech-
niques (see Appendix C.3 for details) the following expression for the free-
energy:

f =
1

β
Extr{π̂ ,π,φ̂,φ}

{
α ln 2 + C

∫
dx π(x) dx̂ π̂ (x̂) ln (1 + x x̂)

+αD

∫
dy φ(y) d ŷ φ̂(ŷ) ln (1 + y ŷ)

−α

∫ [
K∏

j=1

dx j π (x j )

][
L∏

l=1

dyl φ(yl)

]
ln

(
1 +

K∏

j=1

x j

L∏

l=1

yl

)

−
∑

C

PC

∫ [
C∏

j=1

dx̂ j π̂(x̂ j )

]〈
ln

[
∑

σ=±1

eσξβFs

C∏

j=1

(1 + σ x̂ j )

]〉

ξ

−α
∑

D

PD

∫ [
D∏

l=1

d ŷ l φ̂(ŷl)

]〈
ln

[
∑

σ=±1

eσζβFn

D∏

l=1

(1 + σ ŷl)

]〉

ζ

}
,

(176)

where C =
∑

C CPC (C), D =
∑

D DPD(D) and α = M/N = C/K .
By performing the extremization above, restricted to the space of normalized

functions, we find the following saddle-point equations:

π̂(x̂) =
∫ K−1∏

j=1

dx j π(x j )
L∏

l=1

dyl φ(yl)δ

[
x̂ −

K−1∏

j=1

x j

L∏

l=1

yl

]

π (x) =
1

C

∑

C

CPC

∫ C−1∏

l=1

d x̂ l π̂ ( x̂ l)

×
〈
δ

[
x − tanh

(
βFsξ +

C−1∑

l=1

atanh x̂ l

)]〉

ξ

,
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φ̂( ŷ ) =
∫ L−1∏

l=1

dyl φ(yl)
K∏

j=1

dx j π(x j )δ

[
ŷ −

L−1∏

l=1

yl

K∏

j=1

x j

]

φ(y) =
1

D

∑

D

DPD

∫ D−1∏

l=1

d ŷ l φ̂(ŷl)

×
〈
δ

[
y − tanh

(
βFnζ +

D−1∑

l=1

atanh ŷl

)]〉

ζ

. (177)

The typical overlap ρ = 〈 1
N

∑N

j=1 ξ j ξ̂ j 〉A,ζ,ξ between the estimate ξ̂ j =
sgn(〈S j 〉βN

) and the actual signal ξ j is given by (see Appendix A.3):

ρ =
∫

dh P(h) sgn(h) (178)

P(h) =
∑

C

PC (C)

∫ C∏

l=1

dx̂ l π̂ (x̂ l)

×
〈
δ

[
h − tanh

(
βFsξ +

C∑

l=1

atanh x̂ l

)]〉

ξ

.

The intensive entropy is simply s = β2 ∂ f

∂β
yielding:

s = β(u(β) − f ) (179)

u = −
∑

C

PC

∫ C∏

j=1

dx̂ j π̂∗(x̂ j )

〈
Fsξ

∑
σ=±1 σeσβFsξ

∏
j (1 + σ x̂ j )∑

σ=±1 eσβFsξ
∏

j (1 + σ x̂ j )

〉

ξ

−α
∑

D

PD

∫ D∏

j=1

d ŷ j φ̂
∗(ŷ j )

〈
Fnζ

∑
σ=±1 σeσβFnζ

∏
j (1 + σ ŷ j )∑

σ=±1 eσβFnζ
∏

j (1 + σ ŷ j )

〉

ζ

where starred distributions are solutions for (177) and u(β) is the internal
energy density.

For optimal decoding the temperature must be chosen to beβ = 1 (Nishimori
temperature) and the fields are

Fs =
1

2
ln

(
1 − pξ

pξ

)
Fn =

1

2
ln

(
1 − p

p

)
.
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D. Probability Propagation Decoding

In Sections III and IV we derived probability propagation equations first by
assuming a set of factorization properties and writing a closed set of equations
that allowed the iterative computation of the (approximate) marginal posterior,
and second by computing local magnetizations on the interior of a Husimi cac-
tus (Bethe approximation). The two methods are equivalent as the factorization
properties assumed in the former are encoded in the geometry of the lattice
assumed in the latter.

Here we use insights provided in the last sections to build a decoding al-
gorithm for MN codes directly. From the replica symmetric free-energy (176)
we can write the following Bethe free-energy:

F (m, m̂) =
M

N
ln 2 +

1

N

M∑

μ=1

∑

i∈Ls (μ)

ln
(
1 + ms

μi m̂
s
μi

)

+
1

N

M∑

μ=1

∑

j∈Ln (μ)

ln
(
1 + mn

μj m̂
n
μj

)

−
1

N

M∑

μ=1

ln

(
1 + Jμ

∏

i∈Ls (μ)

ms
μi

∏

j∈Ln (μ)

mn
μj

)

−
1

N

N∑

i=1

ln

[
∑

σ=±
eσ Fs

∏

μ∈Ms (i)

(
1 + σ m̂s

μi

)
]

−
1

N

M∑

j=1

ln

[
∑

σ=±
eσ Fn

∏

μ∈Mn ( j)

(
1 + σ m̂n

μj

)
]

. (180)

The variables ms
μj (m

n
μj ) are cavity effective magnetizations of signal (noise)

bits interacting through the coupling μ, obtained by removing one of the C

couplings in Ms( j) (Mn( j)) from the system. The variables m̂s
μj (m̂

n
μj ) corre-

spond to effective magnetizations of signal (noise) bits due to the coupling μ

only.
The decoding solutions are fixed points of the free-energy (181) given by:

∂F (m, m̂)

∂ms
μj

= 0
∂F (m, m̂)

∂m̂s
μj

= 0 (181)

∂F (m, m̂)

∂mn
μj

= 0
∂F (m, m̂)

∂m̂n
μj

= 0 (182)



302 VICENTE ET AL.

The solutions for the above equations are the equations being solved by the
probability propagation decoding algorithm:

ms
μl = tanh

[
∑

ν∈Ms (l)\μ
atanh

(
m̂s

νl

)
+ Fs

]
(183)

m̂s
μj = Jμ

∏

i∈Ls (μ)\ j

ms
μi

∏

l∈Ln (μ)

mn
μl, (184)

mn
μl = tanh

[
∑

ν∈Mn (l)\μ
atanh

(
m̂n

νl

)
+ Fn

]
(185)

m̂n
μj = Jμ

∏

i∈Ls (μ)

ms
μi

∏

l∈Ln (μ)\ j

mn
μl . (186)

The estimate for the message is ξ̂ j = sgn(ms
j ), where mj

s is the local mag-
netization due to all couplings linked to the site j, can be computed as:

ms
j = tanh

[
∑

ν∈Ms ( j)

atanh
(
m̂s

ν j

)
+ Fs

]
(187)

One possibility for the decoding dynamics is to update Eqs. (183) and (185)
until a certain halting criteria is reached, and then computing the estimate
for the message using Eq. (187). The initial conditions are set to reflect the
prior knowledge about the message ms

μj (0) = 1 − 2pξ and noise mn
μl(0) =

1 − 2p.
As the prior information is limited, a polynomial time decoding algorithm

(like PP) will work only if the solution is unique or the initial conditions are
inside the correct basin of attraction. In this case, the 2(NK + MC) Eqs. (181)
only need to be iterated an O(1) number of times to get a successful decoding.
On the other hand, when there are many solutions, it is possible to obtain im-
proved decoding in exponential time by choosing random initial conditions and
comparing free-energies of the solutions obtained, selecting a global minimum.

Observe that the free-energy described here is not equivalent to the vari-
ational mean-field free-energy introduced in MacKay (1995, 1999). Here no
essential correlations are disregarded, except those related to the presence of
loops.

In the next section, we will analyze the landscape of the replica symmetric
free-energy for three families of construction parameters and will be able to
predict the practical performance of a PP decoding algorithm.
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E. Equilibrium Results and Decoding Performance

The saddle-point Eqs. (177) can be solved by using Monte Carlo integration
iteratively. In this section, we show that MN codes can be divided, as far as
performance is concerned, into three parameter groups: K ≥ 3, K = 2, and
K = 1, L > 1.

We, therefore, treat each of these cases separately in the following.

1. Analytical Solution: The Case of K ≥ 3

Replica symmetric results for the cases of K ≥ 3 can be obtained analytically;
therefore, we focus first on this simple case. For unbiased messages (Fs = 0),
we can easily verify that the ferromagnetic state, characterized by ρ = 1, and
the probability distributions

π (x) = δ(x − 1)

π̂ (x̂ ) = δ(x̂ − 1)

φ(y) = δ(y − 1)

φ̂( ŷ) = δ(ŷ − 1) (188)

and the paramagnetic state of ρ = 0 with the probability distributions

π (x) = δ(x)

π̂ (x̂) = δ(x̂)

φ̂( ŷ) = δ(ŷ)

φ(y) =
1 + tanh(Fn)

2
δ(y − tanh(Fn))

+
1 − tanh(Fn)

2
δ(y + tanh(Fn)), (189)

satisfy replica symmetric saddle-point Eqs. (177). Other solutions could be
obtained numerically. To check for that, we represented the distributions with
histograms of 20,000 bins and iterated Eqs. (177) 100–500 times with 2× 105

Monte Carlo sampling steps for each iteration. No solutions other than ferro-
magnetic and paramagnetic have been observed.

The thermodynamically dominant state is found by evaluating the free-
energy of the two solutions using Eq. (176), which yields

fFERRO = −
C

K
Fn tanh(Fn), (190)



304 VICENTE ET AL.

for the ferromagnetic solution and

fPARA =
C

K
ln 2 − ln 2 −

C

K
ln (2 cosh(Fn)) , (191)

for the paramagnetic solution.
Figure 24(a) describes schematically the nature of the solutions for this case,

in terms of the replica symmetric free-energy and overlap obtained, for various
noise levels p and unbiased messages pξ = 1/2. The coexistence line in the
code rate versus noise level plane is given by

fFERRO − fPARA =
ln 2

Rc

[Rc − 1 + H2(p)] = 0. (192)

This can be rewritten as

Rc = 1 − H2(p) = 1 + p log2(p) + (1 − p) log2(1 − p), (193)

which coincides with channel capacity and is represented in Figure 25(a)
together with the overlap ρ as a function of the noise level p.

Equation (193) seems to indicate that all constructions with K ≥ 3 may
attain error-free data transmission for R < Rc in the limit where both message
and codeword lengths N and M become infinite, thus saturating Shannon’s
bound. However, as described in Fig. 24(a), the paramagnetic state is also stable
for any noise level, which has dynamic implications if a replica symmetric free-
energy is to be used for decoding (as is the case in probability propagation
decoding).

To validate the solutions obtained we have to make sure that the entropy is
positive. Entropies can be computed by simply plugging distributions (189)
and (190) into Eq. (179). The energy densities for the unbiased case are u =
uPARA = uFERRO = −αFn(1 − 2p), since the Nishimori condition is employed
(see Appendix B.3). Ferromagnetic entropies are sFERRO = u − fFERRO = 0
and

sPARA = u − fPARA

= −αFn(1 − 2p) −
C

K
ln 2 + ln 2 +

C

K
ln (2 cosh(Fn)) . (194)

It can be seen by using a simple argument that sPARA is negative below pc.
For p < pc, fPARA > fFERRO and u − sPARA > u − sFERRO.

This indicates that the distribution (190) is nonphysical below pc, despite
being a solution of replica symmetric saddle-point equations. This result seems
to indicate that the replica symmetric free-energy does not provide the right
description below pc. A simple alternative is to use the frozen spins solution as
the formulation of a theory with replica symmetry breaking for highly diluted



Figure 24. Figures on the left side show schematic representations free-energy landscapes
while figures on the right show overlaps ρ a function of the noise level p; thick and thin lines
denote stable solutions of lower and higher free energies, respectively, dashed lines correspond to
unstable solutions. (a) K ≥ 3—The solid line in the horizontal axis represents the phase where the
ferromagnetic solution (F, ρ = 1) is thermodynamically dominant. The paramagnetic solution
(P, ρ = 0) becomes dominant at pc, which coincides with the channel capacity. (b) K = 2—The
ferromagnetic solution and its mirror image are the only minima of the free-energy up to ps (solid
line). Above ps suboptimal ferromagnetic solutions (F′, ρ < 1) emerge. The thermodynamic
transition occurs at p3 is below the maximum noise level given by the channel capacity, which
implies that these codes do not saturate Shannon’s bound even if optimally decoded. (c) K = 1—
The solid line in the horizontal axis represents the range of noise levels where the ferromagnetic
state (F) is the only minimum of the free-energy. The suboptimal ferromagnetic state (F′) appears
in the region represented by the dashed line. The dynamic transition is denoted by ps, where F′ first
appears. For higher noise levels, the system becomes bistable and an additional unstable solution
for the saddle point equations necessarily appears. The thermodynamic transition occurs at the
noise level p1 where F′ becomes dominant.
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Figure 25. Transition lines in the plane rate R versus the flip rate p, obtained from numerical
solutions and the TAP approach (N = 104), and averaged over 10 different initial conditions with
error bars much smaller than the symbols size. (a) Numerical solutions for K = L = 3, C = 6
and varying input bias fs ( ) and TAP solutions for both unbiased (+) and biased (♦) messages;
initial conditions were chosen close to the analytical ones. The critical rate is multiplied by the
source information content to obtain the maximal information transmission rate, which clearly
does not go beyond R = 3/6 in the case of biased messages; for unbiased patterns, H2( fs ) = 1.
(b) For the unbiased case of K = L = 2, initial conditions for the TAP (+) and the numerical
solutions (♦) were chosen to be of almost zero magnetization. (c) For the case of K = 1, L = 2
and unbiased messages. We show numerical solutions of the analytical equations (♦) and those
obtained by the TAP approach (+). The dashed line indicates the performance of K = L = 2
codes for comparison. Codes with K = 1, L = 2 outperform K = L = 2 for code rates R < 1/3.

systems, which is a difficult task (see, e.g., Wong and Sherrington, 1988;
Monasson, 1998b).

Nevertheless, the practical performance of the probability propagation de-
coding is described by the replica symmetric theory, the presence of para-
magnetic stable states implies the failure of PP decoding at any noise level.
Even without knowing the correct physics below pc, it is possible to use an
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exhaustive search for the global minimum of the free-energy in Section V.D
to attain Shannon’s bound in exponential time.

2. The Case of K = 2

All codes with K ≥ 3 potentially saturate Shannon’s bound and are character-
ized by a first-order phase transition between the ferromagnetic and paramag-
netic solutions. Solutions for the case with K = 2 can be obtained numerically,
yielding significantly different physical behavior as shown in Figure 24(b).

At very large noise levels, the paramagnetic solution (190) gives the unique
extremum of the free-energy until the noise level reaches p1, at which the fer-
romagnetic solution (189) of higher free-energy becomes locally stable. As the
noise level decreases to p2, the paramagnetic solution becomes unstable and
a suboptimal ferromagnetic solution and its mirror image emerge. Those so-
lutions have lower free-energy than the ferromagnetic solution until the noise
level reaches p3. Below p3, the ferromagnetic solution becomes the global min-
imum of the free-energy, while the suboptimal ferromagnetic solutions remain
locally stable. However, the suboptimal solutions disappear at the spinodal
noise level ps and the ferromagnetic solution (and its mirror image) becomes
the unique stable solution of the saddle-point Eqs. (177).

The analysis implies that p3, the critical noise level below which the fer-
romagnetic solution becomes thermodynamically dominant, is lower than
pc = H−1

2 (1 − R) which corresponds to Shannon’s bound. Namely, K = 2
does not saturate Shannon’s bound in contrast to K ≥ 3 codes even if decoded
in exponential time. Nevertheless, it turns out that the free-energy landscape,
with a unique minimum for noise levels 0 < p < ps , offers significant ad-
vantages in the decoding dynamics compared to that of codes with K ≥ 3,
allowing for the successful use of polynomial time probability propagation
decoding.

3. The Case of K = 1 and General L > 1

The choice of K = 1, independent of the value chosen for L > 1, exhibits a
different behavior presented schematically in Figure 24(c); also in this case
there are no simple analytical solutions and all solutions in this scenario but
the ferromagnetic one have been obtained numerically. The first important dif-
ference to be noted is that the paramagnetic state (190) is no longer a solution
of the saddle-point Eqs. (177) and is being replaced by a suboptimal ferro-
magnetic state, very much like Gallager codes. Convergence to ρ = 1 solution
can only be guaranteed for noise levels p < ps , where only the ferromagnetic
solution is present.
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Figure 26. Free-energies obtained by solving the analytical equations using Monte Carlo
integrations for K = 1, R = 1/6 and several values of L. Full lines represent the ferromagnetic
free-energy (FERRO, higher on the right) and the suboptimal ferromagnetic free-energy (higher
on the left) for values of L = 2, . . . , 7. The dashed line indicates Shannon’s bound and the arrows
represent the spinodal point values ps for L = 2, . . . , 7. The thermodynamic transition coincides
with Shannon’s bound.

The K = 1 codes do not saturate Shannon’s bound in practice; however, we
have found that at rates R < 1/3 they outperform the K = L = 2 code (see
Fig. 25) while offering improved decoding times when probability propagation
is used. Studying the replica symmetric free-energy in this case shows that as
the corruption rate increases, suboptimal ferromagnetic solutions (stable and
unstable) emerge at the spinodal point ps. When the noise increases further, this
suboptimal state becomes the global minimum at p1, dominating the system’s
thermodynamics. The transition at p1 must occur at noise levels lower or equal
to the value predicted by Shannon’s bound.

In Figure 26 we show free-energy values computed for a given code rate
and several values of L, denoting Shannon’s bound by a dashed line; the
thermodynamic transition observed numerically (i.e., the point where the fer-
romagnetic free-energy equals the suboptimal ferromagnetic free-energy) is
closely below Shannon’s bound within the numerical precision used. Spinodal
noise levels are indicated by arrows. In Figure 27 we show spinodal noise
levels as a function of L as predicted by the replica symmetric theory (circles)
and obtained by running PP decoding of codes with size 104. The optimal
parameter choice is L = 2.

Due to the simplicity of the saddle-point Eqs. (177) we can deduce the
asymptotic behavior of K = 1 and L = 2 codes for small rates (large C)
by computing the two first cumulants of the distributions π, π̂, φ, and φ̂

(Gaussian approximation). A decoding failure corresponds to 〈h〉 ∼ O(1) and
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Figure 27. Spinodal point noise level ps for K = 1, R = 1/6 and several choices of L.
Numerical solutions are denoted by circles and PP decoding solutions (10 runs with size N =104)
by black triangles. Symbols are larger than the error bars.

σ 2
h ∼ O(1). It implies that 〈x̂〉 ∼ O(1/C) and σx̂ ∼ O(1/C). For that, y must

be small and we can use atanh(tanh(y1)tanh(y2)) ≈ y1 y2 and write:

〈x〉 ∼ O(1) σ 2
x ∼ O(1) (195)

〈x̂〉 ≈ 〈y〉2 (196)

σ 2
x̂ ≈ 〈y2〉2 − 〈y〉4 (197)

〈y〉 = 〈ŷ〉 + (1 − 2p)Fn σ 2
y = σ 2

ŷ + 4 f (1 − p)F2
n (198)

〈ŷ〉 ≈ 〈tanh(x)〉〈y〉 (199)

σ 2
ŷ ≈ 〈tanh2(x)〉〈y2〉 − 〈tanh(x)〉2〈y〉2 (200)

To simplify further we can assume that p → 0.5. Therefore, Fn ≈ (1 − 2p).
The critical observation is that in order to have 〈h〉 ∼ O(1), we need that x̂ ∼
O(1/C) and consequently 〈y〉 ∼ O(1/

√
C). Manipulating the set of equations

above:

〈y〉 ≈ 〈tanhx〉〈y〉 + (1 − 2 f )2

By imposing the condition over 〈y〉 : C−1/2 ∼ (1 − 2p)2(1 − 〈tanhx〉)−1

In terms of the code rate R = 1/C :

R ∼
(1 − 2p)4

(1 − 〈tanhx〉)2
(201)
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Figure 28. Asymptotic behavior of the transition for small rates. The full line represents
Shannon’s bound, circles represent transitions obtained by using only the first cumulants, and
squares correspond to the Gaussian approximation.

The asymptotic behavior of Shannon’s bound is given by:

R ∼
(1 − 2p)2

ln 2
(202)

Thus, the K = 1 and L = 2 codes are not optimal asymptotically (large C

values). In Figure 28 we verify the relation (201) by iterating first cumulant
equations in the delta approximation and first and second cumulant equations
in the Gaussian approximation.

F. Error Correction: Regular vs. Irregular Codes

Matrix construction irregularity can improve the practical performance of MN
codes. This fact was first reported in the information theory literature (see,
e.g., Davey, 1998, 1999; Luby et al., 1998). Here we analyze this problem by
using the language and tools of statistical physics. We now use the simplest
irregular constructions as an illustration; here, the connectivities of the signal
matrix Cs are described by a simple bimodal probability distribution:

PC (C) = (1 − θ ) δ(C − Co) + θδ(C − Ce). (203)
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transition. The thermodynamic transition coincides with the upper bound (u.b.)
in Section V.A and is very close to, but below, Shannon’s limit which is shown
for comparison. Similar behavior was observed in regular MN codes with
K = 1.

G. The Spinodal Noise Level

The PP algorithm can be regarded as an iterative solution of fixed-point equa-
tions for the free-energy (181) which is sensitive to the presence of local
minima in the system. One can expect convergence to the global minimum of
the free-energy from all initial conditions when there is a single minimum or
when the landscape is dominated by the basin of attraction of this minimum
when random initial conditions are used.

To analyze this point, we run decoding experiments starting from initial con-
ditions ms

μj (0) and mn
μl(0) that are random perturbations of the ferromagnetic

solution drawn from the following distributions:

P
(
ms

μj (0)
)
= (1 − λs) δ

(
ms

μj (0) − ξ j

)
+ λs δ

(
ms

μj (0) + ξ j

)
(204)

and

P
(
mn

μl(0)
)
= (1 − λn) δ

(
mn

μl(0) − τl

)
+ λn δ

(
mn

μl(0) + τl

)
, (205)

where for convenience we choose 0 ≤ λs = λn = λ ≤ 0.5.
We performed PP decoding several times for different values of λ and noise

level p. For λ ≤ 0.026, we observed that the system converges to the ferro-
magnetic state for all constructions, message biases pξ, and noise levels p

examined. It implies that this state is always stable. The convergence occurs
for any λ for noise levels below the transition observed in practice.

These observations suggest that the ferromagnetic basin of attraction domi-
nates the landscape up to some noise level ps. The fact that no other solution is
ever observed in this region suggests that ps is the noise level where suboptimal
solutions actually appear, namely, it is the noise level that corresponds to the
appearance of spinodal points in the free-energy. The same was observed for
regular MN codes with K = 1 or K = 2.

We have shown that MN codes can be divided into three categories with
different equilibrium properties: (i) K ≥ 3, (ii) K = 2, and (iii) general L > 1,

K = 1. In the next two subsections we will discuss these cases separately.

1. Biased Messages: K ≥ 3

To show how irregularity affects codes with this choice of parameters, we
choose K , L = 3, Co = 4, Ce = 30 and biased messages with pξ = 0.3. These
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Figure 29. (a) Overlap as a function of the noise level p for codes with K = L = 3 and
C = 15 with message bias pξ = 0.3. Analytical RS solutions for the regular code are denoted
as ♦ and for the irregular code; with Co = 4 and Ce = 30 denoted as . Results are averages
over 10 runs of the PP algorithm in an irregular code of size N = 6000 starting from fixed initial
conditions (see the text); they are plotted as � in the rightmost curve for comparison. PP results for
the regular case agree with the theoretical solutions and have been omitted to avoid overloading
the figure. (b) Free-energies for the ferromagnetic state (full line) and for the failure state (line
with �). The transitions observed in (a) are indicated by the dashed lines. Arrows indicate the
thermodynamic (T) transition, the upper bound (u.b.) of Section V.A, and Shannon’s bound.

The mean connectivity is C = (1 − θ )Co + θCe and Co < C < Ce; bits in a
group with connectivity Co will be referred as ordinary bits and bits in a group
with connectivity Ce as elite bits. The noise matrix Cn is chosen to be regular.

To gain some insight into the effect of irregularity on solving the PP
Eqs. (183) and (185), we performed several runs starting from the fixed ini-
tial conditions ms

μj (0) = 1 − 2pξ and mn
μl(0) = 1 − 2p as prescribed in the

last section. For comparison, we also iterated the saddle-point Eqs. (177)
obtained by the replica symmetric (RS) analysis, setting the initial condi-
tions to be π0(x) = (1 − pξ ) δ(x − ms

μj (0)) + pξ δ(x + ms
μj (0)) and ρ0(y) =

(1 − p) δ(y − mn
μl(0)) + p δ(y + mn

μl(0)), as suggested from the interpretation
of the fields π (x) and ρ(y) in the last section.

In Figure 29(a) we show a typical curve for the overlap ρ as a function of the
noise level p. The RS theory agrees very well with PP decoding results. The
addition of irregularity improves the performance considerably. In Figure 29(b)
we show the free-energies of the two emerging states. The free-energy for
the ferromagnetic state with overlap ρ = 1 is shown as a full line; the failure
suboptimal ferromagnetic state (in Fig. 29(a) with overlap ρ = 0.4) is shown as
a line marked with �. The transitions seen in Fig. 29(a) are denoted by dashed
lines. It is clear that they are far below the thermodynamic (T) transition,
indicating that the system becomes trapped in suboptimal ferromagnetic states
for noise levels p between the observed transitions and the thermodynamic
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Figure 30. Spinodal noise level ps for regular and irregular codes. In both constructions,
parameters are set as K = L = 3. Irregular codes with Co = 4 and Ce = 30 are used. PP decoding
is carried out with N = 5000 and a maximum of 500 iterations; they are denoted by + (regular)
and∗ (irregular). Numerical solutions for the RS saddle-point equations are denoted by♦ (regular)
and � (irregular). Shannon’s limit is represented by a full line and the upper bound of Section V.A.
is represented by a dashed line. The symbols are chosen to be larger than the actual error bars.

choices are arbitrary but illustrate what happens with the practical decoding
performance. In Figure 30 we show the transition from the decoding phase to
a failure phase as a function of the noise level p for several rates R in both
regular and irregular codes. Practical decoding (♦ and �) results are obtained
for systems of size N = 5000 with a maximum number of iterations set to 500.
Random initial conditions are chosen and the whole process repeated 20 times.
The practical transition point is found when the number of failures equals the
number of successes.

These experiments were compared with the theoretical values for ps obtained
by solving the RS saddle-point Eqs. (177) (represented as + and ∗ in Fig. 30)
and finding the noise level for which a second solution appears. For comparison
the coding limit is represented in the same figure by a full line.

As the constructions used are chosen arbitrarily, one can expect that these
transitions can be further improved, even though the improvement shown in
Figuer 30 is already fairly significant.

The analytical solution obtained for K ≥ 3 and unbiased messages pξ = 1/2
implies that the system is bistable for arbitrary code constructions when these
parameters are chosen. The spinodal noise level is then ps = 0 in this case and
cannot be improved by adding irregularity to the construction. Up to the noise
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Figure 31. Spinodal noise level ps for irregular codes as a function of the message bias
pξ . The construction is parameterized by K = L = 3, Co = 4, and Ce = 30 with C = 15. PP
decoding is carried out with N = 5000 and a maximum of 500 iterations, and is represented by+,
while theoretical RS solutions are represented by ♦. The full line indicates Shannon’s limit.
Symbols are larger than the actual error bars

level pc, the ferromagnetic solution is the global minimum of the free-energy,
and therefore Shannon’s limit is achievable in exponential time; however, the
bistability makes these constructions unsuitable for practical decoding with a
PP algorithm when unbiased messages are considered.

The situation improves when biased messages are used. Fixing the matrices
Cn and Cs , one can determine how the spinodal noise level ps depends on
the bias pξ . In Figure 31 we compare simulation results with the theoretical
predictions of ps as a function of pξ . The spinodal noise level ps collapses
to zero as pξ increases toward the unbiased case. It obviously suggests us-
ing biased messages for practical MN codes with parameters K ≥ 3 and PP
decoding.

The qualitative pictures of the energy landscape for coding with biased
and unbiased messages with K ≥ 3 differ significatively. In Figure 32 this
landscape is sketched as a function of the noise level p for a given bias. Up to the
spinodal noise level ps, the landscape is totally dominated by the ferromagnetic
state F. At the spinodal noise level, another suboptimal state F ′ emerges,
dominating the decoding dynamics. At pc, the suboptimal state F ′ becomes
the global minimum. The bold horizontal line represents the region where the
ferromagnetic solution with ρ = 1 dominates the decoding dynamics. In the



LOW-DENSITY PARITY-CHECK CODES 315

Figure 32. Pictorial representation of the free-energy landscape for codes with K ≥ 3 and
biased messages pξ < 0.5 as a function of the noise level p. Up to the spinodal noise level ps,
there is only the ferromagnetic state F. At ps, another state F ′ appears, dominating the decoding
dynamics. The critical noise level pc indicates the point where the state F ′ becomes the global
minimum (thermodynamic transition).

region represented by the dashed line, decoding dynamics is dominated by
suboptimal ferromagnetic ρ < 1 solutions.

2. Unbiased Messages

For the remaining parameter choices, namely general L > 1, K = 1, and
K = 2, it was shown that unbiased coding is generally possible, yielding close
to Shannon’s limit performance.

In the K ≥ 3 case, the practical performance is defined by the spinodal noise
level ps and the addition of irregularity modifies ps.

In the general L , K = 1 family we illustrate the effect of irregularity by the
choice of L = 2, Co = 4, and Ce = 10. In Figure 33 we show the transitions
observed by performing 20 decoding experiments with messages of length
N = 5000 and a maximal number of iterations set to 500 (+ for regular and ∗
for irregular). We compare the experimental results with theoretical predictions
based on the RS saddle-point Eqs. (177) (♦ for regular and � for irregular).
Shannon’s limit is represented by a full line. The improvement is modest, as
expected, since regular codes already present close-to-optimal performance.
Discrepancies between the theoretical and numerical results are due to finite
size effects.

We also performed a set of experiments using K = L = 2 with Co = 3 and
Ce = 8, the same system size N = 5000 and maximal number of decoding
iterations 500. The transitions obtained experimentally and predicted by theory
are shown in Figure 34.
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Figure 33. Spinodal noise level ps for regular and irregular codes. The constructions are
of K = 1 and L = 2, irregular codes are parameterized by Co = 4 and Ce = 10. PP decoding is
carried out with N = 5000 and a maximum of 500 iterations; they are denoted by+ (regular) and
∗ (irregular). Numerical solutions for RS equations are denoted by ♦ (regular) and � (irregular).
The coding limit is represented by a line. Symbols are larger than the actual error bars.

Figure 34. Spinodal noise level values ps for regular and irregular codes. Constructions are
of K = 2 and L = 2, irregular codes are parameterized by Co = 3 and Ce = 8. PP decoding is
carried out with N = 5000 and a maximum of 500 iterations; they are denoted by+ (regular) and
∗ (irregular). Theoretical predictions are denoted by ♦ (regular) and � (irregular). The coding
limit is represented by a line. Symbols are larger than the actual error bars.
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{α j } completely specify the construction. A further constraint to the parame-
ters set {α j } is provided by the choice of a code rate, as the inverse code rate
is α = M/N =

∑m

j=1 α j .
Encoding and decoding using cascading codes are performed in exactly

the same fashion as described in Section V for MN codes. A binary vector
t ∈ {0, 1}M defined by

t = Gξ (mod 2), (206)

is produced, where all operations are performed in the field {0, 1} and are
indicated by (mod 2). The code rate is R = N/M . The generator matrix G is
a M × N dense matrix defined by

G = C−1
n Cs (mod 2). (207)

The transmitted vectorτ is then corrupted by noise. Assuming a memoryless
BSC, noise is represented by a binary vector ζ ∈ {0, 1}M with components
independently drawn from the distribution P(ζ ) = (1 − p) δ(ζ ) + p δ(ζ − 1).

The received vector is

r = Gξ + ζ (mod 2). (208)

Decoding is performed by computing the syndrome vector

z = Cnr = Csξ + Cnζ (mod 2), (209)

from which an estimate ξ̂ for the message can be obtained.

A. Typical PP Decoding and Saddle-Point-Like Equations

In this section, we show how a statistical description for the typical PP decoding
can be constructed without using replica calculations. To keep the analysis as
simple as possible, we exemplify the procedure with a KS code with two
signal matrices denoted 1s and 2s and two noise submatrices denoted 1n and
2n. The channel is chosen to be a memoryless BSC. The number of nonzero
elements per row is K1 and K2, respectively, and the inverse rate isα = α1 + α2.
Therefore, for a fixed code rate, the code construction is specified by a single
parameter α1. We present one code in this family in Figure 37.

The PP decoding dynamics for these codes is described by Eqs. (185). How-
ever, due to the irregular character of the construction, sites inside each one of
the submatrices are connected differently. Remembering the statistical physics
formulation of MN codes presented in Section V.B, nonzero row elements in
the matrices depicted in Figure 37 correspond to sites taking part in one multi-
spin interaction. Therefore, signal sites in the submatrix 1s interact with other
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Figure 35. Bit error probability pb as a function of the signal to noise ratio for codes of
rate R = 1/2, sizes N = 1000 (right) and N = 10000 (left) in a memoryless Gaussian channel.
Black triangles represent cascading codes, dashed lines represent Turbo codes and dotted lines
represent optimized irregular Gallager codes of similar sizes (Kanter and Saad, 2000b).

VI. Cascading Codes

Kanter and Saad (KS) recently proposed a variation of MN codes that has been
shown to be capable of attaining close-to-channel capacity performance and
outperforming Turbo codes (Kanter and Saad, 1999, 2000a,b). The central idea
is to explore the superior dynamic properties (i.e., large basin of attraction) of
MN codes with K = 1, 2 and the potential for attaining channel capacity of MN
codes with K > 2 by introducing constructions with intermediate properties.
This is done by employing irregular constructions like the one depicted in
Figure 35, with the number of nonzero elements per row set to several different
values K1, . . . , Km .

In Figure 35 we show a performance comparison (presented in (Kanter
and Saad, 2000b) of Turbo, KS, and Gallager codes with optimized irregular
constructions (Richardson et al., 2001) for a memoryless Gaussian channel.
The bit error probability pb is plotted against the signal to noise ratio in decibels
(10 log10 (S/N)) for codes of sizes N = 1000 and N = 10000.

The introduction of multispin interactions of several different orders and of
more structured matrices makes the statistical physics of the problem much
harder to solve. We, therefore, adopt a different approach: first we write
the probability propagation equations and find an appropriate macroscopic
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Figure 36. Cascading construction with three signal submatrices with K1, K2 and K3

nonzero elements per row, respectively. The number of nonzero elements per column is kept
fixed to C. The noise matrix Cn is composed by two submatrices, the nonzero elements are
denoted by lines. The inverse Cn

−1 is also represented.

description in terms of field distributions, we then solve saddle-point-like equa-
tions for the field distributions to find the typical performance.

Cascading codes are specific constructions of MN codes. The signal matrix
Cs is defined by m random submatrices with K1, K2, . . . , Km nonzero elements
per row, respectively. The matrix Cn is composed of two submatrices: C (1)

ni j
=

δi, j + δi, j+� and C (2)
ni j

= δi, j . The inverse C−1
n used in the encoding process

is easily obtainable. In Figure 36 we represent a KS code with three signal
submatrices, the nonzero elements in the noise matrix Cn are denoted by lines,
we also represent the inverse of the noise matrix C−1

n .
The signal matrix Cs is subdivided into M j × N submatrices, with j =

1, . . . , m. The total number of nonzero elements is given by NC =
∑m

j=1 M j K j

what yields C =
∑m

j=1 α j K j , where α j = M j/N . The code construction is,
therefore, parameterized by the set {(α j , K j )}. If we fix {K j }, the parameters
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For the submatrix 1s we have:

m
(1s)
μj = tanh

[
∑

ν∈M1s ( j)\μ
atanh

(
m̂

(1s)
ν j

)
+

∑

ν∈M2s ( j)

atanh
(
m̂

(2s)
ν j

)
+ Fs

]

m̂
(1s)
μj = Jμm(1n)

μμ m
(1n)
μμ+�

∏

l∈L1s (μ)\ j

m
(1s)
μl , (211)

where the second equation represents interactions with two noise sites and
and K1 − 1 signal sites. The first equation represents the α1 K1 + α2 K2 − 1
multispin interactions the site j participates in.

Similarly, for the submatrix 2s we have:

m
(2s)
μj = tanh

[
∑

ν∈M1s ( j)

atanh
(
m̂

(1s)
ν j

)
+

∑

ν∈M2s ( j)\ν
atanh

(
m̂

(2s)
ν j

)
+ Fs

]

m̂
(2s)
μj = Jμm(2n)

μ

∏

l∈L2s (μ)\ j

m
(2s)
μl (212)

For the submatrix 1n we have:

m
(1n)
μj = tanh

[
atanh

(
m̂

(1n)
ν j

)
+ Fn

]
(213)

m̂
(1n)
μj = Jμm

(1n)
μi

∏

l∈L1s (μ)

m
(1s)
μl , (214)

where either j = μ, i = μ + � or j = μ + �, i = μ.
Finally, for submatrix 2n we have:

m(2n)
μ = tanh [Fn] (215)

m̂(2n)
μ = Jμ

∏

l∈L2s (μ)

m
(2s)
μl (216)

The pseudo-posterior and decoded message are given by:

m j = tanh

[
∑

ν∈M1s ( j)

atanh
(
m̂

(1s)
ν j

)
+

∑

ν∈M2s ( j)

atanh
(
m̂

(2s)
ν j

)
]

(217)

ξ̂ j = sgn(m j ). (218)

The above equations provide a microscopic description for the PP decoding
process. We can produce a macroscopic description for the typical decoding
process by writing equations for probability distributions related to the dy-
namic variables. It is important to stress that the equations describing the PP
decoding are entirely deterministic when couplings Jμ and initial conditions
are given. The randomness comes into the problem when quenched averages
over messages, noise, and constructions are introduced.
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Figure 37. Cascading code with two signal matrices with parameters K1 and K2. Note
that noise sites inside the shaded regions take part in a different number of interactions than the
ordinary sites.

K1 − 1 signal sites in 1s and exactly two noise sites in 1n. Moreover, the same
site takes part in other α1 K1 + α2 K2 − 1 multispin couplings in both 1s and
2s. Sites in submatrix 2s interact with one noise site in 2n and K2 − 1 signal
sites in 2s, taking part in other α1 K1 + α2 K2 − 1 multispin interaction. Noise
sites in the submatrix 1n interact with another noise site and with K1 signal
sites in 1s. Finally, noise sites in 2n interact with K2 sites in 2s. Thus, the
Hamiltonian for a KS code takes the following form:

H = − γ

M1∑

μ=1

(JμSi1
· · · SiK1

τμτμ+� − 1)

−γ

M∑

μ=M1+1

(JμSi1
· · · SiK2

τμ − 1) − Fn

M∑

l=1

τl − Fs

N∑

j=1

S j , (210)

where Jμ = ξi1
· · · ξiK1

ζμζμ+�, for μ = 1, . . . , M1 and Jμ = ξi1
· · · ξiK2

ζμ

for μ = M1 + 1, . . . , M . Additionally, Nishimori’s condition requires that
γ → ∞, Fs = atanh(1 − 2pξ ) and Fn = atanh(1 − 2p), where the prior prob-
abilities are defined as in the previous chapters.

We can write PP decoding equations for each one of the submatrices 1s, 2s,
1n and 2n. The shaded regions in Figure 37 have to be described by different
equations, but can be disregard if the width � is of O(1), implying �/N → 0
for N → ∞.
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By performing the gauge transformation

m
(as)
μj → ξ j m

(as)
μj m̂

(as)
ν j → ξ j m̂

(as)
μj (219)

m
(an)
μj → ζ j m

(an)
μj m̂

(an)
μj → ζ j m̂

(an)
μj (220)

Jμ → 1 (a = 1, 2), (221)

introducing effective fields xμj = atanh(mμj ), x̂μj = atanh(m̂μj ) and assum-

ing that x
(as)
μj , x̂

(as)
μj , y

(an)
μj , ŷ

(an)
μj are independently drawn from distributions

Pa(x), P̂a(x̂ ), Ra(y), R̂a(ŷ), respectively, we get the following saddle-point-
like equations (for simplicity, we restrict the treatment to the case of unbiased
messages Fs = 0).

For the submatrix 1s:

P1(x) =
∫ α1 K1−1∏

j=1

dx̂ j P̂1(x̂ j )
α1 K2∏

l=1

dŵl P̂2(ŵl)

× δ

[
x −

α1 K1−1∑

j=1

x j −
α2 K2∑

l=1

wl

]
(222)

P̂1(x̂) =
∫ K1−1∏

j=1

dx j P1(x j ) dy1 R1(y1) dy2 R1(y2)

× δ

[
x̂ − atanh

(
tanh(y1)tanh(y2)

K1−1∏

j=1

tanh(x j )

)]
(223)

For 2s:

P2(x) =
∫ α1 K1∏

j=1

dx̂ j P̂1(x̂ j )
α1 K2−1∏

l=1

dŵl P̂2(ŵl)

× δ

[
x −

α1 K1∑

j=1

x j −
α2 K2−1∑

l=1

wl

]
(224)

P̂2(x̂) =
∫ K2−1∏

j=1

dx j P2(x j ) dy R2(y)

× δ

[
x̂ − atanh

(
tanh(y)

K2−1∏

j=1

tanh(x j )

)]
(225)
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For 1n we have:

R1(y) =
∫

d ŷ R̂1(ŷ) 〈δ [y − ŷ − ζ Fn]〉ζ

R̂1(ŷ) =
∫ K1∏

j=1

dx j P1(x j ) dy R1(y)

× δ

[
x̂ − atanh

(
tanh(y)

K1∏

j=1

tanh(x j )

)]
(226)

Finally, for submatrix 2n:

R2(y) = 〈δ [y − ζ Fn]〉ζ (227)

R̂2(ŷ) =
∫ K2∏

j=1

dx j P2(x j )δ

[
x̂ − atanh

(
K2∏

j=1

tanh(x j )

)]

The typical overlap can then be obtained as in the case of MN codes by
computing:

ρ =
∫

dh P(h) sgn(h) (228)

P(h) =
∫ α1 K1∏

j=1

dx̂ j P̂1(x̂ j )
α1 K2∏

l=1

dŵl P̂2(ŵl) δ

[
h −

α1 K1∑

j=1

x j −
α2 K2∑

l=1

wl

]
(229)

The numerical solution of these equations provides the typical overlap for
cascading codes with two signal matrices parameterized by α1(α2 = α − α1).
In Figure 38 we compare results obtained by solving the above equations
numerically (Monte Carlo integration with 4000 bins) and PP decoding sim-
ulations (10 runs, N = 5000) with R = 1/5 and α1 = 3. The agreement be-
tween theory and experiments supports the assumptions employed to obtain
the saddle-point-like equations.

B. Optimizing Construction Parameters

Equations (222) to (229) can be used to optimize code constructions within a
given family. For the family introduced in Figure 37 with fixed parameters K1

and K2, the optimization requires finding the value of α1 that produces the high-
est threshold ps. In Figure 39 we show the threshold (spinodal noise level) ps for
a KS code with K1 = 1, K2 = 3 and rate R = 1/5 (α = 5). The optimal perfor-
mance is obtained by selecting α1 = 3 and is very close to the channel capacity.
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Figure 38. Monte Carlo integration of field distributions and simulations for a KS code with
two signal matrices (K1 = 1 and K2 = 3), α = 5 (R = 1/5) and α1 = 3. Circles: full statistics
(4000 bins). Squares: simulations N = 5000.

Figure 39. Spinodal noise level ps as a function of α1 for a KS code with K1 = 1, K2 = 3
and R = 1/5 (α = 5). Circles: Monte Carlo integrations of saddle-point equations (4000 bins).
Squares: PP decoding simulations (10 runs with size N = 5000). The best performance is reached
for α1 = 3 and is close to the channel capacity for a BSC (indicated by a dashed line).
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VII. Conclusions and Perspectives

In this chapter we have analyzed error-correcting codes based on very sparse
matrices by mapping them onto spin systems of the statistical physics. The
equivalence between coding concepts and statistical physics is summarized in
a table.

Coding theory Statistical physics

Message bits s Spins S

Received bits r Multispin disordered couplings J (Sourlas)
Syndrome bits z Multispin couplings J (Gallager, MN, KS)
Bit error probability pe Gauged magnetization ρ (overlap)
Posterior probability Boltzmann weight
MAP estimator Ground state
MPM estimator Thermal average at Nishimori’s temperature

In the statistical physics framework, random parity-check matrices (or gen-
erator matrices as in the case of Sourlas codes), random messages, and noise
are treated as quenched disorder and the replica method is employed to com-
pute the free-energy. Under the assumption of replica symmetry, we found
in most of the cases that two phases emerge: a successful decoding (ρ = 1)
and failure (ρ < 1) phases. For MN codes with K = 2 or K = 1, three phases
emerge, representing successful decoding, failure, and catastrophic failure.

The general picture that emerges shows a phase transition between success-
ful and failure states that coincides with the information theory upper bounds
in most cases, the exception being MN codes with K = 2 (and to some extent
K = 1) where the transition is bellow the upper bound.

A careful analysis of replica symmetric quantities reveals unphysical behav-
ior for low noise levels with the appearance of negative entropies. This question
is resolved in the case of Sourlas codes with K → ∞ by the introduction of
a simple frozen spins first-step replica symmetry breaking ansatz. Despite the
difficulties in the replica symmetric analysis, threshold noise values observed
in simulations using probability propagation (PP) decoding agree with the
noise level where metastable states (or spinodal points) appear in the replica
symmetric free-energy.

A mean-field (Bethe) theory based on the use of a tree-like lattice (Husimi
cactus) exposes the relationship between PP decoding and statistical physics
and supports the agreement between theory and simulations as PP decoding
can be reinterpreted as a method for finding local minima of a Bethe free-
energy. Those minima can be described by distributions of cavity local fields
that are solutions of the replica symmetric saddle-point equations.
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The performance of the decoding process with probability propagation can
be obtained by looking at the Bethe free-energy landscape (or the replica sym-
metric landscape); in this way we can show that information theoretic upper
bounds can be attained by looking for global minima of the Bethe free-energy,
which may require computing time that grows exponentially with the system
size. In practical time scales, simple decoding procedures that simply find min-
ima become trapped in metastable states. That is the reason practical thresholds
are linked to the appearance of spinodal points in the Bethe free-energy.

For cascading codes, we adopted a different approach for the analysis. Using
the insights obtained in the analysis of the other codes, we started by writing
down the PP decoding equations and writing the Bethe free-energy and the
saddle-point-like equations for distributions of cavity fields. The transitions
predicted by these saddle-point-like equations were shown to agree with ex-
periments. We then employed this procedure to optimize parameters of one
simple family of cascading codes.

By studying the replica symmetric landscape we classified the various codes
by their construction parameters, we also showed that modifications in code
construction, such as the use of irregular matrices, can improve the performance
by changing the way the free-energy landscape evolves with the noise level.
We summarize in a table the results obtained.

Practical decoding of
Channel capacity unbiased messages

Sourlas K → ∞ K = 2
Gallager K → ∞ Any K

MacKay–Neal K > 2 K = 1, any L > 1 or K = 2
Cascading Still unclear K j = 1, 2 for some j

These results shed light on the properties that limit the theoretical and
practical performance of parity-check codes, explain the differences between
Gallager and MN constructions, and explore the role of irregularity in LDPC
error-correcting codes.

Some new directions are now being pursued and are worth mentioning. The
statistical physics of Gallager codes with nonbinary alphabets is investigated in
Nakamura et al. (2001). In Kabashima et al. (2001), the performance of error-
correcting codes in the case of finite message lengths has been addressed,
yielding tighter general reliability bounds. New analytical methods to investi-
gate practical noise thresholds using statistical physics have been proposed in
van Mourik et al. (2001) and in Kabashima et al. (2001), while the nature of
Gallager codes phase diagram was studied in detail in Montanari (2001).
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We believe that methods developed over the years in the statistical physics
community can make a significant contribution in other areas of information
theory. Research in some of these areas, such as CDMA and image restoration,
is already underway.

Appendix A. Sourlas Codes: Technical Details

1. Free-Energy

To compute free-energies we need to calculate the replicated partition function
(62). We can start from Eq. (60):

〈Zn〉A,ξ,J = Tr{Sα
j }
[〈

exp
(
− βH(n)({Sα})

)〉
A,J,ξ

]
, (A.1)

where H(n)({Sα}) represents the replicated Hamiltonian and α the replica in-
dices. First, we average over the parity-check tensorsA; for that, an appropriate
distribution has to be introduced, denoting μ ≡ 〈i1, . . . , iK 〉 for a specific set
of indices:

〈Zn〉 =
〈

1

N

∑

{A}

∏

i

δ

(
∑

μ\i

Aμ − C

)
Tr{Sα

j }e
−βH(n)({Sα})

〉

J,ξ

, (A.2)

where the δ distribution imposes a restriction on the connectivity per spin,
N is a normalization coefficient, and the notation μ\i means the set μ ex-
cept the element i. Using integral representations for the delta functions and
rearranging:

〈Zn〉 = Tr{Sα
j }

〈
1

N

(
∏

i

∮
d Z i

2π i

1

ZC+1
i

)

×
∑

{A}

(
∏

μ

(
∏

i∈μ

Z i

)Aμ
)

exp
(
− βH(n)({Sα})

)
〉

J,ξ

. (A.3)

Remembering that A ∈ {0, 1}, and using the expression (50) for the
Hamiltonian, we can change the order of the summation and the product above
and sum over A:

〈Zn〉 = Tr{Sα
j }

〈
1

N

(
∏

i

∮
d Z i

2π i

1

ZC+1
i

)
eβF

∑
α,i ξi Sα

i

×
∏

μ

[
1 +

(
∏

i∈μ

Z i

)
exp

(
β Jμ

∑

α

∏

i∈μ

Sα
i

)]〉

J,ξ

. (A.4)
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Using the identity exp(β Jμ

∏
i∈μ Sα

i ) = cosh(β) [1 + (
∏

i∈μ Sα
i ) tanh(β Jμ)], we

can perform the product over α to write:

〈Zn〉 = Tr{Sα
j }

1

N

(
∏

i

∮
d Z i

2π i

1

ZC+1
i

)
〈
eβF

∑
α,i ξi Sα

i

〉
ξ

×
∏

μ

[
1 +

(
∏

i∈μ

Z i

)
coshn(β)

(
1 + 〈tanh(β J )〉J

∑

α

∏

i∈μ

Sα
i

+ 〈tanh2(β J )〉J

∑

〈α1α2〉

∏

i∈μ

S
α1

i

∏

j∈μ

S
α2

j + · · ·
)]

. (A.5)

Defining 〈μ1, μ2, . . . , μl〉 as an ordered set of sets, and observing that for
large N,

∑
〈μ1···μl 〉(· · ·) =

1
l!

(
∑

μ(· · ·))l , we can perform the product over the
sets μ and replace the energy series by an exponential:

〈Zn〉 = Tr{Sα
j }

1

N

(
∏

i

∮
d Z i

2π i

1

ZC+1
i

)
〈
eβF

∑
α,iξi Sα

i

〉
ξ

× exp

[
coshn(β)

(
∑

μ

(
∏

i∈μ

Z i

)
+ 〈tanh(β J )〉J

∑

α

∑

μ

∏

i∈μ

zi S
α
i

+ 〈tanh2(β J )〉J

∑

〈α1α2〉

∑

μ

∏

i∈μ

Z i S
α1

i S
α2

i + · · ·
)]

. (A.6)

Observing that
∑

μ = 1/K !
∑

i1,...iK
, definingTl = 〈coshn(β J ) tanhl(β J )〉J

and introducing auxiliary variables qα1···αm
= 1

N

∑
i Z i S

α1

i · · · S
αm

i we find:

〈Zn〉A,ξ,J =
1

N

(
∏

i

∮
d Z i

2π i

1

ZC+1
i

)(∫
dq0 dq̂0

2π i

)
×
(
∏

α

∫
dqαdq̂α

2π i

)
· · ·

× exp

[
N K

K !

(
T0q K

0 + T1

∑

α

q K
α + T2

∑

〈α1α2〉
q K

α1α2
+ · · ·

)]

× exp

[
−N

(
q0q̂0 +

∑

α

qαq̂α +
∑

〈α1α2〉
qα1α2

q̂α1α2
+ · · ·

)]

×Tr{Sα
j }

[
〈
eβF

∑
α,i ξi Sα

i

〉
ξ

exp
∑

i

(
q̂0 Z i +

∑

α

q̂α Z i S
α
i + · · ·

)]
.

(A.7)
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The normalization constant is given by:

N =
∑

{A}

∏

i

δ

(
∑

μ\i

Aμ − C

)
, (A.8)

and can be computed using exactly the same methods as above, resulting in:

N =
(
∏

i

∮
d Z i

2π i

1

ZC+1
i

)(∫
dq0 d q̂0

2π i

)

× exp

[
N K

K !
q K

0 − Nq0 q̂0 + q̂0

∑

i

Z i

]
. (A.9)

Computing the integrals over Zis and using Laplace method to compute the
integrals over q0 and q̂0 we obtain:

N = exp

{
Extrq0,q̂0

[
N K

K !
q K

0 − Nq0q̂0 + N ln

(
q̂C

0

C!

)]}
. (A.10)

The extremum point is given by

q0 = N (1−K )/K [(K − 1)!C]1/K

and

q̂0 = (C N )(K−1/K ) [(K − 1)!]−1/K .

Replacing the auxiliary variables in Eq. (A.7) using qα1···αm
/q0 → qα1···αm

and
q̂α1···αm

/q0 → q̂α1···αm
, computing the integrals over Zi and using Laplace method

to evaluate the integrals, we finally find Eq. (62).

2. Replica Symmetric Solution

The replica symmetric free-energy (66) can be obtained by plugging the ansätz
(65) into Eq. (A.7). Using Laplace method we obtain:

〈Zn〉A,ξ,J =
1

N
exp

{
N Extrπ,π̂

[
C

K
G1 − C G2 + G3

]}
, (A.11)

where:

G1 = T0 + T1

∑

α

∫ K∏

j

( dx j π (x j ) tanh(βx j ))

+T2

∑

〈α1α2〉

∫ K∏

j

( dx j π (x j ) tanh2(βx j )) + · · · , (A.12)
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Putting everything together, using Eq. (59) and some simple manipulation
we find Eq. (66).

3. Local Field Distribution

Here we derive explicitly Eq. (68). The gauge transformed overlap can be
written as

ρ =
1

N

N∑

i=1

〈sign(mi )〉A,J,ξ , (A.19)

introducing the notation mi = 〈Si 〉, where 〈· · ·〉 is a gauged average.
For an arbitrary natural number p, one can compute pth moment of mi

〈
m

p

i

〉
A,J,ξ

= lim
n→0

〈
∑

S1,...,Sn

S1
i · S2

i · · · · · S
p

i e−β
∑n

α=1 H
(α)

〉

A,J,ξ

, (A.20)

where H(α) denotes the gauged Hamiltonian of the αth replica. By performing
the same steps described in the Appendices A.1 and A.2, introducing the
auxiliary functions π (x) and π̂ (y) defined in Eqs. (65), one obtains

〈
m

p

i

〉
A,J,ξ

=
∫ C∏

j=1

dy j π̂(y j )

〈
tanhp

(
βFξ + β

C∑

j=1

y j

)〉

ξ

. (A.21)

Employing the identity

sign(x) + 1 = 2 lim
n→∞

n∑

m=0

2n!

(2n − m)!m!

(
1 + x

2

)2n−m (
1 − x

2

)m

(A.22)

which holds for any arbitrary real number x ∈ [−1, 1] and Eqs. (A.21) and
(A.22), one obtains

〈sign(mi )〉A,J,ξ + 1 = 2

∫
dh P(h)

× lim
n→∞

n∑

m=0

C2n,m

(
1 + h

2

)2n−m (
1 − h

2

)m

=
∫

dh P(h) sign(h), (A.23)

where we introduced the local fields distribution

P(h) =
∫ C∏

j=1

dy j π̂ (y j )

〈
δ

(
h − Fξ −

C∑

j=1

y j

)〉

ξ

, (A.24)

thus reproducing Eq. (68).
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G2 = 1 +
∑

α

∫
dx dy π(x) π̂ (y) tanh(βx) tanh(βy)

+
∑

〈α1α2〉

∫
dx dy π (x) π̂ (y) tanh2(βx) tanh2(βy) + · · · (A.13)

and

G3 =
1

N
ln

{(
∏

i

∮
d Z i

2π i

1

ZC+1
i

)
Tr{Sα

j }

⎡
⎣
〈

expβF
∑

α,i

ξi S
α
i

〉

ξ

× exp q̂0

(
∑

i

Z i +
∑

α

∑

i

Z i S
α
i

∫
dy π̂ (y) tanh(βy)

+
∑

〈α1α2〉

∑

i

Z i S
α1

i S
α2

i

∫
dy π̂ (y) tanh2(βy) + · · ·

)]}
. (A.14)

The equation for G1 can be worked out by using the definition of Tm and the
fact that (

∑
〈α1...αl 〉 1) =

(
n

l

)
to write:

G1 =
〈

coshn(β J )

∫ (
K∏

j=1

dx j π(x j )

) (
1 + tanh(β J )

K∏

j=1

tanh(βx j )

)n〉

J

.

(A.15)

Following exactly the same steps we obtain:

G2 =
∫

dx dy π(x) π̂ (y) (1 + tanh(βx) tanh(βy))n , (A.16)

and

G3 = ln

{
Tr{Sα}

[〈
exp

(
βFξ

∑

α

Sα

)〉

ξ

×
∮

d Z

2π i

1

ZC+1
exp

(
q̂0 Z

∫
dy π̂ (y)

n∏

α=1

(1 + Sαtanh(βy))

)]}
.

(A.17)

Computing the integral over Zi and the trace, we finally find:

G3 = ln

{
q̂ C

0

C!

∫ C∏

l=1

dyl π̂ (yl)

[
∑

σ=±1

〈
eσβFξ

〉
ξ

C∏

l=1

(1 + σ tanh(βyl))

]n}
.

(A.18)
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4. Zero Temperature Self-Consistent Equations

In this section we describe how one can write a set of self-consistent equations
to solve the zero temperature saddle-point Eqs. (84). Supposing a three peaks
ansätz given by:

π̂ (y) = p+δ(y − 1) + p0δ(y) + p−δ(y + 1) (A.25)

π(x) =
C−1∑

l=1−C

T[p±,p0;C−1](l) δ(x − l), (A.26)

with

T[p+,p0,p−;C](l) =
∑

{k,h,m; k−h=l; k+h+m=C−1}

(C − 1)!

k!h!m!
pk
+ ph

0 pm
−. (A.27)

We can consider the problem as a random walk, where π̂(y) describes the
probability of one step of length y (y > 0 means one step to the right)
and π (x) describes the probability of being at distance x from the origin
after C− 1 steps. With this idea in mind, it is relatively easy to understand
T[p+,p0,p−;C−1](l) as the probability of walking the distance l after C− 1 steps
with the probabilities p+, p− and p0 of, respectively, moving right, left, and
staying at the same position. We define the probabilities of walking right/left

as ψ± =
∑C−1

l T[p+,p0,p−;C−1](±l). Using second saddle-point Eqs. (84):

p+ =
∫ [

K−1∏

l=1

dxl π (xl)

]〈
δ

[
1 − sign

(
J

K−1∏

l=1

xl

)
min(|J |, |x1 |, . . . |

]〉

J

.

(A.28)

The right side of the above equality can be read as the probability of making
K − 1 independent walks, such that after C − 1 steps: none is at origin and an
even (for J = +1) or odd (for J = −1) number of walks is at the left side.

Using this reasoning for p− and p0, we can finally write:

p+ = (1 − p)

⌊ K−1
2

⌋∑

j=0

(K − 1)!

2 j!(K − 1 − 2 j)!
ψ

2 j
− ψ

K−2 j−1
+

+ p

⌊ K−1
2

⌋−1∑

j=0

(K − 1)!

(2 j + 1)!(K − 2 − 2 j)!
ψ

2 j+1
− ψ

K−2 j−2
+

+ p ψ K−1
− odd(K − 1) (A.29)
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p− = (1 − p)

⌊ K−1
2

⌋−1∑

j=0

(K − 1)!

(K − 2 j − 2)!(2 j + 1)!
ψ

2 j+1
− ψ

K−2 j−2
+

+ p

⌊ K−1
2

⌋−1∑

j=0

(K − 1)!

(K − 2 j − 1)!2 j!
ψ

2 j
− ψ

K−2 j−1
+ + (1− p)ψ K−1

− odd(K − 1),

(A.30)

where odd(x) = 1(0) if x is odd (even). Using that p+ + p− + p0 = 1, one can
obtain p0. A similar set of equations can be obtained for a five-peaks ansätz
leading to the same set of solutions for the ferromagnetic and paramagnetic
phases. The paramagnetic solution p0 = 1 is always a solution, for C > K a
ferromagnetic solution with p+ > p− > 0 emerges.

5. Symmetric Channels Averages at Nishimori’s Temperature

Here we establish the identity 〈J 〉J = 〈J tanh(βN J )〉J for symmetric channels.
It was shown in Sourlas (1994a) that:

βN J =
1

2
ln

(
p(J | 1)

p(J | −1)

)
, (A.31)

where βN is the Nishimori temperature and p(J | J 0) are the probabilities that
a transmitted bit J 0 is received as J. From this we can easily find:

tanh (βN J ) =
p(J | 1) − p(J | −1)

p(J | 1) + p(J | −1)
. (A.32)

In a symmetric channel (p(J | −J 0) = p(−J | J 0)), it is also represented as

tanh (βN J ) =
p(J | 1) − p(−J | 1)

p(J | 1) + p(−J | 1)
. (A.33)

Therefore,

〈J tanh (βN J )〉J = TrJ p(J | 1)
J p(J | 1)

p(J | 1) + p(−J | 1)

+TrJ p(J | 1)
(−J )p(−J | 1)

p(J | 1) + p(−J | 1)

= TrJ p(J | 1)
J p(J | 1)

p(J | 1) + p(−J | 1)

+TrJ p(−J | 1)
J p(J | 1)

p(−J | 1) + p(J | 1)

= TrJ J p(J | 1)

= 〈J 〉J . (A.34)
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6. Probability Propagation Equations

In this section we derive the probability propagation Eqs. (36) and (34) in
the form (96). We start by introducing the following representation for the
variables Q

Sk

μk and R
Sk

μk :

Q
Sk

μk =
1

2
(1 + mμk Sk) R

Sk

μk =
1

2
(1 + m̂μk Sk). (A.35)

We can now put (91), (95), and (A.35) together to write:

R
Sk

μj =
1

aμ

∑

{Sk :k∈L(μ)\ j}

1

2
cosh(β Jμ)

(
1 + tanh(β Jμ)

∏

j∈Lμ

S j

)

×
∏

k∈L(μ)\ j

1

2

(
1 + mμk Sk

)

=
1

2K

1

aμ

∑

{Sk :k∈L(μ)\ j}
cosh(β Jμ)

(
1 + tanh(β Jμ)

∏

j∈L(μ)

S j

)

×
(

1 +
∑

k∈L(μ)\ j

mμk Sk +
∑

k �=l∈L(μ)\ j

mμkmμl Sk Sl + · · ·
)

=
1

2K

1

aμ

cosh(β Jμ)

(
1 + tanh(β Jμ)S j

∏

k∈L(μ)\ j

mμk

)

=
1

2

(
1 + tanh(β Jμ)S j

∏

k∈L(μ)\ j

mμk

)
. (A.36)

To obtain the last line, we used that the normalization constant is aμ =
1

2K−1 cosh(β Jμ). Writing the above equation in terms of the new variable m̂μk

we obtain the first Eq. (96):

m̂μk = R
(+)
μk − R

(−)
μk

=
1

2

(
1 + tanh(β Jμ)

∏

k∈L(μ)\ j

mμk

)
−

1

2

(
1 − tanh(β Jμ)

∏

k∈L(μ)\ j

mμk

)

= tanh(β Jμ)
∏

k∈L(μ)\ j

mμk . (A.37)



LOW-DENSITY PARITY-CHECK CODES 335

To obtain the second Eq. (96), we write:

Q
Sk

μk = aμk

1

2
(1 + tanh(β ′

N Sk))
∏

ν∈M(k)\μ

1

2
(1 + m̂νk Sk). (A.38)

In the new variables mμk :

mμk = aμk

1

2K

{
(1 + tanh(β ′

N ))
∏

ν∈M(k)\μ
(1 + m̂νk)

− (1 − tanh(β ′
N ))

∏

ν∈M(k)\μ
(1 − m̂νk)

}
(A.39)

By using the identity eσ x = cosh(x)(1 + σ tanh(x)) we can write:

mμk =
exp

[∑
ν∈M(k)\μ atanh(mνk) + β ′

N

]

a−1
μk 2K cosh(β ′

N )
∏

ν∈M(k)\μ cosh(atanh(mνk))

−
exp

[
−
∑

ν∈M(k)\μ atanh(mνk) − β ′
N

]

a−1
μk 2K cosh(β ′

N )
∏

ν∈M(k)\μ cosh(atanh(mνk))
(A.40)

Computing the normalization aμj along the same lines gives:

a−1
μk =

exp
[∑

ν∈M(k)\μ atanh(mνk) + β ′
N

]

2K cosh(β ′
N )
∏

ν∈M(k)\μ cosh(atanh(mνk))

+
exp

[
−
∑

ν∈M(k)\μ atanh(mνk) − β ′
N

]

2K cosh(β ′
N )
∏

ν∈M(k)\μ cosh(atanh(mνk))
(A.41)

Inserting (A.41) into (A.40) gives:

mμk = tanh

[
∑

ν∈M(k)\μ
atanh(mνk) + β ′

N

]
. (A.42)
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to write:

〈Zn〉A,ζ =
1

N

∑

τ 1,...,τ n

M∏

j=1

〈
exp

(
Fζβ

n∑

α=1

τ α
j

)〉

ζ

×
∑

{A}

M∏

j=1

[∮
d Z j

2π i

1

ZC+1
j

]

×
∏

〈i1···iK 〉

{
1 +

coshn(βγ )

enβγ
(Z i1

· · · Z iK
)

×
n∏

α=1

[
1 + τ α

i1
· · · τ α

iK
tanh(βγ )

]
}

. (B.4)

By following Appendix A.1 from Eq. (A.5), we can finally find Eq. (120).

2. Replica Symmetric Solution

As in the code of Sourlas (Appendix A.2), the replicated partition function can
be put into the form:

〈Zn〉A,ζ =
1

N
exp

{
M Extrπ,π̂

[
C

K
G1 − C G2 + G3

]}
. (B.5)

Introducing the replica symmetric ansätz (121) into the functions G1,G2,
and G3, we obtain:

G1(n) = T0 + T1

∑

α

q K
α + T2

∑

〈α1α2〉
q K

α1α2
+ · · ·

=
coshn(βγ )

enγβ

∫ K∏

j=1

dx j π(x j )

[
1 +

n!

(n − 1)!
tanh(βγ )

K∏

j=1

x j

+
n!

(n − 2)!2!
tanh2(βγ )

K∏

j=1

x2
j + · · ·

]

=
coshn(βγ )

enγβ

∫ K∏

j=1

dx jπ(x j )

[
1 + tanh(βγ )

K∏

j=1

x j

]n

γ→∞−→
1

2n

∫ K∏

j=1

dx j π(x j )

[
1 +

K∏

j=1

x j

]n

, (B.6)
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Appendix B. Gallager Codes: Technical Details

1. Replica Theory

The replica theory for Gallager codes is very similar to the theory obtained for
Sourlas codes (see Appendix A). We start with Eq. (116):

〈Zn〉A,ζ =
∑

τ 1,...,τ n

M∏

j=1

〈
exp

(
Fζβ

n∑

α=1

τ α
j

)〉

ζ

×
〈
∏

〈i1···iK 〉

n∏

α=1

exp
[
βγA〈i1···iK 〉

(
τ α

i1
· · · τ α

iK
− 1

)]
〉

A

. (B.1)

The average over constructions A is then introduced using Eq. (117):

〈Zn〉A,ζ =
1

N

∑

τ 1,...,τ n

M∏

j=1

〈
exp

(
Fζβ

n∑

α=1

τ α
j

)〉

ζ

×
∑

{A}

M∏

j=1

[∮
d Z j

2π i

1

ZC+1
j

Z

∑
〈i1= j,i2 ,...,iK 〉 A〈i1= j,...,iK〉

j

]

×
∏

〈i1···iK 〉
exp

[
βγA〈i1···iK 〉

n∑

α=1

(
τ α

i1
· · · τ α

iK
− 1

)
]

. (B.2)

After observing that

M∏

j=1

Z

∑
〈i1= j,i2 ,...,iK 〉 A〈i1= j,...,iK 〉

j =
∏

〈i1···iK 〉
(Z i1

· · · Z iK
)A〈i1···iK 〉,

we can compute the sum over A〈i1···iK 〉 ∈ {0, 1}:

〈Zn〉A,ζ =
1

N

∑

τ 1,...,τ n

M∏

j=1

〈
exp

(
Fζβ

n∑

α=1

τ α
j

)〉

ζ

×
M∏

j=1

[∮
d Z j

2π i

1

ZC+1
j

]

×
∏

〈i1···iK 〉

{
1 +

Z i1
· · · Z iK

enβγ

n∏

α=1

exp
[
βγ

(
τ α

i1
· · · τ α

iK

)]
}

. (B.3)

We can now use the identity exσ = cosh(x)(1 + σ tanh(x)), where σ = ±1,
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where the hyperparameters γ ∗, F∗ are used in the Hamiltonian H and β∗ is
the temperature, while γ , F and β are the actual parameters of the encoding
and corruption processes.

The Nishimori condition is defined by setting the temperature and all hy-
perparameters of the Hamiltonian to the values in the encoding and corruption
processes. If this is done, the expression for the energy can be rewritten:

U =
∑

J ,τ H(γ, F)Pγβ({Jμ} | τ )PFβ(τ )∑
J ,τ Pγβ({Jμ} | τ )PFβ(ζ)

. (B.12)

By plugging (106) for the likelihood Pγβ({Jμ} | τ ) and for the prior PFβ(ζ);
setting the hyperparameters to γ → ∞, β = 1 and F = atanh(1 − 2p) and
performing the summation over J first, we easily get:

u = lim
M→∞

U

M
= −F(1 − 2p). (B.13)

Note that this expression is independent of the macroscopic state of the system.

4. Recursion Relations

We start by introducing the effective field x̂ν j :

tanh(β x̂ν j ) =
Pν j (+)e−βF − Pν j (−)e+βF

Pν j (+)e−βF + Pν j (−)e+βF
. (B.14)

Equation (129) can be easily obtained from the equation above. Equation
(130) is then obtained by introducing Eq. (128) into Eq. (129), and performing
a straightforward manipulation, we obtain Eq. (131):

exp(−2β x̂μk) =
Tr{τ j }e

βγ (−Jμ

∏′′
j τ j−1)

∏′

ν

∏′′

j eβFτ j+β x̂ν j (τ j−1)

Tr{τ j }e
βγ (+Jμτk

∏′′
j τ j−1)

∏′

ν

∏′′

j eβFτ j+β x̂ν j (τ j−1)
, (B.15)

where

exp
(
β x̂ν j (τ j − 1)

)
=

Pν j (τ j )e
−βFτ j

Pν j (+)e−βF

and the products
∏′

ν and
∏′′

j are over ν ∈ M( j) \ μ and j ∈ L(μ) \ k, respec-
tively.

The above equation can be rewritten as:

e−2β x̂μk =
Tr{τ j }

∏′′

j e(βF+
∑′

ν x̂ν j )τ j

[(
1 − Jμ

∏′′

j τ j tanh(βγ )
)]

Tr{τ j }
∏′′

j e(βF+
∑′

ν x̂ν j )τ j

[(
1 + Jμ

∏′′

j τ j tanh(βγ )
)] . (B.16)
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where we use the Nishimori condition γ → ∞, β = 1 to obtain the last line.

G2(n) = 1 +
∑

α

qαq̂α +
∑

〈α1α2〉
qα1α2

q̂α1α2
+ · · ·

=
∫

dxdx̂ π (x)π̂ (x̂) [1 + x x̂]n . (B.7)

and

G3(n) =
1

M
lnTr{τα}

[〈
exp

[
Fβζ

n∑

α=1

τ α

]〉

ζ

×
∮

d Z

2π i

exp
[
Z
∑n

m=0

∑
〈α1···αm 〉 q̂α1···αm

τ α1 · · · τ αm

]

ZC+1

]

=
1

M
lnTr{τα}

[〈
exp

[
Fβζ

n∑

α=1

τ α

]〉

ζ

×
∮

d Z

2π i

exp
[
Z
∫

dx̂ π̂ (x̂)
∏n

α=1(1 + τ α x̂)
]

ZC+1

]

=
1

M
ln

q̂ C
0

C!

∫ C∏

l=1

dx̂ l π̂(x̂ l)

[
∑

τ=±1

〈
eFβζτ

〉
ζ

C∏

l=1

(1 + τ x̂ l)

]n

(B.8)

By using Eq. (115) we can write

f = −
1

β
Extrπ,π̂

∂

∂n

∣∣∣n=0

[
C

K
G1(n) − CG2(n) + G3(n)

]
, (B.9)

what yields the free-energy (123).

3. Energy Density at the Nishimori Condition

In general, the average internal energy is evaluated as:

U = 〈〈H(γ ∗, F∗)〉β∗〉J ,ζ (B.10)

=
∑

J

∑
ζ Pγβ({Jμ} | ζ)PFβ(ζ)

∑
J̃ ,ζ̃ Pγβ({J̃ μ} | ζ̃)PFβ(ζ̃)

×
∑

τ H(γ ∗, F∗)Pγ ∗β∗({Jμ} | τ )PF∗β∗(τ )∑
τ̃ Pγ ∗β∗({Jμ} | τ̃ )PF∗β∗(τ̃ )

, (B.11)
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From Eqs. (C.2) and (C.3) above we can write:

1 − 2p1
z (K ) =

K∑

l odd

(−1)l K !

(K − l)!l!
pl(1 − p)K−l

= (1 − p − p)K = (1 − 2p)K . (C.4)

From which we find:

p1
z (K ) =

1

2
−

1

2
(1 − 2p)K . (C.5)

For MN codes, syndrome bits have the form:

zμ = ξ j1 ⊕ · · · ⊕ ξ jK
⊕ ζl1

⊕ · · · ⊕ ζlL
, (C.6)

where signal bits ξ j are randomly drawn with probability P(ξ = 1) = pξ and
noise bits ζ l are drawn with probability P(ζ = 1) = p.

The probability p0
z (K , L) of zμ = 0 is therefore:

p0
z (K , L) = p0

z (K )p0
z (L) + p1

z (K )p1
z (L)

= 1 − p1
z (K ) − p1

z (L) + 2p1
z (K )p1

z (L). (C.7)

where px
z (K ) and p0

z (L) stand for probabilities involving the K signal bits and
L noise bits, respectively.

By plugging Eq. (C.5) into Eq. (C.7), we get:

p1
z (K , L) = 1 − p0

z (K , L)

=
1

2
−

1

2
(1 − 2pξ )K (1 − 2p)L . (C.8)

2. Replica Theory

For MN codes the replicated partition function has the following form:

〈Zn〉A,ξ,ζ =
∑

S1,...,Sn

∑

τ 1,...,τ n

N∏

j=1

〈
exp

(
Fsξβ

n∑

α=1

Sα
j

)〉

ξ

×
M∏

l=1

〈
exp

(
Fnζβ

n∑

α=1

τ α
l

)〉

ζ

×
〈
∏

〈 jl〉

n∏

α=1

exp
[
βγA〈 jl〉

(
Sα

j1
· · · Sα

jK
τ α

l1
· · · τ α

lL
− 1

)]
〉

A

. (C.9)
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By introducing the Nishimori condition β = 1 and γ → ∞ and computing
traces:

exp(−2β x̂μk) =
∏

j∈L(μ)\k

∑
τ=±1 exμj τ − Jμ

∏
j∈L(μ)\k

∑
τ=±1 τexμj τ

∏
j∈L(μ)\k

∑
τ=±1 exμj τ + Jμ

∏
j∈L(μ)\k

∑
τ=±1 τexμj τ

=
1 − Jμ

∏
j∈L(μ)\k tanh(xμj )

1 + Jμ

∏
j∈L(μ)\k tanh(xμj )

, (B.17)

where we have introduced

xμj = F +
∑

ν∈M( j)\μ
x̂ν j .

A brief manipulation of the equation above yields Eq. (131).

Appendix C. MN Codes: Technical Details

1. Distribution of Syndrome Bits

In this section we evaluate probabilities px
z associated with syndrome bits in

MN and Gallager codes.
In the case of Gallager codes, a syndrome bit μ has the form

zμ = ζl1
⊕ · · · ⊕ ζlK

, (C.1)

where ζ ∈ {0, 1} and⊕denotes mod 2 sums. Each bit ζ l is randomly drawn with
probabilities P(ζ = 1) = p and P(ζ = 0) = 1 − p. The probability p0

z (K ) of
zμ = 0 equates with the probability of having an even number of ζl = 1 in the
summation, therefore:

p0
z (K ) =

K∑

l even

K !

(K − l)!l!
pl(1 − p)K−l

=
K∑

l even
(−1)l K !

(K − l)!l!
pl(1 − p)K−l . (C.2)

Consequently

p1
z (K ) =

K∑

l odd

K !

(K − l)!l!
pl(1 − p)K−l

= −
K∑

l odd

(−1)l K !

(K − l)!l!
pl(1 − p)K−l . (C.3)
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We use the identity exσ = cosh(x)(1 + σ tanh(x)), where σ = ±1, to write:

〈Zn〉A,ξ,ζ =
∑

S1,...,Sn

∑

τ 1,...,τ n

N∏

j=1

〈
exp

(
Fsξβ

n∑

α=1

Sα
j

)〉

ξ

×
M∏

j=1

〈
exp

(
Fnζβ

n∑

α=1

τ α
j

)〉

ζ

×
∑

{C j ,Dl }

N∏

j=1

PC (C j )
M∏

l=1

PD(Dl)

×
1

N

∮
d Z j

2π i

1

Z
C j+1

j

∮
dYl

2π i

1

Y
Dl+1

l

×
∏

〈il〉

{
1 +

coshn(βγ )

enβγ
(Z i1

· · · Z iK
Yl1

· · · YlL
)

×
n∏

α=1

[
1 + Sα

i1
· · · Sα

iK
τ α

l1
· · · τ α

lL
tanh(βγ )

]
}

. (C.12)

The product in the replica index α yields:

n∏

α=1

[
1 + Sα

i1
· · · Sα

iK
τ α

l1
· · · τ α

lL
tanh(βγ )

]
=

n∑

m=0

[
tanhm(βγ )

×
∑

〈α1,...,αm 〉
S

α1

i1
· · · S

αm

i1
· · · S

α1

iK
· · · S

αm

iK
τ

α1

l1
· · · τ αm

l1
τ

α1

lL
· · · τ αm

lL

]
, (C.13)

where 〈α1, . . . , αm〉 = {α1, . . . , αm : α1 < · · · < αm}.
The product in the multi-indices 〈il〉 can be computed by observing that the

following relation holds in the thermodynamic limit:

∏

〈il〉

(
1 + ψ〈il〉

)
=

mmax∑

m=0

∑

〈〈il〉1,...,〈il〉m 〉
ψ〈il〉1

· · ·ψ〈il〉m

N→∞−→ exp

[
∑

〈il〉
ψ〈il〉

]
,

(C.14)

with mmax ∼ (N K M L)/K !L!.
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By introducing averages over constructions (117) as described in Appendix B.1
we find:

〈Zn〉A,ξ,ζ =
∑

S1,...,Sn

∑

τ 1,...,τ n

N∏

j=1

〈
exp

(
Fsξβ

n∑

α=1

Sα
j

)〉

ξ

×
M∏

j=1

〈
exp

(
Fnζβ

n∑

α=1

τ α
j

)〉

ζ

×
∑

{C j ,Dl }

N∏

j=1

PC (C j )
M∏

l=1

PD(Dl)

×
1

N

∑

{A}

N∏

j=1

[∮
d Z j

2π i

1

Z
C j+1

j

Z

∑
〈 j1= j, j2 ,..., jK ,l〉 A〈 j1= j,..., jK ,l〉

j

]

×
M∏

l=1

[∮
dYl

2π i

1

Y
Dl+1

l

Y

∑
〈 j,l1=l,l2 ,...,lL 〉 A〈 j,l1=l,...,lL 〉

l

]

×
∏

〈 jl〉
exp

[
βγA〈 jl〉

n∑

α=1

(
Sα

j1
· · · Sα

jK
τ α

l1
· · · τ α

lL
− 1

)
]
. (C.10)

Computing the sum over A we get:

〈Zn〉A,ξ,ζ =
∑

S1,...,Sn

∑

τ 1,...,τ n

N∏

j=1

〈
exp

(
Fsξβ

n∑

α=1

Sα
j

)〉

ξ

×
M∏

j=1

〈
exp

(
Fnζβ

n∑

α=1

τ α
j

)〉

ζ

×
∑

{C j ,Dl }

N∏

j=1

PC (C j )
M∏

l=1

PD(Dl)
1

N

×
∮

d Z j

2π i

1

Z
C j+1

j

∮
dYl

2π i

1

Y
Dl+1

l

×
∏

〈il〉

{
1 +

Z i1
· · · Z iK

Yl1
· · · YlL

enβγ

×
n∏

α=1

exp
[
βγ

(
Sα

i1
· · · Sα

iK
τ α

l1
· · · τ α

lL

)]
}

. (C.11)
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The variables can be normalized as:

qα1···αm

q0

"→ qα1···αm

rα1···αm

r0

"→ rα1···αm
. (C.21)

By plugging Eqs. (C.17), (C.18), the above transformation into (173) and
by using Laplace’s method, we obtain:

〈Zn〉A,ξ,ζ = Extrq,r,q̂,r̂

{
exp

[
N

C

K

n∑

m=1

∑

〈α1···αm 〉
Tmq K

α1···αm
r L
α1···αm

− NC

n∑

m=1

∑

〈α1···αm 〉
qα1···αm

q̂α1···αm

− M L

n∑

m=1

∑

〈α1···αm 〉
rα1···αm

r̂α1···αm

]

×
N∏

j=1

∑

C j

PC (C j )
M∏

l=1

∑

Dl

PD(Dl)

×
N∏

j=1

(
C j !

q̂
C j

0

)
Tr{Sα

j }

[〈
exp

[
Fsβξ

n∑

α=1

Sα

]〉

ξ

×
∮

d Z j

2π i

exp
[
Z j

∑n

m=0

∑
〈α1···αm 〉 q̂α1···αm

Sα1 · · · Sαm

]

Z
C j+1

j

]

×
M∏

l=1

(
Dl!

r̂
Dl

0

)
Tr{τα

l }

[〈
exp

[
Fnβζ

n∑

α=1

τ α
l

]〉

ζ

×
∮

dYl

2π i

exp
[
Yl

∑n

m=0

∑
〈α1···αm 〉 r̂α1···αm

τ α1 · · · τ αm

]

Y
Dl+1

l

]}

(C.22)

where Tm = e−nβγ coshn(βγ )tanhm(βγ ).
We can rewrite the replicated partition function as:

〈Zn〉A,ξ,ζ = exp

{
NExtrq,r,q̂,r̂

[
C

K
G1 − CG2 − LG3 + G4 + G5

]}

(C.23)
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We find Eq. (173) by putting Eqs. (C.14) and (C.13) into (C.12) and using
the following identities to introduce auxiliary variables:

∫
dqα1···αm

δ

[
qα1···αm

−
1

N

N∑

j=1

Z j S
α1

j · · · S
αm

j

]
= 1

∫
drα1···αm

δ

[
rα1···αm

−
1

M

M∑

l=1

Ylτ
α1

l · · · τ αm

l

]
= 1 (C.15)

3. Replica Symmetric Free-Energy

We first compute the normalization N for a given:

N =
∫ (

dq0dq̂0

2π i

)∫ (
dr0dr̂0

2π i

)

× exp

[
M L N K

K !L!
T0q K

0 r L
0 − Nq0q̂0 − Mr0r̂0

]

×
N∏

j=1

∮
d Z j

2π i

exp
[
Z j q̂0

]

Z
C j+1

j

M∏

l=1

∮
dYl

2π i

exp [Yl r̂0]

Y
Dl+1

l

(C.16)

By using Cauchy’s integrals to integrate in Z j and Yl and Laplace’s method,
we get:

N = exp

{
Extrq0,q̂0,r0,r̂0

[
M L N K

K !L!
T0q K

0 r L
0 − Nq0q̂0 − Mr0r̂0

+
N∑

j=1

ln

(
q̂

C j

0

C j !

)
+

M∑

l=1

ln

(
r̂

L l

0

L l!

)]}
. (C.17)

The extremization above yields the following equations:

q0q̂0 =
1

N

N∑

j=1

C j = C (C.18)

r0r̂0 =
1

M

M∑

l=1

L l = L (C.19)

q K
0 r L

0 = C
(K − 1)!L!

N K−1 M L
. (C.20)
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G4(n) =
1

N

N∑

j=1

ln
∑

C j

PC (C j )

(
C j !

q̂
C j

0

)
Tr{Sα}

[〈
exp

[
Fsβξ

n∑

α=1

Sα
j

]〉

ξ

×
∮

d Z j

2π i

exp
[
Z j

∑n

m=0

∑
〈α1···αm 〉 q̂α1···αm

S
α1

j · · · S
αm

j

]

Z
C j+1

j

]

=
1

N

N∑

j=1

ln
∑

C j

PC (C j )

(
C j !

q̂
C j

0

)
Tr{Sα

j }

[〈
exp

[
Fsβξ

n∑

α=1

Sα
j

]〉

ξ

×
∮

d Z j

2π i

exp
[
Z j

∫
dx̂ π̂ (x̂)

∏n

α=1(1 + Sα
j x̂)

]

Z
C j+1

j

]

= ln
∑

C j

PC (C j )

∫ C j∏

l=1

dx̂ l π̂ (x̂ l)

[
∑

S=±1

〈
eFsβξ S

〉
ξ

C j∏

i=1

(1 + Sx̂ i )

]n

(C.29)

In the same way:

G5(n) =
1

M

M∑

l=1

ln
∑

Dl

PD(Dl)

(
Dl!

r̂
Dl

0

)
Tr{τα}

[〈
exp

[
Fnβζ

n∑

α=1

τ α
l

]〉

ζ

×
∮

dYl

2π i

exp
[
Yl

∑n

m=0

∑
〈α1···αm 〉 r̂α1···αm

τ
α1

l · · · τ αm

l

]

Y
Dl+1

l

]

=
1

M

M∑

l=1

ln
∑

Dl

PD(Dl)

(
Dl!

r̂
Dl

0

)
Tr{Dα

l }

[〈
exp

[
Fnβζ

n∑

α=1

τ α
l

]〉

ζ

×
∮

dYl

2π i

exp
[
Yl

∫
d ŷ φ̂(ŷ)

∏n

α=1(1 + τ α
l ŷ)

]

Y
Dl+1

l

]

= ln
∑

Dl

PC (Dl)

∫ Dl∏

l=1

d ŷl φ̂(ŷl)

[
∑

τ=±1

〈
eFnβζτ

〉
ζ

Dl∏

i=1

(1 + τ ŷi )

]n

(C.30)

By using Eq. (166) we can write

f = −
1

β
Extrπ,π̂,φ,φ̂

∂

∂n

∣∣∣∣
n=0

[
C

K
G1(n) − CG2(n) − LG3(n) + G4(n) + G5(n)

]
,

(C.31)
what yields free-energy (176).
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Introducing the replica symmetric ansätze:

qα1···αm
=
∫

dx π (x) xm q̂α1···αm
=
∫

dx̂ π̂ (x̂) x̂m (C.24)

and

rα1···αm
=
∫

dy φ(y) ym r̂α1···αm
=
∫

d ŷ φ̂(ŷ) ŷm . (C.25)

By introducing Nishimori’s condition γ → ∞ and β = 1, we can work
each term on (C.23) out and find:

G1(n) = T0 + T1

∑

α

q K
α r L

α + T2

∑

〈α1α2〉
q K

α1α2
r L
α1α2

+ · · ·

=
coshn(βγ )

enγβ

∫ K∏

j=1

dx j

L∏

l=1

dyl φ(yl)

×
[

1 +
n!

(n − 1)!
tanh(βγ )

K∏

j=1

x j

L∏

l=1

yl

+
n!

(n − 2)!2!
tanh2(βγ )

K∏

j=1

x2
j

L∏

l=1

y2
l + · · ·

]

=
coshn(βγ )

enγβ

∫ K∏

j=1

dx j π (x j )
L∏

l=1

dyl φ(yl)

[
1+ tanh(βγ )

K∏

j=1

x j

L∏

l=1

yl

]n

γ→∞−→
1

2n

∫ K∏

j=1

dx j π (x j )
L∏

l=1

dyl φ(yl)

[
1 +

K∏

j=1

x j

L∏

l=1

yl

]n

, (C.26)

G2(n) = 1 +
∑

α

qαq̂α +
∑

〈α1α2〉
qα1α2

q̂α1α2
+ · · ·

=
∫

dxdx̂ π(x)π̂ (x̂) [1 + x x̂]n . (C.27)

Similarly,

G3(n) = 1 +
∑

α

rαr̂α +
∑

〈α1α2〉
rα1α2

r̂α1α2
+ · · ·

=
∫

dyd ŷ φ(y) φ̂(ŷ) [1 + y ŷ]n . (C.28)
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Since the variance of a Poisson distribution is given by the square root of the
mean in the thermodynamic limit:

P

{
∑

〈 jl〉
A〈 jl〉 = x

}
M→∞−→ δ (x − M) . (C.40)

The Poisson distribution for the construction variables C and L will imply

that a fraction Ne−C of the signal bits and Me−L of the noise bits will be
decoupled from the system. These unchecked bits have to be estimate by
randomly sampling the prior probability P(S j ), implying that the overlap ρ is
upper bounded by:

ρ ≤
1

N

[
N − Ne−C + Ne−C (1 − 2pξ )

]

≤ 1 − e−C + e−C (1 − 2pξ )

≤ 1 − 2pξ e−C . (C.41)

Therefore, a VB-like code has necessarily an error-floor that decays exponen-
tially with the C chosen.
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4. Viana–Bray Model: Poisson Constructions
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