Appendix C

CPLEX LP Format

C.1 Prelude

The CPLEX LP format! is intended for coding LP/MIP problem data. It is a row-oriented
format that assumes the formulation of LP/MIP problem (1.1)—(1.3) (see Section 1.1,
page 7).

CPLEX LP file is a plain text file coded using the CPLEX LP format. Each text line
of this file may contain up to 255 characters. Blank lines are ignored. If a line contains
the backslash character (\), this character and anything that follows it until the end of
line are considered as a comment and also ignored.

An LP file is coded by the user using the following elements:

e keywords;

e symbolic names;

e numeric constants;

o delimiters;

e blanks.

Keywords that may be used in the LP file are the following;:

minimize minimum min

maximize maximum max

subject to such that s.t. st. st
bounds bound

general generals gen

integer integers int

binary binaries bin

infinity inf

free

end

All the keywords are case insensitive. Keywords given above on the same line are equiva-
lent. Any keyword (except infinity, inf, and free) being used in the LP file must start
at the beginning of a text line.

!The CPLEX LP format was developed in the end of 1980’s by CPLEX Optimization, Inc. as an input
format for the CPLEX linear programming system. Although the CPLEX LP format is not as widely used
as the MPS format, being row-oriented it is more convenient for coding mathematical programming models
by human. This appendix describes only the features of the CPLEX LP format which are implemented in
the GLPK package.

7



78

Symbolic names are used to identify the objective function, constraints (rows), and
variables (columns). All symbolic names are case sensitive and may contain up to 16
alphanumeric characters (a, ..., z, A, ..., Z, 0, ..., 9) as well as the following characters:

o ¢ 0% & CY /o, oo 2@ - Yoo

(except that no symbolic name can begin with a digit or a period). If a symbolic name is
longer than 16 characters, it is truncated from the right.

Numeric constants are used to denote constraint and objective coefficients, right-hand
sides of constraints, and bounds of variables. They are coded in the standard form zxEsyy,
where zz is a real number with optional decimal point, s is a sign (+ or -), yy is an integer
decimal exponent. Numeric constants may contain arbitrary number of characters. The
exponent part is optional. The letter ‘E’ can be coded as ‘e’. If the sign s is omitted, plus
is assumed.

Delimiters that may be used in the LP file are the following:

v A
A
]
]
A

Delimiters given above on the same line are equivalent. The meaning of the delimiters will
be explained below.

Blanks are non-significant characters. They may be used freely to improve readability
of the LP file. Besides, blanks should be used to separate elements from each other if there
is no other way to do that (for example, to separate a keyword from a following symbolic
name).

The order of an LP file is:

e objective function definition;

e constraints section;

e bounds section;

e general, integer, and binary sections (can appear in arbitrary order);

e end keyword.

These components are discussed in following sections.

C.2 Objective function definition

The objective function definition must appear first in the LP file. It defines the objective
function and specifies the optimization direction.
The objective function definition has the following form:

{minimize

. fiscxscx ... scx
maximize

where f is a symbolic name of the objective function, s is a sign + or -, ¢ is a numeric
constant that denotes an objective coefficient, x is a symbolic name of a variable.



79

If necessary, the objective function definition can be continued on as many text lines
as desired.

The name of the objective function is optional and may be omitted (together with the
semicolon that follows it). In this case the default name ‘obj’ is assigned to the objective
function.

If the very first sign s is omitted, the sign plus is assumed. Other signs cannot be
omitted.

If some objective coefficient c is omitted, 1 is assumed.

Symbolic names x used to denote variables are recognized by context and therefore
needn’t to be declared somewhere else.

Here is an example of the objective function definition:

Minimize Z : - x1 + 2 x2 - 3.5 x3 + 4.997e3x(4) + x5 + x6 +
x7 - .01x8

C.3 Constraints section

The constraints section must follow the objective function definition. It defines a system
of equality and/or inequality constraints.
The constraint section has the following form:

subject to
constrainty
constrainiy

constraint,,

where constraint;,© = 1,...,m, is a particular constraint definition.

Each constraint definition can be continued on as many text lines as desired. How-
ever, each constraint definition must begin on a new line except the very first constraint
definition which can begin on the same line as the keyword ‘subject to’.

Constraint definitions have the following form:

r:SCTSCT ... SCT >3 b

where r is a symbolic name of a constraint, s is a sign + or -, ¢ is a numeric constant that
denotes a constraint coefficient, z is a symbolic name of a variable, b is a right-hand side.
The name r of a constraint (which is the name of the corresponding auxiliary variable)
is optional and may be omitted (together with the semicolon that follows it). In this case
the default names like ‘r.nnn’ are assigned to unnamed constraints.
The linear form s cz scx ... s ¢ z in the left-hand side of a constraint definition has
exactly the same meaning as in the case of the objective function definition (see above).
After the linear form one of the following delimiters that indicate the constraint sense
must be specified:
= means ‘less than or equal to’
means ‘greater than or equal to’
= means ‘equal to’

vV A
non



80

The right hand side b is a numeric constant with an optional sign.
Here is an example of the constraints section:

Subject To
one: yl + 3 al - a2 - b >= 1.5
y2 + 2 a3 + 2
ad - b >= -1.5
two : y4 + 3 al + 4 ab - b <= +1
.20y5 + 5 a2 -b =0
1.7 y6 - a6 + 5 a777 - b >= 1

(Should note that it is impossible to express ranged constraints in the CPLEX LP
format. Each a ranged constraint can be coded as two constraints with identical linear
forms in the left-hand side, one of which specifies a lower bound and other does an upper
one of the original ranged constraint.)

C.4 Bounds section

The bounds section is intended to define bounds of variables. This section is optional; if
it is specified, it must follow the constraints section. If the bound section is omitted, all
variables are assumed to be non-negative (i.e. that they have zero lower bound and no
upper bound).

The bounds section has the following form:

bounds
definitiony
definitions

definition,,

where definitiong, k = 1,...,p, is a particular bound definition.

Each bound definition must begin on a new line? except the very first bound definition
which can begin on the same line as the keyword ‘bounds’.

Syntactically constraint definitions can have one of the following six forms:

T >=] specifies a lower bound

l<=1 specifies a lower bound

T <=u specifies an upper bound

[ <=z <= u specifies both lower and upper bounds
T=1 specifies a fixed value

r free specifies free variable

where z is a symbolic name of a variable, [ is a numeric constant with an optional sign
that defines a lower bound of the variable or —-inf that means that the variable has no
lower bound, u is a numeric constant with an optional sign that defines an upper bound
of the variable or +inf that means that the variable has no upper bound, ¢ is a numeric
constant with an optional sign that defines a fixed value of the variable.

2The GLPK implementation allows several bound definitions to be placed on the same line.



81

By default all variables are non-negative, i.e. have zero lower bound and no upper
bound. Therefore definitions of these default bounds can be omitted in the bounds section.
Here is an example of the bounds section:

Bounds
-inf <= al <= 100
-100 <= a2
b <= 100
x2 = +123.456
x3 free

C.5 General, integer, and binary sections

The general, integer, and binary sections are intended to define some variables as integer
or binary. All these sections are optional and needed only in case of MIP problems. If
they are specified, they must follow the bounds section or, if the latter is omitted, the
constraints section.

All the general, integer, and binary sections have the same form as follows:

general
integer
binary
T
Z2
Zq

where zj, is a symbolic name of variable, k = 1,...,q.

Each symbolic name must begin on a new line® except the very first symbolic name
which can begin on the same line as the keyword ‘general’, ‘integer’, or ‘binary’.

If a variable appears in the general or the integer section, it is assumed to be general
integer variable. If a variable appears in the binary section, it is assumed to be binary
variable, i.e. an integer variable whose lower bound is zero and upper bound is one. (Note
that if bounds of a variable are specified in the bounds section and then the variable
appears in the binary section, its previously specified bounds are ignored.)

Here is an example of the integer section:

Integer
z12
z22
z35

C.6 End keyword

The keyword ‘end’ is intended to end the LP file. It must begin on a separate line and no
other elements (except comments and blank lines) must follow it. Although this keyword
is optional, it is strongly recommended to include it in the LP file.

3The GLPK implementation allows several symbolic names to be placed on the same line.



82

C.7 Example of CPLEX LP file

Here is a complete example of CPLEX LP file that corresponds to the example given in
Section B.10, page 72.

\* plan.lpt *\
Minimize

value: .03 binl + .08 bin2 + .17 bin3 + .12 bin4 + .15 binb +
.21 alum + .38 silicon

Subject To
yield: binl + bin2 + bin3 + bin4d + binb +
alum + silicon = 2000
fe: .15 binl + .04 bin2 + .02 bin3 + .04 bind4 + .02 binb +
.01 alum + .03 silicon <= 60
cu: .03 binl + .05 bin2 + .08 bin3 + .02 bind4 + .06 binb +
.01 alum <= 100
mn: .02 binl + .04 bin2 + .01 bin3 + .02 bin4 + .02 binb <= 40
mg: .02 binl + .03 bin2 + .01 binb <= 30
al: .70 binl + .75 bin2 + .80 bin3 + .75 bind4 + .80 binb +
.97 alum >= 1500
sil: .02 binl + .06 bin2 + .08 bin3 + .12 bind4 + .02 binb +
.01 alum + .97 silicon >= 250
si2: .02 binl + .06 bin2 + .08 bin3 + .12 bind4 + .02 binb +
.01 alum + .97 silicon <= 300
Bounds
binl <= 200
bin2 <= 2500

400 <= bin3 <= 800
100 <= bind <= 700
bin5 <= 1500

End

\* eof *\



