MAT230 - Geometria e Desenho Geométrico I - 2008

Prof. Francisco Rui¹

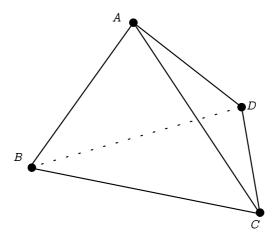
Instituto de Matemática e Estatística - USP Lista Olímpica

Postulados de Incidência e consequências

0. Resolver os exercícios 1.1 até 1.7 das Notas de Aula, disponível no endereço

www.ime.usp.br/ piccione/Downloads/geo-paolo.pdf, e estudar a seção 1.2 (Plano Projetivo).

- 1. Dados uma reta ℓ e um ponto $P \notin \ell$, mostre que existe um único plano π tal que $\ell \subset \pi$ e $P \in \pi$.
- 2. Considere o sistema $[S, \mathcal{L}, \mathcal{P}]$, onde S contém exatamente quatro pontos A, B, C, e D, as retas são os conjuntos com exatamente dois pontos, e os planos são os conjuntos com exatamente três pontos. Esse "espaço" está ilustrado na figura abaixo (figura):



Nota.: Na tripla $[S, \mathcal{L}, \mathcal{P}]$, os elementos de S, \mathcal{L} e \mathcal{P} são chamados pontos, retas e planos, respectivamente.

Verifique que esse sistema satisfaz todos os postulados de incidência.

¹Monitor: Arlane, segunda-feira às 18h na sala B-09, arlane@ime.usp.br

- 3. Sejam P_1, P_2, \ldots, P_5 cinco pontos, dentre os quais não existem três pontos colineares. Quantas retas contém dois destes cinco pontos?
- 4. Se não existem quatro pontos coplanares, dentre cinco pontos dados, quantos planos contém três destes cincos pontos?
- 5. Dados P_1, P_2, \ldots, P_n , todos diferentes tais que não existem três deles colineares e quatro deles coplanares. Quantas retas contém dois destes pontos? Quantos planos contém três deles?
- 6. Mostre que, com os postulados de incidência S não pode ser uma reta.
- 7. Mostre que existem pelo menos dois planos.
- 8. O plano π da Geometria Analítica é o conjunto \mathbb{R}^2 dos pares ordenados de números reais. As retas são dadas por:

$$\ell_{a,b,c}=ig\{(x,y)\in\mathbb{R}^2:ax+by=cig\},$$

onde $a, b, c \in \mathbb{R}$ e $(a, b) \neq (0, 0)$. Mostre que esta é uma geometria de incidência.

9. Seja \mathbb{S}^2 uma esfera e suponha que só podemos andar sobre ela (conforme figura 1). Então a distância entre dois pontos P e Q sobre a esfera é medida ao longo de um círculo máximo da esfera que passa por esses dois pontos. Um círculo máximo é uma circunferência sobre a esfera cujo centro é o centro da esfera. Sobre uma esfera de raio 13, determine a distância entre os pontos (0,0,13) e (3,4,12). Deduza uma espressão para dois pontos genéricos.

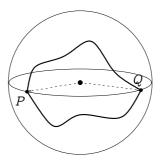


Figura 1:

- 10. Se A e B são pontos distintos e $C \in \ell_{A,B}$ então $\ell_{A,C} = \ell_{A,B}$. A notação $\ell_{P,Q}$ indica a linha que passa pelos pontos P e Q.
- 11. Se $\{A_i: i \in \mathbb{N}\}$ é um conjunto de pontos sobre uma linha ℓ então $\ell = \ell_{A_i,A_j}$, para todo $i \neq j$ com $i,j \in \mathbb{N}$.
- 12. Se $A_1, A_2, \ldots, A_n, \ldots$, onde $n \geq 3$, é uma sequência finita ou infinita de pontos, e quaisquer três pontos consecutivos A_i, A_{i+1}, A_{i+2} , onde $i = 1, 2, \ldots, n-2$ (e se for infinita, $i = 1, 2, \ldots, n-2, \ldots$) são colineares, mostre todos desta sequência estão na mesma linha.
- 13. Mostre que se um ponto P não pertence ao plano π então nenhuma linha $\ell \subset \pi$ contém este ponto.
 - Obs.: Dizemos que uma linha ℓ_1 é paralela a uma linha ℓ_2 , se elas estão num mesmo plano e $\ell_1 \cap \ell_2 = \emptyset$.
- 14. Mostre que se as linhas $\ell_{A,B}$ e $\ell_{C,D}$ são paralelas, então quaisquer três pontos dentre A, B, C e D não são colineares, e conclua que nenhum deles pertence à reta formada por dois outros pontos do conjunto $\{A, B, C, D\}$.
- 15. Dadas duas linhas paralelas, mostre que existe um único plano que as contém.
- 16. Se as linhas ℓ_1, ℓ_2 e ℓ_2, ℓ_3 são paralelas e os pontos $A \in \ell_1, B \in \ell_2, C \in \ell_3$ são colineares, mostre que as linhas ℓ_1, ℓ_2 e ℓ_3 estão num mesmo plano.
 - Obs.: Considere duas linhas distintas ℓ_1 e ℓ_2 . Caso não exista um plano que as contenha, diremos que ℓ_1 e ℓ_2 são linhas reversas.
- 17. Mostre que, se ℓ_1 e ℓ_2 são linhas reversas então elas não são paralelas e $\ell_1 \cap \ell_2 = \emptyset$.
- 18. Se quatro pontos distintos A, B, C e D não são coplanares, mostre que as linhas $\ell_{A,B}$ e $\ell_{C,D}$ são reversas.
- 19. Sejam π um plano e P um ponto, tal que $P \notin \pi$. Se π contém uma linha ℓ e um ponto Q fora de ℓ , mostre que as linhas ℓ e $\ell_{P,Q}$ são reversas.
- 20. Mostre que um plano contém pelo menos três pontos não colineares.