MAT 121 - 2ª Lista de Exercícios

- 1. Determine o domínio de F e esboce a sua imagem:
 - (a) $F(t) = (t^2, t^2)$
 - (b) $F(t) = (5 t^2, ln(5 t^2), t)$
 - (c) $F(t) = (\frac{1}{t}, \sqrt[4]{2 t^2}, 2)$
- 2. Calcule as expressões de $F \wedge G$ e de F.G, onde $F(t) = (t, t^2, sen(t))$ e $G(t) = (3, cos(t), t^4)$
- 3. Seja $F:[a,b]\to \mathbb{R}^3$ contínua. Prove que existe M>0 tal que $\|F(t)\|\leq M$, qualquer que seja o t em [a,b].
- 4. Calcule $\lim_{t\to 0} F(t)$, onde $F(t) = (\frac{tg(5t)}{4t}, \frac{e^{3t}-1}{t}, \frac{sen(t)}{t})$
- 5. Determine a equação da reta tangente à trajetória da função dada no ponto dado:
 - (a) $F(t) = (t^2 + 1, t^3)$ em t = 1;
 - (b) $F(t) = (t, t^2, t^3)$ em t = 1;
- 6. Seja $F: \mathbb{R} \to \mathbb{R}^3$ derivável até segunda ordem. Suponha $||F'(t)|| \neq 0$ para todo t. Faça $T(t) = \frac{F'(t)}{||F'(t)||}$. Prove que:
 - (a) T e T' são ortogonais.
 - (b) $F''(t) = ||F'(t)|| T' + \frac{d}{dt}(||F'(t)||).T$
- 7. Seja $F: I \to \mathbb{R}^n$ derivável em $t_0 \in I$ e seja $E(\Delta t)$ o erro que se comete na aproximação do acréscimo " $F(t_0 + \Delta t) F(t_0)$ " por " $F'(t_0)\Delta t$ ". Prove que $E(\Delta t)$ tende a $\overrightarrow{0}$ mais rapidamente do que Δt , quando Δt tende a zero, isto é, $\lim_{\Delta t \to 0} \frac{E(\Delta t)}{\Delta t} = \overrightarrow{0}$. Prove, ainda, que para todo $\overrightarrow{a} \in \mathbb{R}^n$, com $\overrightarrow{a} \neq F'(t_0), \lim_{\Delta t \to 0} \frac{[F(t_0 + \Delta t) F(t_0)] \overrightarrow{a}\Delta t}{\Delta t} \neq \overrightarrow{0}$.
- 8. Suponha que $\overrightarrow{F}(t)$ é a força resultante que atua, no instante t, sobre uma partícula de massa m que se move no espaço.
 - Mostre que $\int_{t_1}^{t_2} \overrightarrow{F}(t)dt = m \overrightarrow{v}_2 m \overrightarrow{v}_1$ onde \overrightarrow{v}_2 e \overrightarrow{v}_1 são respectivamente as velocidades da partícula nos instantes t_1 e t_2 .

- 9. Ache o comprimento de arco de cada uma das seguintes curvas:
 - (a) $F(t) = (t, \ln(1-t^2)), t = 0 \text{ a } t = \frac{1}{2};$
 - (b) $F(t) = (\frac{t^2}{4} \frac{\ln(t)}{2}, t)$ de t = 1 a t = 2;
 - (c) $F(t) = (t, ln(cossec(t)), de t = \frac{\pi}{6} a t = \frac{\pi}{2}$.
- 10. Ache o comprimento da curva dada pela equação $3x^2 = y^3$ de y = 1 a y = 20.
- 11. Ache o comprimento da hipociclóide $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.
- 12. Ache o comprimento da espiral de Arquimedes $r=a\theta$, desde a origem até o fim da primeira revolução.
- 13. Um fio de telefone pendurado entre dois postes em x=-b e x=b tem o formato de uma catenária com equação $y=c+acosh(\frac{x}{a})$.
 - (a) Faça o esboço dos postes com o fio entre eles.
 - (b) Calcule o comprimento do fio.
 - (c) Suponha que os dois postes estejam separados por uma distância de 5 metros e que o comprimento do fio entre os postes seja 5,1 metros. Se o ponto mais baixo do fio estiver a 2 metros do solo, a que altura o fio deve ser preso no poste?
- 14. As curvas com equações $x^n + y^n = 1$, n=4,6,8,... são chamados de círculos gordos. Use o WINPLOT para obter o gráfico desses círculos. Monte uma integral para n = 2k e, sem avaliar esta integral, calcule o limite quando k tende a infinito.
- 15. Reparametrize pelo comprimento de arco a curva F(t) dada:
 - (a) $F(t) = (2t+1, 3t-1), t \ge 0.$
 - (b) $F(t) = (2\cos(t), 2\sin(t)), t \ge 0.$
 - (c) $F(t) = (\cos(t), \sin(t), t), t \ge 0.$
 - (d) $F(t) = (e^t cos(t), e^t sen(t)), t \ge 0.$
- 16. Seja $A \subset [a,b] \times [c,d] \subset \mathbb{R}^2$ um subconjunto com infinitos pontos. Prove que A tem pelo menos um ponto de acumulação.

- 17. Prove que uma bola aberta é um conjunto aberto.
- 18. Calcule, caso exista.
 - (a) $\lim_{(x,y)\to(0,0)} x sen \frac{1}{x^2+y^2}$
 - (b) $\lim_{(x,y)\to(0,0)} \frac{x^2}{\sqrt{x^2+y^2}}$
 - (c) $\lim_{(x,y)\to(0,0)} \frac{xy(x-y)}{x^4+y^4}$
 - (d) $\lim_{(x,y)\to(0,0)} \frac{2xy^2}{x^2+y^4}$
- 19. Calcule $\lim_{(h,k)\to(0,0)} \frac{f(x+h,y+k)-f(x,y)-2xh-k}{\|(h,k)\|}$, onde $f(x,y)=x^2+y$.
- 20. Determine o conjunto dos pontos de continuidade. Justifique sua resposta.
 - (a) $f(x,y) = ln \frac{x-y}{x^2+y^2}$
 - (b) $f(x,y) = \frac{x-y}{\sqrt{1-x^2-y^2}}$
 - (c) $f(x,y) = \begin{cases} \frac{sen(x^2+y^2)}{x^2+y^2} & \text{se } (x,y) \neq (0,0) \\ 1 & \text{se } (x,y) \neq (0,0) \end{cases}$
- 21. Seja A um subconjunto do \mathbb{R}^2 que goza da propriedade: quaisquer que sejam (x_0, y_0) e (x_1, y_1) em A, existe uma curva contínua $\gamma: [a, b] \to A$ tal que $\gamma(a) = (x_0, y_0)$ e $\gamma(b) = (x_1, y_1)$. Prove que se f for contínua em A e se $f(x_0, y_0) < m < f(x_1, y_1)$, então existirá $(\bar{x}, \bar{y}) \in A$ tal que $f(\bar{x}, \bar{y}) = m$.

Sugestão: Aplique o valor intermediário à função contínua $g(t) = f(\gamma(t)), t \in [a, b].$

- 22. Seja $f:A\subset \mathbb{R}^2\to \mathbb{R}$, A aberto, uma função contínua e seja c um número real dado. Prove que o conjunto $\{(x,y)\in A\,|\, f(x,y)< c\}$ é aberto.
- 23. Seja $f:[a,b]\times [c,d]\to I\!\!R$ contínua.
 - (a) Prove que existe M > 0; $|f(x,y)| < M, \forall (x,y)$ no retângulo.
 - (b) Prove que f assume um valor máximo e um valor mínimo no retângulo.

- 24. Determine as derivadas parciais.
 - (a) $z = arctg\frac{x}{y}$
 - (b) $f(x,y) = \sqrt[3]{x^3 + y^2 + 3}$
 - (c) $z = \frac{xseny}{cos(x^2+y^2)}$
- 25. Considere a função $z = \frac{xy^2}{x^2 + y^2}$. Verifique que $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z$.
- 26. Sejam $z=e^{x^2+y^2}, x=\rho cos\theta$ e $y=\rho sen\theta$. Verifique que

$$\frac{\partial z}{\partial \rho} = e^{x^2 + y^2} (2x\cos\theta + 2y\sin\theta).$$

Conclua que $\frac{\partial z}{\partial \rho} = \frac{\partial z}{\partial x} cos\theta + \frac{\partial z}{\partial y} sen\theta$.

- 27. Seja $f(x,y) = \int_0^{x^2+y^2} e^{-t^2} dt$. Calcule $\frac{\partial f}{\partial x}(x,y)$ e $\frac{\partial f}{\partial y}(x,y)$.
- 28. Seja $f(x,y) = \int_{x^2}^{y^2} e^{-t^2} dt$. Calcule $\frac{\partial f}{\partial x}(x,y)$ e $\frac{\partial f}{\partial y}(x,y)$.
- 29. Seja $f(x,y)=x^3y^2-6xy+\phi(y)$. Determine uma função ϕ de modo que $\frac{\partial f}{\partial y}=2x^3y-6x+\frac{y}{y^2+1}$.
- 30. Determine uma função f(x,y) tal que $\frac{\partial f}{\partial x}=3x^2y^2-6y$, $\frac{\partial f}{\partial y}=2x^3y-6x+\frac{y}{y^2+1}$
- 31. Seja $f(x,y) = x^2 + y^2$ e seja $\gamma(t) = (t,t,z(t)), t \in \mathbb{R}$, uma curva cuja imagem está contida no gráfico de f.
 - (a) Determine z(t).
 - (b) Esboce os gráficos de f e γ .
 - (c) Determine a reta tangente a γ no ponto (1,1,2).
 - (d) Seja T a reta do item c,; mostre que T está contida no plano de equação $z-f(1,1)=\frac{\partial f}{\partial x}(1,1)(x-1)+\frac{\partial f}{\partial y}(1,1)(y-1).$
- 32. Suponha que z = f(x, y) admita derivadas parciais em (x_0, y_0) . Considere as curvas cujas imagens estão contidas no gráfico de f:

$$\gamma_1 : \begin{cases} x = x_0 \\ y = t \end{cases} \quad \text{e} \quad \gamma_2 : \begin{cases} x = t \\ y = y_0 \\ z = f(t, y_0) \end{cases}$$

Sejam T_1 e T_2 as retas tangentes a γ_1 e γ_2 nos pontos $\gamma_1(y_0)$ e $\gamma_2(x_0)$, respectivamente. Mostre que a equação do plano determinado pelas retas T_1 e T_2 é

$$z - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0).$$

- 33. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ e suponha que $\frac{\partial f}{\partial x}(x,y) = 0$ e $\frac{\partial f}{\partial y}(x,y) = 0$, para todo $(x,y) \in \mathbb{R}^2$. Prove que f é constante.
- 34. Dê exemplo de uma função $f:A\subset \mathbb{R}^2\to \mathbb{R}$ tal que $\frac{\partial f}{\partial x}(x,y)=0$ e $\frac{\partial f}{\partial y}(x,y)=0$, para todo $(x,y)\in A$, mas que f não seja constante em A.
- 35. Determine o conjunto dos pontos em que a função dada é diferenciável. Justifique.

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

- 36. Determine as equações do plano tangente e da reta normal ao gráfico da função dada, no ponto dado.
 - (a) $f(x,y) = 2x^2$ em (1,1,f(1,1)).
 - (b) $f(x,y) = 3x^3y xy$ em (1,-1,f(1,-1)).
- 37. Determine o plano que passa pelos pontos (1,1,2) e (-1,1,1) e que seja tangente ao gráfico de f(x,y)=xy.
- 38. Determine os planos tangentes ao gráfico de $f(x,y) = 2 + x^2 + y^2$ e que contenham o eixo x.
- 39. Calcule a diferencial.
 - (a) $z = x^3y^2$
 - (b) $u = e^{s^2 t^2}$
- 40. Calcule aproximadamente:
 - (a) $(1,01)^{2,03}$

(b)
$$\sqrt{(0,01)^2 + (3,02)^2 + (3,97)^2}$$

- 41. Calcule a diferencial.
 - (a) w = xyz
 - (b) $x = e^{2u+2v-t^2}$
 - (c) $w = \frac{x^2 + y^2}{1 + z^2}$
 - (d) $s = (1+x^2)^{yz}$
- 42. Calcule $\nabla f(x,y)$ sendo f(x,y)=
 - (a) x^2y
 - (b) $arctg\frac{x}{y}$
- 43. Seja $f(x,y) = x^2 y^2$. Represente geometricamente $\nabla f(x_0, y_0)$, sendo $(x_0, y_0) = (1, 1)$.
- 44. Seja f(x,y) = xy e seja $\gamma(t) = (x(t),y(t)), t \in I$, uma curva diferenciável cuja imagem está contida na curva de nível f(x,y) = 2. Mostre que para todo t em I, $\gamma'(t).\nabla f(\gamma(t)) = 0$. Dê exemplo de uma curva cuja imagem esteja contida na curva de nível xy = 2.
- 45. Considere a função $f(x, y, z) = x^2 + 4y^2 + 9z^2$ e seja $\gamma(t) = (x(t), y(t), y(t))$ uma curva diferenciável qualquer, com imagem contida na superfície de nível $x^2 + 4y^2 + 9z^2 = 1$, e tal que $\gamma(t_0) = (x_0, y_0, z_0)$.
 - (a) Prove que $\nabla f(x_0, y_0, z_0) \cdot \gamma(t_0) = 0$.
 - (b) Determine a equação do plano tangente à superfície de nível dada, no ponto (x_0, y_0, z_0) .
 - (c) Determine a equação do plano tangente à superfície de nível $x^2+4y^2+9z^2=14,$ no ponto (1,1,1).