
Attacking Seven Rounds of Rijndael under

192-bit and 256-bit Keys

Stefan Lucks?

Theoretische Informatik
University of Mannheim, 68131 Mannheim, Germany

lucks@th.informatik.uni-mannheim.de

Abstract. The authors of Rijndael [3] describe the \Square attack" as
the best known attack against the block cipher Rijndael. If the key size is
128 bit, the attack is faster than exhaustive search for up to six rounds.
We extend the Square attack on Rijndael variants with larger keys of 192
bit and 256 bit. Our attacks exploit minor weaknesses of the Rijndael
key schedule and are faster than exhaustive search for up to seven rounds
of Rijndael.

1 Introduction

The block cipher Rijndael [3] has been proposed as an AES candidate
and was selected for the secound round. It is a member of a fast-growing
family of Square-like ciphers [2{4, 6, 7].

Rijndael allows both a variable block length of M � 32 bit with M 2
f4; 6; 8g and a variable key length of N � 32 bit, N an integer. In the
context of this paper we concentrate on M = 4, i.e., on a block length of
128 bit, and on N 2 f4; 6; 8g, i.e., on key sizes of 128, 192, and 256 bit.
We abridge these variants by RD-128, RD-192 and RD-256. The number
R of rounds is speci�ed to be R = 10 for RD-128, R = 12 for RD-192, and
R = 14 for RD-256. In the context of this paper, we consider reduced-
round versions with R � 7.

The authors of Square [2] described the \Square attack", a dedicated
attack exploiting the byte-oriented structure of Square. The attack works
for Square reduced to six rounds and is applicable to Rijndael and other
Square-like ciphers as well [3, 4, 1]. This paper deals with extensions of
the Square-attack for RD-192 and RD-256.

In Section 2, we shortly describe Rijndael, leaving out many details
and pointing out some properties relevant for our analysis. Section 3 deals
with the Square attack for up to six rounds of Rijndael, originating from

? Supported by DFG grant Kr 1521/3-1.



[2, 3]. In Sections 4{6 we describe attacks for seven rounds of Rijndael.
The attack in Section 4 and its analysis is valid for all versions of Rijndael,
while the attacks in Section 5 and Section 6 are dedicatedly for Rijndael-
256 and Rijndael-192, exploiting minor weaknesses of the Rijndael key
schedule. We give �nal comments and conclude in Section 7.

2 A Description of Rijndael

Rijndael is a byte-oriented iterated block cipher. The plaintext (a 128-
bit value) is used as initial state, the state undergoes a couple of key-
dependent transformations, and the �nal state is taken as the cipher-
text. A state A 2 f0; 1g128 is regarded as a 4 � 4 matrix (Ai;j), i; j 2
f0; 1; 2; 3g of bytes (see Figure 1). The four columns of A are Ai =
(A0;j ; A1;j ; A2;j ; A3;j).

(3,0) (3,2) (3,3)

(1,3)

(0,3)(0,0) (0,2)

(1,2)

(2,2)

(1,0)

(2,0)

(0,1)

(1,1)

(2,1)

(3,1)

(2,3)

Fig. 1. The index positions (i; j) for a 4*4 matrix of bytes.

Given the initial state, R rounds of transformations are applied. Each
round can be divided into several elementary transformations.

By the key schedule, the key, a (N �32)-bit value with N 2 f4; 6; 8g, is
expanded into an array W [�] of 4(R+1) 32-bit words W [0]; : : : ;W [4(R+
1) � 1]. Four such words W [4r + j] with j 2 f0; 1; 2; 3g together are
used as r-th \round key" Kr, with r 2 f0; : : : ; Rg. Like the state, we
regard a round key Kr as a 4 � 4 matrix of bytes Kr

i;j with four columns
Kr

j =W [4r + j] for j 2 f0; 1; 2; 3g.

2.1 The Elementary Transformations of Rijndael

Rijndael uses four elementary operations to transform a state A = (Ai;j)
into a new state B = (Bi;j), see also Figure 2:

2



1. The byte substitution (BS): Bi;j := S(Ai;j) for i; j 2 f0; 1; 2; 3g. Here,
S denotes a permutation over f0; 1g8, i.e., S�1 is de�ned with Ai;j =
S�1(Bi;j).

2. The shift row operation (SR), a cyclic shift of bytes: Bi;j := Ai;(j+i) mod 4.
3. The mix column transformation (MC). Each column Ai of state A

is transformed via a linear transformation � over f0; 1g32, i.e. Bi :=
�(Ai) for i 2 f0; 1; 2; 3g. Also, � is invertible.
An inputX 2 f0; 1g32 for � can be seen as a vectorX = (X0;X1;X2;X3)
of four bytes. Consider X 0 = (X 0

0;X
0

1;X
0

2;X
0

3) to be di�erent from X

in exactly k bytes (1 � k � 4), i.e.

k =
��f i 2 f0; 1; 2; 3g j Xi 6= X 0

i g
�� :

Then Y = �(X) and Y 0 = �(X 0) are di�erent in at least 5�k of their
four bytes. The same property holds for the inverse ��1 of �.

4. The key addition (KA). The r-th round key Kr = (Kr
i;j) is added to

the state A by bit-wise XOR: Bi;j := Ai;j �Kr
i;j.

Note that all elementary transformations of Rijndael are invertible.

S

Mix Column (MC)

Shift Row (SR)

Byte Substitution (BS)

Key Addition (KA)

Fig. 2. The four elementary transformations of Rijndael.

3



2.2 The Rijndael Round Transformation

For r 2 f0; : : : ; Rg, the round key Kr consists of the expanded key words
W [4r], . . . , W [4r + 3]. The structure of Rijndael is de�ned as follows1:

1. S := plaintext;

2. KA (S, K0); (� add round key 0 before the �rst round �)

3. for r := 1 to R do: (� run through round 1, 2, . . . , R �)

4. S := BS(S); (� byte substitution �)

5. S := SR(S); (� shift row �)

6. S := MC(S); (� mix column �)

7. S := KA(S, Kr); (� add round key r �)

8. ciphertext := S.

Steps 4{7 are the \standard representation" of the Rijndael round struc-
ture. The implementor of Rijndael has a great degree of freedom to change
the order the elementary operations are done { without changing the be-
havior of the cipher. (We refer the reader to the description of the \alge-
braic properties" and the \equivalent inverse cipher structure" for details
[3, Section 5.3].) We describe one alternative representation of the round
structure. As an \alias" for the r-th round key Kr we use the value

Lr = SR�1(MC�1(Kr)): (1)

Accordingly, we distinguish between the \L-representation" Lr of a round
key and its \K-representation". Knowing Lr is equivalent to knowingKr,
and knowing a column Kr

j of Kr is equivalent to knowing four bytes of
Lr, see Table 1.

known column of Kr known bytes Lr
i;j of L

r

Kr
0 (i; j) 2 f(0; 0); (1; 3); (2; 2); (3; 1)g

Kr
1 (i; j) 2 f(0; 1); (1; 0); (2; 3); (3; 2)g

Kr
2 (i; j) 2 f(0; 2); (1; 1); (2; 0); (3; 3)g

Kr
3 (i; j) 2 f(0; 3); (1; 2); (2; 1); (3; 0)g

Table 1. Known columns of a key in K-representation and the corresponding known
key bytes in L-representation.

1 Actually, the authors of Rijndael [3] specify an exception: in the last round, the MC-
operation is left out. As was stressed in [3], this modi�cation does not strengthen
or weaken the cipher. In the current paper, we assume for simplicity that the last
round behaves exactly like the other rounds.

4



The following describes a functionally equivalent round structure for
Rijndael, see also Figure 3.

4. S := BS(S); (� byte substitution �)
5. S := KA(S, Lr); (� add round key, given in L- representation �)
6. S := SR(S); (� shift row �)
7. S := MC(S); (� mix column �)

S S

Kr

Lr

SR

MC

KA

BS BS

KA

SR

MC

SR

MC

L-repr.

K-repr.

Fig. 3. The Structure of a Rijndael round.
Left: The standard representation of the Rijndael round transformation
Middle: The round key { changing between K-representation and L-representation
Right: The alternative representation of the Rijndael round transformation

2.3 The Rijndael Key Schedule

The key schedule is used to generate an expanded key from a short (128{
256 bit) \cipher key". We describe the key-schedule using word-wise oper-

5



ations (where a word is a 32-bit quantity), instead of byte-wise ones. The
cipher key consists of N 32-bit words, the expanded key of 4�(R+1) such
wordsW [�]. The �rst N wordsW [0], . . . , W [N�1] are directly initialised
by the N words of the cipher key.

For k 2 f1; 2; : : :g, const(k) denotes �xed constants, and f; g : f0; 1g32 !
f0; 1g32 are nonlinear permutations.2 For i 2 fN; : : : ; 4 � (R+1)� 1g the
words W [i] are de�ned recursively:

If (i mod N) = 0
then W [i] :=W [i�N ]� f(W [i� 1])� const(idivN)
else if ((N > 6) and (i mod N) = 4)

then W [i] :=W [i�N ]� g(W [i � 1])
else W [i] :=W [i�N ]�W [i� 1]:

(2)

Note that two words W [i� 1] and W [i�N ] suÆce to compute the word
W [i]. Similarly, we can go backwards: Given two wordsW [i] andW [i�1],
we can compute W [i � N ]. (This will be useful for our attacks below.)
Hence, any N consecutive wordsW [k], . . . , W [k+N�1] of the expanded
key suÆce to eÆciently generate the complete expanded key and thus to
completely break Rijndael.

3 The Square Attack for Rijndael

In this section we describe the dedicated Square-Attack for Rijndael. More
details can be found in [2, 3]. We start with a simple attack on four rounds
and extend the simple attack by an additional round at the beginning and
another one at the end. This leads to the \Square-6" attack for six rounds
of Rijndael. Analysing the performance of our attacks with respect to RD-
192 and RD-256 is delayed until the end of this section.

3.1 Attacking Four Rounds { the Simple Attack

To describe the attack we need the notion of a \�-set", i.e., a set of
28 states that are all di�erent in some of their 4 � 4 bytes (the \active"
bytes), and all equal in the other (\passive") bytes. In other words, for
two distinct states A and B in a �-set we always have

Ai;j 6= Ai;j if the byte at position (i; j) is active, and
Ai;j = Bi;j else, i.e., if the byte at (i; j) is passive.

2 We omit the de�nition of f and g, but we point out that the four functions f , g,
f�1 and g�1 are �xed in the de�nition of Rijndael and can be computed eÆciently.

6



A �-set with exactly k active bytes is a \�k-set".

The adversary chooses one �1-set P0 of states (plaintexts). By Pi we
denote the sets of 28 states which are the output of round i. P1 is a �4-
set, all four active bytes in the the same column. P2 is a �16-set. P3 is
unlikely to be a �-set. But, as explained in [2, 3], all the bytes of S3 are
\balanced", i.e., the following property holds:

For all (i; j) 2 f0; 1; 2; 3g2 :
M

A2P3

Ai;j = 0: (3)

Recall that we consider a four-round attack, i.e., P4 is the set of 28

ciphertexts the adversary learns. It is unlikely that the bytes of P4 are
balanced, but the balancedness of the bytes of P3 can be exploited to
�nd the fourth round key K4. Let L4 be the L-representation of K4, cf.
Equation (1). The attack de�nes a set Q4 \in between"3 P3 and P4:

1. For X 2 P4:

Y := MC�1(X);
Z := SR�1(Y ).

Denote the set of 28 states Z by Q4.

2. For all (i; j) 2 f0; 1; 2; 3g2 :

for a 2 f0; 1g8:

b(a) :=
L

Z2Q4
S�1(Zi;j � a);

if b(a) 6= 0 then conclude L4
i;j 6= a.

In short, we invert round four step by step: invert the mix column oper-
ation, invert the shift row operation, add (a possible choice for) the key
byte L4

i;j and invert the byte substitution. If the guess a 2 f0; 1g8 for
the key L4

i;j is correct, the set of 2
8 bytes S�1(Zi;j � a) is balanced, i.e.,

b(a) = 0. But if our guess a0 for L4
i;j is wrong, we estimate b(a0) = 0 to

hold with only a probability of 2�8. Thus, on the average two candidates
for for each byte L4

i;j are left { the correct byte and a wrong one. We can
easily reconstruct an expected number of less than 216 candidates for L4.

Each candidate corresponds with a unique choice for the 128-bit cipher
key of RD-128. To �nd the cipher key, we may either choose a second �1-
set of plaintexts, or just use exhaustive search over all key candidates,
using the same 28 known pairs of plaintext and ciphertext as before.
With overwhelming probability, either approach uniquely determines the

3 In general, we regard Q5 to be a set of states \in between" Pr�1 and Pr. Note
that converting a state in Pr into its counterpart in P4 does not depend on the
key and can be just like converting a round key from its K-representation into its
L-representation, similarly to Equation (1).

7



cipher key, using few memory and an amount of work determined by step
2, i.e., about 220 byte-wise XOR-operations. Note that the �rst approach
needs twice as many chosen plaintexts as the second one.

3.2 An Extension at the End

As suggested in [2, 3], the above basic attack can be extended by one
additional round at the beginning and another round at the end. We
start with extending the additional round at the end.

Let P0 be chosen as above. By P5, we denote the set of 28 outputs
of round 5. Similar to Q4 above, the adversary can �nd Q5 by applying
MC�1 and applying SR�1. Given the set Q5, we can compute P3 by
inverting 112 rounds of Rijndael.

If the set P5 (or Q5) is �xed, the bytes of P3 at position, say, (0; 1)
only depend on L5

0;1, L
5
1;1, L

5
2;1, L

5
3;1, and on L4

0;1, see Figure 4.

Similar to the four-round attack, we may guess such a �ve-tuple of key
bytes and compute the corresponding bytes of P3. If these aren't balanced,
we reject the corresponding key bytes. We expect one out of 28 incorrect
�ve-tuples to be not rejected. With �ve �-sets of plaintexts, i.e., 5 � 28

chosen plaintexts, the the cipher key can easily be found via exhaustive
search. (A more diligent treatment would allow us to reduce the number of
chosen plaintexts for this attack, but without much e�ect on the required
number of chosen plaintexts for the six-round attack below.)

To measure the running time of our attacks, we use the notion of a
\basic operation". Given a column Yj of bytes of a state Y in Qr, the key
column Lr

j and another key byte Lr�1
k;j with the row index k as the input,

we compute the byte Xk;j of a state X in Pr�2, using V = (V0; V1; V2; V3)
and W = (W0;W1;W2;W3) as intermediate values and de�ne the basic
operation Xk;j = BO(Yj ; k; L

r
j ; L

r�1
k;j ) as follows:

1. For i := 0 to 3: Vi := S�1(Yi;j � Lr
i;j).

2. W := ��1(V ).

3. Xk;j := S�1(Wk;j � Lr�1
k;j ).

In short: one basic operation requires 5 byte-wise XORs, 5 evaluations of
S�1, and one evaluation of ��1.

To check the correctness of a quintuple of bytes, we have to do 28

basic operations and to XOR the results for a balance-check by verifying
Equation (3). We do this for every quintuple of bytes. Thus, the �ve-round
attack takes the time of about 248 basic operations.

8



SS BS

KA

BS

KA

SR

MC

X

Y

Fig. 4. 1 1
2
rounds of Rijndael: Given one column Yj of the output state Y and �ve

corresponding key bytes, one can �nd one byte Xk;j of the input X by inverting these
1 1
2
rounds of Rijndael; we write Xk;j = BO(Yj ,k,key bytes) and consider this a \basic

operation" for our attacks.

3.3 Attacking Six Rounds { the Square-6 attack

Now we extend the above attack by an additional \round 0". We denote
this attack the \Square-6 attack".

Let P0 be a �1-set, as before. By doing one additional round of
decryption, we get a �4-set P�1. The active bytes of P�1 are at positions
determined by the positions of the active P0-byte. E.g., if the P0-byte at
position (0; 0) is the active one, the P�1-bytes at positions (0; 0), (1; 3),
(2; 2), and (3; 1) are active.

The idea is to arbitrarily �x the plaintext bytes at the passive posi-
tions and to choose 232 plaintexts varying at the active positions. If the
four corresponding bytes of the round key K�1 for round 0 are known
(e.g. for the active P0-byte at position (0; 0): if K�1

0;0 , K
�1
1;3 , K

�1
2;2 and

9



K�1
3;1 are known), the adversary can easily determine many 28-sets P�1 of

plaintexts, such that the sets P0 are �
1-sets.

The adversary accordingly chooses 232 plaintexts and, for all 232 rel-
evant key bytes, runs the �ve-round attack described above. This is 232

times slower than the �ve-round attack itself, i.e. takes about 280 basic
operations. The memory requirement for this attack is dominated by the
need to store 232 ciphertexts.

3.4 Considering RD-192 and RD-256

Note that the six-round Square-6 attack and the �ve-round attack allow
us to �nds two round keys K4 and K5 at the same time. (The attacker
chooses a �ve-tuple of key bytes, one byte from K4 and four from K5,
and probabilistically verify if that choice is correct.) Once the attacker
knows two consecutive round keys, i.e. eight consecutive words from the
expanded key, the attacker can easily run the key schedule backwards
to �nd the cipher key. In other words, the performance of the Square-6
attack does not depend on which 
avor of Rijndael we attack, RD-128,
RD-192, or RD-256. We call such an attack a \generic" attack.

The simple four-round attack only provides the attacker with the
round key K4. But �nding the round key K3 is easy, since the set P2
of states is a �16-set.

4 A Generic Attack for Seven Rounds of Rijndael

It is easy to extend the Square-6 attack to seven rounds of Rijndael:

1. Choose 232 input plaintexts for the Square-6 attack and ask for the
corresponding ciphertexts.

2. For all K7 2 f0; 1g128 :
3. Last-round-decrypt the 232 ciphertexts under K7.
4. Run the Square-6 attack for the results, to get the round keys K6

and K5.
5. Given the round keysK5,K6 andK7, we have more than suÆcient

key material to recover the complete extended key and to check it
for correctness.

The seven-round attack requires the same amount of chosen plaintexts
and memory as the Square-6 attack. The running time increases by a
factor of 2128, i.e. to the equivalent of

280 � 2128 = 2208 basic operations.

10



Even though the attack is generic, it is pointless for attacking either RD-
128 or RD-192 { exhaustive key search is much faster for these variants
of Rijndael.

5 Attacking Seven Rounds of RD-256

For RD-256, the above generic seven-round attack improves on exhaus-
tive search. But, as shown here, the RD-256 key schedule allows us to
accelerate the attack by a factor of 28.

Note that if we know (or have chosen) K7, we know the expanded key
words W [28], W [29], W [30], and W [31]. By Formula (2), we get

W [21] =W [28] �W [29];

W [22] =W [29] �W [30]; and

W [23] =W [30] �W [31]:

Hence, we know know three columns of K5, including e.g. K5
1 . As ex-

plained in Section 2.3, this implies knowing 12 bytes of L5, including e.g.
L5
0;1. To test the bytes of 256-set P4 at position (0; 1), we need the bytes

in column 1 from Q6, the corresponding key column L6
1 from L6 and the

key byte L5
0;1 from L5 (cf. Figure 4 at page 9). We attack seven rounds

of RD-256 by the following algorithm:

1. Choose 232 distinct input plaintexts, varying at the byte positions
(0; 0), (1; 2), (2; 2), and (3; 1) and constant at the other byte positions.
Ask for the corresponding ciphertexts.

2. For all 232 combinations of K0
0;0, K

0
1;3, K

0
2;2, K

0
3;1:

3. Fix 32 distinct sets P0[i] of plaintexts (i 2 f0; : : : ; 31g) with jP0[i]j =
28, such that the corresponding P1[i] are �

1-sets.
4. For all 2128 round keys K7:

5. Decipher the 32 sets of ciphertexts P7[i] to get P6[i] and Q6[i].
6. Compute L5

0;1.
7. For all 232 combinations of L6

1 = (L6
0;1; L

6
1;1; L

6
2;1; L

6
3;1):

8. i := 0; reject := false;
9. while i � 31 and reject=false:

begin
10. Compute

b[i] :=
M

A2Q6[i]

BO(A1; 1; L
6
1; L

5
0;1):

11



11. If b[i] = 0 then i := i+1
else reject := true.

end (� while �).
12. If reject=false then stop (� and accept key bytes �).

The above algorithm exhaustively searches a subspace of size 2192 of
the full key space. When all 24 key bytes are correct, step 11 always exe-
cutes then-clause and increments the counter i. After 32 such iterations,
the algorithm stops in step 12.

If any of the 24 byte key bytes is wrong, we execute the then-clause
only with a probability of 2�8. Since the counter i runs from 0 to 31,
the probability for a wrong 24-tuple of key bytes to be accepted is below
2�8�32 = 2�256. There are only 2192 such tuples of key bytes, thus the
probability to accept any wrong 24-tuple is less than 232�2128�232�2�256 �
2�64, i.e. negligible.

When stopping, the algorithm accepts K7 and four bytes of K6 (or
L6). By exhaustive search, it is easy to �nd the other 12 bytes of K6.
Having done that, the key schedule allows to �nd the full expanded key.

For the attack, 232 chosen plaintexts suÆce, and the required storage
space is dominated by the need to store the corresponding 232 ciphertexts.

What about the running time? The loop in step 2 is iterated 232 times,
step 4 takes 2128 iterations, and the loop in step 7 is iterated 232 times.
On the average, the while-loop is iterated 1+ 2�8+2�16 + : : : times, i.e.,
about once. Step 12 needs 28 basic operations. This makes about

232 � 2128 � 232 � 1 � 28 = 2200 basic operations.

6 Attacking Seven Rounds of RD-192

In the case of RD-192, accelerating the generic attack by a factor of 28,
as in the case of RD-256, would still not suÆce to outperform exhaustive
search. Fortunately (for the cryptanalyst), the RD-192 key schedule allows
an acceleration by a factor of 224, compared to the generic attack,

The columns of K7 are the words W [28], W [29], W [30], and W [31] of
the expanded key. These four words allow us to compute three more words
{ in the case of RD-192, these are W [23], W [24], and W [25], cf. Section
2.3. Two of these words are columns of the round key K6, while the third
word is a column of K5: W [24] = K6

0 , W [25] = K6
1 , and W [23] = K5

3 .
FromW [23],W [24], andW [25], we can compute three useful key bytes

for the attack, for example L5
0;3, L

6
1;3, and L

6
2;3, cf. Table 1 on page 4. The

two remaining key bytes (in our example L6
0;3 and L6

3;3) still have to be
found:

12



1. Choose 232 distinct input plaintexts, varying at the byte positions
(0; 0), (1; 2), (2; 2), and (3; 1) and constant at the other byte positions.
Ask for the corresponding ciphertexts.

2. For all 232 combinations of K0
0;0, K

0
1;3, K

0
2;2, K

0
3;1:

3. Fix 32 distinct sets P0[i] of plaintexts (i 2 f0; : : : ; 31g) with jP0[i]j =
28, such that the corresponding P1[i] are �

1-sets.

4. For all 2128 round keys K7:

5. Decipher the 32 sets of ciphertexts P7[i] to get P6[i] and Q6[i].
6. Compute L5

0;3, L
6
1;3, and L

6
2;3.

7. For all 216 combinatios of L6
0;3 and L

6
3;3:

8. i := 0; reject := false;
9. while i � 31 and reject=false:

begin

10. Compute

b[i] :=
M

A2Q5[i]

BO(A3; 3; L
6
1; L

5
0;1):

11. If b[i] = 0 then i := i+1
else reject := true.

end (� while �).
12. If reject=false then stop (� and accept key bytes �).

The analysis of the attack is essentially the same as its counterpart
for RD-256. The only di�erence is that the loop in step 7 is iterated 216

times instead of 232. So the attack needs the time of about

232 � 2128 � 216 � 1 � 28 = 2184 basic operations.

7 Final Comments, Summary, and Conclusion

In [3], the authors of Rijndael described the Square-6 attack for RD-128.
Extensions of this attack for RD-192 and RD-256 were missing, though.
The target of the current paper is to close this gap.

The attacks described in this paper are highly impractical. Consid-
ering even such certi�cational attacks as ours is good scienti�c practice.
And the design of Rijndael was determined \by looking at the maximum
number of rounds for which shortcut attacks have been found" [3, Chap-
ter 7.6], allowing an additional margin of security. Any attack which is
faster than exhaustive search counts as \shortcut attack".

13



Attack target # Rounds # Chosen Time Memory
Plaintexts [# basic operations] [# Ciphertexts]

simple Square generic 4 28 small small

ext. at the end generic 5 5 � 28 248 small

Square-6 generic 6 232 280 232

7-round generic 7 232 2208 232

RD-192 7 232 2184 232

RD-256 7 232 2200 232

Table 2. Summary of Results.

Table 2 summarises how the di�erent attacks perform. The results
for 4{6 rounds of Rijndael originate from [3]. Note that [3] counted the
number of \cipher executions" to measure the running time.

In [5], Fergusen and others describe improved attacks on Rijndael. A
preliminary version of [5] has been sent to the current author by one of
the authors of [5], and the following remarks are base on that version.
[5] describes some weaknesses of the Rijndael key schedule, but does not
exploit these for actual attacks. The attacks in [5] are mainly based on
improvements of the Square-6 attack, using the \partial sums". E.g., an
attack on seven rounds of Rijndael is proposed, which requires 232 chosen
plaintexts and the time equivalent to 2170 trial encryptions. Using the
observations made in the current paper, this attack can be improved by
a factor of 216, i.e., only needs the equivalent of 2156 trial encryptions,
instead of 2170.

Our results exhibit a weakness in the Rijndael key schedule. If, e.g.,
the wordsW [�] of the expanded key were generated pseudorandomly using
a cryptographically secure pseudorandom bit generator, dedicated attacks
could not be more eÆcient than their generic counterparts.

This does not indicate the necessity to modify the Rijndael key sched-
ule, though. The improvements on the generic case are quite small. If we
concentrate on counting the number of rounds for which shortcut at-
tacks exist, the cryptanalytic gain of this paper is one round for RD-192,
not more. The authors of Rijndael seem to have anticipated such crypt-
analytic results by specifying a high security margin for the number of
rounds (two additional rounds for RD-192, compared to RD-128 with its
ten rounds).

14



References

1. C. D'Halluin, G. Bijnens, V. Rijmen, B., Preneel: \Attack on six round of Crypton",
Fast Software Encryption 1999, Springer LNCS 1636, pp. 46{59.

2. J. Daemen, L. Knudsen, V. Rijmen: \The block cipher Square", Fast Software En-
cryption 1997, Springer LNCS 1267, pp. 149{165.

3. J. Daemen, V. Rijmen: \AES proposal: Rijndael" (2nd version), AES submission.
4. J. Daemen, V. Rijmen: \The block cipher BKSQ", Cardis 1998, Springer LNCS, to

appear.
5. N. Ferguson, J. Kelsey, B. Schneier, M. Stay, D. Wagner, D. Whiting: \Improved

Cryptanalysis of Rijndael", Fast Software Encryption 2000, Springer LNCS, to ap-
pear.

6. C. H. Lim: \Crypton: a new 128-bit block cipher", AES submission.
7. C. H. Lim: \A revised version of Crypton { Crypton V1.0 { ", Fast Software En-

cryption 1999, Springer LNCS 1636, pp. 31{45.

15


