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Abstract. In this paper we examine a class of product ciphers referred to as
substitution-permutation networks. We investigate the resistance of these cryptographic
networks to two important attacks: differential cryptanalysis and linear cryptanalysis. In
particular, we develop upper bounds on the differential characteristic probability and on
the probability of a linear approximation as a function of the number of rounds of substi-
tutions. Further, it is shown that using large S-boxes with good diffusion characteristics
and replacing the permutation between rounds by an appropriate linear transformation
is effective in improving the cipher security in relation to these two attacks.
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1. Introduction

The class of product ciphers considered in this paper is based on principles introduced
by Shannon [28]. Shannon suggested that secure, practical product ciphers may be
constructed using a “mixing transformation” consisting of a number of layers or rounds
of “confusion” and “diffusion”. The confusion component is a nonlinear substitution
on a small subblock and the diffusion component is a linear mixing of the subblock
connections in order to diffuse the statistics of the system.

Feistel [13] and Feistelet al. [14] were the first to introduce a practical architecture
based on Shannon’s concepts with a network structure consisting of a sequence of rounds
of small substitutions (referred to as S-boxes), easily implemented by table lookup and
connected by bit position permutations or transpositions. Such ciphers are generally
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referred to as substitution-permutation networks or SPNs. The fundamental principles
of an SPN form the foundation for many modern product ciphers, including DES [20],
FEAL [29], and LOKI [10].

Recent cryptanalysis techniques have had a notable effect on the perceived security
of many product ciphers. For example, DES has been found to be theoretically crypt-
analyzable by differential cryptanalysis using a chosen plaintext approach [5] and by
linear cryptanalysis using a known plaintext approach [18]. In this paper we examine
the security of SPNs with respect to these two powerful cryptanalysis techniques and
suggest structures that aid in resisting the attacks. In particular, we develop upper bounds
on the probability of a differential characteristic and on the deviation of the probability of
a linear approximation from the ideal value of1

2. The objective of such an analysis is to
determine a flexible architecture that can be efficiently implemented in as few rounds as
possible to provide suitably small probabilities for differential characteristics and linear
approximations.

2. Background

We consider a generalN-bit SPN as consisting ofR rounds ofn×n S-boxes. The number
of S-boxes used in each round is represented byM whereM = N/n. The plaintext
and ciphertext areN-bit vectors denoted asP = [ P1 P2 PN ] andC = C1 C2 · · ·CN ],
respectively. An S-box in the network is defined as ann-bit bijective mappingS: X → Y
whereX = [X1 X2 · · · Xn] andY = [Y1 Y2 · · · Yn]. A simple example of an SPN is
illustrated in Fig. 1 withN = 16, R= 4, andn = 4.

In general S-boxes may be keyed using one or both of the following methods:

1. Selection keying: key bits are used to select which mapping from a set of mappings
is to be used for a particular S-box.

2. XOR mask keying: key bits are XORed with the network bits prior to entering an
S-box.

Fig. 1.SPN withN = 16, R= 4, andn = 4.
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Note that method 2 may actually be considered as a special case of method 1. Method 2,
however, ensures that all mappings in the set of possible mappings for an S-box are
from the same cryptographic equivalence class [30]. We assume in our discussion that
the network is keyed using XOR mask keying by XORingN bits of key (as determined
by the key-scheduling algorithm) before the first substitution, after the last substitution,
and between all substitutions. Decryption is performed by applying the key-scheduling
algorithm in reverse and using the inverse S-boxes.

Rather than strictly confining ourselves to the basic form of substitutions connected
by permutations, in this paper we consider the more general model of substitutions
connected by invertible linear transformations. However, for consistency, we still refer
to the more general architecture as an SPN.

Many papers have examined the cryptographically desirable properties of SPNs and
their components. Acknowledged design criteria for the network S-boxes include non-
linearity [26], [19], [3], [21] and information-theoretic properties [15], [12]. Preferred
permutation structures promote the influence of input bits [16], [4], [11].

Of particular importance to our discussion is the notion of nonlinearity and we use
the following nonlinearity measures when referring to a boolean function or an S-box.
The nonlinearity of ann-input boolean function,f : {0, 1}n → {0, 1}, is defined as the
Hamming distance to the nearest affine function:

NL( f ) = min
U1,...,Un,V∈{0,1}

#

{
X | f (X) 6=

n⊕
i=1

Ui Xi ⊕ V

}
. (1)

Consequently, the nonlinearity of ann × n bijective mapping or S-boxS is defined as
the minimum nonlinearity of all nonzero linear combinations of output functions:

NL(S) = min
W1,...,Wn∈{0,1}, all Wi 6=0

NL

(
n⊕

i=1

Wi fi

)
, (2)

where fi represents then-input function of thei th output of the S-box. LettingS−1

represent the inverse of S-boxS, it can be shown thatNL(S−1) = NL(S) [22].

3. Two Important Classes of Cryptanalysis

In this section we discuss two important classes of cryptanalysis which have had signif-
icant success against product ciphers.

(a) Differential Cryptanalysis

In a series of papers [5]–[8] Biham and Shamir successfully demonstrate the suscepti-
bility of several product ciphers to differential cryptanalysis. Notably, differential crypt-
analysis has been successful in breaking weakened versions of DES and can theoretically
compromise the security of the full 16-round DES algorithm using 247 chosen plaintexts.
As well, differential cryptanalysis has been successfully applied to the FEAL cipher for
up to 31 rounds of substitutions.
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Differential cryptanalysis is an attack which examines changes in the output of the
cipher in response to controlled changes in the input. In general, we are interested in bit
changes or XOR differences within the network when two plaintexts,P′ andP′′ are se-
lected as inputs. We represent the XOR difference of the two plaintexts by1P= P′⊕P′′.
Let the input and output difference to a particular roundi be represented by1Ui and
1V i , respectively. Differential cryptanalysis relies on the existence of highly probable
“characteristics” where anr -round characteristic,Är , is defined as a sequence of differ-
ence pairs:Är = {(1U1,1V1), . . . , (1Ur ,1Vr )}. The algorithm tries an appropriate
number of chosen plaintexts with1P = 1U1 and counts the number of times that a
subkey consisting of a subset of the key bits is consistent with the ciphertext differ-
ence,1C, assuming that the characteristic has occurred. If the characteristic occurs with
probability pÄr , the correct subkey bits are consistent with a probability of at leastpÄr .
After an appropriate number of trials (typically several times more than 1/pÄr chosen
plaintext pairs) the correct subkey will be counted significantly more times than incorrect
subkeys.

In this paper we assume that a characteristic probability is determined by the product of
the probabilities of the occurrence of a one-round difference pair. LettingP(1Ui ,1V i )

represent the probability of occurrence of thei th-round difference pair, then

pÄr =
r∏

i=1

P(1Ui ,1V i ). (3)

Equation (3) gives exactly the characteristic probability taken over the independent
distributions of plaintext and key. Hence, it strictly applies only when the plaintext and
the keys applied at each round are independent and uniformly randomly selected for the
encryption of each plaintext pair. In practice, (3) has been found to provide a reasonable
estimate of the characteristic probability in ciphers with mutually dependent round keys.

Differential cryptanalysis of a basic SPN can be applied similarly to the attack on
DES-like ciphers. For a DES-like cipher, differential cryptanalysis determines key bits
associated with the input to the last round function by using knowledge (directly available
from the right half of the ciphertext) of the two input values (and their difference) to
the last round function combined with probabilistic knowledge of the output difference
of the last round function. Similarly, differential cryptanalysis of a basic SPN can be
used to determine the key bits XORed to the output of the last round of S-boxes by
using knowledge of the two ciphertext values (and their difference) and the probabilistic
knowledge of the input difference to the last round of S-boxes.

Hence, a differential attack of an SPN may be successful if the cryptanalyst is aware
of a highly probable characteristic for the firstR − 1 rounds,ÄR−1. The attack tar-
gets the roundR S-boxes that are affected by the output changes of the characteristic,
1VR−1. The targeted subkey contains the key bits which are XORed with the output of
the targeted S-boxes. Consequently, trying all subkey values, the cryptanalyst can use
the known ciphertext values to decrypt the portion of roundR associated with the tar-
get S-boxes. (Ciphertext pairs which have bit changes in the output of nontargeted
S-boxes may be discarded since they cannot be generated by characteristicÄR−1). If
the XOR difference of the target S-box inputs determined by the partial decryption
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corresponds to1VR−1, then the corresponding subkey count is incremented. The actual
subkey may be deduced as the key which is consistent most frequently over a number
of trials.

Similarly to the analysis of the differential cryptanalysis of DES by Biham and Shamir
[5], it can be assumed that, in circumstances where a highly likely(R− 1)-round char-
acteristic of probabilitypÄR−1 is known, the number of chosen plaintexts required to
determine the subkey may be approximated byND where

ND = 1

pÄR−1

. (4)

In practice, the number of chosen plaintexts required will be greater thanND since we
have neglected the factor of 2 (which arises from the fact that the chosen plaintexts are
encrypted in pairs) and since many incorrect subkeys, as well as the correct subkey, are
counted at least once.

Let 1X and1Y represent the input and ouput XOR differences, respectively, to
an S-box when a plaintext difference1P is applied to the cipher. The existence of
highly probable characteristics depends on two factors: the distribution of S-box XOR
difference pairs,(1X,1Y), and the diffusion of bit changes within the network. We
define the probability of an S-box XOR pair(1X,1Y) to be the probability that1Y
occurs given that one of the input values forX is randomly selected and the other is
related by the difference1X. Let the probability of the most likely S-box XOR pair
(other than(1X = 0,1Y = 0)) be pδ.

Characteristics derived from S-box XOR pairs with high probabilities will typically
occur with high probability. Several authors [12], [21], [2] have related the information-
theoretic and nonlinear (bentness) properties of S-boxes to minimizingpδ and suggest
that S-boxes based on these principles provide resistance to differential cryptanalysis.
In [25] O’Connor shows that, for largen, the S-box XOR pair probability is expected
to be at mostn/2n−1. Hence, the expected maximum XOR pair probability decreases as
the size of the S-box is increased. For 8× 8 S-boxes, the expected maximum XOR pair
probability satisfiespδ ≤ 2−4.

High probability characteristics will also occur when poor diffusion of bit changes
results in a characteristic involving a small number of S-boxes [17], [25]. Consider, for
example, a four-round characteristic for an SPN with 4×4 S-boxes that have a maximum
XOR pair probability ofpδ = 1

4. It is possible that a characteristic might exist with only
one S-box affected in each round, i.e., an input change of one bit leads to an output
change of one bit in all rounds. This is illustrated by the highlighted lines in Fig. 2(a).
Since such a characteristic involves the fewest number of S-boxes possible, it is clear
that the probability of a four-round characteristic is bounded by

pÄ4 ≤
(

1

4

)4

= 2−8. (5)

Assume now, instead, that all S-boxes are such that a one-bit input change must cause
at least two output bits to change and that the permutation used in the network is such
that no two outputs of an S-box are connected to one S-box in the next round. The
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Fig. 2.High probability characteristics.

four-round characteristic which affects the fewest number of S-boxes is similar to that
shown in Fig. 2(b). Assumingpδ = 1

4, we now find that the characteristic probability is
bounded by

pÄ4 ≤
(

1

4

)6

= 2−12, (6)

which is a significantly smaller characteristic probability than the previous case.

(b) Linear Cryptanalysis

In [18] Matsui presents an effective linear cryptanalysis method for DES. The attack uses
a known plaintext technique to extract key information by finding a linear equation con-
sisting of plaintext, ciphertext, and key terms which is statistically likely to be satisfied.
The full 16-round DES algorithm is susceptible to the attack with 247 known plaintexts
and it is shown that the attack can even be modified to be successful on an eight-round
version of DES with 229 encrypted ASCII-coded English blocks using a ciphertext-only
attack. In order to attack an SPN using the linear cryptanalysis technique, the cryptanalyst
is interested in the bestR-round linear approximation of the form

Pi1 ⊕ · · · ⊕ Piγ ⊕ Cj1 ⊕ · · · ⊕ Cjζ = Kk1 ⊕ · · · ⊕ Kkθ . (7)

If we let pL represent the probability that (7) is satisfied, in order for the linear approxi-
mation to be validpL 6= 1

2 and the best expression is the equation for which|pL − 1
2| is

maximized. If the magnitude|pL− 1
2| is large enough and sufficient plaintext–ciphertext

pairs are available, the equivalent of one key bit, expressed by the XOR sum of the key
bits on the right-hand side of (7), may be guessed as the value that most often satisfies
the linear approximation.

A basic linear attack, presented as Algorithm 1 in [18], may be executed using an
algorithm based on a maximum likelihood approach. IfpL >

1
2, then the sum of the
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key bits is assumed to be 0 if the left-hand side of (7) equals 0 for more than half the
known plaintext–ciphertext pairs tested, or the sum of the key bits is assumed to be 1 if
the left-hand side equals 1 for more than half the pairs. IfpL <

1
2, then the sum of the

key bits is assumed to be 1 if the left-hand side of (7) equals 0 for more than half the
known plaintext–ciphertext pairs tested, or the sum of the key bits is assumed to be 0 if
the left-hand side equals 1 for more than half the pairs.

An appropriate linear expression is derived by combining a number of linear ex-
pressions for different rounds such that any intermediate terms (i.e., terms that are not
plaintext, ciphertext, or key terms) are cancelled. Let the best linear approximation of an
S-box, in the forma1X1⊕· · ·⊕an Xn = b1Y1⊕· · ·⊕bnYn, be satisfied with probability
pε assuming inputX is randomly selected. In this paper we consider the probability that
a system linear expression is satisfied to be taken over the independent distributions of
plaintext and key. Hence, since the key bits XORed to the network bits prior to entering
the S-boxes are independent and uniformly random, the inputs to the S-boxes involved in
the linear approximation are independent and uniformly random. Under this assumption,
it then follows from Lemma 3 in [18] that

∣∣pL − 1
2

∣∣ ≤ 2α−1
∣∣pε − 1

2

∣∣α , (8)

whereα is the number of S-box linear approximations combined to give the overall
linear approximation.

In Lemma 2 of [18] Matsui develops an expression for the number of plaintexts
required by the basic linear attack (Algorithm 1 in [18]). From this it is shown that the
number of known plaintexts required to give a 97.7% confidence in the correct key bit
may be approximated byNL where

NL =
∣∣pL − 1

2

∣∣−2
. (9)

It is obvious thatNL can be increased by decreasing|pL − 1
2|. Hence, selecting S-boxes

for which pε → 1
2 will clearly aid in thwarting the attack. As well, the larger the number

of S-boxes,α, involved in the system equation, the smaller|pL− 1
2| and the more known

plaintexts required for the cryptanalysis.

4. S-box Design Criteria

In this section we consider S-box design criteria that are relevant to the two attacks
and examine the procedures that may be followed to generate S-boxes that satisfy such
design constraints.

(a) Diffusion

As suggested in the previous section, S-boxes that effectively diffuse bit changes increase
resistance to differential cryptanalysis. The diffusion properties of an S-box can be
considered by examining the relationship between input and output XORs. Letwt (·)
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represent the Hamming weight of the specified argument and consider the following
definition.

Definition 1. An S-box satisfies adiffusion order ofλ, λ ≥ 0, if, for wt (1X) > 0,

wt (1Y) >
{
λ+ 1− wt (1X), wt (1X) < λ+ 1,
0, otherwise.

(10)

Note that all bijective S-boxes satisfyλ = 0 and that DES S-boxes satisfyλ = 1 [9]. As
well, the diffusion order is bidirectional, i.e., the inverse S-boxS−1 satisfies the same
diffusion order as S-boxS.

Other properties related to the diffusiveness of an S-box are the strict avalanche cri-
terion (SAC) [31] and the propagation criterion [27] (also referred to as higher-order
SAC [1]). An S-box satisfies SAC if, given that a single input bit is complemented,
the probability that each output bit changes is exactly1

2. Similarly, an S-box satis-
fies the propagation criterion orderk if each output bit changes with a probability of
1
2 whenk or less input bits are complemented. The SAC and propagation criterion prop-
erties of an S-box imply that the expected number of output changes will not be small
(i.e., on average half the output bits will change) even if the number of input changes is
small. However, unlike the diffusion order of an S-box, SAC and the propagation crite-
rion cannot be used to guarantee a lower bound on the number of output changes given a
small number of input changes. As will be seen in Theorem 1, it is this guaranteed lower
bound on the number of output changes defined by the diffusion order which is useful
in ensuring low probability differential characteristics.

Let 5 represent the set of permutations for which no two outputs of an S-box are
connected to one S-box in the next round. Note that the set5 will only be nonempty if
M ≥ n.

Lemma 1. Letψr−1 andψr+1 represent the number of S-boxes included in a charac-
teristic from round r−1 and round r+1, respectively. For an SPN with M≥ n S-boxes
in each round, using a permutationπ ∈ 5 and S-boxes with a diffusion order ofλ,

ψr−1+ ψr+1 ≥ λ+ 2. (11)

Proof. Let wX andwY represent the number of input and output bit changes for a
particular S-box in roundr selected such thatwX 6= 0. From the constraint placed on the
permutations of5 and considering thatM ≥ n andwX, wY ≤ n, we see thatψr−1 ≥ wX

andψr+1 ≥ wY. Hence,

ψr−1+ ψr+1 ≥ wX + wY. (12)

From the definition of diffusion order,wX + wY ≥ λ + 2 and the inequality of (11)
follows.

Theorem 1. Consider an SPN of R rounds of M S-boxes such that R is a multiple
of 4 and M ≥ n. Using a permutationπ ∈ 5, the probability of an(R− 1)-round
characteristic satisfies

pÄR−1 ≤ (pδ)((λ+2)/2)R−(λ+1), (13)
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where all S-boxes satisfy diffusion orderλ and pδ represents the maximum S-box XOR
pair probability.

Proof. An upper bound on the most probable(R− 1)-round characteristic can be de-
rived by considering the concatenation of the most probable(R−4)-round characteristic
and the most probable three-round characteristic. Further, a bound on the most likely
(R−4)-round characteristic can be determined as(R−4)/4 iterations of the most prob-
able four-round characteristic, and hence, the(R− 1)-round characteristic probability
satisfies

pÄR−1 ≤ (pmax
Ä4
)(R−4)/4(pmax

Ä3
), (14)

where pmax
Ä3

and pmax
Ä4

are upper bounds on the probability of three- and four-round
characteristics, respectively.

In general, an upper bound on a characteristic probability can be derived by determin-
ing the characteristic which involves the fewest number of S-boxes. From Lemma 1, the
minimum number of S-boxes used by a characteristic in any four consecutive rounds is
2(λ+ 2) and therefore

pmax
Ä4
= (pδ)2(λ+2). (15)

As well, by considering that the constraint of Lemma 1 applies to the first and third
rounds of a three-round characteristic and that the second round has only one S-box, the
minimum number of S-boxes used by a characteristic in any three consecutive rounds is
λ+ 3. Therefore,

pmax
Ä3
= (pδ)λ+3. (16)

Combining (14), (15), and (16) results in (13) and the theorem is proven.

From Theorem 1 we see that S-boxes satisfying a high diffusion order can be used
to decrease the upper bound on characteristic probabilities and thereby strengthen a
network against differential cryptanalysis. One obvious approach to generate such S-
boxes would be to select randomly ann× n bijective mapping and discard those which
do not satisfy the appropriate property. Unfortunately, we have found experimentally that
S-boxes which satisfy diffusion orders ofλ ≥ 1 are extremely rare and cannot generally
be found by random search. The following lemma is useful in determining the likelihood
of finding such S-boxes.

Lemma 2. Assume that the event that an S-box XOR pair(1X,1Y) violates diffusion
order λ = 1 is independent of other XOR pairs violatingλ = 1. Then the probability
that a randomly selected n×n bijective S-box satisfies diffusion orderλ = 1 is given by

P(λ = 1) =
[

2n − 1− n

2n − 1

]n·2n−1

. (17)

Proof. Since the assignment of any two output values and their corresponding1Y is
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random, the probability that the XOR pair(1X,1Y) satisfiesλ = 1 givenwt (1X) = 1
is simply

P(wt (1Y) > 1 | wt (1X) = 1) = #{1Y | wt (1Y) > 1}
#{1Y | wt (1Y) 6= 0}

= 2n − 1− n

2n − 1
. (18)

Equation (17) follows by utilizing the independence assumption with the exponent deter-
mined by considering the number of unique input pairs for whichwt (1X) = 1. Letting
X′ andX′′ represent the S-box inputs such that1X = X′ ⊕ X′′, it may be seen that

#{(X′,X′′) | wt (1X = X′ ⊕ X′′) = 1} = n · 2n−1 (19)

and the lemma is proven.

We have found experimentally that (17) is a good approximation of the probability
that an S-box satisfiesλ = 1. Table 1 lists the estimated probability from (17) that an
S-box satisfiesλ = 1 for a number of values ofn, as well as the experimental value
determined as described below. It is clear that, asn increases, S-boxes which satisfy
λ = 1 become increasingly impractical to find by random search.

Consider S-boxes for whichλ > 1. An S-box which satisfies diffusion orderλmust, by
definition, satisfy diffusion orderλ− 1. Hence, the probability that a randomly selected
S-box satisfiesλ > 1 is less than or equal to the probability that the S-box satisfiesλ = 1
and we conclude that asn increases such S-boxes are also impractical to find by random
search.

In Fig. 3 we present an algorithm to select the S-box output values using a depth-first-
search approach as an efficient method of generating S-boxes that satisfy a particular
diffusion order. In the algorithm of Fig. 3 we use the variablesi andS(i ) to represent, in
decimal form, the S-box input and corresponding output, respectively. As well,rand(·)
represents the random selection of an element from the specified set.

Considering the algorithm of Fig. 3 and lettingP(Ii | I1I2 · · · Ii−1) represent the
probability of iterationi being successful given iterations 1 toi − 1 are successful, the

Table 1. Probability of randomly selecting an S-box
with λ = 1.

Estimated Experimental
n P(λ = 1) P(λ = 1)

3 1.2× 10−3 3.6× 10−3∗
4 4.9× 10−5 3.8× 10−5

5 7.7× 10−7 5.2× 10−7

6 4.5× 10−9 2.5× 10−9

7 9.3× 10−12 9.2× 10−12

8 6.7× 10−15 4.9× 10−15

∗Actual value is 144/8! ≈ 3.6× 10−3.
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0 = {0, 1, 2, . . . ,2n − 1}
30 = 0
i = 0
do

if (3i 6= {∅}) then
S(i ) = rand(3i )

3i = 3i − {S(i )}
if ((i, S(i )) satisfyλ) then
0 = 0 − {S(i )}
i = i + 1
3i = 0

endif
else

i = i − 1
0 = 0 + {S(i )}

endif
while (i ≤ 2n − 1)
output: (i, S(i )) for 0≤ i ≤ 2n − 1
end

Fig. 3.Algorithm to find S-boxes satisfying diffusion orderλ.

probability of a randomly selected S-box satisfyingλ = 1 can be determined using the
chain rule:

P(λ = 1) =
2n−1∏
i=1

P(Ii | I1I2 · · · Ii−1). (20)

Utilizing experimental values ofP(Ii | I1I2 · · · Ii−1) determined from executions of the
algorithm, it is possible therefore to derive an experimental estimate using (20). The
resulting experimental probabilities for differentn are listed in Table 1.

There are limitations to the applicability of the depth-first-search algorithm. For ex-
ample, while the algorithm successfully found many 8× 8 S-boxes which satisfied
diffusion orders ofλ = 1 andλ = 2, it could not successfully find S-boxes withλ ≥ 3.
In the next section we show that, although the algorithm is designed to find S-boxes that
satisfy a particular diffusion order, it is also valuable in generating S-boxes which are
cryptographically strong in other respects.

(b) Nonlinearity

An important cryptographic property for product ciphers is nonlinearity. Since the S-
boxes are the only nonlinear components of an SPN, it is crucial to consider the amount
of nonlinearity required in S-boxes to provide adequate overall SPN security. The
linear cryptanalysis method of Matsui [18] is one basis for determining the amount
of nonlinearity required in an S-box.

Consider an SPN in which the lowest nonlinearity of an S-box isNLmin, i.e.,NL(S) ≥
NLmin for all S-boxes. Then the best linear approximation of an S-box occurs with
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Table 2.Nonlinearities of 8× 8 S-boxes.

λ Min NL Max NL %NL= 94 %NL= 96 %NL= 98

0 86 98∗ 38.5 23.5 5.5
1 86 96 48 26 0
2 36 96 34 2 0

∗S-boxes withNL(S) = 100 have been found using a more thorough search.

probability pε where ∣∣pε − 1
2

∣∣ = 2n−1− NLmin

2n
. (21)

Since there must be at least one S-box approximation included in the linear expression
of (7) for each round, the best possible linear approximation hasα = R and satisfies

∣∣pL − 1
2

∣∣ ≤ 2R−1
∣∣pε − 1

2

∣∣R ≤ 2R−1

[
2n−1− NLmin

2

]R

. (22)

It is known that there aren×n bijective mappings for whichNL(S) ≥ 2n−1−2n/2 [23].
Assuming that S-boxes are used that haveNL(S) = 2n−1 − 2n/2, combining (9) and
(22) we see that the number of known plaintexts required to determine one bit of key
is at least 2nR−2(R−1). For example, if an eight-round SPN was constructed using 8× 8
S-boxes withNL(S) = 112, it would take about 250 known plaintexts to determine one
key bit.

In [24] O’Connor shows that, asn gets larger, the expected distance of a randomly
selectedn-bit function (not necessarily balanced) from the nearest affine function in-
creases andpε approaches the ideal value of1

2. In view of this, we expect that, asn
gets large, S-boxes with high nonlinearities will be plentiful and easy to find by random
search.

In order to confirm this intuition, 200 8× 8 bijective S-boxes (i.e.,λ = 0) were
randomly generated and their nonlinearities examined. As well, 50 S-boxes were con-
structed using the depth-first-search algorithm for the diffusion orders ofλ = 1 and
λ = 2. The results are given in Table 2. We surmise that, as the diffusion characteristics
become more constraining, the S-box nonlinearities are adversely affected. However, for
λ = 0, 1, or 2, it is still reasonable to expect to find S-boxes with high nonlinearities of
94 or 96.

5. Linear Transformations Between Rounds

The permutations of an SPN belong to a specialized class of the set of linear transforma-
tions that may be used to achieve Shannon’s diffusion effect. In this section we consider
another class of invertible linear transformations that may be used between rounds of
S-boxes to increase the resistance to differential and linear cryptanalysis.

Let N be even and consider the class of invertible linear transformations defined by

V = π(L(U)), (23)
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whereV = [V1 V2 · · · VN ] is the vector of input bits to a round of S-boxes,U =
[U1 U2 · · · UN ] is the vector of bits from the previous round output,π ∈ 5, and
L(U) = [L1(U) · · · L N(U)]. The set5 is defined to be the set of permutations for
which no two outputs of an S-box are connected to one S-box in the next round and

Li (U) = U1⊕ · · · ⊕Ui−1⊕Ui+1⊕ · · · ⊕UN . (24)

The linear transformation may be efficiently implemented by noting that eachLi (U) can
be simply determined by XORingUi with the XOR sum of allUj , 1≤ j ≤ N, i.e.,

Li (U) = Ui ⊕ Q, (25)

where

Q =
N⊕

j=1

Uj . (26)

The following lemma illustrates the effect of the linear transformation on the diffusion
of bit changes within the network.

Lemma 3. Let W= L(U) whereL(·) is defined above andW = [W1 W2 · · · WN ].
Let1U = [1U1 · · · 1UN ] be the XOR difference between two arbitrary values ofU,
and1W = [1W1 1W2 · · · WN ] is the resulting XOR difference forW. Then

1W =
{
1U, wt (1U) even,

(1U), wt (1U) odd,
(27)

where(1U) is the complement of1U.

Proof. Let1U = U′ ⊕ U′′ and1Ui = U ′i ⊕U ′′i . Therefore,

1Wi = Li (U′)⊕ Li (U′′)
= [U ′i ⊕ Q′] ⊕ [U ′′i ⊕ Q′′]
= U ′i ⊕U ′′i ⊕ Q′ ⊕ Q′′

= 1Ui ⊕1Q, (28)

where

1Q =
N⊕

j=1

1Uj . (29)

If wt (1U) is even, then1Q = 0 and

1Wi =
{

1, 1Ui = 1,
0, 1Ui = 0.

(30)
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If wt (1U) is odd, then1Q = 1 and

1Wi =
{

1, 1Ui = 0,
0, 1Ui = 1.

(31)

Equation (27) follows and the lemma is proven.

Lemma 3 is useful in developing the following result.

Theorem 2. Consider an SPN of R rounds of M S-boxes such that R is a multiple
of 4 and M ≥ n. Let n ≥ 3 and let each S-box satisfy diffusion orderλ such that
λ ≤ (n− 1)/2. Using the linear transformation of(23), the probability of an(R− 1)-
round characteristic satisfies

pÄR−1 ≤ (pδ)((λ+2)/2)R−(λ+1), (32)

where pδ represents the maximum S-box XOR pair probability. Further, for λ = 0, the
characteristic probability can be more tightly bounded by

pÄR−1 ≤ (pδ)(3/2)R−2. (33)

Proof. Consider separately the case for generalλ and the case forλ = 0.
(i) (Generalλ) As in the proof of Theorem 1, consider determining the upper bound

on the most probable(R− 1)-round characteristic from the concatenation of(R− 4)/4
iterations of the most probable four-round characteristic with the most probable three-
round characteristic. Hence, a characteristic probability satisfies (14).

Consider first the determination of the most likely four-round characteristic in order
to determinepmax

Ä4
of (14). Letψi , 1≤ ψi ≤ M , represent the number of S-boxes from

roundi involved in the characteristic and letηi represent the number of bit changes after
the substitutions of roundi and before the linear transformationπ(L(·)). Consider two
cases for the values ofηi for four consecutive roundsr to r + 3.

In the first case assume that at least one ofηr , ηr+1, or ηr+2 are odd. Without loss of
generality assume thatηr is odd. If we letψr < M , this implies thatψr+1 ≥ n, since,
from Lemma 3, then bits from an S-box in roundr with no output changes must result
in n bit changes afterL(·), which, due to the nature of the permutationπ , must then
affectn different S-boxes in roundr + 1. Further, since, in general,ψi ≥ 1, then

ψr + ψr+1+ ψr+2+ ψr+3 ≥ n+ 3. (34)

SinceM ≥ n, (34) also holds ifψr = M .
Now consider the second case where all ofηr , ηr+1, andηr+2 are even. From Lemma 3

and the definition of the permutationπ , it may be seen that Lemma 1 may be applied as
in the proof of Theorem 1 and, therefore,

ψr + ψr+1+ ψr+2+ ψr+3 ≥ 2(λ+ 2). (35)

Sinceλ ≤ (n− 1)/2, (35) always holds and

pmax
Ä4
= (pδ)2(λ+2). (36)
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A bound on the probability of a three-round characteristic may be determined similarly
to the four-round characteristic. In this case if at least one ofηr or ηr+1 is odd, then

ψr + ψr+1+ ψr+2 ≥ n+ 2. (37)

If both ηr andηr+1 are even, then

ψr + ψr+1+ ψr+2 ≥ λ+ 3. (38)

Hence, sinceλ ≤ (n− 1)/2, (38) always holds and

pmax
Ä3
= (pδ)λ+3. (39)

From (14) in the proof of Theorem 1, we can now see that, for generalλ, (32) holds.
(ii) (λ = 0) From (35), we have

ψr + ψr+1+ ψr+2+ ψr+3 ≥ 4. (40)

However, for the case whereηr , ηr+1, and ηr+2 are all even,ψi 6= 1 for any two
consecutive rounds since the permutationπ spreads the effect of more than one output
change to more than one S-box. However, ifψr = 1 andηr = 2, thenψr+1 = 2. Hence,
ψr + ψr+1 ≥ 3 and, consequently,

ψr + ψr+1+ ψr+2+ ψr+3 ≥ 6. (41)

From (34) we can see that (41) also holds for the case where one or more ofηr , ηr+1,
andηr+2 is odd, as long asn ≥ 3.

Similarly, it may be shown that

ψr + ψr+1+ ψr+2 ≥ 4 (42)

and, applying (14), we have now proven the case forλ = 0.

Note that forλ = 0 the linear transformation has decreased the upper bound on the
characteristic probability and forλ > 0 the bound on the characteristic probability has
remained unchanged.

Consider now the effects of the linear transformation on the applicability of linear
cryptanalysis. Using the linear transformation ensures that there are a large number of
S-box approximations included in the system linear approximation, thereby increasing
the number of required plaintexts.

Theorem 3. Consider an SPN of R rounds of M S-boxes such that R is even and
M ≥ n. Using the linear transformation of(23), the best possible R-round linear ap-
proximation requiresα = 3R/2 S-box approximations and the probability of the linear
approximation satisfies∣∣pL − 1

2

∣∣ ≤ 2(3/2)R−1
∣∣pε − 1

2

∣∣(3/2)R , (43)

where pε represents the probability of the best S-box linear approximation.



16 H. M. Heys and S. E. Tavares

Proof. Using the linear transformation of (23), it is impossible to involve only one
S-box per round in the linear approximation. Let the number of S-boxes from round
i involved in the overall system linear approximation be represented byψi . Consider
roundr to contribute only one S-box to the linear approximation, i.e.,ψr = 1. The linear
approximation of this S-box involves a linear combination of the input bits,a1X1 ⊕
a2X2 ⊕ · · · ⊕ an Xn, wherea = [a1 · · · an], ai ∈ {0, 1}, and a linear combination of
the output bits,b1Y1⊕ b2Y2⊕ · · · ⊕ bnYn, whereb = [b1 · · · bn], bi ∈ {0, 1}, so that
the probability of

n⊕
i=1

ai Xi =
n⊕

i=1

bi Yi (44)

does not equal12. (Note that the trivial case ofa = 0 andb = 0 is of no use in linear
cryptanalysis and is ignored.)

Without loss of generality, assume that the S-box included in the system linear ap-
proximation from roundr is the first S-box so that

X = [X1 X2 · · · Xn] = [V1 V2 · · · Vn]

whereVi is the i th input bit to roundr . The input to roundr is determined by the
permutationπ so thatVi = L ji (U)whereU is the vector of output bits from the S-boxes
of roundr − 1. Subsequently, we haveXi = Uji ⊕ Q whereQ is defined in (26) and
eachUji , 1 ≤ i ≤ n, comes from a different S-box (as a result of the definition of the
permutationπ ). We now have

n⊕
i=1

ai Xi =
n⊕

i=1

ai · (Uji ⊕ Q)

=
n⊕

i=1

ai Uji ⊕
n⊕

i=1

ai Q

=


n⊕

i=1

ai Uji ⊕ Q, wt (a) odd,

n⊕
i=1

ai Uji , wt (a) even.
(45)

Hence, ifwt (a) is odd, then the sum used for the input of the roundr S-box is determined
by N − wt (a) outputs of roundr − 1 since a term is removed fromQ whenai = 1.
If wt (a) is even, then the sum used for the input of the roundr S-box is determined
by wt (a) outputs of roundr − 1 since a term is only included in the summation when
ai = 1. If, for example,wt (a) = 1, then the corresponding S-box input bit used in the
linear approximation is a function ofN − 1 output bits from roundr − 1 and, hence,
ψr−1 = M . If, however,wt (a) = 2, thenψr−1 = 2. Hence, considering other values for
wt (a), 1≤ wt (a) ≤ n, we may now conclude that, givenψr = 1,ψr−1 ≥ 2.

A similar analysis may be used to determine a lower bound on the number of S-boxes
included in the linear approximation from roundr + 1, ψr+1, givenψr = 1. This is
possible due to the following easily verifiable observations:L−1 ≡ L, π−1 ∈ 5, and
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L(π(·)) ≡ π(L(·)). Hence, we have

U∗ = π−1(L(V∗)), (46)

whereU∗ is the vector of output bits of the roundr substitutions andV∗ is the vector
of input bits to the roundr + 1 substitutions. Since (46) is of a similar form to (23), we
may determine the bound forψr+1 analogously to the bound forψr−1. Hence, it follows
thatψr+1 ≥ 2 givenψr = 1.

We conclude, therefore, that the number of S-boxes involved in the linear approxima-
tion from any two consecutive rounds must be at least three and for anR-round SPN,
assumingR is even,α ≥ 3R/2.

Note that results similar to Lemma 3, Theorem 2, and Theorem 3 can be derived for
L(U) defined as other invertible linear transformations where eachLi (U) may contain
fewer than theN − 1 terms of (24).

6. Summary of Results

In Table 3, for SPNs of eight rounds, we have summarized lower bounds on the values
of ND and NL (defined in (4) and (9), respectively). The networks are assumed to be
composed of 8×8 S-boxes where the maximum S-box XOR pair probability ispδ = 2−4

and the minimum S-box nonlinearity isNLmin = 96. Results are presented for networks
using permutations from the set5 and for networks using a linear transformation of the
form of (23). Note that the analysis of Table 3 is equally applicable to the decryption
as well as the encryption network. (This is important since the decryption network may
also be attacked using either cryptanalysis method.)

Consider a 64-bit eight-round SPN that uses a linear transformation of the form of
(23) and 8×8 S-boxes withλ = 2, pδ = 2−4, andNLmin = 96. Assume that the network
is keyed using a 64-bit key with XOR mask keying. Application of the key bits at each
round is determined by a key-scheduling algorithm. Such a network has high values of
Nmin

D = 252 andNmin
L = 250, is comparable in size with DES (64-bit blocks, 56-bit key),

but is implemented in half the number of rounds.

Table 3. Resistance to cryptanalysis for networks
with R = 8 using 8× 8 S-boxes withpδ = 2−4 and

NLmin = 96.

Type λ Nmin
D Nmin

L

Permutation 0 228 234

π(·) 1 240

2 252

Linear transform 0 240 250

π(L(·)) 1 240

2 252
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7. Conclusion

In this paper we have developed bounds on the probabilities of a differential characteristic
and a linear approximation for substitution-permutation networks. It is important to note
that the bounds are of interest, not because they give a provable lower bound on the
complexity of the cryptanalysis, but because they suggest the level of difficulty required in
implementing the attacks. For example, in a differential attack, the cryptanalyst typically
identifies a high probability input difference to the last round by searching for high
probability differential characteristics. Similarly, for linear cryptanalysis, a good linear
approximation can be practically used by a cryptanalyst to determine which subsets of
plaintext and ciphertext bits to examine in the attack.

The analysis presented in this paper suggests the following general design principles
for substitution-permutation networks:

• Large, randomly selected S-boxes are very likely to have high nonlinearity.
• S-boxes which have good diffusion properties increase the resistance to differential

cryptanalysis.
• The use of an appropriate linear transformation between rounds increases the re-

sistance to linear cryptanalysis.

Consequently, with an appropriate selection of S-boxes and linear transformations be-
tween rounds of substitutions, security in relation to differential and linear cryptanalysis
can be improved, resulting in an efficient implementation with fewer rounds required to
provide adequate security.
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