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Abstract

The bilinear pairing such as Weil pairing or Tate pairing on elliptic and hyperelliptic curves
have recently been found positive application in cryptography. Several ID-based cryptosystems
were proposed using bilinear pairings of algebraic curves. In this survey, we have tried to cover
different cryptographic protocols based on bilinear pairings which possess, to the best of our
knowledge, proper security proofs in the existing security models.

1 Introduction

The concept of identity-based cryptosystem is due to Shamir [36]. Such a scheme has the property
that a user’s public key is an easily calculated function of his identity, while a user’s private key
can be calculated for him by a trusted authority, called private key generator (PKG). The ID-based
public key cryptosystem can be an alternative for certificate-based public key infrastructure (PKI),
especially when efficient key management and moderate security are required.

Earlier the bilinear pairings, namely Weil pairing and Tate pairing of algebraic curves were used
in cryptography for the MOV attack [31] using Weil pairing and FR attack [18] using Tate pairing
to reduce the discrete logarithm problem on some elliptic curves or hyperelliptic curves to the
discrete logarithm problem in a finite field. In recent years, the bilinear pairings have been found
positive application in cryptography [23] [7] [9] [25], [34] to construct new ID-based cryptographic
primitives.

Joux [23], in 2000, showed that the Weil pairing can be used for “good” by using it in a protocol
for three party one round Diffie-Hellman key aggrement. This was one of the breakthroughs in
cryptography. After this, Boneh and Franklin [7] presented in Crypto 2001 an ID-based encryption
scheme based on properties of bilinear pairings on elliptic curves which appears to be the first fully
functioning, efficient and provably secure identity-based encryption scheme. In Asiacrypt 2001,
Boneh, Lynn and Shacham proposed a basic signature scheme using pairing, the BLS [9] scheme,
that has the shortest length among signature schemes in classical cryptography. Subsequently
numerous cryptographic schemes based on BLS signature scheme were proposed [4] [8].

Apart from the three fundamental cryptographic primitives : encryption scheme, signature
scheme and key agreement scheme, there are protocol designs for signcryption, threshold decryption,



key sharing, identification scheme, chameleon hashes etc. The verious signature schemes have several
important applications in the digital world like e-cash, e-voting, fair exchange etc.

Aggregate signature scheme has use in the secure Border Gateway Protocol for compressing the
list of signatures on distinct messages issued by distinct parties. To enable fair exchange, verifiably
encrypted signatures are used in optimistic contract signing protocols. Multisignatures can be ap-
plied to provide efficient batch verification of several signatures of the same message under different
public keys. The concept of blind signatures provides anonymity of users in applications such as
electronic voting, electronic payment systems etc. Ring signature and Group signature schemes are
used to protect anonymity of a signer. The difference between these two is that there is no way
to revoke the anonymity of the signer in ring signature while for group signature, the group man-
ager can identify the signer. Proxy signatures have found numerous practical applications where
delegation of rights is quite common, particularly in distributed systems, Grid Computing, mo-
bile agent applications, distributed shared object systems and mobile communications [5]. Unique
signature schemes, also known as invariant signature schemes, are desirable in cryptography and
has an important application to construct verifiable random functions (VRFs). VRFs are objects
that combine the properties of psudorandom functions (i.e. indistinguishability from random even
after querying) with the verifiability property and can be viewed as a commitment to an arbitrary
number of bits. Chameleon hashes have applications in constructing chameleon signatures. The
recipient can verify that the signature of a certain message m is valid, but can not prove others
that the signer actually signed m and not another message. These are closely related to undeniable
signature [13].

Key agreement is required in situations where two or more parties want to communicate securely
among themeselves. The situation where three or more parties share a secret key is often called
conference keying. In this situation, the parties can securely send and receive message from each
other. An adversary not having access to the secret key will not be able to decrypt the message.

Threshold cryptography approach is useful to remove single point failure. When the centraliza-
tion of the power is a concern, threshold decryption can be used in particular.

The idea of signcryption scheme is to perform encryption and signature in a single logical step in
order to obtain confidentiality, integrity, authentication and non-repudiation more efficiently than
the sign-then-encrypt approach.

Identification scheme is another important and useful cryptographic tool where a prover interacts
with a verifier to convince him of his identity.

In this paper, we have tried to survey over different cryptographic primitives and include only
those schemes which have, to the best of our knowledge, concrete security proofs in the existing
adversarial models. The rest of the paper is organized as follows: Section 2 briefly explains the
cryptographic bilinear map and some versions of DH problems. The ID-based encryption schemes
are discussed in Section 3. We describe various pairing based signature schemes in Section 4. Section
5 consists of key agreement schemes and Section 6 discusses threshold schemes using bilinear map.
In Section 7, miscellaneous applications are described. Finally we conclude in Section 8.



2 Preliminaries

2.1 Cryptographic Bilinear Maps

Let G1,G5 be two groups of the same prime order q. We view G as an additive group and Gy
as a multiplicative group. Let P be an arbitrary generator of Gi. (aP denotes P added to itself
a times). Assume that discrete logarithm problem (DLP) is hard in both G; and G5. A mapping
e : G2 — G satisfying the following properties is called a bilinear map from a cryptographic point
of view :

Bilinearity : e(aP,bQ) = e(P, Q) for all P,Q € G, and a,b € Zy.

Non-degeneracy : If P is a generator of Gy, then e(P, P) is a generator of G5. In other words,
e(P, P) # 1.

Computable : There exists an efficient algorithm to compute e(P, Q) for all P,Q € G;.

Modified Weil Pairing [7] and Tate Pairing [3], [20] are examples of cryptographic bilinear maps.

2.2 Diffie Hellman Assumptions

In this subsection we specify some versions of Diffie-Hellman problems. Consider (G4, G2, e) where
G4, Gy are two cyclic subgroups of a large prime order ¢ and e : G — G5 is a cryptographic bilinear
map. We take G; as an additive group and G5 as a multiplicative group. (By a€ERZy, we mean a
is randomly chosen from Z.) A function is said to be negligible if it is less than # for every fixed
[ > 0 and sufficiently large integer m.

1. Decisional Diffie-Hellman (DDH) problem in G, :
Instance : (P, aP,bP,cP) for some a,b,c € Z.
Solution : Output yes if ¢ = ab mod ¢ and output no otherwise.

The advantage of any probabilistic, polynomial-time, 0/1-valued algorithm A in solving DDH
problem in G is defined to be :
Adv % = |Prob[A(P,aP,bP,cP) = 1] — Prob[A(P,aP,bP,abP) = 1] : a,b,c€ g Z}|.

DDH problem in G, is easy : DDH problem in G; can be solved in polynomial time by
verifying e(aP, bP) = e(P,cP). This is the well known MOV reduction [7] : The DLP in G,
is no harder than the DLP in G,.

DDH assumption : For every probabilistic, polynomial-time, 0/1-valued algorithm A,
AdVEtl,)ci is negligible.

2. Computational Diffie-Hellman (CDH) problem in G, :
Instance : (P,aP,bP) for some a,b € Z.
Solution : Output abP.

The advantage of any probabilistic, polynomial-time, 0/1-valued algorithm A in solving CDH
problem in G is defined to be :

Advi'?g'l = Prob[A(P, aP,bP,abP) = 1: a,berZ}].

CDH assumption : For every probabilistic, polynomial-time, 0/1-valued algorithm A,
Advi'?gl is negligible.



3. Gap Diffie-Hellman (GDH) group :
A prime order (q) group G is a GDH group if there exists an efficient polynomial-time al-
gorithm Vppu( ) which solves the DDH problem in G and there is no polynomial-time (in
lg]) algorithm which solves the CDH problem with non-negligible probability of success. The
domain of bilinear pairings provides examples of GDH groups.

4. Bilinear Diffie-Hellman (BDH) problem in (G, Go,e) :
Instance : (P, aP,bP, cP) for some a,b,c € Z;.
Solution : Output e(P, P)®<.

The advantage of any probabilistic, polynomial-time, 0/1-valued algorithm A in solving BDH
problem in (G1, Gy, e) is defined to be :

AdvEP" = ProbA(P, aP,bP,cP,e(P, P)*"") = 1: a,b, cErZ}).

BDH assumption : For every probabilistic, polynomial-time, 0/1-valued algorithm A,
AdviDH is negligible.

5. Weak Diffie-Hellman (W-DH) problem in a group G :
Instance : (P, @, sP) for P, € G and for some s € Z.
Solution : Output s@.

The advantage of any probabilistic, polynomial-time, 0/1-valued algorithm A in solving W-DH
problem in G is defined to be :

Adv!{ =" = Prob[A(P, Q,sP,5Q) = 1: s € Z;].

W-DH assumption : For every probabilistic, polynomial-time, 0/1-valued algorithm A4,
AdeAV_DH is negligible.

6. Decisional Bilinear Diffie-Hellman (DBDH) problem in (G, Gy, e€) :
Instance : (P, aP,bP,cP,r) for some a,b,c,r € Z7.
Solution : Output yes if r = e(P, P)® mod ¢ and output no otherwise.
This is a decision version of BDH problem in (G, Ga,¢e) . The advantage of any probabilistic,
polynomial-time, 0/1-valued algorithm A in solving DBDH problem in (G, G, e) is defined
to be :

Adv5PPH = Prob[A(P, aP,bP, cP,r) = 1]—Prob[A(P, aP,bP, cP,e(P, P)*) = 1] : a,b,c,re€pZ;|.

DBDH assumption : For every probabilistic, polynomial-time, 0/1-valued algorithm A,
AdvElBDH is negligible.

7. Decisional Hash Bilinear Diffie-Hellman (DHBDH) problem in (G1,Ga,e) :
Instance : (P,aP,bP,cP,r) for some a,b,c,r € Z; and a one way hash function H : G, — 7.
Solution : Output yes if » = H(e(P, P)®¢) mod q and output no otherwise.

The DHBDH problem in (Gy, G5, e) is a hash version of the decisional BDH problem in
(G17G276) .
The advantage of any probabilistic, polynomial-time, 0/1-valued algorithm A in solving
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DHBDH problem in (G, Gy, €) is defined to be :
AdvS"BP" = |Prob[A(P, aP,bP, cP,r) = 1]
—Prob[A(P, aP,bP,cP, H(e(P,P)"")) =1] : a,b,c,r€rZ}|.

DHBDH assumption : For every probabilistic, polynomial-time, 0/1-valued algorithm A,
AdvoBPH is negliible.

Reversion of CDH (RCDH) problem in G :
Instance : (P, aP,rP) for some a,r € Z;.
Solution : Output bP,b € Z; satisfying a = rb mod g.

RCDHP is equivalent to CDH problem in G [14].

ROS problem : (Schnorr)

Given an oracle access to a random function F' : Zl — Zyg, find co-efficients a;; € Z, and a
solvable system of [ + 1 distinct equations in the unknowns C1,Cay ..., CL OVET 2

ak,lcl—i— —i—ak,lcl F(ak,l,...,akyl) for k = 1,2,...,t, tZ [+ 1.

(k + 1)-exponent problem ((k + 1)-EP) in G:
Instance : (P,yP,y*P,...,y"P)for a random y € Z;.
Solution : Output y*+1P.

The advantage of any probabilistic, polynomial-time, 0/1-valued algorithm A in solving (k+1)-
EP in (G, is defined to be :

AV TV = ProblA(P,y P, y?P,. .., y" P,y*tVP) = 1: yerZ].

(k+1)- EP assumption : For every probabilistic, polynomial-time, 0/1-valued algorithm A,
Adv 4 (k+1)-EP g negligible.
(k + 1) EP is no harder than the CDH problem.

Chosen-target CDH problem in G :

Let G = (g) be a multiplicative group of a prime order ¢. Let z be a random element of Zy
and let y = ¢”°.

Let H; be a random instance of a hash function family [{0,1} — G*].

The adversary A is given input (¢, g, Hy,y) and has access to the target oracle 7g that returns
random elements z; of G and the helper oracle (-)*.

Let ¢r and gz be the number of queries A made to the target oracle and helper oracle
respectively.

The advantage of the adversary in attacking chosen-target CDH problem Adv&—<4"(A4) is
defined to be the probability of A to output a set V' of, say [ paires ((vy, j1), (v2, j2), - - -, (v1, Ji)),
where for all 7, 1 <14 <[, there exists j;, 1 < j; < gy such that v; = z5, all v; are distinct and
qu < qr,l.

The chosen-target CDH assumption states that there is no probabilistic, polynomial- time,
0/1- valued adversary A with non-negligible Adv&—<I"(A).

Chosen-target Inverse CDH problem in G :
Let G; (additive) be a GDH group of prime order ¢ and P be a generator of G;. Let s be a
random element of Z; and @ = sP.
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Let H; : {0,1} — G, be a cryptographic hash function. The adversary A is given input
(g, P,@Q, H;) and has access to the target oracle Tg;, that returns a random element U; in G,
and the helper oracle Inv — cdh — s(+) that computes s~ (+).

Let ¢r and gy be the number of queries A makes to the target oracle and the helper oracle
respectively.

The advantage of the adversary in attacking the chosen-target inverse CDH problem AdeGt;ith (A)
is defined to be the probability of A to output a set of [ pairs ((V1, j1), (Va, j2), ... (Vi, 51), for
all i = 1,2,...,1, there exists j; = 1,2, ..., gr such that V; = s7'U;, where all V; are distinct
and gy < qr, 1.

The chosen-target inverse CDH assumption states that there is no probabilistic, polynomial-
time, 0/1-valued adversary A with non-negligible Advg;, “¥"(A).

Generalized (or Many) Diffie-Hellman problem in G = (g) :
Instance : (g,gHJEJyj) for some y1,yo,...,y € Z; and for all J C {1,2,...,1}.

4
Solution : Output gHFlyj.

The advantage of any probabilistic, polynomial-time 0/1-valued algorithm A in solving Many-
DH problem in G is defined to be

4
Advy\a"y_DH = Prob[A(g,gHiEJyj,ngil) =1ly; € Z; for 1 <j <landforall JC{1,...,1}]

Many-DH assumption : For every probabilistic, polynomial-time, 0/1-valued algorithm A,
Adv'®™ =P is negligible.

Co-GDH group :

Consider a cryptographic bilinear map in the following setup :

a) G1,Gy and G are multiplicative cyclic groups of prime order g;

b) g1 is a generator of G and g, is a generator of Gs;

¢) 1 is a computable isomorphism from G to Gy, with ¢(g1) = go; and

d) e is a computable bilinear map e : G; x Gy — G satisfying the following properties :
Bilinearity : For all u € Gy,v € Gy and a,b € 7,

e(u®,v") = e(u,v)™.

Non-degeneracy : e(g1, g2) # 1.

These properties imply two more : for any u € Gy, v1,v9 € Ga, e(u,v1v9) = e(u,vy) e(u, vy);
for any u,v € Gy, e(u, ¥(v)) = e(v, ¥ (u)).

(such bilinear maps can be derived from Weil pairing and Tate pairing; for simplicity the
reader may assume G; = Gy).

With this setup, we obtain natural generalizations of the CDH and DDH problems :

Decisional Co-Diffie-Hellman problem :
Instance : (g1, g2, g{, g5, g5) for some a,b, ¢ € Z.
Solution : Output yes if ¢ = ab mod ¢ and output no otherwise.



Computational Co-Diffie-Hellman problem :
Instance : (g1, g2, 9¢, g5) for some a,b € Z;.
Solution : Output gs¢ € Gy.

When Gy = G, and g; = ¢», these problems reduced to the standard DDH and CDH problems
respectively.

Groups G, Gy are said to be Co-GDH groups if there exists an efficient algorithm to solve
the Decisional Co-DH problem and there is no polynomial-time (in |¢|) algorithm to solve the
Computational Co-DH problem. The existence of a cryptographic bilinear map ensures the
existance of Co-GDH groups.

3 Encryption Schemes

In identity-based public key encryption, the public key distribution problem is eliminated by making
each user’s public key derivable from some known aspect of his identity, such as his email address.
When Alice wants to send a message to Bob, she simply encrypts her message using Bob’s public
key which she merely derives from Bob’s identifying information. Bob, when receives the encrypted
message, he obtains his private key from a third paty called a Private Key generator (PKG) after
authenticating himself to PKG and can decrypt the message. The private key that PKG generates
on Bob’s query is a function of it’s master key and Bob’s identity.

Some disadvantages of ID-based system are : (1) the PKG knows Bob’s private key, i.e. key escraw
is inherent in the system which for some applications may be a serious problem, (2) Bob has to
authenticate himself to it’s PKG in the same way as he would authenticate himself to a CA, (3)
Bob’s PKG requires a secure channel to send Bob his private key, (4) Bob has to publish his PKG’s
public parameters and Alice must obtain these parameters before sending an encrypted message to
Bob.

However, the advantage of ID-based encryption are compelling. It makes maintaining authenticated
public key derectories unnecessary. Instead, a directory for authenticated public parameters of
PKG’s is required which is less burdensome than maintaining a public key directory since there
are substantially fewer PKGs than total users. In particular, if everyone uses a single PKG, then
everyone in the system can communicate securely and users need not to perform online lookup of
public keys or public parameters. Bilinear pairing makes ID-based encryption schemes feasible. In
2001, Boneh, Franklin [7] proposed the first pairing based encryption scheme.

3.1 The ID-based Encryption Scheme
(Boneh, Franklin, [7], 2001)

Assumption : BDH problem hard.
Setup : Generate two groups G (additive) and G5 (multiplicative) of prime order ¢ and a bilinear

map e : G; X G; — Gy. (G is a suitable subgroup of an elliptic curve).
Choose an arbitrary generator P € G; and a random s € Z;.



Set P,,, = sP and choose cryptographic hash functions H; : {0,1}* — G} and H, : Gy — {0,1}%,
n is the bit length of messages. Choose master key s € Z;.

Extract : (1) Compute Qip = H;(ID) € G, (2) set private key dip = sQp.

Encrypt : (1) Choose a random r € Z;, (2) set the ciphertext for the message M to be
C = (rP,M & H(gip)),

where gip = e(Qip, Ppus)

Decrypt : Given C' = (U, V), compute

V D Hg(e(d”), U))

Security : This is the basic scheme. Security against adaptive chosen ciphertext attack in the random
oracle model under the BDH assumption is obtained after the Fujisaki-Okamoto [19] transformation.

Efficiency : Setup— 1 EC scalar multiplication; Extract— 1 Map-to-point hash operation + 1
elliptic curve (EC) scalar multiplication; Encrypt— 1 Map-to-point hash operation + 1 EC scalar
multiplication 4+ 1 hash function (H3) evaluation + 1 XOR operation + 1 pairing computation + 1
group exponent in Gy; Decrypt— 1 hash function (H;) evaluation + 1 XOR operation + 1 pairing
computation.

3.2 Searchable Public Key Encryption
(Boneh, Crescenzo, Ostrovsky, Persiano, [6], 2003)

Assumption : BDH problem hard.

Suppose user Alice wishes to read her email on a number of devices : laptop, desktop, pager, etc.
Alice’s mail gateway is supposed to route email to the appropriate device based on the keywords
in the email. Consider Bob sends email with keyword “urgent”. The gateway routes the email
to Alice’s pager, after testing whether the email contains this keyword “urgent” without learning
anything else about the mail. This mechanism is refered to as Searchable Public Key Encryption
(SPKE).

To send a message M with keywords Wy, ..., W,, Bob sends
By, (M)|[SPKE(Apus, W1)I| - . . [[SPKE(Apys, Wy)

where E4 (M) is the encryption of M using Alice’s public key A,,;. The point of searchable
encryption is that given SPKE(A,,;,, W’) and a certain trapdoor Ty (that is given to the gateway
by Alice), the gateway can test whether W = W'. If W # W' the gateway learns nothing more



about W'.

A non-interactive SPKE scheme using bilinear map :

KeyGen : The public key is PK = (P, Apu), Apup = sP, s € Z; and the secret key is SK = s.
SPKE(PK, W) : Choose a random r € Z;. Output

(r P, Hy(e(Hy (W), Apun)"))-

Trapdoor(SK, W) : Output Ty = sHy(W).
Test(PK, S, Ty ) : Parse S = (U, V). Test if V.= Hy(e(Tw,U)). If so, output yes, else output no.

Security : Semantically secure against a chosen keyword attack in the random oracle model assum-
ing BDH problem is intractable.

Efficiency : KeyGen— 1 EC scalar multiplication; SPKE— 1 Map-to-point hash operation + 1
EC scalar multiplication + 1 hash function (H;) evaluation + 1 pairing computation + 1 group
exponent in Gs.

3.3 Hierarchical ID-Based Encryption (HIDE) Scheme
( Gentry, Silverberg, [21], 2002 )

Assumption : BDH problem hard.

Although having a single private key generator (PKG) would completely eliminate online lookup,
it is undesirable for a large network because the PKG has a burdensome job. Not only is private
key generation computationally expensive, but also the PKG must verify proofs of identity and
must establish secure channels to transmit private keys. HIDE allows a root PKG to distribute the
workload by delegating private key generation and identity authentication to lower-level PKGs. In
a HIDE scheme, a root PKG need only generate private keys for domain-level PKGs, who in turn
generate private keys for users in their domains in the next level. Authentication and private key
transmission can be done locally. To encrypt a message to Bob, Alice need only to obtain the public
parameters of Bob’s root PKG ( and Bob’s identitifying information); there are no “lower-level pa-
rameters”. HIDE has the advantage of damage control : disclosure of a domain PKG’s secret does
not compromise the secrets of higher-level PKGs which is not possessed by schemes of Cocks [15]
and Boneh-Franklin [7]. The bit-length of the ciphertext and the complexity of decryption graw
only linearly with the level of the message recipient.

BasicHIDE :
The entities in the tree (other than the root) are the users of the tree. Let Level; be the set of



entities at level i, where Levely = {Root PKG}.

Root Setup : The root PKG :

1. generates groups G, G5 of some prime order ¢ and an admissible bilinear pairing ¢ : G; X G| —
Gs. (For convenience, Gy is an additive group and G5 a multiplicative group.)

2. chooses an arbitrary generator P, € G.

3. picks a random sy € Z; and sets Qo = soPp.

4. chooses cryptographic hash functions H; : {0,1}* — G, and Hy : Gy — {0, 1}™.

The message space is M = {0,1}".

The ciphertext space is C = G% x {0, 1}™ where ¢ is the level of the recipient.

The system parameters are params = (G'1, G, e, I, Qo, Hy, Hz). The root PKG’s secret is sy € Z;.

Lower-level Setup : Entity E; € Level; picks a random s; € Z; which it keeps secret.

Extract : Let F; be an entity in Level; with ID-tuple (IDq, ..., ID;), where (IDq,...,ID;) for 1 <i <t
is the ID-tuple of E}’s ancestor at Level;. Set Sy to be the identity element of G.

Then E;’s parent :

1. computes P, = H{(IDy,...,ID;) € G4

2. sets Ey’s secret point S; to be S;_1 + s, 1P =t s, 1P,

3. also gives F; the values of Q; = s, for 1 < <t — 1.

Encrypt : To encrypt M € M with the ID-tuple (IDy,...,ID;), do the following :
1. compute P; = H{(ID4,...,ID;) € Gy for 1 < i < t.
2. choose a random r € Z;.
3. set the ciphertext to be
C = (rPy,rPy,...,TP;, M & Hy(g"))

where g = e(Qo, P1) € Gb.

Decrypt : Let C = (Uy,Us,...,U, V) € C be the ciphertext encrypted using the ID-tuple
(IDy,...,1D;). To decrypt C, E; computes :

G(Ug,st) )
Vo H =M.
© (Hfzz e(Qi—1,U;)

Note : The scheme is derived from Boneh-Franklin [7] scheme. An interesting fact is that lower-
level PKGs need not always use the same s; for each private key extraction. Rather, s; could
be generated randomly for each of the PKG’s children. Another fact is that H; can be chosen
to be an iterated hash function, for example, P; may be computed as H;(P;_1,1D;) rather than
H(ID4,...,ID;).

Security : Chosen ciphertext security of this basic scheme is obtained by using Fujisaki-Okamoto [19]
padding in the random oracle model under the assumption that BDH problem is hard.
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3.4 Dual-HIDE : Dual-Identity-Based Encryption
(Gentry, Silverberg [21], 2002)

Assumption : BDH problem hard.

Dual-HIDE may be more efficient than HIDE if the sender and recipient are close to each other in
the hierarchy tree. Suppose two users, y and z, have the ID-tuples (IDy,,...,ID,,,...,ID,,, ) and
(ID,,,...,ID,,...,ID,,), where (IDy,,...,IDy,) = (ID,,,...,ID,,).

In other words, user y is in Level,,, user z is in Level,, and they share a common ancestor in Level;.
User y may use Dual-HIDE to encrypt a message to user z as follows :

Encrypt : To encrypt M € M, user y :
1. computes Pz, = Hi(ID,,,...,ID,,) € Gy for | +1<i<n
2. chooses a random r € Z
3. sets the ciphertext to be

C = (rPy,rP,

2410 "

TP, M ® Hz(g;l)>
where
o = G(P[), Sy)
Y z@Hl G(Qy(i—lﬂ Pyi)

Sy is y’s secret point, Sy, is the secret point of y’s and z’s common ancestor at level [ and @, = s, %
where s, is the secret number chosen by y’s ancestor at level i.

= G(P(), Syl)‘

Decrypt : Let C = (Uy, Ujy1,...,Uy,, V) be the ciphertext. To decrypt C, user z computes :

6(U0,SZ) )
Vo H ( _ = M.
2 i=l+1 e(Qz(i71)7 Ui)

Note : If y and 2 have a common ancestor below the root PKG, then the ciphertext is shorter
with Dual-Hide than with non-dual HIDE. Further, using Dual HIDE, the encrypter y computes
(m — [ 4+ 1) pairings while the decrypter z computes (n — [ 4+ 1) pairings. In the non-dual HIDE
scheme, the encrypter computes one pairing while the decrypter computes n pairings. Thus when
m < (20 — 1), the total work is less with Dual-HIDE than with non-dual HIDE. Dual-HIDE also
makes domain-specific broadcast encryption possible. One can restrict key escrow using Dual-HIDE.

Security : Secure in the random oracle model assuming the hardness of BDH problem.

4 Signature Schemes

Digital signatures are one of the most important cryptographic primitives. In traditional public key
signature algorithms, the binding between the public key and the identity of the signer is obtained
via a digital certificate. Shamir [36] first noticed that it would be more efficient if there was no need
for such bindings, in that case given the user’s identity, the public key could be easily derived using
some public deterministic algorithm. This makes efficient ID-based signature schemes desirable.
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In ID-based signature scemes, verification function is easily obtained from identity, possibly the
same key and the same underlying computation primitives can be used. In 2001, Boneh, Lynn,
Shacham [9] proposed a pairing based short signature scheme. Afterwords several ID-based signature
schemes using pairing were developed.

4.1 BLS Short Signature Scheme
(Boneh, Lynn, Shacham, [9], 2001)

Assumption : GDH group.

Short signatures are needed in environments with space and bandwidth constraints. For example,
when humans are asked to type in a digital signature the shortest possible signatures are needed.

KeyGen : Let G, G be two multiplicative groups of same prime order ¢ and ¢ : G; X Gy — G
be a bilinear map. G; = (g), H : {0,1}* — G, messages are arbitrary finite strings.
r€pZ, is the secret key and y = ¢” is the public key.

Sign : Given a secret key = and a message m € {0, 1}*, compute o = H(m)".

Verify : Given a public key y = ¢”, a message m and a signature o, verify if (g,y, H(m), o) is a
valid DDH tuple. In otherwords, verify if e(g, o) = e(y, H(m)).

Security : Secure against existential forgery under adaptive chosen message attack in the random
oracle model assuming the underlying group is GDH.

Efficiency : KeyGen- 1 group exponent in (G;; Sign— 1 Map-to-point hash operation + 1 group
exponent in GG1; Verify— 1 Map-to-point hash operation + 2 pairing computation.

4.2 Blind Signature Scheme
(Boldyreva [4], 2003)

Assumption : Chosen-target CDH problem hard.

Blind signatures are the basic tools of digital cash schemes. Using a blind signature protocol, a
user can obtain from a bank a digital coin, that is a token properly signed by the bank. The goal
of blind signature protocol is to enable a user to obtain a signature from a signer so that the signer
does not learn information about the message it signed and so that the user can not obtain more
than one valid signature after one interaction with the signer.

KeyGen : Let GG (additive), G5 (multiplicative) be two groups of same prime order ¢, G; = (P),

H:{O,l}*%Gl, 62G1 XG1 —>G2.
Secret key is x€gZ; and public key is P, = zP.
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Blind Signature Issuing Protocol : To sign m € {0,1}*
~(Blinding) The user chooses randomly r € Z;, computes M' = rH (m) and sends M’ to signer.

—(Signing) The signer computes o' = xM' and sends back ¢’ to the user.

1

—(Unblinding) The user then computes the signature o = r~'.0’ and outputs (m, o).

Verify : Given a public key P,,;, a message m and a signature o, verify if
e(Ppuba H(m)) = Q(P, U)'
Security : Secure against one more forgery under chosen message attack assuming the hardness of

chosen-target CDH problem.

4.3 Multisignature Scheme
(Boldyreva, [4], 2003)

Assumption : GDH group.

A multisignature scheme allows any subgroup of a group of users to jointly sign a document such
that a verifier is convinced that each member of the subgroup participated in signing.

KeyGen : G, G5 both are multiplicative group, e : G; X G; — G5 a bilinear map, |G| = |G| = ¢,
G = (g). User u; € U has secret key SK; = z; € Z; and public key PK; = ¢, 1 <i <n.

Multisignature Creation : Any user u; € U with secret key SK; = x; that wishes to participate in
signing a message m € {0,1}*, computes 0; = H(m)® and sends it to a designated signer D (which
can be implemented by any user). Let L = {u;,,...u;} C U be a subset of users contributed to the
signing. D after getting all the o; for j € J = {i1,...,4}, computes the multisignature o = [[;c; 0;
and outputs (m, L, ).

Multisignature Verification : Given T' = (m, L, o) and the list of public keys of the user in L :
PK; = g¢%,j € J = {i1,... i}, the verifier computes PKy = [[,;c; PK; = [I;c; g% and verify

e(g,0) = e(PKy, H(m)).

Note : The above multisignature scheme is a simple modification of the BLS signature scheme.

Security : Secure against existential forgery under chosen message attack in the random oracle
model under the assumption that the underlying group is GDH.

4.4 Optimistic Fair Exchange

The problem of fair exchange allows two parties to exchange items in a fair way, so that either each
party gets the other’s item, or neither party does. In digital world, this problem is roughly the
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following :

Alice is willing to sign some statement, for example, e-cash payment, but only if Bob fulfills some
obligation (delivers some good). On the other hand, Bob is not willing to fulfill this obligation
unless he is sure that he gets the signature from Alice. This circularity can be overcome by intro-
ducing a semi-trusted arbitrator Charlie to the model. Alice will first register her key with Charlie.
This registration is performed only once, and as a result, Charlie may possibly learn some part of
Alice’s secret. Upon the completion of one-time registration process, Alice can perform many fair
exchanges with different marchants. In any such exchange, Alice first issues some verifiable “partial
signature” ¢’ to Bob. Bob verifies the validity of this partial signature and fulfills his obligation
by sending Alice the required information I, after which Alice sends “full signature” o to complete
the transaction. Thus, if no problem occures, Charlie does not participate in the protocol (such
protocols are called optimistic). However, if Alice refuses to send her full signature o at the end,
Bob will send ¢’ to Charlie (and a proof of fulfilling his obligation, including the information I that
should be sent to Alice), and Charlie will convert ¢’ into o, sending o to Bob and I to Alice.

Formal model for non-interactive fair exchange ( equivalently, verifiably committed
signature) :

A verifiably committed signature involves the signer Alice, the verifier Bob and the arbitrator Char-
lie, and is given by the following efficient algorithms :

Setup : This is an interactive protocol between Alice and Charlie, by the end of which either one
of the parties aborts or Alice learns her secret signing key SK, Charlie learns his secret arbitration
key ASK, and both parties agree on Alice’s public verification key PK, and partial verification key
APK.

Sign and Verify : These are conventional signing and verification algorithms of an ordinary signa-
ture scheme. Sign(m, SK) run by Alice outputs o on m, while Verify(m, o, PK) run by Bob (or any
verifier) outputs 1 (accept) or 0 (reject).

PSign and PVerify : These are partial signing and verification algorithms, which are just like
ordinary signing and verification algorithms, except they can depend on the public arbitration key
APK. PSign(m, SK, APK) run by Alice outputs a partial signature o', while PVerify(m, o', PK, APK)
run by Bob (or any verifier) outputs 1 (accept) or 0 (reject).

Resn : This is a resolution algorithm run by Charlie in case Alice refuses to open her signature
o to Bob, who in turn possesses a valid partial signature ¢’ on m (and a proof that he fulfills his
obligation to Alice). In this case, Resn(m, o', ASK, PK) should output a legal signature o of m.

Correctness states that Verify(Sign(m, SK), PK) = 1, Pverify(m, Psign(m, SK, APK), PK, APK) = 1
and Verify(m, Resn(Psign(m, SK, APK), ASK, PK), PK) = 1. Moreover, the “resolved signature”
Resn(Psign(m, SK, APK), ASK, PK) is identical to the “actual signature” Sign(m, SK).

Construction of a Verifiably Committed Signature based on sequential two party mul-
tisignatures of Boldyreva :
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(Dodis, Reyzin [17], 2003)
Assumption : GDH group.

Let G be a multiplicative group of prime order ¢, H : {0,1}* — G be a hash function and Vppn be
an efficient polynomial time algorithm which solves DDH problem.

Setup : Alice chooses random g € G,x,z, € Z, computes o = v — 2y mod ¢, h = g%, hy = g,
and sets PK = (g, h), SK = (z,21), APK = hy, ASK = x5. She then sends PK, APK, ASK to Charlie,
who checks that h = hyg®* (and rejects if this is not the case).

Sign, Verify : These are identical to the BLS signature : Sign(m) = H(m)®, Verify(m,o) =
VDDH(ga h,H(m),O').

PSign, PVerify : These are also identical to the BLS signature, but with public key hy :
PSign(m) = H(m)**, PVerify(m,c') = Vopnl(g, h1, H(m),c").

Resn : Resn(m, o’) first checks that PVerify(m,o’) = 1, and outputs o = o' H (m)®2.

Security : Secure in the random oracle model.

4.5 Aggregate Signature
(Boneh, Gentry, Lynn, Shacham [8], 2003)

Assumption : Co-GDH group and existence of a bilinear map.

An aggregate signature scheme is a digital signature that supports aggregation : Given n signa-
tures on n distinct messages m; from n distinct users ¢, 1 < i < n, it is possible to aggregate all
these signatures into a single short signature. This single signature and the n original messages
m;, 1 < i <n will convince the verifier that user ¢ did indeed sign message m; , 1 <i < n.

KeyGen : GGy, Gy, Gy are multiplicative groups of some large prime order ¢, v : G; — G5 is a com-
putable isomorphism and e : G; X G5 — G is the bilinear map. G; = (g1), Go = (92), 92 = ¥(q1),
H: {0, ]_}* — Gs.

x; € Z; is the secret key and v; = gi" is the public key of user u; € U,1 < i <n.

Aggregation : User u; € U signs message m; € {0, 1}* to generate BLS signature o; = H(m;)"™,
1 <17 < n. The messages m; must be all distinct. The aggregate signature is 0 = 010, ...0, € Gs.

Aggregate verification : Given public keys v; = ¢7*, distinct messages m;,1 < i < n and an

aggregate signature o, verify if
n

e(g1,0) =[] e(vi, H(my)).

=1
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Security : Secure against existential forgery in the aggregate chosen key model assuming that the
underlying groups are Co-GDH groups.

4.6 The Bilinear Verifiably Encrypted Signature
(Boneh, Gentry, Lynn, Shacham [8], 2003)

Assumption : Co-GDH group and existence of a bilinear map.

When Alice wants to sign a message for Bob but does not want Bob to possess her signature on
the message immediately, Alice encrypts her signature using the public key of a trusted third party
(adjudicator), and sending the result to Bob along with a proof that she has given him a valid
encryption of her signature. Bob can verify that Alice has signed the message but can not deduce
any information about her signature. Later in the protocol, Bob can either obtain the signature
from Alice or resort to the adjudicator who can reveal Alice’s signature.

KeyGen : G1,Gy,Gr,G1 = {(g1),Gy = (92), g2 = ¥(¢1), ¥ is an isomorphism from G; to G,
e: G X Gy — G is a bilinear map, H : {0,1}* — G5 a hash function.

(x, g7) is private/public key pair of signer.

(z',g%") is the private/public key pair of adjudicator.

Sign, Verify : For a message m € {0,1}*, the signature of a signer with private key z is o =
H(m)* € G4 and the verification is

e(g1,0) = elgi, H(m)).

Verifiably Encrypted Signature Creation : Given a secret key x € Z;, a message m € {0, 1}"
and an adjudicator’s public key v' = ¢¥ € G, compute h = H(m) € G5 and o = h*. Select a
random 7 € Z; and set = 1(g1)" and o' = ¢ (v')". Aggregate 0,0’ as w = g0’ € G and output
the pair (w, u).

Verifiably Encrypted Signature Verification : Given a public key v, a message m, an ad-
judicator’s public key ¢ and a verifiably encrypted signature (w,p), set h = H(m); accept if
e(gr,w) = e(v, h).e(v', 1) holds.

Adjudication : Given an adjudicator’s public key v and corresponding private key 2'€pZ;, a
public key v and a verifiably encrypted signature (w, 1) on some message m, ensure the verifiably
encrypted signature is valid; then compute o = w/p® .

(Before giving the signature, the adjudicator must perform the validity test to prevent a malicious
user from tricking him into signing arbitrary messages under his adjudication key).

No involvement of adjudicator during generation of encrypted signature or its verification. Adjudi-
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cator involves only during signature revelation phase.

Security : Secure against existential forgery and aggregate extraction assuming that Co-GDH [9]
signature scheme is secure against existential forgery and extraction respectively.

Efficiency : Verifiably Encrypted Signature Creation- 1 Map-to-point hash operation + 3
group exponent in GGy + 1 multiplication in G5; Verifiably Encrypted Signature Verification-
1 Map-to-point + 3 pairing computation + 1 group exponent in G7; Adjudication— 1 group
exponent in Gy + 1 multiplication in Gs.

4.7 Bilinear Ring Signature
(Boneh, Gentry, Lynn, Shacham [8], 2003)

Assumption : Co-GDH group and existence of a bilinear map.

Consider a set U of users each having a public/private key pair. Ring signature on U is a signature
that is constructed using all these public keys of the users in U, and a single private key of any
user in U. A ring signature has the property of signer-ambiguity : a verifier is convinced that the
signature was produced using one of the private keys of U, but is not able to determine which one.
Let G, G5, G be multiplicative groups of same prime order ¢, e : G; X Go — G a bilinear map,
Y : G1 — Gy a computable isomorphism, Gy = (g1), G2 = (92), 92 = ¥(¢g1), H : {0,1}* — Gbs.

KeyGen : x€rZ; is the secret key and v = g7 is the public key of a particular user.

Ring Signing : Given public keys vy,...,v, € G, a message M € {0,1}*, and a private key x
corresponding to one of the public keys v, for some s, choose a;€rZ, Vi # s.

Compute h = H(M) € G5 and set
h 1/x
Os = | V==~ .
<¢(Hi;és Uf))

For all i # s, let 0; = g3'. Output the ring signature o = (o1,...,0,) € G}.

Ring Verification : Given public keys vy, ..., v, € Gy, amessage M € {0,1}*, and a ring signature
o, compute h = H(M) and verify that

n

e(gr,h) = I e(vi, 04).

i=1
Security : The identity of the signer is unconditionally protected and the scheme is resistant to
forgery in the random oracle model assuming the underlying groups are Co-GDH.

4.8 Non-interactive Deniable Ring Authentication

(Zhang, Safavi-Naini, Susilo [40], 2004)
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Consider a situation when Alice, who is a member of the parliament, wishes to inform the prime
minister about very sensitive information related to the country. In this situation, Alice does not
want her identity to be revealed by the prime minister, and on the other hand, she also wants the
prime minister to keep this information for himself and not to be forwarded to any other person.
To make the information reliable, it must be authenticated and this must be verifiable by the prime
minister that it comes from one of the parliament’s member, so that the prime minister can make his
decision on this matter. The notion of non-interactive deniable ring authentication allows a signer
to sign a message m on behalf of an ad hoc collection of participants, and to convince a designated
verifier V' that this message is correct. Moreover, it is required that the designated verifier V' can
not convince any other third party that the message m was indeed authenticated.

For this chameleon hash functions are used. Chameleon hash function is associated with a pair of
public and private keys and has the following properties :

(1) Anyone who knows the public key can compute the associated hash function.

(2) For people who do not have the knowledge of the trapdoor (i.e. the secret key), the hash func-
tion is collision resistant : it is infeasible to find two inputs which are mapped to the same output.
(3) The trapdoor information holder can easily find collisions for every given input.

Concrete example of Chameleon Hash :
Following is a chameleon hash which is based on the hardness of discrete log problem.

rE€RrZ, is the private key of user V,
y = ¢” is the public key of user V.
For a given message m € Z, choose a random r € Z; and set

Cham — Hashy (m,r) = ¢™y".

Note that the above chameleon hash function is collision resistant for any user U # V. User V' can
always find any other message m # m and compute the appropriate 7 to find the same hash value,
because he knows x and can easily solve m + xr = m + xr.

Non-interactive deniable ring authentication scheme :

Assumption : Co-GDH group, existence of a bilinear map and the above discrete log based hash
function.

KeyGen : T€gZ, is the secret key and v = g7 € G is the public key of user w.

Non-interactive Ring Signing : Given public keys vq,...,v, € G, a message m € Z, and a
private key T corresponding to one of the public key v, for some s, do the following :

1. Choose randomly r € Zr and compute h = H(Cham — Hashy (m, 7)) € G,

2. Choose randomly a; € Z;Vi # s.

3. Set
. 1/7

= (sm)
T w(Hz;és Ugi)
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4. Vi # s, set 0; = g5°.
The ring signature is o = (04, ...,0,) € Gb.

Non-interactive Ring Verification : Given public keys vy,...,v, € G, a message m € Z, and
a ring signature ¢ and r, compute

h = H(Cham — Hashy (m, r))
and verify that

e(g,h) = ﬁe(vi,ai).

Security : The signature scheme is non-transferable and provides signer-ambiguity assuming the
above assumption.

4.9 ZSS Short Signature Scheme from Bilinear Pairing
(Zhang, Safavi-Naini, Susilo, [38], 2004)

Assumption : (k + 1)-exponent problem hard.

KeyGen : params = (G, G5, q, e, P, H) is the publicly available parameters.
For a signer pick randomly = € Z; and set Py, = xP. 1 is the secret key and P,y is the public key
of that user.

Sign : Given a secret key x and a message m, compute signature

1
= ) Tl

Verify : Given a public key P,,;, a message m and a signature S, verify if
e(H(m)P + Py, S) = e(P, P).

Security : Existentially unforgeable under an adaptive chosen message attack in the random oracle
model assuming that (k + 1)-exponent problem is hard.

Efficiency : KeyGen— 1 EC scalar multiplication; Sign— 1 inversion + 1 EC scalar multiplication;
Verify- 2 pairing computation (one of which can be precomputed) + 1 EC scalar multiplication +
1 hash function (H) evaluation + 1 EC addition. This scheme is more efficient than BLS scheme
as it requires less pairing computation and no computation of the expensive special hash function
Map-to-point that encodes finite strings to elements of group Gj.

4.10 A New Verifiably Encrypted Signature Scheme
(Zhang, Safavi-Naini, Susilo, [39], 2003)
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Assumption : (k + 1)-exponent problem hard, DLP hard.

KeyGen : params = (G, G5, q,e, P, H).

(Pyup, ©) is the signer’s public/private key pair.

(Pyubad, Ta) is the adjudicator’s public/private key pair.
Ppub - ZL'P, PpubAd = anP.

Sign, Verify : For a message m, the signature is 0 = WP, the verification is e(H(m)P +
Py, 0) =¢(P, P).

VESig Creation : Given a secret key x € Z;, a message m and an adjudicator’s public key Pupaq,
compute o' = mppub 4q- Verifiably encrypted signature for message m is o.

VESig Verification : Given a public key P,,;, a message m, an adjudicator’s public key Ppupaq
and a verifiably encrypted signature o', verify if

e(H(m)P + Ppuba OJ) = G(P, PpubAd)-

Adjudication : Given an adjudicator’s public key Pjup44 and corresponding private key z, € Zy,
a certified public key P,,;, and a verifiably encrypted signature o' on some message m, ensure that
the verifiably encrypted signature is valid; then output o =z, 'o’.

Security : Secure against existential forgery in the random oracle model under the assumption that
(k + 1)-exponent problem is hard; secure against extraction assuming DLP is hard.

Efficiency : VESig Creation- 1 inversion + 1 EC scalar multiplication; VESig Verification —
2 pairing computation (one of which can be precomputed) + 1 EC scalar multiplication + 1 hash
function (H) evaluation + 1 EC addition; Adjudication— 1 inversion + 1 EC scalar multiplication.

4.11 Partially Blind Signature Scheme

To use blind signature in designing e-cash schemes, there are two shortcomings :

1. To prevent a customer from double-spending his e-cash, the bank has to keep a database which
stores all spent e-cash to check whether a specified e-cash has been spent or not by searching this
database. Certainly, the database kept by the bank may grow unlimitedly.

2. The bank can not inscribe the value on the blindly issued e-cash.

Partially blind signature allows the signer to explicitly include some agreed information in the blind
signature. By embedding an expiration date into each e-cash issued by the bank, all expired e-cash
recorded in the bank’s database can be removed and thus preventing the bank’s database from
growing unlimitedly. At the same time, each e-cash can be embedded the face value, the bank can
know the value on the blindly issued e-cash.
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A new partially blind signature scheme :
(Zhang, Safavi-Naini, Susilo [39], 2003)

Assumption : Chosen-target inverse CDH problem hard.

KeyGen : params = (G, G5, q,e, P, H, Hy), Hy : {0,1}* — G}.
The signer picks randomly x € Z;‘ and computes P,,, = vP. The public key is P,,;, and the secret
key is x.

Partially blind signature issuing protocol : Suppose that m be the message to be signed and
¢ be the public information.

—(Generation of the public information) The user and signer generate the public information ¢
together.

—(Blinding) The user randomly chooses a number r € Z7, computes U = r Hy(m||c) and sends
U to the signer.

—(Signing) The signer computes V' = WU and sends it to the user.

~(Unblinding) The user computes S = r~'V.
Then (S, m, c) is the partially blind signature of the message m and public information c.

Verification : A verifier can accept this partially blind signature if and only if
e(H(c)P + Py, S) = e(P, Hy(ml|c)).

Security : Secure against one more forgery under chosen message attack in the random oracle model
assuming hardness of Chosen-target inverse CDH problem.

4.12 ID-based Blind Signature scheme (Schnorr type)
(Zhang, Kim [37], 2002)
Assumption : ROS-problem is hard.

Setup : Gy = (P), Pyuy = sP,s€rZ;. params = (G1, Gy, q, ¢, P, Py, H, Hy) is the publicly avail-
able parameters and s is the master key kept secret. H, H; are hash functions.

Extract : Qp = H,(ID) is the public key for the public identity ID € {0,1}*. The corresponding
private key is Sip = s@Qp.

Blind Signature Issuing Protocol : To sign message m € {0,1}*

~The signer randomly chooses a number r € Z,, computes R = rP and sends R to the user as
a commitment.

—(Blinding) The user randomly chooses a,b € Z, as blinding factors, computes
c=H(m,e(bQp + R+ aP,P,,))+b
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and sends c to the signer.
—(Signing) The signer sends back S, where S = ¢Sip + 7 Ppyp.

~(Unblinding) The user computes S’ = S + aPp, and ¢ = ¢ — b and outputs (m, S’,¢'). Then
P
(S’,¢') is the blind signature of the message m.

Verification : Accept if and only if

/

= H(m,e(S", P)e(Qip, Ppup) ).

Security : Secure against one more forgery in the random oracle model under the above assumption.

4.13 ID-based Ring Signature
(Zhang, Kim [37], 2002)

Assumption : Intractability of the CDH problem.
Setup : Gy = (P), Pyuy = sP, 5 € Z;. params = (G1, Gy, q, ¢, P, Py, H, Hy), s is the master key.

Extract : Given public identity ID € {0,1}*, compute the public key Q;p = H;(ID) and the secret
key Sip = sQip.

Let ID; be a user’s identity and Sip, be the private key associated with ID; for e =1,...,n. Let
L = {ID;} be the set of identities. The real signer’s identity 1Dy, is listed in L.
Signing :

—(Initialization) : Choose randomly an element A € G and compute ¢, 1 = H(L||m|le(A4, P)).

—(Generate forward ring sequence) : Fori =k +1,...n —1,0,1,...,k — 1 (i.e. the value of ¢
all modulo n), choose randomly 7; € G; and compute

Ciyr = H(L[[m||e(T;, P)e(ciH1(1Ds), Pyus))-

—(Forming the ring) : Compute T, = A — ¢, Sip.
—(Output the ring signature) : Select 0 (i.e. n) as the glue value, the resulting signature for m
and L is the (n + 1)-tuple : (co, To, T1, .-, Tne1)-
Verification : Given (¢g, Ty, T4, ..., Ty_1), m and L, compute
cipyr = H(L[|m||e(T;, P)e(ciH1(IDs), Ppub))

fori=0,1,...n — 1. Accept if ¢, = ¢y and reject otherwise.

Security : The scheme is unconditionally signer-ambiguous and non-forgeable in the random oracle
model under the assumption of the intractability of the CDH problem.
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4.14 ID-based Group Signature Scheme
(Chen, Zhang, Kim [14], 2003)

Assumption : Reversion of CDH problem hard.

Group signature allows any member of a group to sign on behalf of the group. Anyone can verify
the signature with a group public key while no one can know the identity of the signer except the
Group Manager.

Suppose there exists a hierarchical ID-based system. If the group manager is not a KGC, he joins
the system and becomes a KGC. So the case that group manager is a KGC is considered only.

Setup : The KGC chooses a random s € Z; and sets P, = sP. The systems public parameters
are params = (G4, G, e, q, P, Py, Hi, H2). The master key s is kept secret by the KGC.

Extract : A user submits his identity ID and authenticates himself to KGC. The user then ran-
domly chooses an integer r € Z; as it’s long term private key and sends P to KGC. KGC computes
the user’s public key Qp = H>(ID||T,rP) and sends Si;p = sQp to the user via a secure channel,
where T is the life span of r. The user’s private key pair are Sip and . The user should update his
key pair after period of T'.

Every user with identity ID who gets his private key S)p from the KGC is a “potential” group
member. Sip is only used for ordinary signature. Some users may get the private key from KGC
just for ordinary signature and they are not “real” group member.

Join : When a user later wants to be a “real” member of the group, he and KGC perform the Join
protocol as follows :

— The user randomly chooses z; € Z, for i = 1,2,...,k. He then sends rz;P, z;P,rP,ID, and
S|D to KGC.

—If Sip = sHy(ID||T, rP) and e(rx; P, P) = e(z;P,rP), KGC sends the user S; = sHy (T, rz;P)
forv=1,2,..., k. Otherwise, the protocol is terminated.

— The user’s member certificates are (S;, rz; P) and his private signing keys are rz;,i = 1,2,... k.

— KGC adds rz;P, z; P, P, 1D to the member list.

Sign, Verify : To sign a message m, the user randomly chooses a certain signing key and corre-
sponding member certificate and then computes the following values :

— U = aHy(T,rz;P) for a € Z; and certain i

-V =rx;Hy(m,U)

~h=H(m,U+YV)

-W = (a + h,)SZ

(U, V,W,T,rz;P) is the signature of the message m. If T is a valid period, the verifier computes

Q = HQ(T, T:UZ'P), Hg(m, U), h = Hg(m, U+ V)
He accepts the signature if the following equations hold :

G(I/V, P) = 6(U + hQa Ppub)
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e(V,R) = e(Hy(m,U), rx;P).

Open : Given a valid group signature, KGC can easily identify the user from rx;P. The user can
not deny his signature because KGC can provide a proof that it is indeed the user’s signature :

e(rx; P, P) = e(x; P,rP)

e(Sip, P) = e(Hy(ID||T,7P), Pyus)-

Also, KGC can not misattribute a signature to frame the user unless he can compute bP given
P,aP and rP which satisfies :
a = rbmod q

which is defined to be the Reversion of CDH problem and is equivalent to CDHP in G;.
Security : Secure in the random oracle model under the assumption of CDH problem.

Efficiency : The scheme is ID-based having fixed length group public key and fixed length signa-
ture. The computation and communication is linear in the number of group members, anonymity
is preserved computationally, identification is done by Group manager (KGC) and new members
can be included. A user has many certificates in this scheme.

4.15 Delegation-by-certificate proxy signature scheme

(Boldyreva [4], 2003)

A proxy signature permits an entity to delegate it’s signing rights to another entity. To differentiate
among signatures created for standard signing, proxy delegation and proxy signing, the following
way is introduced :

in order to sign a message M, the user actually signs message 11||M, whereas in order to sign a
warrant w during delegation process, the user actually signs 00||w, and for proxy signature of a
message M, the proxy signer signs 01||M. Verification of standard (respectively, proxy) signature
is then performed by first prepending 11 (respectively, 01) to the message. A warrant is a message
containing the public key of the designated proxy signer and possibly, restrictions on the messages
the proxy signer is allowed to sign. Infact, to sign a message M on behalf of user i (with pub-
lic/private key pair (PK;,SK;)), the proxy signer j (with public/private key pair (PKj;, SK;)) signs
message 01||PK;||M.

Generic construction of a delegation-by-certificate proxy signature scheme from any
digital signature scheme :

Let DS = (G, K, S, V) be a standard digital signature scheme where G is system parameters gener-
ation algorithm, K is the key generation algorithm, S is the signature generation algorithm and V
is the signature verification algorithm.

The proxy signature scheme PS[DS] = (G1, Ky, S1, Vi, (D, P), PS, PV, ID) is derived from DS as
follows :
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1. =G,k =K
2. §1(SK, M) = S(SK, 11]|M) is the standard signature on message M.
3. Vi(PK, M,0) = V(PK, 11||M, o) is the standard signature verification on message M.

4. To designate user j as a proxy signer, user ¢ sends an appropriate warrant w together with
a certificate which is a signature of user i on message 00||PK;||w. The corresponding proxy
signing key of user j is skp = (SK;, PK;, PK,||w, cert).

5. Proxy signer j gives a proxy signature for message M on behalf of user i using the proxy
signing key skp = (SK;, PK;, PK;||w, cert) as follows :

PS(skp, M) = (w, PK;, cert, S(SK;, 01||PK;||A)).

6. Proxy signature verification is defined via

PV(PK, M, (w, PK', cert, o)) = V(PK, 00||PK'||w, cert) A V(PK', 01||PK||M, o).

7. The identification algorithm is defined as ZD((w, PK', o)) = PK'.

Security : The proxy signature scheme is secure if the underlying standard digital signature scheme
is secure.
Aggregate-signature-based proxy signature scheme (Boldyreva [4], 2003)

Assumption : GDH group.

Let AS = (G,K,S,V, A, AV) be an aggregate signature scheme. The proxy signature scheme
PS[AS] = (G, K1, 81, V1, (D, P), PS, PV, ID) is derived from AS as follows :

1. The algorithms Gy, Ky, Sy, Vi, (D, P) use the algorithms G, KC, S,V in the same way as those
in the previous construction.

2. The proxy signing algorithm PS uses A to aggregate the certificate and a proxy signature as
follows :
PS((SK;, PK;, PK,||w, cert), M) = (w, PK;, A(PK;, PK;, 00||PK;||w, 01||PK;|| M, cert, S(SK;, 01||PK;||M))).

3. The proxy verification algorithm PV is defined by
PV(PK, M, (w,PK', o)) = AV(PK, PK’, 00||PK'||w, 01||PK||M, o).

4. The identification algorithm is defined by

ID((w,PK' o)) = PK'.

Security : The scheme is secure provided the underlying aggregate signature scheme is secure.
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4.16 Hierarchical ID-Based Signature (HIDS) Scheme
(Gentry, Silverberg [21], 2002)

Assumption : CDH problem hard.

As noted by Moni Naor, an IBE scheme can be immediately converted into a public key signature
scheme as follows :

The signer’s private key is the master key in the IBE scheme. The signer’s signature on M is the
IBE decryption key d corresponding to the ”public key” H;(ID) = H;(M).

The verifier checks the signature by choosing a random message M', encrypting M’ with Hy(M),
and trying to decrypt the resulting ciphertext with d. If the ciphertext decrypts correctly, the
signature is considered valid.

When viewed in isolation, a HIDS scheme is not especially useful, but becomes quite useful when
viewed in combination with the HIDE scheme as a complete package.

HIDS Scheme :

Let Level; be the set of entities at level i, where Level, = {Root PKG}.

Root Setup : The root PKG :

1. generates groups G, G5 of prime order ¢ and an admissible bilinear pairing e : Gy X Gy — G,
2. chooses an arbitrary generator Py € G,

3. picks a random sq € Z;‘ and sets Qo = so P

4. chooses cryptographic hash functions H; : {0,1}* — G; and H; : {0,1}* — G}.

The signature space is S = G4 where ¢ is the level of the signature. The system parameters are
params = (G, Ga, e, Py, Qo, Hy, H3). The root PKG’s secret is so € Z;.

Lower-level Setup : Entity E; € Level; picks a random s, € Z, which it keeps secret.

Extract : Let E; be an entity in Level; with ID-tuple (IDy, ..., ID;), where (ID,...,ID;) for 1 <i <t
is the ID-tuple of E}’s ancestor at Level;. Set Sy to be the identity element of G.

Then E,’s parent :

1. computes P, = H{(IDy,...,ID;) € G4

2. sets E;’s secret point Sy to be S; 1 +s, P =Yt s 1P,

3. also gives E; the values of Q; = s, for 1 < <t —1.

Sign : To sign M with ID — tuple = (IDy, ..., ID;) (using the secret point S; = >f_, s;_; P; and the
points Q; = s; Py for 1 < i < t), do the following :
1. compute Py = H3(IDy,...,1D;, M) € G,
2. compute sig(ID — tuple, M) = S; + s, Py,
3. send sig(ID — tuple, M) and @Q; = s; P for 1 <i < t.
Verify : Let (sig,Q1,...,Q:) € S be the signature for (ID — tuple, M). The verifier confirms that :
t
e(Fo,sig) = e(Qo, Pr) e(Q, Pur) H e(Qi-1, ).
i=2

Security : Secure in the random oracle model assuming the CDH problem is hard.
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4.17 Unique Signature Scheme (Standard model)

Unique signature schemes, also known as invariant signature schemes, are secure signature schemes
where the signature is a hand-to-compute function of the public key and the message. If a signature
scheme allows the signer to easily (i.e more efficiently than the cost of verifying a signature) generate
many signatures on the same message, then it simply leads to denial-of-service attack on a verifier
who is forced to verify many signatures on the same message. This illustrates that intutively unique
signatures are desirable. Boneh and Silverberg [11] proposed a unique signature scheme based on
the existence of multi-linear maps. Currently, no such suitable maps are known and the existence
of such maps is presently a research problem [11]. Lysyanskaya proposed a unique signature scheme
based on this idea making use of bilinear pairing. This scheme is proved to be secure in the standard
model under Many-DH assumption.

(Anna Lysyanskaya [29], 2002)

Assumption : GDH group, Generalized (or Many)-DH problem hard.

KeyGen : params = (G, Gy, q, €, g), Gy is generated by g, both G, Gy are multiplicative groups
of a large prime order ¢, e : G; X G; — G5 is a bilinear map.
Choose n pairs of random elements in Z, :
(Cll,o, 01,1), (a2,0, 02,1), S (an,o, an,l)-
This is the secret key SK. Compute
Ai,b = ai’b, 1 S ? S n,b € {0, 1}
The public key is
PK = {Ai,OaAi,1|]- S 1 S TL}
Sign : Assume that the messages being signed are n-bit codewords of a code of distance C'n, where
0 < C <1/2is a constant. To sign an n-bit codeword m = m; omgyo...om, output
apK(m) = {Sm,i = gl_[;:1 dimj . 1 <1 < n}

Verify : Let s, 0 = 1. Verify that, for all 7,1 <1i < n,

e(ga Sm,i) = e(sm,ifla Ai,mi)-

Graphically, we view the message space as the leaves of a balanced binary tree of depth n. Each
internal node of the tree is assigned a label, as follows : the label of the root is g. The label of a
child, denoted [. is obtained from the label of it’s parent, denoted [, as follows : if the depth of the
child is 4, and it is the left child, then its label is [, = [,"°, while if it is the right child, its label will
be I, = I,"'. The signature on an n-bit message consists of all the labels on the path from the leaf
corresponding to this message all the way to the root. To verify the correctness of a signature, the
fact that Decision Diffie-Hellman is easy in G is used.

Security : Provably secure against existential forgery under adaptive chosen message attack in the
standard model assuming the underlying group is a GDH group and the hardness of Many-DH
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problem.
Application : Constructing Verifiably Random Functions (Anna Lysyanskaya [29], 2002)

VRFs are objects that combine the properties of psudorandom functions (i.e. indistinguishability
from random event after querying) with the verifiability property. These objects are very useful
for cryptographic protocol design, because they can be viewed as a commitment to an arbitrary
number of bits. They are similar to psudorandom functions, except that they are also verifiable.

The definition of VRF is formally given below. The intution of this definition is that a func-
tion is a verifiable random function if it is like a psudorandom function with a public key and proofs.

Definition : A VRF is a function family F(,(-) : {0,1}* — {0,1}'® with the following algorithms

1. A probabilistic key generation algorithm G(-) that on input k, generates public/private key pair
(PK, SK).

2. A deterministic algorithm Eval(+,-) that on input SK, z computes the value y = Fpx ().

3. A deterministic algorithm Prove(-, -) that on input SK, x computes the proof = that y = Fpg(z).
4. A probabilistic algorithm Verify(-, -, -, ) that on input PK, z,y, 7 checks whether y = Fpg(x)
using the proof 7.

In order to obtain verifiably random functions, it is sufficient to construct unique signatures.

4.18 A Secure Signature Scheme from Bilinear Map (standard model)
(Boneh, Mironov, Shoup [10], 2003)

Assumption : CDH problem hard.

Setup : Gy, G, Gy are three multiplicative groups of order ¢, e : Gy X Gy — G5 is a bilinear map,
Hy : M — {0,1}* is a family of collision resistant hash functions. The signature scheme allows
signing {™ messages, where [ and n are arbitrary positive integer, n is the branching factor of the
authentication tree.

KeyGen :

1. Pick randomly «; € Zp1<i<n and HerG,.

Choose a random k for the collision resistant hash function H,.
Compute H; = HY* ... H, = H'/* ¢ G,.

2. Pick randomly g € Gy. Compute y = e(g, H).

3. Pick randomly 3, € Z,. Compute zy = y*.

4. The public key is k, H, Hy, ..., H,,y, zo.

The private key is aq, s, ..., ap, Bo, g.
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Sign : Each node in the tree is authenticated with respect to it’s parent; messages to be signed are
authenticated with respect to the leaves, which are selected in sequential order and never resued.
To sign ith message M € M, the signer generates the ith leaf of the authenticated tree together
with a path from the leaf to the root.

Denote the path from leaf to root by (zy,4;, 2, 1,9 1,...,%1, ) :

x; is the i;th child of z;_1(i; € {1,...,n}).

1. x; = yP for some Bi€rZy,1 < j <. The secret 3 is stored for as long as node z; is an anscestor
of the current signing leaf.

2. Compute f; = ¢g“ (Bj—1+74(@i) " This is the authenticated value of z;, the ¢;th child of z;_;.
3. Compute f = g%+ This is the authenticated value of M.

4. The signature on M is (f, fi, i, ..., f1,41).

Verify : Given a signature (f, fl, T fl, %1) on a message M, do the followings :

1. Compute &, = e(f, H)y M),

2. Compute &, 1 = e(fj, Hij)y_Hk(’Ej) for | <j <1.

3. Accept the signature if Ty = z,.

Security : Provably secure against existential forgery against adaptive chosen message attack as-
suming that the CDH problem is hard.

4.19 ID-based Signature from Pairing

(K. G. Paterson, [32], 2002)

Assumption : Generalized ElGamal Signature Scheme is secure.

KeyGen : (G1,Gs,q,e, P, Py, Hi, Hy, H3) are publicly available parameters where P,,;, = sP, s

is randomly choosen from Z; is called the master key.
A user’s public key for signature verification is Qip = H;(ID) while secret key for signing is

Dip = sQip-
Sign : To sign a message M € {0,1}*, choose a random k € Z, and compute
R=kP,S =k '(Hy(M)P + H3(R)Dyp).

The pair (R, S) is the signature on message M.
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Verify : Given a signature (U, V'), a message M and Py, Q\p, verify if
e(R,S) = e(P, P)*Me¢(P,,;, Qip) "),

If (R, S) is a valid signature on M, then so too is (IR,I~'S) for any I € Z;. This “homomorphic”
property does not appear to help an attaker to compute signatures on new messages. This scheme
is similar to the generalized ElGamal signature scheme.

Security : Security of this ID-based signature scheme is linked to the security of an ordinary sig-
nature scheme which resembles the well-known non-id-based generalized ElGamal signature scheme.

Efficiency : Signature generation requires only two hash function evaluation + some computation
in GG; + an inversion modulo ¢. Verification requires two hash function evaluation 4+ two exponen-
tiations in G5 + 3 pairing computations ( two of which can be precomputed when verifying any
particular user’s signature) one of which can be precomputed. Size of the signature is twice the size
of group elements in G.

4.20 ID-based Signature from Pairing
(F. Hess, [22], 2000)

Assumption : Weak-DH problem hard.

KeyGen : Public key Qp, private key Dip = sQip where s€rZ; is the master key. Public param-
eters are params = (G, Ve, q, P, h3), G =(P),e: G x G — V.

Sign : To sign a message m, the signer chooses an arbitrary P, € G7 and a random k € Z7 and
computes

1. r=e(P, P)k,

2. v = hz(m,r),

3. u= UD|D + kpl.

The signature is then the pair (u,v) € (G, Z;).

Verify : On receiving a message m and a signature (u,v) the verifier computes :
1. r = G(U,, P)G(Q|D, —Ppub)v
2. Accept the signature if and only if v = hz(m, r).

Security : Secure against existential forgery under adaptive chosen message attack in the random
oracle model assuming Weak-DH problem is hard.

Efficiency : The signing operation can be optimized by the signer pre-computing e(P;, P) for P; of
his choice, for example P, = P, and storing this value with the signing key. This means that the
signing operation involves one exponentiation in the group V', one hash function evaluation and one
simultaneous multiplication in the group G.

The verification operation requires one exponentiation in V', one hash function evaluation and two
evaluations of the pairing. One of the pairing evaluation can be eliminated, if a large number of
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verifications are to be performed for the same identity, by pre-computing e(Qrp, —Ppup)-
This scheme is very efficient in terms of communication requirements. One needs to transmit one
element of the group G' and one element of Z.

5 Key Agreement Schemes

Key agreement is one of the fundamental cryptographic primitives. This is required when two
or more parties want to communicate securely. In one of the breakthroughs in key agreement,
Joux [23] proposed a three party single round key agreement protocol using pairing. This was
the first positive application of bilinear pairing in cryptography. Afterwards, pairings were used
widely to get a huge number of cryptographic protocols. Several key agreement protocols were
proposed that prevents man-in-the-middle attack against a passive adversary. These protocols
are called unauthenticated. The protocols for authenticated key agreement enables a group of
parties within a large and completely insecure public network to establish a common secret key and
furthermore ensures that they are indeed sharing this key with each other. Achieving authenticated
key agreement are crucial for allowing symmetric-key encryption/authentication of data among
the parties. Furthermore, authenticated key agreement protocols are used for constructing “secure
channels” on top of which higher-level protocols can be designed, analyzed and implemented in
a modular manner. Group key agreement protocols (where number of parties agreeing upon a
common key is more than 2) are essential for applications such as secure video or tele-conferencing
and also for collaborative (peer-to-peer) applications which are likely to involve a large number
of users. A formal model of security for group authenticated key agreement can be found in [12].
Much research work remaines to be done in this area.

5.1 Joux’s One Round Three Party Key Agreement Protocol
(Joux [23], 2000)

Assumption : BDH problem hard.

Let Gy, G4 be two groups of same prime order q. We vtake G; to be an additive group and G a
multiplicative group.
The public parameters are params = (G, Gs,e,q, P), G; = (P).

Consider three party A, B, C' with secret keys a,b, c € Z; respectively.

A sends aP to both B,C
B sends bP to both A,C
C sends cP to both A, B

A computes K4 = e(bP, cP)®

B computes Kp = e(aP, cP)"
C computes K¢ = e(aP,bP)°
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Common agreed key of A, B, C is
Kppc = Ky = K = K¢ = e(P, P)™".
Security : Secure against passive adversary under the assumption that BDH problem is hard.

Efficiency : # rounds = 1, # group elements sent = 3, # elliptic curve (EC) scalar multiplication
= 3, # pairing computation = 3, # group exponentiation in G5 = 3.

5.2 Extending Joux’s Protocol to Multi Party Key Agreement

(Barua, Dutta, Sarkar, [2], 2003)

Assumption : Decisional hash bilinear Diffie-Hellman (DHBDH) problem hard.

The public parameters are params = (G, Ga, ¢,q, P), Gy = (P), H : Gy — Z7 is a hash function.
procedure CombineThree (3-group DH protocol)

Consider three user sets Uy, Us, Uz with sy, s, 53 € Z; respectively as their private keys. Let Rep(U;)
be the representative of the user set U;.

Rep(U;) sends s; P to all members of both Us, Us;

Rep(U3) sends sy P to all members of both Uy, Us;

Rep(U3) sends s3 P to all members of both Uy, Uy;

each member of U; computes H(e(syP, s3P)%);

each member of Uy computes H (e(sy P, s3P)*?);

each member of U; computes H (e(s1 P, soP)*®);

Common agreed key of user sets Uy, Us, Us is H(e(P, P)*152);
procedure CombineTwo (2-group DH protocol)

Consider two user sets Uy, Uz with s1, so € Z respectively as their private keys and Rep(U;) is the
representative of the user set U;.

Rep(U1) generates 5 € Z; at random and sends 5P to the rest of the users;

Rep(U;) sends s; P to all members of Us;
Rep(U3) sends sy P to all members of Uy;

each member of U; computes H (e(syP,5P)%);
each member of U, computes H (e(sP,5P)%);

32



Common agreed key of user sets Uy, Uy is H(e(P, P)5152%);
procedure KeyAgreement (n-party key agreement protocol)

Next we describe the tree structure KeyAgreement as a top down recursive procedure which uses
the above two subroutines CombineTwo and CombineThree.

procedure KeyAgreement(m, Ui +1,...,i+ m])
if (m=1) then
KEY = s[i+1];
end if
if (m =2) then
call CombineTwo(U[i + 1,7+ 2|, s[i + 1,i + 2]);
Let KEY be the agreed key between user sets U, 1, U; 9;

end if
ng = 0;ny = [F]; ng = [F1]; ng =m —ny —na;
j=1to3do

call KeyAgreement(n;, Ui +n;_1 +1,...,i+nj_1 + n,|);
Uj = U[Z + nj—1 + 1, R ,i+ nj—1 +nj]; §j = KEY; n; =nj— —|—7’Lj;
end do;
call CombineThree(U[1,2,3],5[1, 2, 3]);
Let KEY be the agreed key among user sets Uy, Us, Us;
end KeyAgreement

The start of the recursive protocol KeyAgreement is made by the following two statements:
1. Uj=jfor 1 <j<n;
2. call KeyAgreement(n, U[1,...,n]);

Let p=[%] and r = n mod 3.
The set of users U = {1,2,...,n} is partitioned into three user sets U;,Us, Us with cardinality
p, p, p respectively if r = 0 or with cardinality p,p,p + 1 respectively if » = 1 or with cardinality
p,p+ 1,p+ 1 respectively if r = 2.

This top down procedure is used recursively for further partitioning. Essentially a ternary tree
structure is obtained. The lower level 0 consists of singleton users having a secret key. Key agree-
ment is done by invoking CombineTwo for user sets of two users and CombineThree for user sets of

three users in the key tree. With this tree structure, CombineTwo is never invoked above level 1.
Security : Secure against passive adversary under the assumption that DHBDH problem is hard.
Efficiency : # rounds = [logs n], # group elements (of G1) sent = n[logsn|, # EC scalar multi-

plication < g(n — 1), # pairing computation = n[logsn|, # group exponent in Gy = nflog; n|, #
hash function (H) evaluation = n[log,n]|.
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6 Threshold Schemes

6.1 Threshold Signature Scheme

The idea behind the (¢, n)-threshold cryptosystem approach is to distribute secret information (i.e.
the secret key) and computation (i.e. signature generation or decryption) among n parties in or-
der to remove single point failure. The goal is to allow a subset of more than ¢ players to jointly
reconstruct a secret and perform the computation while preserving security even in the presence of
an active adversary which can corrupt upto ¢ (a threshold) parties. The secret key is distributed
among n parties with the help of a trusted dealer or without it by running an interactive protocol
among all parties.

(Boldyreva, [4], 2003)
Assumption : GDH group.

KeyGen : G, G5 both multiplicative group, |G| = |Gs| = ¢, e : G1 X G; — G5 is a bilinear map,
H :{0,1}* — G, a hash function.
There are n servers u;,1 < i < n. The private key € Z; is shared among these users using
Shamir’s secret sharing scheme such that any subset S of ¢ 4+ 1 servers can reconstruct x using
Lagrange interpolation :

xTr = Z Li.'L'Z',

ics
x; is the private key share and y; = ¢g* is the public key share of user u;.

Signature Share Generation : To sign a message m € {0, 1}*, user u; outputs o; = H(m)".

Signature Share Verification : Given m,o;,y;, anyone can check whether user u; is honestly
behaving in giving it’s share o; of signature by checking

e(ga Ui) = e(yia H(m))
If o; passes through this test, call it an acceptable share.

Signature Reconstruction : Suppose a set S of (¢ 4+ 1) honest servers are found and accordingly
(t 4 1) acceptable shares o;,i € S. The resulting signature on m is o = [[;cq 07"
The correctness of the scheme is easy to verify since

e(g,0) = e(H(m),g").

Security : Secure in the random oracle model against an adversary which is allowed to corrupt any
t < n/2 players under the assumption that the underlying group is GDH.

6.2 Pairing Based (¢,n)-Threshold Decryption
(Libert, Quisquater [27], 2003)
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Assumption : BDH problem hard.

The following scheme is a threshold adaption of the Boneh-Franklin IBE scheme where a fixed PKG
plays the role of a trusted dealer.

Setup : params = (G1,Gy, q, e, Hy, Hy, P, PIS},, . .,PISZ,Z,P,,U,,>

1. Generates two groups G (additive), G5 (multiplicative) of same prime order ¢, e : G1 X Gy — G
is a bilinear map, G is generated by P, s€gZ; is the master key.
2. Choose a (t — 1)-degree polynomial

flx)=s+az+-+a_z""

for random ay, ..., a1 € Z;.
3. Fori=1,2,...,n, compute r f(i)P € Gy and P,,, = sP.

pub =
Before requesting his private share, each player can check that
> LiPyy, = Pous
i€s

for any subset S C {1,...,n} such that |S| = t where L; denotes the appropriate Lagrange co-
efficient.

KeyGen : Given a user’s identity ID, the PKG playes the role of the trusted dealer. Forv=1,...,n,
it delivers dip, = f(i)Qip € Gy to player i. After receiving d\p., player i checks

(P, Qo) = e(P,dip,).

If verification fails, he complains to the PKG that issues a new share.

Encrypt : Given message m and identity ID,
1. compute Qip = H,(ID)
2. choose a random r € Z
3. set the ciphertext to be
C= <7”P, m D Hg(e(Ppub, Q|D)r)>.

Decryption Share Generation : When receiving (U, V'), player i computes his decryption share
e(U,dip,) and gives it to the recombiner who may be a designated player.

Recombination : The recombiner selects a set S C {1,...,n} of t acceptable share e(U, dip,) and
computes
9= H €(U7 d|Di)Li'
i€s

Once he has ¢, he recovers the plaintext
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Correctness of the scheme is easy to verify since

g=e(rP,Y Lidp,) = e(rP,sQip) = e(Ppup, Qip)"-

1€S

To check publicly the share of a player is acceptable or not, do the following :
each player chooses a random R € G and computes w; = e(P, R), wy = e(U, R) and

h = H(e(Ua dlDi)? e(Ppuba QlD)a w1, w2)-

After that player ¢ computes V' = R + hdp, € G and joins the tuple (wy,wsq, h, V) to it’s share.
The other players can check that

e(P,V) = e(P, R)e(P\), Qip)"

e(U,V) = e(U, R)e(U, dip,)".
If this test fails, player ¢ is a dishonest player.

Security : This threshold IBE scheme is provably secure against chosen plaintext attacks in the
ID-based setting under the BDH assumption.

6.3 ID-based (t,n)-Threshold Decryption
(Baek, Zheng [1], 2003)

Assumption : BDH problem hard.

Consider a situation where Alice wishes to send a confidential message to a committee in an or-
ganization. Alice can first encrypt the message using the identity of the committee and then send
over the ciphertext. Let us assume that Bob who is the committee’s president has created the
identity and hence has obtained a matching private decryption key from the PKG. Preparing for
the time when Bob is away, he can share his private key out among a member of decryption server
in such a way that any committee member can successfully decrypt the ciphertext if and only if the
committee member obtains a certain number of decryption shares from the decryption servers. i.e.
Bob himself plays the role of a trusted dealer.

The following scheme provide the feature that a user who obtained a private key from the PKG can
share the key among decryption servers at will. After key generation, the PKG can be closed. Also
this protocol achieves chosen ciphertext security under BDH assumption.

KeyGen : params = (G1, G, q, ¢, P, Hi, Hy, H3, Hy, Ppuy), Ppup = sP, x€RZ; is the master key of
PKG.
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Extract : Given an identity ID, compute Q,p = H3(ID), Dip = 2Qp and returns Dyp.

Private Key Distribution : Given a private key Dip, n decryption shares and a threshold
parameter ¢ < n, pick randomly Ry, Ry, ..., R;i—1 € G} and compute

F(u) = Dip + uRy +u*Ry + ... + w1 Ry

for u € {0} U N. Compute S; = F(i),y; = e(S;, P),1 < i < n and sends (S;,y;) secretly to server
[';,1 <i<n. I, then keeps S; as secret while it publishes y;.

Encrypt : Given a plaintext m € {0, 1}!, identity ID,
1. Choose r € Z; at random and set U = rP.

2. Compute Qip = H3(ID),d = e(Qip, Ppuy) and k = d".
3. Compute V = Hy (k) ® m, W = rHy(U, V).

4. Set the ciphertext to be C' = (U, V,W).

Decryption Share Generation : Given a ciphertext C' = (U, V, W), decryption server I'; with
secret key S; computes Hy = Ho(U, V') and checks if e(P, W) = e(U, H,).
If the test holds then compute

ki = e(S;,U), Rk =e(Q;,U),7; = e(Qi, P), \i = Hy(kKi, Ri, Ui), Li = Qi + \iSi,

where @); is chosen randomly from G;. Output §; = (4, k;, R, s, L;)-

Decryption Share Verification : Given a ciphertext C' = (U,V,W) and a decryption share
51' = (Z, Ki, %i,gi, Lz); Compute )‘z = H4(/€i, %i, gz) Check if

G(LZ,U) ~ e(LuP) ~
= Ki, ; = Y-
Ky Y

If the above test holds, then share §; of server I'; is an acceptable share. Given acceptable shares
S;,j €S CA{L,...,n} where |S| > t, Dip can be recovered as follows :

D|D = F(O) = Z Coij,

jes
co; are appropriate Lagrange co-efficients.
Share Combining : Given a ciphertext C' = (U, V, W) and a set of decryption shares {6;}jesc(1,2,...n}

where |S| > t, compute Hy = Ho(U, V'), check if e(P,W) = e(U, Hy). If C passes this test (i.e. C
is a valid ciphertext), compute k = [[;cs k;” and m = H,(k) & V. Output m.

The correctness of the scheme is easy to verify since

H K);Oj = H €(Sj, U)Coj = G(Z CO]'Sj, U) = 6(2 COij,TP) = 6(.D|D7 P)r

JjeS JjeS JES JES

Security : This protocol achieves chosen ciphertext security in the random oracle model under BDH
assumption.
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7 Miscellaneous Applications

7.1 Key Sharing Scheme :
( Sakai, Ohgishi, Kasahara [34], 2000)

Assumption : BDH problem hard,

The idea of Key Sharing Scheme is quite simple :

Suppose a PKG has a master key s, and it issues private keys to users of the form sP,, where
P, = H,(ID,) and ID, is the identity of user y.

Then users y and z have a shared secret that only they (and the PKG) may compute, namely

e(sP,, P,) = e(P,, P,)* = e(P,, sP,).

They may use this shared secret to encrypt their communications. This key sharing scheme is non-
interactive and can be viewed as a type of “dual-identity-based encryption”, where the word “dual”
indicates that the identities of both the sender and the recipient (rather than just the recipient) are
required as input into the encryption and decryption algorithm.

# pairings = 2 for each key agreement.

7.2 ID-based Chameleon Hashes from Bilinear Pairings :
(Zhang, Safavi- Naini, Susilo [41], 2003)

A chameleon hash function is a trapdoor one-way hash function : without knowledge of the
associated trapdoor, the chameleon hash function is resistant to the computation of pre-images and
collisions. However, with the knowledge of the trapdoor, collisions are efficiently computable.

Scheme 1 :

Setup : PKG chooses a random number s € Z;‘ and sets P,,, = sP. Public parameters are
params = (Gla G27 €, q, P7 Ppub; HU; Hl)
The master key s is kept secret by PKG.

Extract : A user submits his identity ID to PKG which computes the public key as Qip = H(ID)
and returns S)p = sQp to the user as his private key.

Hash : Given a mesage m, choose a random element R from (G, define the hash as
Hash(ID, m, R) = e(R, P)e(H(m)Hy(ID), Pyus)-
Forge :
Forge(IDa 51|D7 m, R7 ml) =R = (Hl(m) - Hl(m,))SID + R.
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The forgery is right because
Hash(ID, m/, R') = e(R', P) e(H, (m')Hy(ID), P,u3)
= e((Hi(m) — Hi(m'))Sip + R, P) e(H: (m") Hy(ID), Pyus)
= ¢((Hy(m) — Hi(m'))Sip, P) e(R, P) e(H,(m')Hy(ID), P,us)
= e((Hi(m) — Hi(m'))Ho(ID), Bpuy) e(R, P) e(H:(m')Ho(ID), Pyup)
= ¢(R, P) e(Hy(m)Hy(ID), Pyy)
= Hash(ID, m, R)

Security : Simantically secure and resistant to collision forgery under active attacks provided BLS
signature scheme is secure.

Efficiency : Using precomputation for a = e(P,P) and b = e(Hy(ID), Pyu), to compute the
chameleon hash of a message m, the sender requires only 1 EC scalar multiplication of G| + 2
group exponentiation in Gy. i.e. R = rP,Hash(ID,m, R) = a"b:(™),

Scheme 2 :

Setup : Public parameters are params = (G, Gy, €, q, P, Ppuy, Ho, H1), Ppyp = sP where s€rZ; is
the master key to be kept secret.

Extract : ,
Sp=———+——P
T s+ Hy(ID)
Hash :
Hash(ID, m, R) = e(P, P)"™e(Hy(ID) + Py, R)™(™
Forge :

Forge(ID, Sip, m, R,m') = R' = H,(m')~*((H,(m) — H,(m"))Sip + H,(m)R).
The forgery is correct because
Hash(ID,m/, R') = e(P, P)"1(") ¢(Hy(ID) + Py, R')™)
= e(P, Hi(m')P) e(Ho(ID) + Bypup, Hi(m') Hy(m') " ((H (m) — Hi(m'))Sip + Hi(m)R))
= e(P, Hy(m')P) e(Ho(ID) + Pyuy, (Hy(m) — Hi(m'))Sip)e(Ho(ID) + Bpup, Hi(m)R)

= e(P, Hy(m')P) e(P, (Hy(m) — Hy(m'))P) e(H,(ID) + Pyup, Hi(m) R))
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e 6(P7 P)Hl(m) e(Hl(ID) + PPUI” R)Hl(m)
= Hash(ID, m, R).

Security : Semantically secure and resistant to collision forgery under active attacks, provided ZSS
signature scheme is secure.

Efficiency : Precomputing a = e(P, P), to compute the chameleon hash of a message m, the sender

only needs to compute 1 EC scalar multiplication of G; + 1 group exponentiation in Gs. i.e.
R = rSip, Hash(ID, m, R) = a(r+)Hi(m),

Applications : ID-based chameleon hash functions can be used to construct ID-based chameleon
signature schemes which achieves the goal of ID-based undeniable signature and is non-interactive.
An ID-based chameleon signature scheme is an ID-based signature computed over the ID-based
chameleon hash of m under the identity of the intended recipient. The recipient can verify that the
signature of a certain message m is valid, but can not prove to others that the signer actually signed
m and not another message. Indeed, the recipient can find collisions of the chameleon hash func-
tion, thus finding a message different from m which would pass the signature verification procedure.

7.3 Signcryption Schemes

The idea of this primitive is to perform encryption and signature in a single logical step in order to
obtain confidentiality, integrity, authentication and non-repudiation more efficiently than the sign-
then-encrypt approach. The drawback of this latter situation is to expand the final ciphertext size
and increase the sender and receiver’s computing time which may be impractical for low bandwidth
network. Malone-Lee [30] defines extended security notions for ID-based signcryption schemes.

7.3.1 Identity-Based Signcryption

( Malone-Lee [30], 2003)

Assumption : BDH problem hard.

Setup : t <" Z*, Qra = tP.

The public parameters are params = (G, G, e,q,n, P, Qta, Hy, Hy, H3). The master key ¢ gener-
ated by the trusted party TA is kept secret.

Extract(ID) . QID = Hl(lD), SID = tQID-

Signcrypt(Sip,, Dy, m) :

Qip, = H,(IDy), = F Z,}k; U=aP,r=HyUllm), W = 2Qta, V = 1Sp, + W, y = e(W, QID,,);
k= H;(y),c=r®m, o= (c,UV)

Unsignerypt (ID,, Sip,,0) :
Qi, = H\(ID,). Parse 0 as (¢,U, V), y = e(Sip,,U), k = H3(y), m =k ® ¢, r = Hy(U||m).
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Return m if and only if e(V, P) = e(Qip,, Q1a)" (U, Qta)-
Consistency constraint : if o = Signcrypt(Sip,, IDy, m), then m = Unsigncrypt(ID,, Sip,, o).

This scheme is the result of a combination of the simplified version of Boneh and Franklin’s IBE
cryptosystem with a varient of Hess’s identity based signature.

Security : This protocol achieves the security IND-ISC-CCA (indistinguishability of identity-based
signeryptions under chosen ciphertext attack) and also the security EF-ISC-ACMA (existentially
unforgeability of identity-based signcryptions under adaptive chosen message attack) in the random
oracle model assuming BDH problem is hard.

Efficiency : The size of the cryptogram is n + 2|G1| when a message of n-bit is sent. The compu-
tation requirement for Signcrypt is 1 pairing evaluation 4+ 3 EC scalar multiplication in G'; and for
Unsignerypt is 4 pairing enaluation + 1 group exponentiation in Gb.

7.3.2 A new Identity-Based Signcryption :
( Libert, Quisquater [28], 2003 )

Assumption : DBDH problem hard.

Setup : s <" Zy, Ppup < sP. The public parameters are params = (G'1, Ga, €, 1, ¢, P, Pyup, Hy, Hy, H3)
and the master key s is kept secret. Choose a secure symmetric cipher (F, D).

Extract(ID) : QID = Hl(lD), SID = SQID-

Signerypt(Sip,, 1Dy, m) :
QID[, - HI(IDb)7 xz FR Z;a R1 = G(P, Ppub)xa Ko = HZ(e(PpuanlDb)x)a c = Eﬁz(m)a r = H?)(C; Hl)a
S =axPyy —rSp,, 0 = (¢,1,9).

Unsignerypt(ID,, Sip,,0) :

Qip, = Hi(ID,), Parse o as (c, 1, S), k1 = e(P,S) e(Ppup, Qip,)", T = €(5, Qip,) (Qip,, Sip,)",
Ko = HZ(T), m = DHQ(C).

Accept if and only if r = Hj(c, k1).

Security : This protocol achieves IND-ISC-CCA security for confidentiality and also EF-ISC-ACMA
security for unforgeability in the random oracle model assuming DBDH problem is hard.

7.4 Identification Scheme based on GDH
( Kim, Kim, [25], 2002 )

Assumption : GDH group.
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Identification scheme is a very important and useful cryptographic tool. It is an interactive protocol
where a prover, P, tries to convince a verifier, ¥V, of his identity. Only P knows the secret value
corresponding to his public one, and the secret value allows to convince V of his identity.

KeyGen : The public parameter is params = (G, Go, €, q,n, P, aP,bP, cP,v) where v = e(P, P)®*°
and the secret parameter is sec = (a, b, ¢).

Protocol actions between P and V : This scheme consists of several rounds each of these is
performed as follows :

1. P chooses randomly 71,79,73 € Z; and computes x = e(P, P)""", Q1 = P, Q3 = r2P and
Q3 = r3P and sends (x, Q1, Q2, Q3) to V.

2. V pickd w € Z; at random and sends w to P.

3. P computes y = e(wP, P)®¢ ¢(P, P)"™" and sends to V; V accepts if y = v z and rejects
otherwise.

Security : Secure against active attacks assuming that the underlying group is a GDH group.

8 Conclusion

Several cryptographic primitives using pairings have been described in this survey. All the presented
encryption schemes, varities of signature schemes, key agreement schemes, key sharing schemes,
chameleon hash, threshold schemes, signcryption scheme and identification schemes have proper
security proofs in the existing security models [7] [9] [4] [8] [5] [27] [28] [25] [12] to the best of our
knowledge.
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