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Abstract. XActor is a distributed transaction manager that affords
transactional remote invocations over an open-ended set of transports.
Its support to transactional interactions is dynamic, in the sense that
the transaction manager fully exploits a collection of RMI mechanisms
and transport protocols that grows with the addition of plug-in modules
to running instances of XActor. A distributed transaction can employ
any combination of the transports that the currently installed plug-ins
provide. Two-phase commit (logging and failure recovery included) runs
over any such combination of transports. Aimed at server-side applica-
tion containers, XActor can be integrated with those systems in a way
that allows its plug-in modules to take advantage of the dynamic deploy-
ment facilities of the container environment.

1 Introduction

Ensuring the atomicity of distributed transactions is one of the most traditional
and crucial responsibilities of a middleware platform. TP monitors introduced
transactional RPC as a combination of two paradigms: atomic transactions and
remote procedure call (RPC). With the application of object-oriented princi-
ples to distributed computing, RPC took the form of the remote method invoca-

tion (RMI) mechanisms implemented by architectures such as CORBA, DCOM,
and Java RMI. Transactional RPC then became transactional RMI (TRMI), or
simply transactional remote invocation.

TRMI is typically implemented by two pieces of software working together
in close cooperation: a transaction manager (TM) and an object broker. The
former may be the TM module of a TP monitor or application server. The
latter may be a CORBA ORB, may employ Web services technology, or may
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implement proprietary protocols and APIs. While the object broker offers a basic
mechanism for remote invocations over some transport (IIOP, SOAP/HTTP, or
another protocol stack), the TM ensures the atomicity of distributed transactions
by running a two-phase commit protocol at appropriate times and by performing
failure recovery tasks after server crashes. The term object monitor is sometimes
used for the combination of a TM and an object broker [1].

1.1 RMI Support in Java EE

Even though it standardizes a transport (IIOP) for remote invocations, Java EE
allows application servers to employ other transports as well. Many servers offer
RMI over a proprietary transport as the preferred choice and support IIOP only
as a second option, for interoperability in cross-vendor scenarios. Such servers
typically offer three possibilities for remote interactions:

• A vendor-specific protocol stack is the default option, which may be more
efficient or more convenient in the case of interactions between servers pro-
vided by the same vendor.

• IIOP is the transport of choice for interactions that take place between
Java EE servers provided by different vendors (or between a Java EE server
and a legacy system) and do not require firewall traversals (e.g., remote calls
within a LAN).

• SOAP/HTTP is used for interactions through firewalls (e.g., over the Inter-
net).

The diversity of RMI protocols is unavoidable in many Java EE settings.
Some contemporary technologies indirectly support protocol heterogeneity by
making it easy for a distributed application to perform remote calls over multiple
transports:

• Java EE servers frequently use dynamic proxies as client-side stubs. Clients
receive serialized proxies from other processes and use these proxies to issue
remote invocations. Depending on the dynamic proxies it receives, a client
may employ multiple protocols to interact with various services, without ever
being aware of this fact [2].

• Dependency injection frameworks (e.g., Spring [18]) ease the task of creat-
ing applications that employ arbitrarily selected middleware components —
multiple object brokers, for example — and therefore facilitate the usage of
multiple RMI transports by those applications.

1.2 Distributed Transactions1 in Java EE

Two current standards address transactional remote invocations. The Object
Transaction Service (OTS) specification [7] adds transactional capabilities to

1 We use the term distributed transaction for a transaction that spans more than one
application server (or, equivalently, involves more than one TM). Such a transaction
could be called fully distributed (or inter-TM ) to distinguish it from transactions
that are also distributed, but involve a single application server (or TM) and one or
more resource managers.



the RMI mechanism provided by CORBA. A pair of WS specifications, WS-
Coordination (WS-C) [10] and WS-AtomicTransaction (WS-AT) [9], does the
same for the SOAP/HTTP stack. Neither of these standards, however, is a
mandatory part of the Java EE platform [14], which does not require product
providers to implement any particular protocol for transactional interoperability
across application servers2. For that reason, transactions spanning more than one
application server are problematic in Java EE environments. They are generally
unavailable in multi-vendor settings.

Some application servers support distributed transactions only over propri-
etary protocols, thereby restricting transactional interactions to single-vendor
environments. Other servers offer distributed transactions over IIOP, via OTS.
Support to distributed transactions over SOAP/HTTP, via WS-C/WS-AT,
starts to appear in a few Java EE products. Finally, there are still applica-
tion servers whose TMs can coordinate transactions that affect the distributed
resources (such as databases and persistent message queues) they manage, but
cannot perform remote interactions with other TMs. Those servers cannot en-
gage in transactions with other application servers.

1.3 Problem Statement

Transactions across application servers should be supported to the extent allowed
by the underlying RMI protocols. No further restrictions should be placed on
the servers that may participate in a distributed transaction. If two servers can
interact via RMI, then they should also be able to interact via TRMI.

Adding support to distributed transactions over yet another transport should
not affect the performance or the scalability of already installed TRMI mech-
anisms in any significant way. A move to another transaction manager is an
example of change that may have that effect. It should not be necessary to
replace a TM just for the sake of supporting distributed transactions over a
new transport. The addition of new TRMI mechanisms should not even require
stopping a TM, let alone replacing it.

1.4 Proposed Solution

Instead of attempting to fight the diversity of RMI protocols, our approach
embraces that diversity: we propose a transaction manager that accepts multiple
TRMI plug-ins. Each such plug-in is a fairly thin software layer. It encapsulates
an RMI mechanism (that is, an object broker) and provides the TM with the
means for coordinating remote interactions carried out through that mechanism.
In doing so, the plug-in extends the scope of the TM and effectively implements
a TRMI mechanism.

Since TRMI plug-ins are neither large nor complex software modules, the
task of developing such a plug-in is relatively simple. Support to new TRMI

2 Transactional interoperability, based on CORBA OTS, is an optional part of
Java EE [14].



mechanisms can be added to the TM at run time, by dynamically deploying plug-
in components. Together, the TM, its TRMI plug-ins, and the corresponding
object brokers act as a “multi-domain object monitor” — an object monitor
that supports transactions spanning multiple domains3.

This paper discusses the design and implementation of XActor, a distributed
transaction manager based upon the ideas we have just outlined. XActor is in-
tended to run within Java EE servers or integrated with dependency injection
frameworks such as Spring. We are currently running it within the JBoss Appli-
cation Server [2], with TRMI plug-ins that allow transactional interactions over
three transports: IIOP, SOAP/HTTP, and JBoss Remoting [4]. XActor fully
supports distributed transactions (logging and failure recovery included) over
any combination of those transports. Moreover, its set of allowed transports is
open-ended and may grow at run time. To the best of our knowledge, no other
transaction manager offers such flexibility.

1.5 Organization of This Paper

The next section summarizes background material on distributed transactions
and on the Java Transaction API; Section 3 introduces XActor, examines the
concepts that are central to the design of the transaction manager, and discusses
some implementation issues; Section 4 describes the TRMI plug-in architecture
of XActor; Section 5 reviews related work; and Section 6 presents our concluding
remarks.

2 Background

2.1 Distributed Two-Phase Commit

In the usual presentation of the two-phase commit (2PC) protocol (e.g., in [12]),
a transaction coordinator interacts directly with a set of subordinates. At the end
of a transaction, the coordinator drives the subordinates through the two phases
of the protocol: the voting phase, in which the coordinator collects votes from the
subordinates, and the completion phase, in which the coordinator informs the
subordinates of the transaction outcome. The coordinator is the TM connected
with the user application; the subordinates are the resource managers (RMs)
that performed transactional work on behalf of that application. In this model,
the transaction tree has height one: it is rooted at the coordinator and has the
subordinates as leaves.

The 2PC protocol is also applicable to transaction trees with height greater
than one [6, 3]. In distributed 2PC (or multi-level 2PC ), the transaction tree has
internal nodes, each of which takes a subordinate role with respect to its parent
node, and a coordinator role with respect to its child nodes. The topmost node
of a multi-level transaction tree is the root coordinator, the internal nodes are

3 A domain is a collection of distributed objects implemented with a particular tech-
nology; e.g., a CORBA domain, a Web services domain, or a vendor-specific domain.



subcoordinators, and the remaining nodes are leaf subordinates. In this model,
the root coordinator is the TM connected with the user application, the subco-
ordinators are TMs co-located with servers that directly or indirectly received
transactional remote calls from the application, and the leaf subordinates are
the RMs that performed transactional work on behalf of the application4.

The X/Open Distributed Transaction Processing (DTP) model [16] is a dis-
tributed 2PC model. A key part of X/Open DTP is the XA specification [15],
which defines the interface between a TM and an RM. XA specifies the prepare-
to-commit API exposed by RMs that can take part in distributed transactions.
In X/Open DTP and XA, a transaction branch represents the transactional work
associated with a given global transaction and driven by a given TM. In other
words, transaction branches correspond to non-leaf nodes of some transaction
tree.

2.2 JTA

The Java Transaction API (JTA) [13] specifies Java interfaces for the local in-
teractions between a TM and the following parties: the RMs, the application
container, and the applications deployed into (or hosted by) that container. Our
focus here will be in the interface that the TM uses to interact with the RMs
and in the TM interfaces used by the application container.

RMs expose transactional resources to the TM as local objects that im-
plement the interface javax.transaction.xa.XAResource5. This interface is a
Java mapping of the XA interface. It has a prepare method, which is called
by the TM in the voting phase of the 2PC protocol, along with commit and
rollback methods, which are called by the TM in the completion phase of the
2PC protocol.

The TM exposes its functionality to the application container through two in-
terfaces: javax.transaction.TransactionManager, implemented by an object
that represents the TM itself, and javax.transaction.Transaction, imple-
mented by objects that locally represent global transactions. The Transaction

interface has methods commit and rollback, which act upon the target trans-
action, as well as methods enlistResource and delistResource, which take
an XAResource parameter and enlist/delist that resource as a participant of the
target transaction.

3 XActor

XActor6 (“transactor”) is a TM written in Java and aimed at server-side appli-

cation containers such as Java EE servers and dependency injection frameworks.

4 Strictly speaking, the leaf subordinates represent connections with RMs that per-
formed transactional work on behalf of the application.

5 Since XAResource is a local interface, it is not actually implemented by RMs, but by
resource adapters co-located with the TM.

6 Project website: http://xactor.sourceforge.net/. All the source code for XActor
is available as free software at the project website.



A running XActor instance is typically associated with an application container
and exists in the same server process as that container. Each XActor instance can
manage two general kinds of transactional resources: XA resources and remote
resources.

• XA resources represent resource managers (database systems, message bro-
kers, etc.) accessible to the application container through resource adapters
(JDBC drivers, JMS providers, etc.) with support to XA.

• Remote resources represent systems directly or indirectly accessible to the
application container through an RMI mechanism. Web services, CORBA
servers, and other application container instances are examples of systems
that may receive direct or indirect calls from the application container.

An instance of XActor can play the roles of root coordinator and subcoordinator.
For a locally started transaction, it acts as the root coordinator. For transac-
tions started in other processes, it acts as a subcoordinator. In either case, the
XActor instance is responsible for driving the 2PC protocol7 within a transac-
tion branch that may involve both XA resources and remote resources accessible
through various RMI mechanisms and transport protocols. It interacts with XA
resources through the standard interface javax.transaction.XAResource, and
with remote resources via TRMI plug-ins.

XActor fully supports failure recovery: it performs write-ahead logging of the
relevant 2PC events and implements a recovery procedure that runs after server
crashes.

3.1 Transaction Branches

Within XActor, transaction branches correspond to TransactionBranch ob-
jects. The TM creates a TransactionBranch whenever a new transaction is
locally started, either by the application container or by an application. It also
creates TransactionBranch objects for foreign transactions, i.e., for transac-
tions started at other TMs, which may or may not be XActor instances. The
creation of the local TransactionBranch of a foreign transaction happens when
the transaction reaches the local server for the first time, that is, at the first
arrival of a remote request issued within the scope of that transaction. At any
given time, the collection of TransactionBranch objects within a running XAc-
tor instance represents the set of active global transactions known to that TM
instance.

Coordinator Propagation. The set of all branches of a given transaction is
distributed across the servers reached by that transaction. Each of those branches
is a potential node of the transaction tree, which initially has only one node: the
root TransactionBranch, located in the server that started the transaction.

7 More precisely, XActor implements distributed 2PC with presumed abort and with
commit optimizations for the read-only case and for the one-phase case [6, 3].



That server will be called root server. Whenever a server performs a transac-
tional remote invocation, a coordinator reference is propagated along with the
invocation; that reference identifies a TransactionBranch. In transactional in-
vocations issued by the root server, the propagated coordinator reference always
points to the root TransactionBranch. In transactional invocations issued by
other servers, that reference may (at the discretion of the TM in the caller server)
either be a copy of the coordinator reference received by the caller server or point
to the TransactionBranch in the caller server. In the latter case, we say that
the TM in the caller server performed coordinator interposition.

The Transaction Tree. The mere possession of a coordinator reference by a
TransactionBranch does not make the branch a node of the transaction tree.
In other words, the propagated coordinator reference does not correspond to
an edge of the tree. Edges are created in a bottom-up fashion, upon requests
from application containers or from child branches. More precisely, the follow-
ing distributed algorithm establishes parent–child (or coordinator–subordinate)
links:

1. Before using an XAResource to perform work for a transaction branch, the
application container enlists the XAResource with the corresponding Trans-
actionBranch object. The enlistment establishes a local link (an intra-proc-
ess link) between the XAResource, which assumes the child role, and the
TransactionBranch, which assumes the parent role.

2. When a non-root TransactionBranch gains its first child node, the Trans-
actionBranch enlists itself with its propagated coordinator. The enlistment
establishes an inter-process link between the TransactionBranch, which as-
sumes the child role, and its propagated coordinator, which at this point

assumes the parent role.

The recursive execution of step 2 above produces a rooted tree, whose leaf nodes
are XAResources, and whose root node is the root TransactionBranch.

3.2 Transaction Identifiers

XActor associates three identifiers with each TransactionBranch: a local id, a
global id and an Xid.

• Local ids are 64-bit integers that uniquely identify transaction branches
within a TM instance. XActor locally generates these identifiers when it
instantiates TransactionBranch objects. It does so even in the case of
branches of foreign transactions.

• Global ids are structures that uniquely identify a (global) transaction. When
a transaction starts, the TM of the root server generates a global id and as-
signs it to the root transaction branch. The global id is then propagated
along with every remote invocation issued within the scope of the trans-
action. If the arrival of such an invocation triggers the creation of a new



TransactionBranch object within some server process, then the incoming
global id is assigned to the newly created branch. All branches of a given
transaction are therefore associated with the same global id. In interoperabil-
ity scenarios (e.g, IIOP or SOAP/HTTP), however, some of these branches
may not be actually represented by XActor-specific TransactionBranch ob-
jects, as the TMs involved in the transaction are not necessarily instances of
XActor.

• Xids are standardized structures that uniquely identify a transaction branch.
The JTA specification defines the javax.transaction.xa.Xid interface,
which is a Java mapping of the XID structure used by X/Open DTP. An
Xid comprises the global id of a transaction, plus an additional field (the
so-called branch qualifier) that identifies a particular branch of that trans-
action.

Local Id Usage. Local ids are a concise way of specifying a transaction branch
when an instance of XActor has already been specified. They are used within
remote references to transaction branches; e.g., in the “object id” part of an
IOR [8] whose host and port fields already identify an instance of XActor, or in
the “reference properties” element of an endpoint reference built in conformity
with the WS-Addressing specification [17]. When such a reference is used to
perform a remote invocation, its local id is sent out as a field of the invocation
request. Local ids also appear within global ids and within Xids generated by
XActor.

3.3 The Transaction Branch Interface

In XActor, transaction branches implement an interface that extends the stan-
dard JTA interface javax.transaction.Transaction. JTA targets the more
restricted scenario in which a single TM coordinates locally started transactions
that may span multiple XA resources, but do not involve other TMs or appli-
cation containers. In other words, JTA supports only transactions with a single
branch. Accordingly, its Transaction interface has methods that allow the lo-
cal TM to commit or rollback the root transaction branch (the only branch of
a plain JTA transaction) and methods that allow the application container to
enlist/delist XAResource objects with the transaction. In XActor, however, a
transaction branch needs additional methods, because (i) it does not necessarily
play the role of root coordinator, and (ii) it may have subordinates that are not
XA resources.

Figure 1 shows the TransactionBranch interface8. The three groups of meth-
ods listed under the comments “Coordinator facet”, “Resource facet”, and “Re-
covery coordinator facet” correspond to different roles played by a Transaction-
Branch as a (potential) node of some transaction tree.

8 For clarity, we have omitted any throws clauses from every method declaration
presented in this paper.



interface TransactionBranch

extends javax.transaction.Transaction {

// Coordinator facet (for Resource enlistment):

void enlistRemoteResource(Resource r,

short trmiMechId);

...

// Resource facet:

int prepare()

void rollbackBranch()

void commitBranch(boolean onePhase)

void forget();

// Recovery coordinator facet:

int replayCompletion(Resource r);

// Other methods:

Object getPropagationContext(short trmiMechId);

...

}

Fig. 1. The TransactionBranch interface.

The “Coordinator facet” is used by the distributed algorithm that builds
the transaction tree. It receives calls from remote TransactionBranch instances
that do not have a parent branch yet. The single method shown in that facet,
enlistRemoteResource, establishes a link between the target branch, which
takes the parent (coordinator) role, and the caller branch, which takes the child
(subordinate) role. When a transaction branch calls enlistRemoteResource, it
passes a reference to itself as the first parameter of the call. Note, however, that
the type of that parameter is not TransactionBranch, but Resource. This pa-
rameter type means that the passed reference does not allow remote invocations
to each and every method of the referenced branch, but only to the methods in
the “Resource facet” of that branch. In other words, the newly added child node
exposes a “Resource view” of itself to its parent node. The second parameter
to enlistRemoteResource identifies the transactional RMI mechanism used in
the interactions between the server that contains the parent branch and the one
that contains the child branch.

The “Resource facet” in Figure 1 is used at commit time. It allows a sub-
ordinate branch to receive 2PC requests from its remote coordinator, which
may be either the root coordinator or a subcoordinator. The subordinate re-
ceives a prepare call in the voting phase, and either a rollbackBranch or a
commitBranch call in the completion phase of the 2PC protocol. Alternatively,
if the coordinator uses the one-phase commit optimization [6, 3], the subordinate
receives a single commitBranch call with the onePhase parameter set to true. Fi-



nally, the forget method tells the subordinate branch to discard all information
on previously raised heuristic exceptions.

The “Recovery coordinator facet” in Figure 1 is used only during failure
recovery. It allows a (sub)coordinator branch to receive requests from subor-
dinate branches that were not informed of the transaction outcome. A call to
replayCompletion asks the (sub)coordinator to reissue the completion phase
invocation (either to rollbackBranch or to commitBranch) on the subordinate
branch specified by the Resource parameter.

In addition to the methods in the three facets just described, the Transac-
tionBranch interface offers a number of other methods. Figure 1 shows one such
method, getPropagationContext, which returns a transactional context to be
propagated along with the remote invocations performed within the scope of the
transaction branch.

3.4 Transactional Contexts

We have already seen two items that must be propagated with transactional
invocations: the global id and the coordinator reference. In XActor, the latter
is actually a reference to the “Coordinator facet” of some TransactionBranch.
The transactional context is a data structure that holds those two items. It has
a third mandatory field, which carries the value of the transaction timeout.

The transactional context is specific for a TRMI mechanism, because it in-
cludes a coordinator reference that affords remote invocations over a particular
transport. In Figure 1, the first parameter to getPropagationContext identifies
the TRMI mechanism for which that method will return a transactional context.
Our implementation of that method does not actually create transactional con-
texts; it delegates this task to TRMI plug-ins.
Inbound and Outbound Coordinator References. Every foreign transac-
tion branch has an inbound coordinator reference and an outbound coordina-
tor reference. The inbound reference was in the coordinator field of the foreign
context whose arrival triggered the instantiation of the TransactionBranch in-
stance. The outbound reference is in the coordinator field of the context returned
by a call to getPropagationContext on the given transaction branch. The out-
bound reference may either identify the “Coordinator facet” of that branch (co-
ordinator interposition) or it may be a copy of the inbound coordinator reference
(no interposition).

Interposition. The default behavior of the method getPropagationContext is
to return a context with an interposed coordinator if and only if the TRMI mech-
anism identified by the trmiMech parameter is different from the one supported
by the inbound coordinator. In other words, that method performs coordina-
tor interposition when the server that contains the inbound coordinator and the
one(s) that will receive the outbound context may not be able to interact directly
with each other, as they are not known to support a common TRMI mechanism.
This default behavior can be changed through a TransactionBranch attribute



(not shown in Figure 1) that tells getPropagationContext to always perform
interposition.

4 TRMI Plug-ins

A TRMI plug-in encapsulates an RMI mechanism and completely isolates the
TM from that mechanism. The plug-in cooperates closely with an instance of
XActor and has the following responsibilities: (i) it exposes the non-leaf nodes of
transaction trees as distributed objects accessible through the RMI mechanism;
(ii) it provides XActor with stub wrappers that act as local proxies for the
remote parties involved in the transaction; (iii) it creates transactional contexts
upon requests from XActor; (iv) it includes transactional contexts into outgoing
invocations; (v) it extracts transactional contexts from incoming invocations
and passes the information in those contexts on to XActor; (vi) it supports
externalization of remote references (conversions between remote references and
strings) through an interface that is independent of the RMI mechanism.

4.1 Remote Interactions between Transaction Branches

A TRMI plug-in exposes the facets of a transaction branch as remote objects
accessible through the underlying RMI mechanism. The functionality in each
facet can be conveyed by a Java interface. Figure 2 shows the interfaces associ-
ated with “Coordinator facets”, “Resource facets”, and “Recovery coordinator

interface Coordinator extends java.rmi.Remote {

RecoveryCoordinator registerResource(Resource r);

...

}

interface Resource extends java.rmi.Remote {

Vote prepare();

void rollback();

void commit();

void commitOnePhase();

forget();

}

interface RecoveryCoordinator

extends java.rmi.Remote {

Status replayCompletion(Resource r);

}

Fig. 2. The Coordinator, Resource, and RecoveryCoordinator interfaces.



facets”. Those Java interfaces were modeled after their IDL counterparts in
OTS [7].

Note, however, that the Java interfaces Coordinator, Resource, and Recov-
eryCoordinator are not necessarily the ones through which a TRMI plug-in al-
lows remote access to transaction branch facets. The interfaces actually exposed
depend on the underlying RMI mechanism, and may not be Java interfaces at
all. For example, the plug-in that supports transactional invocations over IIOP
exposes IDL interfaces specified by OTS. The one that supports transactional
invocations over SOAP/HTTP exposes WSDL interfaces specified by WS-C and
WS-AT. Nevertheless, the remote interfaces actually exposed by a TRMI plug-in
should be very similar to the ones in Figure 2.

Across a collection of transaction branches, a facet appears as a set of re-
motely accessible objects, e.g., the set of all Coordinator objects within a given
instance of XActor. Each such object has its own identity, which is expressed
in a way that depends on the underlying RMI mechanism: through a CORBA
object reference, a Web service endpoint, or some similar artifact. Even so, a
TRMI plug-in does not need to instantiate a Java object per facet. The typical
TRMI plug-in has a single “servant object” that handles incoming invocations
to all instances of a facet interface. For each such invocation, the servant object
performs the following steps: (i) it extracts from the invocation the local id of
a transaction branch, (ii) it queries the local TM (which has a hash map from
local ids to transaction branches) to obtain the TransactionBranch with that
local id, and (iii) it forwards the invocation to the TransactionBranch object.
In step (iii), the servant object uses the natural mapping between the remotely
accessible methods in facet interfaces (Figure 2) and the facet methods of the
TransactionBranch interface (Figure 1).

Stub Wrappers. Exposing transaction branch facets to other processes
through some RMI mechanism is an important and necessary measure. But that
measure, alone, does not solve the problem of enabling remote interactions be-
tween transaction branches without making XActor dependent upon particular
RMI mechanisms. What is still needed is a way of accessing remote transaction
branches that is uniform across all RMI mechanisms. TRMI plug-ins fulfill this
requirement by implementing stub wrappers.

A stub wrapper is a proxy object that (i) implements one of the Java inter-
faces in Figure 2 (Coordinator, Resource, or RecoveryCoordinator), (ii) has a
remote reference (i.e., a stub), specific to a given RMI mechanism, that identifies
a transaction branch facet whose type (coordinator, resource or recovery coordi-
nator) matches the one of the stub wrapper, and (iii) forwards all invocations to
the remote facet, through the RMI mechanism. For example, a stub wrapper for
an OTS resource implements the Resource interface in Figure 2, has a CORBA
reference (an IIOP stub) for a remote OTS resource, and converts local calls to
Resource methods into CORBA requests on the remote OTS resource.

Within XActor, all references to facets of remote transaction branches take
the form of stub wrappers. Each such reference has a “native form” (a Java



reference to a stub that is specific to the underlying RMI mechanism) and a
“wrapped form” (a Java reference to a stub wrapper), which is the only one
seen by XActor. A TRMI plug-in has the responsibilities of instantiating stub
wrappers and transparently converting remote references between the wrapped
and the native forms.

Figure 3 shows a TransactionBranch as an internal node of a distributed
transaction tree. That transaction branch lies within an instance of XActor with
plug-ins for IIOP, SOAP/HTTP, and JBoss Remoting. It has five child nodes:
two XA resources and three remote resources. The transaction branch interacts
with its parent coordinator via SOAP/ HTTP and uses a distinct transport to
communicate with each of its three remote subordinates. Figure 3 also shows
the external facets of the transaction branch. Note that the branch exposes
its Resource facet via SOAP/HTTP, which is the transport it uses to interact
with its parent coordinator. Its Coordinator and RecoveryCoordinator facets,
however, receive calls from three remote subordinates, each of which employs
a different RMI mechanism. Those facets must therefore be exposed through
all three RMI mechanisms. In Figure 3, each of the “facet symbols” for the
Coordinator and RecoveryCoordinator facets actually represents a triple of
remotely accessible facets: one accessible via IIOP, another via SOAP/HTTP,
and the last via JBoss Remoting.

Fig. 3. A TransactionBranch instance within XActor.



4.2 Dynamic Deployment of TRMI Plug-ins

XActor maintains a registry of TRMI plug-ins. New plug-ins can be added to
a running TM through the interface TRMIMechanismRegistry, which the trans-
action manager implements. If XActor is used in an application server that
supports hot deployment of middleware components, as is the case with the
JBoss and Apache Geronimo servers, then TRMI plug-ins can be packaged as
middleware components and deployed into a running server simply by dropping
deployment units into a well-known directory. This is what we are currently
doing on the JBoss application server.

In our JBoss implementation, TRMI plug-ins are deployable MBeans [2].
Such a component has a create method, which is called when the MBean is
deployed. Within that method, the TRMI plug-in performs all of its initialization
steps and then uses the TRMIMechanismRegistry to register itself with XActor.

Figure 4 shows the interface TRMIMechanismRegistry. Each TRMI plug-
in is assigned an identifier, a small integer passed as the first parameter to
the method addTRMIMechanism. Moreover, each TRMI plug-in exposes itself to
XActor as a triple of objects: a ContextFactory, a ResourceFactory, and a
StringRemoteRefConverter.

interface TRMIMechanismRegistry {

void addTRMIMechanism(short trmiMechId,

ContextFactory contextFactory,

ResourceFactory resourceFactory,

StringRemoteRefConverter strRefConverter);

void removeTRMIMechanism(short trmiMechId);

ContextFactory getContextFactory(short trmiMechId);

ResourceFactory getResourceFactory(short trmiMechId);

StringRemoteRefConverter getStringRemoteRefConverter(

short trmiMechId);

}

Fig. 4. The TRMIMechanismRegistry interface.

4.3 Resource Factories

Every TRMI plug-in offers XActor an implementation of the ResourceFactory

interface (Figure 5). TransactionBranches use this interface to obtain refer-
ences to “Resource facets” of themselves. Before enlisting itself as a child node
with its inbound coordinator, a TransactionBranch uses the ResourceFactory

associated with the TRMI mechanism through which it received the coordina-
tor reference. The TransactionBranch passes its own local id to the method
createResource and receives back a wrapped reference for the resource that it
should enlist with the inbound coordinator.



interface ResourceFactory {

Resource createResource(long localId);

}

Fig. 5. The ResourceFactory interface.

4.4 Creation and Propagation of

Transactional Contexts

Since transactional contexts are specific to TRMI mechanisms, each plug-in must
provide XActor with an implementation of the ContextFactory interface, which
appears in Figure 6. The two methods named createContext serve different
purposes: while the first is typically used to create contexts with foreign coor-
dinators, the second creates a context with a local coordinator, which may be
either the root coordinator of a transaction or an interposed coordinator.

interface ContextFactory {

Object createContext(GlobalId globalId,

Coordinator c);

Object createContext(GlobalId globalId,

long localId);

void setTimeout(Object context, int timeout);

}

Fig. 6. The ContextFactory interface.

The creation of transactional contexts happens upon requests from Transac-
tionBranch instances, which keep the transactional contexts they created for
each TRMI mechanism. Moreover, the TM maintains the association between
application threads and TransactionBranch instances. As a consequence, appli-
cation threads are associated with a (possibly null) transactional context for each
TRMI mechanism. Plug-ins use this fact to handle the outbound propagation
of transactional contexts. Whenever an application thread issues a remote call
through some TRMI mechanism, the corresponding plug-in obtains the trans-
actional context for that mechanism and inserts the context into the outgoing
request. At the callee side, a matching plug-in extracts the inbound context from
incoming requests.

RMI mechanisms typically offer an interceptor facility, such as CORBA
portable interceptors or SOAP interceptors. A TRMI plug-in can rely on such
a facility in order to insert transactional contexts into outgoing requests and
to extract contexts from incoming requests. If the underlying RMI mechanism
lacks that facility, the TRMI plug-in can still perform request interception by
using aspect-oriented tools.



4.5 Externalization of References

To support failure recovery, each TM involved in a distributed transaction main-
tains a transactional log in stable storage. At key points of the execution of the
2PC protocol, the coordinator and the subcoordinators write specific records to
their transactional logs [6, 3]. Such log records contain information that will be
used by the failure recovery procedure, in the event of a server crash. A TM that
has a subordinate role in some transaction tree writes a log record containing a
reference to its parent coordinator. A TM that has a coordinative role in some
transaction tree (either as the root coordinator or as a subcoordinator) writes a
log record containing references to its remote subordinates, i.e., to all the remote
resources enlisted in its transaction branch.

Since the externalization of Resource and RecoveryCoordinator references
depends on the underlying RMI mechanism, all TRMI plug-ins must provide
XActor with an implementation of the interface StringRemoteRefConverter,
which supports conversions between remote references and strings. At appro-
priate times, XActor calls that interface to obtain strings that will be stored
in specific records written out to the transaction log. The failure recovery pro-
cedure, when scanning the transaction log, uses that same interface to recover
coordinator and/or resource references.

5 Related Work

JBoss [2] is an extensible application server that supports hot deployment of
middleware components and, as a special case, allows dynamic deployment of
components that implement new RMI mechanisms. Nevertheless, JBoss does
not support dynamic deployment of components that implement transactional

RMI mechanisms, as its TM has hard dependencies on the transports over which
transactional interactions can be performed. This restriction is removed when
XActor runs in JBoss. XActor fully exploits the dynamic deployment capabilities
of that server and takes them to their logical consequence, with respect to TRMI
mechanisms.

JBoss Transactions (JBossTS) [5], formerly Arjuna Transaction Service [11],
is an open-source transaction manager that bears similarities to XActor. The for-
mer has modules that implement the OTS and WS-C/WS-AT standards atop a
transaction manager core; the latter implements the same standards as dynami-
cally deployable plug-ins. Some of the architectural differences between JBossTS
and XActor reflect the time frames in which each project was started. XActor was
specifically designed for Java EE environments, so it is centered at JTA and heav-
ily influenced by OTS. Its key abstraction, the TransactionBranch interface, is
an extension of javax.transaction.Transaction. This fact has many conse-
quences. For example, it facilitates the transparent flow of incoming and outgoing
transactional contexts. Such flow relies on the association between threads and
TransactionBranches, which is itself a byproduct of the thread–transaction as-
sociation specified by JTA. The Arjuna project, on the other hand, predated
OTS and Java EE. Its key abstractions (BasicAction and AbstractRecord)



were mapped to JTA interfaces, to OTS objects, and to WS-C/WS-AT end-
points. The JBossTS modules that support OTS and WS-C/WS-AT are much
larger than the corresponding XActor plug-ins. Even though it is integrated with
the JBoss application server, JBossTS does not yet afford dynamic deployment
of new TRMI mechanisms.

6 Concluding Remarks

XActor demonstrates that transaction managers can support an open-ended set
of transactional RMI mechanisms and transport protocols. Moreover, its inte-
gration with JBoss shows that it is possible to dynamically deploy new TRMI
mechanisms into a running application server. The XActor innovations include
the conceptual view of the remote interfaces of a transaction service as facets
of transaction branch objects, the ability of performing distributed transactions
over any combination of the currently deployed transports, and the deep inte-
gration, all the way down to transaction log, with TRMI plug-ins added to the
transaction manager at runtime.
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