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Abstract. JBoss is an extensible, reflective, and dynamically reconfig-
urable Java application server. It includes a set of components that im-
plement the J2EE specification, but its scope goes well beyond J2EE.
JBoss is open-ended middleware, in the sense that users can extend mid-
dleware services by dynamically deploying new components into a run-
ning server. We believe that no other application server currently offers
such a degree of extensibility. This paper focuses on two major architec-
tural parts of JBoss: its middleware component model, based on the JMX
model, and its meta-level architecture for generalized EJBs. The former
requires a novel class loading model, which JBoss implements. The latter
includes a powerful and flexible remote method invocation model, based
on dynamic proxies, and relies on systematic usage of interceptors as
aspect-oriented programming artifacts.

1 Introduction

Application servers are middleware platforms for development and deployment
of component-based software. The application server offers an environment in
which users can deploy application components — software components, devel-
oped either by the users themselves or by third-party providers, that correspond
to server-side parts of distributed applications. Most application servers imple-
ment one of the industry standards currently adopted for server-side application
components: Java 2 Enterprise Edition (J2EE), .NET, and the CORBA Com-
ponent Model. Each of these standards defines a component model suitable for
a class of application components.?

There is no reason, however, to employ component-based techniques on user
applications only. Researchers have presented compelling arguments for also ex-
ploiting these techniques within the middleware platform [4, 17]. We claim that
application servers themselves can (and should) be built in a component-based

3 J2EE actually encompasses two application component models: Servlets/JSP, for
web components used by HT'TP clients, and Enterprise JavaBeans (EJB), for busi-
ness components used either by RMI clients or by local clients.



way, out of dynamically deployable components that provide middleware ser-
vices to application components. On such a server, extensible and dynamically
reconfigurable, two general kinds of components can be deployed: middleware
components and application components. In this approach, most of the “appli-
cation server functionality” is actually realized by a set of middleware compo-
nents deployed on a minimal server. Due to the requirement differences between
middleware components and application components, multiple component mod-
els are likely to coexist in a component-based application server: a model for
middleware components, plus one or more models for application components.

This paper discusses the design and implementation of JBoss, the extensible,
reflective, and dynamically reconfigurable Java application server that pioneered
the approach we have just outlined. The JBoss project is at the confluence of
research areas such as component-based software development [28], reflective
middleware [17], and aspect-oriented programming [8], all of them currently
targeted by intense activity. It produced an open-source server whose download
statistics [23] since January 2002 have been above 100,000 per month, and have
exceeded 200,000 downloads in peak months. The JBoss server includes a set
of middleware components that implement the J2EE specification [26], but its
scope goes well beyond J2EE. JBoss is open-ended middleware, in the sense that
users can extend middleware services by dynamically deploying new components
into a running server. To the best of our knowledge, no other application server
offers this degree of extensibility.

1.1 The Foundation

An emerging standard, the Java Management Extensions (JMX) [27] specifica-
tion, provides the foundation for JBoss middleware components. JMX defines
an architecture for dynamic management of resources (applications, systems, or
network devices) distributed across a network.

In JMX, as in other management architectures, resources must be instru-
mented to become manageable. One instruments a resource by associating one
or more management components with the resource. Dynamic management [20]
means that one must be able to dynamically load, unload, and evolve these com-
ponents, without stopping the applications, systems, or devices they instrument.
These key requirements for a dynamic management architecture have similar
counterparts in the more general field of adaptive middleware.

JMX was chosen as the basis of the JBoss component model for the follow-
ing reasons: (%) it provides a lightweight environment in which components — as
well as their class definitions — can be dynamically loaded and updated, (i) it
supports component introspection and component adaptation, (44) it decouples
components from their clients, allowing components to adapt, and their inter-
faces to evolve, while their clients are active, (iv) it can be used as a realization of
the microkernel architectural pattern [2], to provide a minimal kernel that serves
as a software bus for extensions, possibly developed by independent parties, and
(v) its usage makes JBoss manageable through JMX-compliant applications.



1.2 The Building

On top of JMX, JBoss introduces its own model for middleware components,
centered on the concept of service component. The JBoss service component
model extends and refines the JMX model to address some issues beyond the
scope of JMX: service lifecycle, dependencies between services, deployment and
redeployment of services, dynamic configuration and reconfiguration of services,
and component packaging.

Nearly all the “application server functionality” of JBoss is modularly pro-
vided by service components plugged into a JMX-based “server spine”. Service
components implement every key feature of J2EE: naming service, transaction
management, security service, servlet/JSP support, EJB support, asynchronous
messaging, database connection pooling, and IIOP support. They also imple-
ment important features not specified by J2EE, like clustering and fail-over.

Rather than attempting to present each of these subsystems, this paper fo-
cuses on the EJB subsystem, which we consider a particularly interesting use
case for service components. JBoss supports a generalization of the EJB model
by using service components as meta components. Its meta-level architecture
for generalized EJBs is built upon four kinds of elements: invokers, containers,
dynamic proxies, and interceptors. Invokers are service components that pro-
vide a general remote method invocation service over a variety of protocols.
Containers are service components that enhance application component classes
with predefined and packaged sets of aspect requirements. They provide server-
side join points for aspects [16, 8] that crosscut the central concerns of multiple
EJB components. Dynamic proxies, used as client stubs, provide similar join
points at the client side. Interceptors implement crosscutting aspects at both
sides. Containers, proxies, and interceptors are neither created nor manipulated
by initiatives of the server spine, but by actions of an EJB deployer, which is a
service component itself. In other words, EJB support is pluggable.

1.3 Organization of this Paper

The next section reviews the elements of the JMX architecture that are essential
to the understanding of the JBoss service component model. Section 3 presents
service components; Sect. 4 describes the meta-level architecture through which
JBoss supports generalized EJB components; Sect. 5 summarizes the history of
the JBoss project; Sect. 6 discusses ongoing and future work; Sect. 7 examines
related work; and Sect. 8 presents our concluding remarks.

2 JMX Foundation

The JMX architecture is shown in Fig. 1. It consists of three levels: the instru-
mentation level, the agent level, and the distributed services level.

e The instrumentation level defines how to instrument resources so that they
can be monitored and manipulated by (possibly remote) management appli-
cations. The instrumentation of a given resource is provided by one or more
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Fig. 1. The JMX architecture

managed beans (MBeans), Java objects that conform to certain conventions
and expose a management interface to their clients.

e The agent level defines an agent that manages the set of instrumented re-
sources within a Java virtual machine, in behalf of (possibly remote) man-
agement applications. The JMX agent consists of an in-process server, the
MBean server, plus a standardized set of agent services: dynamic class load-
ing, monitoring, timer service, and relation service. Agent services are imple-
mented as MBeans; this makes them manageable through the MBean server,
like user resources.

o The distributed services level specifies how management applications interact
with remote JMX agents and how agent-to-agent communication takes place.
It consists of connectors and protocol adaptors, implemented as MBeans.
This level is not fully defined at the present phase of the JMX specification
process. For information on connectors and protocol adaptors, see [19].

Together, the instrumentation and agent levels define an in-process com-

ponent model. The MBean server provides a registry for JMX components

(MBeans) and mediates any accesses to their management interfaces. At reg-

istration time, each MBean is assigned an object name that must be unique in

the context of the MBean server. In-process clients use object names (rather
than Java references) to refer to MBeans. To invoke a management operation*
on an MBean, a local client (typically another MBean) uses the object name of

the target MBean. It passes the object name as the first argument in a call to

the MBean server’s invoke method, whose declaration® is

4 Management operations are operations that belong to the MBean’s management
interface.

5 For clarity, we have omitted any throws clauses from the method declarations pre-
sented in this paper.



Object invoke(ObjectName targetName,
String operationName,
Object[] params,
String[] signature);

The MBean server looks up the object name in its registry and forwards the
invocation to the target MBean. Figure 2 illustrates this process for a target
MBean with a method quite similar to the MBean server’s invoke method. As
we will see shortly, this is the case of a dynamic MBean.
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Fig. 2. Method invocation on a dynamic MBean

The MBean server introduces a level of indirection that decouples MBeans
from their clients. In-process clients of an MBean do not need direct Java ref-
erences to it. Moreover, clients need no information on the MBean’s Java class,
nor do they need information (not even at runtime) on the Java interfaces the
MBean implements. All they need is the MBean’s object name, plus knowledge
(possibly obtained at runtime) of its management interface. (We have not yet
discussed what would be the management interface of an MBean, but the preced-
ing assertions imply that it does not necessarily correspond to a Java interface.)
This very simple arrangement favors adaptation: the absence of references to an
MBean scattered across its clients facilitates the replacement of that MBean;
the absence of client knowledge about its class and its Java interfaces enables
dynamic changes both to the implementation and to the management interface
of the MBean.

The management interface of an MBean consists of four parts: (i) manage-
ment attributes, whose values are accessible to clients through the MBean server;
(#) management operations, which clients can invoke through the MBean server;
(#4) notifications emitted by the MBean and delivered to registered listeners;
(i) constructors, defined by the MBean’s Java class.



2.1 Dynamic MBeans and Standard MBeans

JMX supports two kinds of MBeans,® which differ on how they expose to the
MBean server their management attributes and their management operations.
One kind of MBean (the so-called dynamic kind) implements a predefined Java
interface, regardless of its management interface, and relies on metadata to spec-
ify its management interface. The other kind (the so-called standard kind) im-
plements a Java interface defined after — and determined by — the MBean’s
management interface. The kind of an MBean is an implementation detail hidden
from clients, which access both kinds of MBeans exactly in the same way.

Dynamic MBeans. By implementing the interface shown in Fig. 3, a dynamic
MBean provides generic methods for attribute access and operation invocation.

interface DynamicMBean {
Object getAttribute(String attrName);
Attributelist getAttributes(String[] attrNames);
void setAttribute(Attribute attr);
AttributelList setAttributes(AttributelList attrs);
Object invoke(String opName, Object[] params, String[] signature);
MBeanInfo getMBeanInfo();

Fig. 3. The DynamicMBean interface

The method getMBeanInfo () returns a self-description of the MBean. The
metadata class MBeanInfo supports MBean introspection, i.e., from an MBeanInfo
instance one can obtain complete information about the management interface
of the MBean described by that instance: attribute names and types, operation
names and signatures, notification types, Java class name, and Java construc-
tor signatures. The management attributes and operations supported by a dy-
namic MBean do not necessarily correspond to Java fields and methods, nor
do they need to be associated with methods of some particular Java interface
implemented by that MBean. They are specified solely by the dynamic MBean’s
self-description.

Standard MBeans. A standard MBean exposes its management attributes and
operations by implementing a Java interface named after the MBean’s Java class,
with the suffix MBean. This interface follows JavaBean-like rules to represent

6 The JMX specification uses the expression “types of MBeans”. We prefer “kinds of
MBeans”, to avoid confusion with Java types.



those attributes and operations: it must have a get method for each readable
attribute, a set method for each writable attribute, and an additional method
for each operation.

As an example, a standard MBean of class Foo must implement a Java in-
terface named FooMBean, whose definition is determined by the MBean’s man-
agement interface. Suppose the management interface has one attribute and
one operation: an integer-valued read/write attribute, whose name is "Count",
and an operation named "doSomething", which receives a long parameter and
returns a double value. Then FooMBean must be the following Java interface:

interface FooMBean {
int getCount();
void setCount(int value);
double doSomething(long param);

Why Two Kinds of MBeans? Standard MBeans are easier to implement,
because they relieve their writers from the task of building metadata instances to
describe management interfaces. On the other hand, dynamic MBeans are more
flexible, as the definitions of their management interfaces can be postponed until
runtime. Both kinds of MBeans support some form of evolution of management
interfaces. In the case of a standard MBean, however, evolution requires object
replacement: one must bind to the MBean’s object name an instance of another
Java class. Dynamic MBeans support evolution without object replacement.

2.2 The MBean Server

The MBeanServer interface appears in Fig. 4. The first two methods shown
are a manifestation of the MBean server’s role as a registry for MBeans. The

interface MBeanServer {
ObjectInstance registerMBean(Object object, ObjectName name) ;
void unregisterMBean(ObjectName name);

Object getAttribute(ObjectName name, String attrName);
AttributeList getAttributes(ObjectName name, String[] attrNames);
void setAttribute(ObjectName name, Attribute attr);
Attributelist setAttributes(ObjectName name, Attributelist attrs);
Object invoke(ObjectName name, String opName,

Object[] params, String[] signature);
MBeanInfo getMBeanInfo(ObjectName name) ;

Fig. 4. The MBeanServer interface



remaining ones form a group that parallels the interface DynamicMBean; each
of them receives as its first parameter an ObjectName that specifies the target
MBean. For brevity, we have omitted several methods, including the ones for
MBean creation and those related with JMX notifications.

Clients access MBeans through the MBean server, using its DynamicMBean-
like methods. The server’s getMBeanInfo method returns metadata that de-
scribes the management interface of the target MBean, regardless of kind. Its
return value is either a dynamic MBean’s self-description or an MBeanInfo in-
stance constructed by the server, most likely at MBean registration time. In
the latter case, the MBeanInfo instance contains information obtained through
Java introspection on the ClassNameMBean interface implemented by a standard
MBean whose class is ClassName.

The methods for attribute access and operation invocation act differently
depending on the kind of the target MBean. If the target is a dynamic MBean, the
MBean server simply forwards the invocation to the target MBean through the
corresponding method of the DynamicMBean interface. If the target is a standard
MBean, the MBean server converts the invocation into a suitable call to the
target’s ClassNameMBean interface. As an example, the invocation

mbeanServer.getAttribute (targetName, "Count");
would be converted into the invocation
targetMBean.getCount () ;

Different MBean server implementations may employ different approaches to
do such conversions. The simplest approach uses the Java reflection API; in this
case the getCount () invocation above would be performed as a reflective call
to the ClassNameMBean interface. The MBean server included in JBoss takes
another approach: it avoids the extra cost of reflective calls by applying byte
code generation techniques [5]. At MBean registration time, the MBean server
performs Java introspection on the ClassNameMBean interface implemented by
a standard MBean and generates the class of a suitable object adapter [11].
The generated adapter implements the DynamicMBean interface and issues non-
reflective calls to methods of the ClassNameMBean interface.

2.3 Reflection in JMX

JMX can be regarded as a reflective architecture. The method getMBeanInfo
supports MBean introspection. Object replacement is a simple yet effective form
of adaptation at the MBean level: clients refer to MBeans by object names, so
the perceived behavior of any MBean can be changed by object replacement.
Other forms of adaptation are possible for dynamic MBeans. The agent level
includes a dynamic class loading service that facilitates object replacement; this
service allows MBeans to be instantiated using new Java classes loaded from
remote servers.



3 Service Components

JMX does not include mechanisms for managing dependencies between MBeans,
nor does it define a concept of service lifecycle for MBeans. Packaging and de-
ployment of components are also out of the scope of the JMX specification.
JBoss addresses all these issues with the notions of service MBean and deploy-
able MBean. Service MBeans (also called service components) are MBeans whose
management interfaces include service lifecycle operations. Deployable MBeans
(also called deployable services), a JBoss-specific extension to JMX, are service
MBeans packaged according to EJB-like conventions, in deployment units called
service archives (SARs). A service archive contains class files for one or more
deployable services, plus a service descriptor, which conveys information needed
at deployment time.

3.1 Service Lifecycle

A service component may be in the stopped state or in the active state. At each
state transition, one of the following lifecycle operations is invoked on the service
MBean:

e create — invoked once on each service MBean, after the receiver was created
and registered with the MBean server. This operation tells the receiver to
complete its initialization and places it in the stopped state.

e start — takes a service MBean from the stopped state to the active state.
A start invocation tells the receiver to do whatever it needs to become fully
operational.

e stop — takes a service MBean from the active state to the stopped state.
A stop invocation tells the receiver to undo any actions it took within the
start operation.

e destroy — tells the receiver to clean up its resources. This operation is
invoked once on each service MBean, when the receiver is in the stopped
state and is about to be unregistered from the MBean server.

The lifecycle operations supported by a service component should be exposed
in its management interface. A service MBean is not required to support all four
lifecycle operations. For instance, a component with no resources that require
clean up does not need a destroy operation in its management interface. The set
of lifecycle operations in a component’s management interface indicates which
service lifecycle events are relevant to the component.

3.2 Service Descriptors

Deployable MBeans are service MBeans packaged together with deployment in-
formation. Every service archive includes a service descriptor, an XML file that
contains an mbean element for each service component in that deployment unit.
An mbean element specifies the following information: (i) Java class and ob-
ject name of a deployable MBean, (i) initial values for (some) management



attributes of the MBean, and (iii) dependencies from the MBean to other de-
ployable MBeans.
Figure 5 shows a service descriptor for a deployment unit with five deploy-

<server>

<!-- Web server for class loading -->
<mbean code="org.jboss.web.WebService"
name="jboss:service=WebService">
<attribute name="Port">8083</attribute>
<attribute name="DownloadServerClasses">true</attribute>
</mbean>

<!-- XID factory -->
<mbean code="org.jboss.tm.XidFactory"
name="jboss:service=XidFactory">
<attribute name="Pad">true</attribute>
</mbean>

<!-- Transaction manager -->
<mbean code="org.jboss.tm.TransactionManagerService"
name="jboss:service=TransactionManager">
<attribute name="TransactionTimeout">300</attribute>
<depends optional-attribute-name="XidFactory">
jboss:service=XidFactory</depends>
</mbean>

<!-- EJB deployer -->
<mbean code="org.jboss.ejb.EJBDeployer"
name="jboss.ejb:service=EJBDeployer">

<attribute name="VerifyDeployments">true</attribute>
<attribute name="ValidateDTDs">false</attribute>
<attribute name="VerifierVerbose">true</attribute>
<depends>jboss:service=TransactionManager</depends>
<depends>jboss:service=WebService</depends>

</mbean>

<!-- RMI/JRMP invoker -->
<mbean code="org.jboss.invocation.jrmp.server.JRMPInvoker"
name="jboss:service=invoker,type=jrmp">
<attribute name="RMIObjectPort">4444</attribute>
<depends>jboss:service=TransactionManager</depends>
</mbean>

</server>

Fig. 5. Example of service descriptor file
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able services. The XML attributes code and name are mandatory within mbean
elements; they specify the MBean’s class and its object name”. The nested
attribute elements are optional; each such element defines the initial value
for a writable attribute in the management interface of the MBean. The nested
depends elements, also optional, specify dependencies from the enclosing MBean
to the MBeans whose object names appear within those elements. The service
descriptor in Fig. 5 specifies dependencies from the transaction manager to the
XID factory, from the EJB deployer to the web server, from the EJB deployer to
the transaction manager, and from the RMI/JRMP invoker to the transaction
manager.

The optional XML attribute optional-attribute-name, which appears in
one of the depends elements in Fig. 5, specifies the name of a writable attribute
in the management interface of the enclosing MBean. This writable attribute
will be set to the object name enclosed by the depends element. In other words,
the element

<depends optional-attribute-name="SomeAttrName ">Some0bjName </depends>
is equivalent to the elements

<depends>Some0b jName </depends>
<attribute name="SomeAttrName ">SomeObjName </attribute>

3.3 Dependency Management

JBoss employs a variant of the component configurator pattern [22] to control the
lifecycle of deployable services. Deployments of SAR files with service MBeans
are handled by a SARDeployer, which also acts as a component configurator. A
ServiceController plays the role of component repository, keeps track of the
dependencies between deployable MBeans, and ensures that components with
unsatisfied dependencies are disallowed to enter (or to remain in) the active state.
The SARDeployer and the ServiceController collaborate to invoke lifecycle
operations on deployable MBeans. They enforce the following protocol:

e When the create operation is invoked on a deployable MBean, all deployable
MBeans on which the receiver depends have also had their create operations
invoked. Moreover, the receiver’s management attributes have already had
their values set to the ones specified in the service descriptor. At this point
the target MBean can check if required resources exist. It cannot yet use
other deployable MBeans, which are not guaranteed to be operational until
they have received start invocations.

e When the start operation is invoked on a deployable MBean, all deployable
MBeans on which the receiver depends have also had their start operations
invoked.

" Strings such as "jboss:service=WebService" and "jboss:service=XidFactory"
contain textual representations of JMX ObjectNames.
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e When the stop operation is invoked on a deployable MBean, all deployable
MBeans that depend on the receiver have also had their stop operations
invoked.

e When the destroy operation is invoked on a deployable MBean, all de-
ployable MBeans that depend on the receiver have also had their destroy
operations invoked.

Deployment/undeployment events drive the lifecycle of deployable services.
In response to these events, the ServiceController invokes (through the MBean
server) service lifecycle operations on deployable MBeans. It issues create in-
vocations to ensure that all services on which a given service depends on are
created before the service is created, it issues destroy invocations to ensure
that all services that depend on a given service are destroyed before the service
is destroyed, etc.

A word on the intended usage of lifecycle operations on deployable MBeans:
start and stop are expected to be lighter than create and destroy. One
should think of create as the (re)configuration hook invoked when a component
is (re)deployed, of destroy as the clean up hook called when a component is
undeployed, and of stop/start as suspend/resume operations that are also
performed at the very beginning of every undeployment (stop) or at the very
end of every deployment (start).

3.4 Deployment and Undeployment

Deployable MBeans are not the only kind of deployable component that JBoss
supports. Besides SARs with deployable MBeans, other types of deployment
units are supported as well: plain JAR files with Java classes to be loaded into
the server, resource archives (RARs) with resource adapter components, EJB-
JARs with EJB components, web application archives (WARs) with servlet/JSP
components, and enterprise application archives (EARs) with multi-tier appli-
cations.

A MainDeployer handles all deployable units by delegating the actual de-
ployment tasks to sub-deployers specific to the various kinds of components:
SARDeployer, JARDeployer, EJBDeployer, etc. The set of sub-deployers (and
hence the set of deployment units supported) is open-ended. Sub-deployers are
service MBeans that register themselves with the MainDeployer, which is also a
service MBean. The two most fundamental sub-deployers are the JARDeployer
and the SARDeployer. The MainDeployer, the JARDeployer and the SARDe-
ployer are not deployable components: they are created and activated directly
by the JBoss boot method. All other sub-deployers are deployable MBeans. This
means, for instance, that EJB support (the ability of deploying EJB components
into the application server) and servlet/JSP support (the ability of deploying web
components) are dynamically deployable features themselves.

The MainDeployer’s management interface corresponds to the Java inter-
face partly shown in Fig. 6. The first three operations deal with sub-deployers:
registration, unregistration, and listing. The following four operations deal with

12



interface MainDeployerMBean extends ServiceMBean {
void addDeployer (SubDeployer deployer) ;
void removeDeployer (SubDeployer deployer) ;
Collection listDeployers();
void deploy(URL url);
void undeploy(URL url);
boolean isDeployed(URL url);
Collection listDeployed();

Fig. 6. Management interface of the MainDeployer

deployable units of any kind: deployment and undeployment of a unit specified
by an URL, check for the presence of a given unit deployed into the server, and
listing of all units deployed into the server. Any of the MainDeployer’s operations
can be invoked from management clients such as the JBoss management console,
which is accessible through a web browser, or from remote management appli-
cations that access the MBean server through connectors. Moreover, the URL
parameter expected by some operations may refer to a deployable unit located
at some remote host. If a remote URL is passed to deploy operation, a remote
unit will be downloaded to the application server host and then dynamically
deployed into JBoss.

Hot Deployment. Deployable components can be conveniently deployed into
JBoss simply by dropping deployment units into a well-known directory. This
feature is called hot deployment. A DeploymentScanner monitors the files in
that directory and handles every deployment unit found. Not surprisingly, the
DeploymentScanner is a deployable MBean itself. A thread started by this
MBean repeatedly scans the deployment directory and invokes the MainDeployer
whenever it detects a change. The addition of a new file causes a deploy invoca-
tion, the removal of an existing file causes an undeploy invocation, and a change
to an existing file change causes a redeploy (undeploy followed by deploy) op-
eration.

Class Visibility. We say that a class is wvisible within a server either if the
class is already loaded in the server’s virtual machine or if it is loadable through
the class loading scheme used by the server. For instance, a class in the system
classpath might not be loaded, but it is certainly visible.

Unlike servers in which class visibility is statically provided by the system
class loader, used to load classes once and for all, JBoss allows visible classes
to vary over time. Hot deployment establishes a causal connection from the
presence of deployment units in the deployment directory to the visibility, within
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the server, of the classes contained in those deployment units.® If the contents of
the deployment directory change, then the set of classes that are visible within
the server will also change. Modifications to the deployment directory can cause
a given (fully qualified) class name to be associated with different class types at
different points in time.

Recall that a Java class type is uniquely determined by the combination of a
class loader and a fully qualified class name [18]. In response to changes in the
deployment directory, JBoss instantiates class loaders to dynamically define new
class types, which may correspond to “new versions” of previously defined class

types.

3.5 Class Loading Issues

A number of Java application servers support some form of dynamic deploy-
ment for application components. They use variants of a class loading approach
that could be called loader-per-deployment [21, 14]. A separate class loader,
constructed at deployment time and bound to a deployment unit, is assigned
to each deployment.® This class loader, usually a java.net.URLClassLoader,
loads class files from the deployment unit it is bound to.

The loader-per-deployment scheme creates a separate namespace for each set
of classes loaded from some deployment unit. Components loaded from different
deployment units may contain classes with the same name, but these classes
will be treated as different types by the Java virtual machine [18]. This ap-
proach avoids class clashes between deployment units, but hinders interactions
between separately deployed parts. Even though separate namespaces might be
convenient for application components, we argue that they are ill-suited for the
dynamically deployable parts of an extensible system such as JBoss.

Problems with Hierarchical Loader-per-Deployment Approaches. In
order to interact within a Java virtual machine, components need to share non-
system classes. The class loader parent delegation model'® implies that any
set of interacting components must be loaded by a set of class loaders with
a common ancestor, which loads the collection of classes shared among all those
components. Components that share non-system classes require a hierarchical
deployment process, in which shared class files are somehow deployed before the
components that will share them. Such a process would correspond to a “de-
ployment tree” rooted at the set of shared class files. This approach, however,

8 The deployment directory is not the only factor that determines class visibility, which
is affected by direct calls to the MainDeployer as well.

9 This description applies to “simple” deployment units (EJB-JARs or WARs). In the
case of a “composite” deployment unit (EAR) with multiple EJB and web modules,
more than one class loader will be actually created. See [14] for details.

19 Tn this model [12], every class loader has a parent class loader. Whenever a class
loader is asked to load a class, it first delegates the request to its parent. If the
parent fails to load the class, then the class loader attempts to perform the task
itself.
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fosters replication of class files across deployment trees associated with indepen-
dent (non-interacting) sets of components. Most importantly, experience with
earlier versions of JBoss has shown us that hierarchical loader-per-deployment
schemes are cumbersome in dynamic environments, specially in the presence of
interactions between middleware components developed by different teams.

If a set of components needs to share some non-system class C, then there
are dependencies from the component that provides class C' to all other compo-
nents in the set. Component dependencies form a directed acyclic graph, which
in general cannot be reduced to a deployment tree. Moreover, dependencies may
change over time, as components are updated. So even if a given set of compo-
nents currently has a rooted tree as its dependency graph, nothing ensures that
future updates to the components will not break the hierarchic structure of that
graph. A non-hierarchical approach to class loading is needed to accommodate
the general nature of component dependencies.

The J2EE Solution. In spite of their shortcomings, loader-per-deployment
schemes are used for application components, by application servers that forbid
changes to the individual parts of an application. A component-based application
(a complete set of interacting parts) must be deployed as a whole into such a
system, so that its components can be loaded by the same class loader or by
a suitable class loader hierarchy. Packing together parts that work together is
still considered an acceptable rule for application scenarios; it is actually the
standard J2EE practice.

3.6 Unified Class Loaders

JBoss employs a new class loader architecture that facilitates sharing of classes
across deployment units. A collection of unified class loaders acts as a single
class loader, which places into a single namespace all classes it loads. Rather
than creating its own namespace, each unified class loader adds Class objects
to a flat namespace shared among all unified class loaders. This is a significant
departure from the hierarchical class loading model introduced in JDK 1.2.%!

Instances of UnifiedClassLoader,a subclass of java.net.URLClassLoader,
are registered with a UnifiedLoaderRepository MBean. This collection of class
loaders behaves like a special kind of java.net.URLClassLoader that allows its
array of URLs to be updated at any time.'> To add an URL, create a new
UnifiedClassLoader for the URL, and register the class loader with the repos-
itory. To remove an URL, remove the corresponding UnifiedClassLoader from
the repository. To load classes, use any of the UnifiedClassLoaders in the
repository. They are all equivalent and share a single namespace.

' JBoss adds Class objects to a flat namespace by default, but is also supports “scoped
class loading”, which creates new namespaces, to allow for concurrent versioning of
EAR deployment units. By explicitly specifying scoped class loading, users can have
different versions of the same components running simultaneously into a server.

12'A java.net.URLClassLoader has a constant array of URLs, specified by a construc-
tor parameter, and loads classes from these URLs.
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Conceptual Description. The class loading strategy is conceptually very sim-
ple. The unified loader repository maintains loaded classes in a cache imple-
mented by two hash maps: one that maps class names into Class objects, and
another that maps class loaders into sets of class names. When a unified class
loader is asked to load a class, it first looks at the repository it is registered with
and checks if the class is already in the repository’s cache. If the class is not
cached, the unified class loader attempts to load a class file from its URL. In
case it does not find the class file, it iterates through the class loaders registered
with the repository until one of them loads the class file. The repository updates
its cache whenever a class file is loaded by some unified class loader. On the re-
moval of a class loader from the repository, all classes loaded by the class loader
should be removed from the repository’s cache. The map from class loaders to
sets of class names serves this purpose.

Locking Issues. The actual implementation of unified class loaders, however,
is complicated by locking issues. In an attempt to ensure that concurrent threads
never load the same class more than once, Java virtual machines typically lock
a class loader while the loader is loading a class.'® Only one thread at a time
is allowed to load a class using a given class loader. Under such locking policy,
deadlock would occur if the conceptual class loading strategy just described were
literally translated into a naive implementation. Suppose that a thread ¢; uses
some unified class loader [; to load a class ¢; and, at the same time, a thread to
uses some unified class loader [ to load a class ca. Assume that neither ¢; nor co
is in the repository’s cache. Moreover, suppose that the class file for ¢y is in I3’s
URL and the class file for ¢y is in I1’s URL. A naive implementation of unified
class loaders would deadlock in this scenario.

Deadlock Avoidance. The JBoss implementation avoids deadlocks by using a
task scheduler that allocates class loading tasks to a pool of cooperating threads
whose elements are temporary owners of unified class loaders. A thread is in the
pool as long as it holds some unified class loader’s monitor lock. By repeatedly
calling the task scheduler to get its next task, each such thread sequentially

3 Depending on the class loaders involved, locking class loaders might actually be a
futile attempt to prevent concurrent threads from loading a class more than once.
In the case of unified class loaders, locks on class loaders are superfluous and not
effective, for the repository is what needs to be locked to ensure that no class gets
loaded twice. There should be a way to tell the Java virtual machine not to lock
these class loaders. This would be possible if the class loading method directly
called by Sun’s virtual machines — the method loadClassInternal — were not
defined as private and synchronized in class java.lang.ClassLoader. The method
loadClassInternal should be protected, rather than private, so that specialized
subclasses of ClassLoader (such as UnifiedClassLoader) could redefine it with no
synchronization. With respect to this issue, a member of the JBoss team has filed
with Sun a bug report [15] against the Java runtime environment.
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processes all class loading tasks that must be handled by its unified class loader,
including the ones initiated by other threads.!*

3.7 Dynamic Proxy Usage

Since JDK 1.3, the Java reflection API supports a limited form of program
adaptation: the late definition of certain object adapter classes called dynamic
proxy classes. A program can dynamically define a proxy class that implements
given interfaces by delegating all method invocations to a generic invocation
handler, through a type-independent interface. A dynamic proxy instance can be
regarded as an object adapter [11] that converts the type-independent interface
of its invocation handler into a list of interfaces specified at runtime.

Close interplay takes place between application components, whose interfaces
are not known until runtime, and the middleware components that make up the
JBoss server. Most of the time such collaboration happens transparently with re-
spect to application components, which perceive themselves as interacting with
each other and only occasionally take explicit actions to request middleware ser-
vices. Enabling transparent collaboration between application components and
middleware components, within a platform written in a strongly-typed language
like Java, poses a problem: the platform must somehow bridge the gap between
the interfaces that are application-specific and those exposed by middleware
components. Many application servers bridge this gap with classes statically gen-
erated through compilation-based approaches, at the expense of flexibility and
developer friendliness. Nevertheless, this is not an option for a system intended
to support dynamic deployment of application components whose interfaces are
not known in advance. Dynamic proxies are crucially important for JBoss be-
cause they can bridge that gap at runtime.

The Dynamic Stub Idiom. Recall how Java RMI handles parameter and
return value passing: serializable types are normally passed by value, remote
types are normally passed by reference. A serializable type is either a primi-
tive type or an instance of a class that implements java.io.Serializable or
java.io.Externalizable. Serialized types are normally passed to other virtual
machines in serialized form. A remote type is an instance of a class that imple-
ments java.rmi.Remote. When an RMI parameter or return value is a remote
type, a stub for the remote object is normally passed instead of the object.
Note the occurrences of the adverb “normally” in the preceding paragraph.
What happens in the case of a remote object that is also serializable? If the
object has not been exported (made available to remote clients) through the
RMI system , then it will be passed by value. Passing remote objects by value,
in serialized form, allows the creation of custom stubs. Rather than using stubs

14 1If there were a way to tell the Java virtual machine not to lock unified class loaders,
then there would be no need for such a deadlock avoidance scheme. Explicit task
scheduling appears here merely as an elaborate trick through which JBoss circum-
vents the Java bug mentioned in the preceding footnote.
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generated by RMI tools, a programmer can create his own stub objects, which
interact over a custom protocol with the remote objects that they represent.
Custom stubs should be remote (but not exported) and serializable, so they are
passed by value to other virtual machines.

Besides interacting with the remote objects they represent, custom stubs
must also implement the application-specific interfaces of these objects. Rather
than writing (or creating a tool that generates) a custom stub class for every
application interface, one can use dynamic proxies as custom stubs. This is the
dynamic stub idiom. A dynamic proxy implements the interfaces expected by
the application. The invocation handler is the “customized” part of the stub:
it uses a custom protocol to interact with the remote object represented by the
stub. Dynamic stubs are typically created at the server side and passed by value
to other virtual machines. This is possible because dynamic proxy instances are
serializable, provided that their invocation handlers are serializable. Section 4.2
describes the key role of dynamic stubs in JBoss.

Conversion of Management Interfaces into Java Interfaces. This is a
more prosaic (and very common) usage of dynamic proxies in JBoss. In this use
case, a dynamic proxy instance, associated with a given MBean, implements a
Java interface whose methods correspond to (possibly a subset of) the MBean’s
management interface. The proxy has an invocation handler that knows the
MBean’s object name and forwards method invocations to the MBean, through
the MBean server.

4 Meta-Level Architecture for Generalized EJBs

The conceptual definition of the EJB architecture [25] relies strongly on the
abstract notion of an EJB container. In JBoss, a set of meta-level components
works together to implement this conceptual abstraction. A generalized EJB
container is a set of pluggable aspects that can be selected and changed by
users. Extended EJB functionality is supported by a meta-level architecture
whose central features are:

e usage of MBeans as meta-level components that support and manage base-
level EJB'® components;

e a uniform model for reifying base-level method invocations;

e a remote method invocation model based on dynamic proxies;

e usage of a variant of the interceptor pattern [22] as an aspect-oriented pro-
gramming [16, 8] technique.

In what follows, we will adopt an EJB standpoint and consider that the base
level consists of EJB components. Accordingly, we will refer to EJB interfaces
as base-level interfaces. From this perspective, MBeans belong to the meta level,

15 For brevity, we refer to our base-level components simply as EJBs, but it will shortly
become clear that they are actually generalized EJBs.
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and their management interfaces are meta-level interfaces. Figure 7 shows the
meta-level architecture whose elements will be discussed in the following sub-
sections.

Client Virtual Machine Server Virtual Machine
Client-Side
Proxy
% 1 Container
i T | MBean
{ Invoker Invoker MBean i 1
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flow of reified invocations

Fig. 7. Meta-level architecture for EJB

4.1 Reified Method Invocations

Interactions between base-level components follow a variant of the message reifi-
cation model [9]. Inter-component method invocations performed at the base
level are reified by special Invocation objects. Dynamic proxies receive all EJB
invocations executed by EJB clients (which may be EJBs themselves) and shift
those invocations up to the meta level, by transparently converting them into
Invocation objects.'6

The gray arrows in Fig. 7 show the flow of reified invocations. The invocation
handler creates a reified invocation whenever a method call is issued on the
client-side proxy. After traversing a chain of client-side interceptors, each reified
invocation is sent by an invoker prory to an invoker MBean at the server-side,
where it is routed through the container MBean associated with the target EJB.

Figure 8 lists the fields of a reified invocation. The objectName field iden-
tifies a container MBean. The method and args fields specify a method call

16 The Invocation objects are actually created by the invocation handlers of these
dynamic proxies.
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to be performed on the base-level component associated with that container.
The invocationContext conveys information that is common to all invocations
performed through the same (base-level) object reference. It always includes in-
formation on whether the invocation target in an EJBHome or an EJBObject,
and may also specify the id of a particular EJBObject instance.'” Arbitrary
invocation-specific information, typically related with non-functional aspects
(e.g., security and transactions), is carried within the payload fields.

class Invocation {
Object objectName;
java.lang.reflect.Method method;
Object[] args;
InvocationContext invocationContext;
java.util.Map payload;
java.util.Map as_is_payload; // marshalled "as is"
java.util.Map transient_payload; // not sent to other VMs
... // methods not shown

Fig. 8. Class that reifies method invocations

Note that the class Invocation is not serializable, as it has a non-serializable
java.lang.reflect.Method field. MarshalledInvocation, an externalizable
subclass of Invocation, serves the purpose of allowing reified invocations to
be sent across virtual machine boundaries.

No interface along the reified invocation path (see Fig. 7) depends on base-
level types: each element in that path provides a Java method or a manage-
ment operation that takes an Invocation parameter. Invocations are even-
tually passed as parameters to an invoke operation exposed by all container
MBeans:

mbeanServer . invoke (

invocation.getObjectName(), // target container
"invoke", // operation name
new Object[] { invocation }, // parameters

new String[] { // parameter types

"org.jboss.invocation.Invocation"
}
)

Calls to a container’s invoke operation go through the MBean server’s invoke
method, because the invoke operation belongs to the container’s management
interface.

17 There is an one-to-one relationship between deployed EJB components and container
MBeans, but an EJB component usually has many EJBObject instances.
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4.2 Remote Invocation Architecture

A powerful and flexible architecture supports remote method invocations to EJB
components deployed in JBoss. The invoker architecture is based on the following
points:

e Even though EJB clients expect typed and application-specific interfaces,
EJB containers expose a type-independent management operation (invoke),
which acts as a meta-level gateway to their EJB components. An invoker
makes this operation accessible to remote clients through some request/
response protocol, such as JRMP, IIOP, HTTP or SOAP.

e Client-side stubs (or client-side proxies) are dynamic proxy instances that
convert calls to the typed interfaces seen by clients into invoke calls on
remote invokers.

e Each client-side proxy has a serializable invocation handler that performs
remote calls on a given invoker, over the protocol supported by the invoker.

e Client-side proxies and their invocation handlers are instantiated by the
server and dynamically sent out to clients as serialized objects.

The pattern just outlined is independent of the request/response protocol sup-
ported by the invoker. Client-side knowledge of this protocol is confined within
the invocation handlers that clients dynamically retrieve from the server along
with serialized proxies.

Invokers. An invoker is a service MBean that acts as a protocol-specific gate-
way, at the meta level, to multiple EJB containers in the JBoss server. All
invokers currently available in JBoss are deployable services implemented as
standard MBeans. Every invoker exposes an invoke method to remote clients.
This method takes an Invocation parameter and forwards the reified invocation
to the container MBean specified by the invocation’s objectName field.

Figure 9 shows the remote invocation interface exposed by the JRMP invoker,
which makes its invoke method available to RMI/JRMP clients. Other invokers
implement either this interface or very similar ones.

interface Invoker extends javax.rmi.Remote {
String getServerHostName() ;
Object invoke(Invocation invocation);

Fig. 9. Generic invocation interface
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Client-Side Proxies. In order to access an EJB component deployed into a
JBoss server, a client must have a reference to a client-side proxy that represents
the component. Local calls to application-specific methods are translated by the
client-side proxy into invoke calls on a remote invoker object. To perform this
translation, the proxy — or, more precisely, its invocation handler — must know
the remote invoker. The exact meaning of “knowing the remote invoker” depends
on the protocol over which the proxy interacts with the remote invoker. In the
case of a client-side proxy associated with a JRMP invoker, that phrase means
“holding an RMI/JRMP reference to the JRMP invoker”. For client-side proxies
associated with other invokers, the same phrase takes other meanings, such as
“knowing the HTTP invoker’s URL”, or “having a CORBA IOR that references
the IIOP invoker”.

Invoker Proxies. Everything that is protocol-specific within a client-side proxy
is encapsulated within an invoker proxy. Regardless of the protocol it supports,
each invocation handler holds a local reference to an invoker proxy that im-
plements the Invoker interface shown in Fig. 9.'® The invoker proxy interacts
with a remote invoker, sending Invocations and receiving results over a given
protocol. Invoker proxies provide a good level of homogeneity to all client-side
proxies.

The invoker proxy for a given protocol is created at the server side and bound
to a name in a well-known JNDI context. Since invoker proxies are externalizable,
they can be sent out to clients along with serialized client-side proxies. Both the
creation and the JNDI registration of a given protocol’s invoker proxy (e.g., a
JRMPInvokerProxy) are performed within the create operation of the invoker
MBean for that protocol (e.g., within the create operation of the JRMPInvoker
service component.)

Local Invocations. In-process calls between components deployed in the same
server are optimally handled by a local invoker that avoids the cost of marshaling
Invocations. Local invocations go through client-side proxies and are reified like
remote invocations, but in the local case a client-side proxy contains the local
invoker itself, not an invoker proxy. Unlike the other invokers, which afford call-
by-value semantics, the local invoker provides call-by-reference semantics.

The ITIOP Case. For interoperability with CORBA clients written in other
languages, IIOP is treated as a special case in JBoss. Even though we have
implemented and tested an experimental IIOP invoker that strictly follows the
“JBoss invoker pattern”, this is not the IIOP invoker included in JBoss distri-
butions.

18 For the moment, assume that there are no client-side interceptors interposed be-
tween the invocation handler and the invoker proxy (see Fig. 7). Interceptors will be
discussed in Sect. 4.4.
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Non-Java clients expect application-specific interfaces to be exposed via IIOP,
because they use IDL-generated stubs. In other words, they send out IIOP re-
quests whose operation fields contain application-specific verbs. The invoker pat-
tern, however, leads to an ITOP invoker that implements an IDL interface similar
to the Java interface in Fig. 9. Such an invoker could not possibly interoperate
with CORBA clients written in other languages, as it would expect IIOP re-
quests with the verb invoke in their operation fields. Rather than implementing
the invoker pattern, the IIOP invoker included in JBoss follows the standard
CORBA/IIOP approach, and hence it does not suffer from language interoper-
ability problems.

Invoker Advantages. JBoss invokers present significant advantages over re-
mote invocation architectures such as CORBA and Java RMI:

e Dynamic generation and retrieval of client-side proxies. No application-spe-
cific stub classes have to be pre-installed in client machines.

o FExtensibility. Multiple protocols can be simultaneously supported by various
invokers and their invoker proxies. Support for new protocols can be added
to a running server by dynamically deploying new invoker MBeans.

o Multiple protocols per EJB. An EJB component may receive remote invoca-
tions over different protocols, i.e., there may be a many-to-many relationship
between container MBeans and invoker MBeans.

o Multiple protocols per client. Clients receive serialized proxies from other
processes and use these proxies to issue remote method calls. Depending on
the serialized proxies it receives, a client may employ multiple protocols to
interact with various server-side components, without ever being aware of
this fact.

e Separation of concerns. Invokers draw a very clear separation between mid-
dleware concerns inherent to distributed environments (e.g., protocol and
fail-over strategy) and other kinds of concerns, either at the middleware
level or at the application level.

Together, separation of concerns and dynamic retrieval of client-side proxies
have far-reaching consequences. Configurable support to failover in clustered
JBoss environments is one such consequence. It does not require any special
arrangements at the client side, as failover is performed by client-side proxies
dynamically retrieved from a JBoss server.

Comparison with CORBA. JBoss invokers afford separation of concerns
at a much higher degree than a standard CORBA /IIOP approach. By putting
application-specific verbs in a header field of IIOP requests, CORBA effectively
forces remote interactions to take place at the base level, rather than at the meta
level. We consider this a serious limitation of CORBA /IIOP.
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4.3 Containers

When an EJB is deployed into JBoss, a container MBean is created to man-
age the EJB. Each reified EJB invocation is routed through a container, which
provides its EJB with services such as instance pooling, instance caching, per-
sistence, security, and transactions. The container MBean itself does not per-
form any of these services, it merely aggregates container plug-ins that do the
real work. A container framework assigns specific responsibilities (bean instance
pooling, bean instance caching, and management of bean persistence) to well-
defined types of container plug-ins. Besides defining the interfaces that these
plug-in types must implement, the framework also accepts a plug-in type —
server-side interceptors — whose responsibilities are not specified in advance.

Note that Fig. 7 represents server-side interceptors within the EJB container.
In JBoss, the abstract notion of an EJB container is realized by a container
MBean, together with its set of container plug-ins. Instance pooling, instance
caching, and persistence management plug-ins do not appear in that figure (we
do not be discuss them in this paper), but they are logically encompassed by the
EJB container as well.

JBoss containers are service components implemented as dynamic MBeans.
They are created by the EJBDeployer, which reads container configurations from
XML files.

Container configurations. A container configuration specifies all information
the EJBDeployer needs to create a container MBean, its plug-ins, and its in-
terceptors. The configuration defines a Java class for every plug-in and every
server-side interceptor, as well as values for configuration parameters. It also
defines one or more kinds of client-side proxies that the container will export to
EJB clients. For each kind of client-side proxy, it specifies the Java class of every
client-side interceptor that will be included in client-side proxies, as well as the
invoker MBean (that is, the protocol) that these proxies will use. See [24] for
details.

Different kinds of EJBs require containers with different configurations. JBoss
has a global configuration file that includes default container configurations for
the standard kinds of EJBs (stateless session beans, stateful session beans, en-
tity beans, and message-driven beans). The global configuration file also contains
alternative configurations for these kinds of EJBs. A local configuration file, op-
tionally included with a given EJB, may refer to an alternative configuration
by its name, in order to specify some non-standard feature such as clustering.
Moreover, local configuration files are not constrained to use pre-defined con-
tainer configurations. A local configuration file may fully define a new container
configuration, possibly specifying plug-in and interceptor classes included within
the EJB deployment unit.

Generalized EJBs. Local container configurations effectively generalize the
EJB model, allowing users to define EJB-like components suited to their needs.
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For instance, an user that does not need transactions or security can easily
create a customized container configuration without transaction or security in-
terceptors, which would otherwise perform superfluous tasks. Local configura-
tions can also be employed to create containers that provide enhanced services.
Customized containers can offer assertion capabilities [29] that verify whether
component-based applications maintain certain critical properties or not. They
can also provide OGSA'Y services in a grid computing environment. These are
real examples of enhanced containers, created by JBoss users working on high-
confidence systems at MITRE Corporation and by researchers working on the
Globus Project, respectively.

4.4 Interceptors as Pluggable Aspects

Pluggable aspects, specified in configuration files written in XML, affect every
EJB invocation performed at the base level. Each such aspect corresponds to
an interceptor that acts directly upon reified invocations. Figure 7 shows two
interceptor chains interposed across the reified invocation path: one at the client
side, between the invocation handler and its invoker proxy, another at the server
side, between a container MBean and its EJB component.

In aspect-oriented terminology, client-side proxies and containers provide join
points in the invocation path, and interceptors implement around advice that
runs at those join points. Each interceptor explicitly calls the next element in
its chain, so it has complete control over whether the next element will be called
or not.

Client-side interceptors. These interceptors inherit from the Interceptor
class shown in Fig. 10. The field nextInterceptor and the methods setNext
and getNext support singly-linked chains of interceptors. Class Interceptor
is externalizable and provides default implementations of the externalization

public abstract class Interceptor
implements java.io.Externalizable {
protected Interceptor nextInterceptor;

public Interceptor setNext(final Interceptor interceptor) { ... }
public Interceptor getNext() { ... }

public void writeExternal(final ObjectOutput out) { ... }

public void readExternal(final ObjectInput in) { ... }

public abstract Object invoke(Invocation inv);

Fig. 10. Base class of client-side interceptors

19 OGSA is the Open Grid Services Architecture [10] defined by the Global Grid Forum.
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methods writeExternal and readExternal. Externalization is crucial for client-
side interceptors, as it allows interceptor chains to be built at the server side and
dynamically retrieved by clients, along with dynamic proxies. The remaining
method, invoke, must be provided by concrete subclasses of Interceptor.

Client-side interceptors typically deal with aspects that involve some form of
context propagation from the client to the server (e.g., transactions and security)
or handle certain invocations whose processing can be completed at the client
side (e.g., getHandle/getHomeHandle calls on EJBObject/EJBHome proxies).

Server-side interceptors. Unlike client-side interceptors, server-side intercep-
tors do not need to be externalizable. Rather than inheriting from the external-
izable class in Fig. 10, they implement a Java interface that resembles that class,
but does not extend java.io.Externalizable or java.io.Serializable.

Server-side interceptor chains are typically longer than client-side ones. Be-
sides dealing with transactions and security at the server side, they handle as-
pects such as logging, gathering of statistical data, entity instance creation, entity
instance locking, detection of reentrant calls, and management of relationships
between entities.

5 Project History

There have been four major versions of JBoss. The earliest? one (Feb. 1999)
was still called EJBoss, a name soon abandoned for trademark reasons. EJBoss
was an EJB server that introduced a novel feature — hot deployment — but
still used a traditional and compilation-based approach to generate client stubs.
JBoss 1.0 (Feb. 2000) was an innovative EJB server that employed a new tech-
nology — dynamic proxies — to avoid statically generated client stubs. In ver-
sion 2.0 (Nov. 2000), JBoss was redesigned and rewritten as a complete J2EE im-
plementation, modularly built around a JMX microkernel. JBoss 2.0 was already
an extensible and reflective server that supported server-side interceptors and
service MBeans, but not dynamic deployment of service MBeans. Even though
invokers were already pluggable in version 2.0, they were container plug-ins, not
service MBeans, and there was exactly one invoker (protocol) per EJB container.
Version 3.0 (May 2002) featured dynamic deployment of service MBeans, depen-
dency management, unified class loaders, client-side interceptors, and invokers
as dynamically deployable MBeans. Multiple invokers per container started to
be supported in JBoss 3.2 (first beta release available in Sep. 2002), the version
described in this paper.

20 Except when explicitly stated otherwise, this paragraph informs “final release” dates.
Each final release was preceded by a series of alpha and beta releases that started
to appear many months earlier.
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6 Ongoing and Future Work

Ongoing work includes EJB 2.1 compliance, performance optimizations, and,
most importantly, an aspect-oriented programming framework that will allow
class, method, field, and constructor pointcuts to be dynamically attached to
any Java object. In the near future, this framework should provide the basis for
an extended version of the JMX infrastructure within JBoss, as well as for a new
implementation of the meta-level architecture described in Sect. 4. Moreover, we
expect that close integration with an aspect-oriented programming framework
will help JBoss on the move from a generalized EJB model to yet more flexible
models for application components.

Another area for future work is on extensions to the metaobject protocol sup-
ported by generalized EJB containers. Sensible changes to meta-level elements of
the generalized EJB architecture should be allowed in a yet more dynamic way.
Management clients, such as the JBoss console, currently can update meta-level
attributes and invoke meta-level operations (e.g., a management operation that
flushes the instance cache of an entity container). In order to update the con-
tainer configuration used by some application component, however, they must
redeploy the component. (More precisely: they must deploy a new version of the
component package, with changes in its local configuration file.) By interacting
with the JBoss console, one should be able to add a server-side interceptor or a
new protocol (invoker) to a component deployed into a running server, without
redeploying the component.

7 Related Work

Support to JMX started to appear in commercial J2EE servers. These systems
employ JMX merely as a means to instrument selected parts of the application
server and make them manageable through JMX-compliant clients. As far as
we know, none of the commercial systems uses JMX as a reflective microkernel
architecture at the very basis of the whole server.

A recent paper [3] discusses the performance of EJB applications. It presents
a comparative evaluation of the performance of certain applications deployed
both on JBoss and on a less flexible server, which relies on compilation to gen-
erate stubs and is not built around a reflective microkernel.

FlexiNet [13] is a Java middleware system that exploits reflective techniques
in order to support flexible remote method invocation paths (protocol stacks, in
FlexiNet terminology). Such an invocation path consists of a dynamically gener-
ated (and very thin) client-side stub, followed by a client-side chain of metaob-
jects, which interacts with a server-side chain of metaobjects that ends on the
target object. Invocation targets are identified by names created by generators
and resolved by matching resolvers. When a name is created, its generator also
creates the server-side half of an invocation path. The resolution of the name
entails the construction of the client-side half of that path. FlexiNet includes
generator-resolver pairs (called binders) for various protocols.
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Unlike JBoss, FlexiNet does not follow Java RMI conventions to decide
whether a method parameter will be passed by value or by reference. Rather
than examining the type of the actual parameter, it looks at the declared type
of the formal parameter. The parameter will be passed by reference if its de-
clared type is an interface, and will be passed by value otherwise.?! Similarly,
when passing by value an object with fields that refer to other objects, FlexiNet
looks at the declared types of these fields. As standard Java serialization does
not provide this semantics, FlexiNet implements its own serialization mecha-
nism. It also implements its own factory of dynamic stubs?2, which differ from
the dynamic proxies employed by JBoss in that they cannot implement multiple
interfaces. In comparison with FlexiNet, the JBoss remote invocation architec-
ture is considerably simpler, due to its usage of standard Java features (dynamic
proxies and object serialization). The serialized form of a dynamic proxy, along
with its invocation handler, is the JBoss counterpart of a FlexiNet name. JBoss
employs standard Java deserialization as a universal (protocol-independent) “re-
solver” that converts “names” into client-side stubs.

Yasmin [6, 7] is a component-based architecture designed with emphasis on
distributed applications for network management. The Yasmin model is not Java-
based, but it supports hot-deployable components (“droplets”) that resemble
our deployable MBeans. A major difference, however, is that Yasmin does not
address dependence management issues.

OpenCOM [4] is a lightweight component model upon which an adaptive
ORB has been implemented. As an in-process model built atop a subset of
Microsoft’s COM, OpenCOM appears more suitable for very fine-grained com-
ponents than the JBoss service component model. It supports dependence man-
agement, reconfiguration, and method call interception. Nevertheless, OpenCOM
does not address deployment issues, nor does it support dynamic loading of com-
ponent classes from remote locations.

Other component models have been proposed for systems software. Some of
these models, which bear less similarity with the JBoss/JMX model than Yasmin
and OpenCOM, are discussed in [4].

8 Concluding Remarks

JBoss demonstrates that application servers can be built out of dynamically
deployed components that provide middleware services to application compo-
nents. At the architectural level, its novel contributions include the pioneering
usage of JMX as a reflective microkernel architecture, a JMX-based component
model with support to dynamic deployment and dependence management, and a
meta-level architecture for generalized EJBs. At the implementation level, JBoss
innovations include a class loading model that facilitates sharing of classes across

21 This convention is incompatible with the widely accepted advice that one should
favor the use of interfaces (rather than classes) as parameter types. [1]

22 The development of FlexiNet preceded the inclusion of support to dynamic proxies
in the Java reflection API.
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deployment units, as well as an “invoker pattern” that relies on serialization of
dynamic proxies created at the server side in order to support a general remote
method invocation service over multiple protocols.

Researchers have recently advocated “working toward standards for reflective
middleware” [17]. The JBoss experience suggests that reflective models based on
JMX should be seriously considered as candidates to standardization not only
within the network and systems management field, but in the more general Java
middleware arena.
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