
Lessons Learned from Implementing

WS-Coordination and WS-AtomicTransaction

Ivan Silva Neto Francisco Reverbel

Department of Computer Science

University of São Paulo

{ivanneto,reverbel}@ime.usp.br

Abstract

This paper presents the design and implementation of a

transaction service that complies with the WS-Coordination

and WS-AtomicTransaction standards. Such service builds

upon XActor, a distributed transaction manager that sup-

ports an open-ended set of transports, and enhances it with

full support for atomic transactions over Web services. The

paper summarizes the main lessons we learned from im-

plementing those standards. It also identifies weaknesses

in the WS-AtomicTransaction specification and presents

advice for implementors of any systems based upon WS-

Coordination.

Keywords: Web services, transactions, crash recovery,

WS-Coordination, WS-AtomicTransaction.

1. Introduction

Reliance on Web standards, industry endorsement,

and ability to operate in heterogeneous and firewall-

protected environments are some of the key reasons for the

widespread use of Web services. Nevertheless, such attrac-

tive features are not enough to enable the development of

enterprise-class applications, which usually do not tolerate

data inconsistencies. To suit this class of applications, trans-

actional support is needed [3].

A pair of recent WS standards, WS-Coordination (WS-

C) [8] and WS-AtomicTransaction (WS-AT) [6], has added

transactional capabilities to the Web services stack. This

paper reports our experience designing and implementing a

transaction service that complies with those standards. We

implemented that service as a plug-in for XActor [11], a dis-

tributed transaction manager that affords transactional in-

teractions over an open-ended set of transports. Our plug-

in enhances XActor with full support for atomic transac-

tions over Web services, including crash recovery capabil-

ities. It cooperates with XActor to transparently handle all

the complex interactions that take place between the parties

involved in a distributed transaction.

This paper is organized as follows: Section 2 contains

an overview about Web services transactions, Section 3 de-

scribes our transaction service implementation, Section 4

reviews related work, and Section 5 presents our conclud-

ing remarks.

2. Web services transactions

The WS-C specification defines an extensible coordi-

nator that may be used to coordinate virtually any kind

of activity: atomic transactions, long-running transactions,

workflow processes, etc. That coordinator, however, is just

an abstract part of a coordinator framework. As such, it is

not able to coordinate any activity by itself. To do so, the

coordinator has to be extended. WS-AT sits atop the WS-C

specification and enables the coordinator to handle atomic

transactions. The WS-BusinessActivity (WS-BA) [7] stan-

dard is another relevant extension to the WS-C coordinator.

It enables such coordinator to handle long-running transac-

tions.

2.1. WS-C/WS-AT port types

The WS-C coordinator exposes its functionality via

two port types1: ActivationCoordinator and Regis-

trationCoordinator (Fig. 1). Each of these port types

has a single operation. The first one has the operation

CreateCoordinationContext, which creates a new co-

ordinated activity (e.g., an atomic transaction). The second

one has the Register operation, used by participants to

join a coordinated activity.

WS-AT extends the WS-C coordinator with two

other port types, named CompletionCoordinator and

Coordinator. The former has operations Commit and

Rollback, invoked by clients to tell the coordinator

whether a transaction should be committed or rolled

back. The latter has the operations Prepared, ReadOnly,

Aborted, and Replay. These operations are invoked by

the transaction participants at commit time, when the coor-

dinator is driving the two-phase commit (2PC) [3] protocol.

1A port type is a logical grouping of operations. It is, therefore, a con-

cept similar to an interface in Java or C#.



Figure 1. The WS-C/WS-AT port types.

WS-AT also defines a third port type named Participant,

which has to be implemented by every transaction partici-

pant. This port type has the operations Prepare, Commit,

and Rollback. All 2PC interactions between the parties

involved in a distributed transaction over Web services take

place through those port types.

2.2. Web services transactions in Java EE

In the Java EE scenario, the application server (AS) —

or, more precisely, its transaction manager (TM) — has

to implement the WS-C/WS-AT port types (Fig. 2). The

purpose of those port types is to allow the communication,

via SOAP messages, between the parties involved in a dis-

tributed transaction: (i) the client, responsible for the de-

marcation of the transaction boundaries, (ii) the root coor-

dinator, responsible for determining the outcome of the dis-

tributed transaction, and (iii) the participants, i.e., the appli-

cation servers that interact with transactional resource man-

agers (RMs) such as database systems and message brokers.

Figure 2. Web services transactions in a Java
EE scenario.

The X/Open XA specification [16] is the relevant stan-

dard for interactions between a TM and transactional

RMs. A TM running within an application server interacts

with transactional RMs through resource adapters (JDBC

drivers, JMS providers, etc.) that implement a Java map-

ping of the XA API. The RMs whose resource adapters im-

plement that API are called XA resources.

2.3. WS-C/WS-AT transaction context

Besides a set of port types, the WS-C/WS-AT standards

also define a transaction context that is injected into the

header of every SOAP message sent out within the scope of

a transaction. That context contains three fields: a globally

unique transaction identifier, the transaction timeout, and a

reference to the transaction coordinator. Hence, a Web ser-

vice that receives a transaction context along with a SOAP

request has all the information needed to join the transaction

represented by the context.

3. The WS-C/WS-AT transaction service

Our WS-C/WS-AT service is built upon XActor2, a

transaction manager written in Java and aimed at server-side

application containers such as Java EE servers and depen-

dency injection frameworks (e.g., Spring [19]). XActor is

extensible, in the sense that it can employ an open-ended

set of transports to coordinate distributed transactions. A

software layer named transactional remote method invoca-

tion plug-in, or simply TRMI plug-in, enhances the TM with

support for a given transport. Before we started this work,

XActor had already TRMI plug-ins for transactional inter-

actions over IIOP and JBoss Remoting [4].

We implemented our WS-C/WS-AT service as a third

TRMI plug-in, which encapsulates the SOAP/HTTP in-

vocation mechanism. This plug-in is a dynamically de-

ployable feature that enhances XActor with full support

for atomic transactions over Web services, including crash

recovery capabilities. Summarily, the plug-in comprises:

(i) Web services that implement the WS-C/WS-AT port

types, (ii) interceptors to propagate and import the trans-

action context, (iii) a software layer that encapsulates the

SOAP/HTTP invocation mechanism and makes it available

to XActor through well-known interfaces, and (iv) another

software layer that extends the crash recovery mechanism

of XActor. Each of these items will be discussed in the fol-

lowing sections.

3.1. Implementation of port types

The Web services that implement the WS-C/WS-AT

port types perform the role of adapters, converting the

SOAP messages they receive into appropriate calls to

XActor. For example, when the Web service that im-

plements the ActivationCoordinator port type receives

a CreateCoordinationContext message, it parses such

message and then invokes the begin method of the TM,

which starts a new transaction.

Performance issues. The JAX-RPC [13] and JAX-

WS [15] APIs, both part of the Java EE 5 platform, are

the most straightforward options for implementing the WS-

C/WS-AT port types. However, for the sake of performance,

we decided not to employ them. Both JAX-RPC and JAX-

WS provide a great deal of flexibility, but such flexibility

2Project website: http://xactor.sourceforge.net/. All the

source code for XActor, including the source for our plug-in, is available

as free software at the project website.

2



comes at the price of performance. Fig. 3a shows the path

a SOAP message would have to traverse if we had imple-

mented the WS-C/WS-AT port types using JAX-RPC or

JAX-WS Web services. In this approach, a servlet initially

receives the SOAP message (which could be, for example,

a Commit message from a client that wants to commit a dis-

tributed transaction). The message is converted into ele-

ments of the SOAP with Attachments API (SAAJ)3 [14]

and then traverses an interceptor chain. After that, reflective

mechanisms are used to perform an XML-to-Java mapping

and to invoke the suitable method of the class that imple-

ments the Web service. At last, the Web service implemen-

tation calls the TM.

(a) SOAP message processing in a JAX-RPC/JAX-WS runtime.

(b) Our approach for processing SOAP messages.

Figure 3. SOAP message processing.

A more efficient approach. Instead of using JAX-

RPC or JAX-WS Web services, we implemented the WS-

C/WS-AT port types using servlets that analyze the SOAP

messages via an efficient API: the Streaming API for XML

(StAX) [2]. A three-step process is used to process the

SOAP messages targeted to the WS-C/WS-AT port types:

the message is received by a servlet, analyzed by a StAX

parser, and then the appropriate method of the TM is in-

voked (Fig. 3b). Compared to JAX-RPC or JAX-WS Web

services, this process avoids the SAAJ conversion (and

therefore the use of a DOM parser), the traversal of the

interceptor chain, and the employment of reflective mech-

anisms.

Although Fig. 3b shows that the TM is invoked right after

the message parsing, there is one extra level of indirection

for the messages targeted to the WS-C port types. Since

the coordinator defined in the WS-C standard is extensi-

ble, our implementation of this coordinator delegates the

received requests to a repository of classes that implement

the WS-C operations. Such classes are named coordination

types. The repository dynamically selects the appropriate

coordination type to handle a given request. The “atomic

transaction coordination type” we implemented simply for-

wards the requests to the TM (Fig. 4). Our WS-C imple-

mentation allows the dynamic deployment of new coordi-

3A great number of SAAJ API interfaces extend DOM [18] interfaces.

Therefore, the use of the SAAJ API requires a DOM-compatible XML

parser.

nator functionalities. We could, for example, add WS-BA

support (through a “business activity coordination type”) to

a running TM.

Figure 4. Dynamic selection of a coordination

type.

Creation of SOAP messages. Also for performance

reasons, instead of using an XML parsing API to generate

the SOAP messages, our plug-in employs a template-based

approach. The plug-in has a message template, stored as a

string, for each message defined in WS-C/WS-AT. When-

ever a new message needs to be created, the template is

filled out with the message-specific data.

3.2. Propagation of the transaction context

Our plug-in propagates the transaction context implic-

itly: the context is transparently and automatically injected

into all the SOAP messages sent within the scope of a trans-

action.

Interceptor usage. In Java EE environments, Web ser-

vices are usually accessed through proxies that the applica-

tion server binds into a naming service. The plug-in we de-

veloped equips the proxies bound into the naming service

with an interceptor. This interceptor checks if a SOAP mes-

sage is being sent within the boundaries of a transaction,

and if so, the interceptor injects the transaction context into

the outgoing SOAP message (Fig. 5). On the server side,

another interceptor is employed. The role of such intercep-

tor is to check if a transaction context comes along with an

incoming SOAP message. If so, the interceptor extracts the

context and imports it into the TM (Fig. 5).

Figure 5. Propagation of the transaction con-
text.

Automatic registration with the coordinator. When

the TM imports a transaction context, it creates a local

branch of a distributed transaction. The application server

automatically enlists with that branch any XA resources

(e.g., databases, message queues) used to fulfill the SOAP

request that conveyed the transaction context. If at least one

3



XA resource is used by the transaction branch, the TM that

hosts the branch must register itself as a participant with the

transaction coordinator, in order to receive the messages of

the 2PC protocol.

A very convenient feature of XActor is that when it re-

ceives an enlistment request from the application server,

it automatically and transparently registers itself as a par-

ticipant with the transaction coordinator. Therefore, in an

application server that runs XActor, all the enlistments are

automatically handled: the application server automatically

enlists XA resources in the transaction branch, and XActor

automatically registers itself as a participant with the trans-

action coordinator.

Transaction-aware Web services. The automatic reg-

istration support of XActor affords our plug-in a very attrac-

tive feature: a Web service does not need to explicitly inter-

act with the TM to register a participant with the transaction

coordinator. The Web service only needs to be configured to

use the transactional interceptors. Therefore, converting a

non-transaction-aware Web service into a transaction-aware

one is just a matter of changing a deployment descriptor.

No changes in the source code are necessary. This is not

the case in TMs that do not support automatic registration.

Those TMs require changes in the code of the Web service

to register a participant with the coordinator.

Propagation of transaction identifiers. The XA spec-

ification defines a structure named Xid, which uniquely

identifies a distributed transaction. An Xid has three com-

ponents, but only two of them are relevant for identifying a

distributed transaction: the format identifier (FormatId),

which is an integer, and the global transaction identifier

(GlobalId), which is a byte array.

In a transaction spanning several TMs (or, equivalently,

several application servers), all accesses to RMs should

be tied to the same [FormatId, GlobalId] pair. For

this reason, that pair needs to be propagated along with

transactional SOAP calls between application servers. The

[FormatId, GlobalId] pair should therefore correspond to

the globally unique transaction identifier included into the

transaction context. The WS-C/WS-AT standards, however,

specify that the transaction identifier field of the transaction

context is a URI. Moreover, those specifications do not de-

fine a standard way of encoding a [FormatId, GlobalId]

pair as a URI.

Nevertheless, the WS-C/WS-AT transaction context is

extensible, i.e., it has extension elements that may be used

to convey additional information. Those elements may

therefore be used to propagate the [FormatId, GlobalId]

pair in an implementation-specific way. This is exactly what

our plug-in does in order to propagate transaction identifiers

across XActor instances.

The arrangement described above supports transactions

spanning several XActor instances. Unfortunately, that so-

lution is not applicable to multi-vendor scenarios, due to

the lack of an agreed-upon way of encoding a [FormatId,

GlobalId] pair as a URI. This may lead to deadlocks.

For example, if two application servers access the same

RM using different [FormatId, GlobalId] pairs, the RM

will consider each access as part of a different transaction,

even if both accesses are actually part of the same dis-

tributed transaction. A deadlock will occur if both applica-

tion servers attempt to update the same piece of information

(since the RM is not aware that both update requests are part

of the same transaction).

3.3. Support for the SOAP/HTTP invoca-
tion mechanism

XActor supports distributed transactions in an extensi-

ble way. It knows two general kinds of transactional re-

sources: XA resources, such as XA-enabled databases and

message queues, and remote resources, which are acces-

sible to the TM through a remote invocation mechanism.

From the point of view of the coordinator, a remote re-

source represents a transaction branch that lives in another

TM. The coordinator uses a remote invocation mechanism

to communicate with the TM that hosts the foreign transac-

tion branch. Our plug-in enhances XActor with support to

remote resources accessible through the SOAP/HTTP invo-

cation mechanism.

Stub wrappers. The XActor instance that coordinates

a distributed transaction is unaware of the remote invoca-

tion mechanisms through which it communicates with other

TMs. It interacts with those TMs only through an interface

named org.xactor.Resource, which contains the opera-

tions called by the coordinator during the execution of the

2PC protocol. Our plug-in provides a stub wrapper4 that

implements the Resource interface and forwards the invo-

cations, using SOAP messages, to a transaction participant

(Fig. 6).

Figure 6. The stub wrapper that implements

the Resource interface.

An instance of XActor that plays a participant role

in a transaction is also unaware of the remote invoca-

tion mechanism through which it communicates with the

transaction coordinator. A transaction participant interacts

with its coordinating TM only through an interface named

4A stub wrapper encapsulates a protocol-specific stub (e.g., an IIOP

stub or a SOAP/HTTP stub) that acts as a local proxy for a remote party.

4



org.xactor.Coordinator. Our plug-in provides a stub

wrapper that implements the Coordinator interface and

forwards the invocations, via SOAP messages, to the trans-

action coordinator.

3.4. Transaction recovery

To enable crash recovery, each TM involved in a dis-

tributed transaction has a transactional log, maintained in

stable storage. At key points of the execution of the 2PC

protocol, the coordinator and the participants write records

on their respective transactional logs. Such records contain

sufficient information to either ratify or abort the modifica-

tions made within the scope of the distributed transaction.

The coordinator records references to all the TMs that

contain branches of a given distributed transaction (i.e., to

all the transaction participants). The presence of those ref-

erences in the log of the coordinator is important because

if the coordinator crashes, it will still be able to contact, at

recovery time, the TMs that hold the branches of the dis-

tributed transaction. The participants record in their log a

reference to the coordinator. Such reference is essential for

a crashed participant to reestablish communication with the

coordinator at crash recovery time.

References to TMs. Since the WS-C/WS-AT stan-

dards define port types to enable inter-TM communication,

the references to TMs are written in the transactional log

as references to Web services that implement those port

types. The WS-Addressing [17] standard defines an XML

element, named endpoint reference, that fully describes a

Web service endpoint. Our plug-in uses this standardized

element to record references to remote TMs in the transac-

tional log. Fig. 7 shows an example of endpoint reference

that describes a transaction participant.

<wscoor:ParticipantProtocolService

xmlns:wsa=’http://schemas.xmlsoap.org/ws/2004/08/addressing’
xmlns:wscoor=’http://schemas.xmlsoap.org/ws/2004/10/wscoor’
xmlns:xactcoor=’http://xactor.sf.net/wscoor/2004/10’>

<wsa:Address>http://10.0.0.1/xactor/Participant</wsa:Address>
<wsa:ReferenceProperties>

<xactcoor:ActivityID>3</xactcoor:ActivityID>
</wsa:ReferenceProperties>

</wscoor:ParticipantProtocolService>

Figure 7. An endpoint reference.

The example has two nested elements, named Address

and ReferenceProperties. The former holds the address

of the Web service that represents the remote-accessible

TM; the latter contains opaque information that is used to

uniquely identify a transaction branch within the partici-

pant. The ReferenceProperties element is important

because a participant may simultaneously host branches of

several distributed transactions. Hence, when the coordi-

nator sends a message to the participant, it has to spec-

ify, through the ReferenceProperties element, to which

transaction branch that message is intended.

4. Related work

The CORBA Transaction Service (OTS) [9] is the rel-

evant standard for distributed transactions in CORBA en-

vironments. It also plays a key role in the Java appli-

cation server scenario, since the Java Transaction Service

(JTS) [12] is a Java mapping of the OTS. Nevertheless, the

OTS presents problems in interactions through firewalls and

is not supported in Microsoft domains. The WS-C/WS-AT

standards, on the other hand, use SOAP/HTTP to traverse

firewalls and are supported by the Microsoft .NET platform.

Kandula [1] is an open-source implementation of the

WS-C/WS-AT standards. It is developed under the Apache

Software Foundation umbrella and builds upon the Axis

SOAP stack. Kandula has two main shortcomings: it is tied

to a specific SOAP stack and — more importantly — it does

not support crash recovery. Our work does not have these

deficiencies: it runs on a standard servlet container and does

provide support for crash recovery.

JBoss Transactions (JBossTS) [5], formerly Arjuna

Transaction Service [10], is an open-source transaction

manager that bears similarities to XActor. The former has

modules that implement the OTS and WS-C/WS-AT stan-

dards atop a transaction manager core; the latter imple-

ments the same standards as dynamically deployable plug-

ins. The JBossTS modules that implement the WS-C/WS-

AT standards currently have two shortcomings5: (i) its crash

recovery mechanism for Web services transactions is not

yet fully functional, and (ii) it requires that Web services

explicitly register participants with the TM, which then reg-

isters itself with the coordinator. Our WS-C/WS-AT service

does not have these shortcomings; furthermore, it offers ad-

ditional features. One such feature allows transaction de-

marcation by stand-alone clients (i.e., clients that do not run

on an application server). Another distinguishing feature

— perhaps the most important one — is the support to dis-

tributed transactions that involve not only Web services, but

also remote resources accessible through an open-ended set

of transports. At the root of the latter point is the extensible

architecture of the TM. XActor supports distributed trans-

actions over any combination of the transports provided by

its plug-ins. For example, with its IIOP and SOAP/HTTP

plug-ins, XActor can coordinate distributed transactions

that simultaneously involve transactional CORBA objects

and transactional Web services. Moreover, the set of sup-

ported transports may grow at run time through the dynamic

deployment of plug-in components.

5. Concluding remarks

This paper presented the design and implementation of

a plug-in that enhances XActor with full support for atomic

5At the time of writing, the JBossTS team was addressing those issues.

5



transactions over Web services. Our future work plans in-

clude implementing other transaction models, such as the

one defined by the WS-BA standard.

During the development of this work, we have identified

weaknesses in the WS-AT standard. We have also drawn

useful conclusions from our experience. These are the main

lessons we learned from implementing WS-C and WS-AT:

• Future revisions of WS-AT should support 1PC. WS-

AT does not currently support the one-phase commit

(1PC) [3] optimization. Even if a distributed transac-

tion involves only a single participant, WS-AT requires

the execution of the full 2PC protocol. The lack of the

1PC in WS-AT is unfortunate, since it is an important

and widely known optimization — both the OTS and

XA standards support the 1PC.

• Future revisions of WS-AT should address heuris-

tic management. WS-AT currently defines a single

SOAP fault, named InconsistentInternalState.

Transaction heuristics have to be conveyed within

that fault message, in an implementation-specific for-

mat. Since all the heuristics take the form of

an InconsistentInternalState fault, there is no

standard way to differentiate them in multi-vendor en-

vironments.

• Future revisions of WS-AT should standardize Xid

URIs. The WS-AT standard specifies that the trans-

action identifier is propagated as a URI, but it does

not define a standard way of mapping [FormatId,

GlobalId] pairs to URIs. The extension elements

of the transaction context may be used to propa-

gate [FormatId, GlobalId] pairs in implementation-

specific ways. In multi-vendor scenarios, however,

such arrangements lead to problems that range from

suboptimal performance of transactions to deadlocks.

• Transaction managers should be extensible. The ex-

tensible architecture of XActor greatly simplified our

work. To the best of our knowledge, no other trans-

action manager fully supports distributed transactions

over an open-ended set of transports, which may even

grow at run time. Supporting pluggable transports does

not significantly raise the effort involved in building

a transaction manager, nor does it impact the perfor-

mance of the TM in a noticeable way [11]. There is

therefore no reason for leaving that feature out from

new TM projects.

• Dependence on a SOAP stack is burdensome. Tying

the implementation of the WS-C/WS-AT port types to

a SOAP stack is undesirable because changes in the

stack may affect the behavior of the endpoints. Our

work avoids dependence on specific frameworks by

running within a standard servlet container and using

thin software layers to integrate with SOAP stacks.

• Performance-critical Web services require lightweight

technologies. Even though JAX-RPC and JAX-WS

greatly simplify the development of Web services in

the Java EE platform, they are unsuitable for the de-

velopment of performance-critical Web services. We

came to this conclusion after implementing a WS-

C/WS-AT service prototype using JAX-RPC Web ser-

vices and replacing that prototype by an implementa-

tion based on lighter technology (StAX).

The last two lessons concern not only WS-AT, but also WS-

C. Those lessons should therefore be relevant to designers

of other systems built atop WS-C, whose field of applica-

bility goes well beyond transaction processing and com-

prises areas such as business processes and workflow man-

agement.

References

[1] Apache Kandula website, 2007. http://ws.apache.org/

kandula/.

[2] BEA Systems. Streaming API for XML Specification, v1.0,

October 2003.

[3] J. Gray and A. Reuter. Transaction Processing: Concepts

and Techniques. Morgan Kaufmann, 1992.

[4] JBoss Remoting website, 2007. http://labs.jboss.

com/portal/jbossremoting/.

[5] JBoss Transactions website, 2007. http://www.jboss.

com/products/transactions/.

[6] OASIS. Web Services Atomic Transaction 1.1, April 2007.

[7] OASIS. Web Services Business Activity 1.1, April 2007.

[8] OASIS. Web Services Coordination 1.1, April 2007.

[9] Object Management Group. CORBA Transaction Service

Specification, version 1.4, March 2003.

[10] G. D. Parrington, S. K. Shrivastava, S. M. Wheater, and

M. C. Little. The Design and Implementation of Arjuna.

Computing Systems, 8(3):255–308, 1995.

[11] F. Reverbel and I. Silva Neto. Dynamic support to transac-

tional remote invocations over multiple transports. In Pro-

ceedings of the 2008 ACM Symposium on Applied Comput-

ing, pages 499–506, Fortaleza, Ceará, Brazil, March 2008.

[12] Sun Microsystems. Java Transaction Service Specification,

v1.0, December 1999.

[13] Sun Microsystems. Java API for XML-Based RPC Specifi-

cation, v1.1, October 2003.

[14] Sun Microsystems. SOAP with Attachments API for Java

Specification, v1.2, October 2003.

[15] Sun Microsystems. Java API for XML Web Services Speci-

fication, v2.0, October 2005.

[16] The Open Group. Distributed TP: The XA Specification,

February 1992.

[17] W3 Consortium. Web Services Addressing 1.0 — Core, May

2006.

[18] W3C Consortium. Document Object Model (DOM) Level 3

Core Specification, April 2004.

[19] C. Walls and R. Breidenbach. Spring in Action, Second Edi-

tion. Manning, 2007.

6


