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Abstract

We have measured the performance of transactional remote
invocations over three commonly used transports: IIOP,
SOAP/HTTP, and JBoss Remoting. In the IIOP case, our
transactional invocations followed the CORBA OTS stan-
dard. In the SOAP/HTTP case, they followed the WS-
Coordination and WS-AtomicTransaction standards. In the
(non-standard) JBoss Remoting transport, they employed a
transactional layer modeled after CORBA OTS. For each
of those three transports, we evaluate the overhead of prop-
agating the transactional context, the cost of creating and
committing empty transactions, and the total overhead in-
curred when the two-phase commit protocol actually runs.
We also evaluate the impact of the transaction log on the
total overhead.
Index Terms: Transactions, performance, transactional in-
vocations, CORBA OTS, WS-AtomicTransaction.

1. Introduction
The ability of grouping two or more service requests into

an atomic unit is a crucial feature of contemporary middle-
ware platforms. Atomicity across remote requests is typi-
cally achieved by adding transactional capabilities to a re-
mote method invocation (RMI) mechanism. Two standard
transports are currently used for remote method invocations:
IIOP is the RMI protocol defined by CORBA and adopted
by Java EE; SOAP/HTTP plays a similar role in the Web
services architecture. Even though it standardizes a trans-
port (IIOP) for remote invocations, Java EE allows applica-
tion servers to employ other transports as well. As a result,
a number of proprietary protocols are also used in Java EE
environments.

Two current standards address transactional remote in-
vocations. The Object Transaction Service (OTS) speci-
fication [16] adds transactional capabilities to the remote
invocation mechanism provided by CORBA. A pair of
WS specifications, WS-Coordination (WS-C) [15] and WS-
AtomicTransaction (WS-AT) [14], does the same for the

SOAP/HTTP stack. Similar “transactional layers” can be
defined over non-standard RMI mechanisms. Each such
layer comprises:
• a service for creating and committing (or aborting)

global transactions;
• the definition of a data structure — the transactional

context — that must be propagated along with each re-
mote invocation performed as part of some transaction;
• a remotely accessible Coordinator interface, which

supports dynamic registration of transaction partici-
pants (“resources”) with the transaction coordinator;
• a remotely accessible Resource interface, through

which the coordinator drives the two-phase commit
(2PC) protocol at transaction completion time.

Creating a global transaction means assigning a global
id to the transaction and creating a Coordinator for the
transaction. The global transaction id and a remote ref-
erence to the Coordinator are the most important fields
of the transactional context carried along with service re-
quests. As a result of the propagation of that reference,
the remote servers involved in a distributed transaction can
reach the Coordinator in order to register transactional
Resources as 2PC participants. Note that the propagated
Coordinator reference (and hence the transactional con-
text) may take different forms, depending upon the RMI
transport employed: it can be a CORBA object reference,
a Web service endpoint reference, or some similar artifact.

The addition of a transactional layer atop an RMI mech-
anism certainly takes a toll in performance. This paper
offers an experimental evaluation of the costs inherent to
such layers. It presents the results of our experiments
with transactional remote invocations in a Java EE sce-
nario. We have used a popular Java EE server, the JBoss
Application Server (JBossAS) [8], and three RMI trans-
ports supported by that server: IIOP, SOAP/HTTP, and the
non-standard protocol implemented by the JBoss Remot-
ing framework [11]. We have included the JBoss Remoting
transport in this study for the following reasons: (i) it is the
RMI protocol that JBossAS employs by default; (ii) as such,
and given the wide usage of JBossAS, it is a very commonly



used transport; (iii) it can be loosely regarded as a represen-
tative of the proprietary transports implemented by various
Java EE servers.

Given the central role of distributed transactions in en-
terprise computing, the scarcity of published results on the
performance of transactional remote invocations is a very
surprising fact. How much does it cost to propagate the
transactional context along with remote invocations? Is the
round-trip time of a transactional remote invocation com-
parable to the one of a plain (non-transactional) remote in-
vocation? What is the cost of starting and ending global
transactions? How big is the overhead of the 2PC protocol?
How much of this overhead is due to the 2PC logging activ-
ity, which involves synchronous (disk-forced) writes of the
relevant 2PC events to stable storage? If we look at remote
invocations over different transports, how do all the “trans-
actional costs” vary across transports? To the best of our
knowledge, these questions have not been answered before.

Even though JBossAS supports multiple RMI transports,
its default transaction manager currently offers full support
only to the IIOP transport. For that reason, we have con-
figured JBossAS to use another transaction manager. In the
next section of this paper, we summarize the features of our
chosen transaction manager, XActor [17], which fully sup-
ports distributed transactions over IIOP, SOAP/HTTP, and
JBoss Remoting. Section 2 also has further details on the
advantages of using XActor instead of the transaction man-
ager included in JBossAS. Section 3 describes the hard-
ware and software environment in which we ran all our ex-
periments. The core of this paper is Section 4, which of-
fers answers to the questions posed in the preceding para-
graph. While the numbers in Section 4 are specific to our
JBossAS/XActor scenario, they convey qualitative informa-
tion that is likely to be relevant to other transactional sce-
narios as well. The last two sections review related work
(Section 5) and present our concluding remarks (Section 6).

2. XActor
XActor1 is a distributed transaction manager written in

Java and aimed at server-side application containers such
as Java EE servers and dependency injection frameworks.
A running XActor instance is typically associated with an
application container instance and exists in the same server
process as that container. XActor fully supports failure re-
covery: it performs write-ahead logging of the relevant 2PC
events and implements a recovery procedure that runs after
server crashes.

A plug-in architecture allows XActor to coordinate dis-
tributed transactions over an open-ended set of RMI mecha-
nisms and transports. Each XActor plug-in is a dynamically

1Project website: http://xactor.sourceforge.net/. All the
source code for XActor is available as free software at the project web-
site.

deployable module that is specific to a given RMI mecha-
nism. It cooperates with XActor to extend that mechanism
with transactional capabilities.

Three XActor plug-ins are currently available: an IIOP
plug-in, which implements the CORBA OTS standard, a
SOAP/HTTP plug-in, which implements the WS-C and
WS-AT specifications, and a JBoss Remoting plug-in,
which implements a non-standard transactional layer mod-
eled after CORBA OTS. We have used these plug-ins in our
experiments.

In comparison with the transaction manager included in
JBossAS, XActor offers a broader support to distributed
transactions over multiple transports. The transaction man-
ager shipped with JBossAS also implements distributed
transactions over SOAP/HTTP, but at this time it does not
provide a remotely accessible interface for transaction de-
marcation by SOAP clients, nor does it support failure re-
covery for Web service transactions. Moreover, support
to distributed transactions over JBoss Remoting is not yet
available in that transaction manager.

3. Experimental environment

3.1. Hardware

In our experiments, we used a set of P4 3.0 GHz ma-
chines equipped with 1 GB of RAM and a 7,200 RPM disk.
The machines were connected through a switched Ethernet
LAN of 100 Mbps.

3.2. Software

All the machines ran the Linux operating system, ver-
sion 2.6.17. Sun’s Java SE Runtime Environment ver-
sion 5.0 (1.5.0 01-b08) was installed on those machines, as
well as JBossAS version 5.0.0.Beta2. More precisely, the
JBossAS version we used in the experiments comprised the
following components: JBoss Remoting 2.2.0.GA, JBoss
Serialization [12] 1.0.3.GA, JacORB [3] 2.2.4.jboss.patch1,
JBossWS [13] 2.0.0.GA, and Woodstox [21] 3.1.1.

We have made five adjustments to the out-of-the-box
configuration of JBossAS. First, we disabled the trace log,
used to record information about the activities performed
by the application server. If that log were left enabled,
a considerable amount of information would be recorded
during the execution of a distributed transaction, thus in-
creasing the average execution time of the transaction. Sec-
ond, we configured the JBoss Remoting framework to use
JBoss Serialization instead of plain Java serialization. This
change allowed JBoss Remoting to achieve its best perfor-
mance2. Third, we set the Java heap size to 768 MB, us-
ing the -Xms768m and -Xmx768m parameters of the virtual
machine. By allocating as much memory as possible to

2No similar option exists for IIOP and SOAP/HTTP.
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the Java heap, we minimized the number of garbage col-
lections that took place during our experiments. Fourth,
we replaced the database engine included in JBossAS with
Apache Derby [2] 10.1.3.1, a database management system
(DBMS) with support to transactions. Finally, the fifth and
most significant adjustment was the replacement of the de-
fault transaction manager with XActor.

4. Performance experiments
4.1. Methodology

Each performance experiment comprised a sequence of
N1 + N2 iterations, logically divided in two phases: the
warm-up phase consisted of the first N1 iterations and had
the purpose of bringing the system to a steady state; the
measurement phase consisted of the remaining N2 itera-
tions, whose times were measured. The charts and statistics
in this section summarize the data collected in the measure-
ment phases of our experiments.

In the first and second experiments, each iteration was
a single remote invocation. In the third experiment, each
iteration was a pair of remote invocations. In the fourth
(and last) experiment, each iteration was a sequence of up
to four remote invocations. We used N1 = 5, 000 and N2 =
15, 000 in the first three experiments, and N1 = 2, 000 and
N2 = 8, 000 in the fourth experiment. In all the experi-
ments, the client and server(s) ran on distinct machines. We
performed all the measurements at the client side, using the
System.nanoTime() method of the standard Java library.

4.2. Non-transactional remote invocations

The main goal of our first experiment was to provide
a yardstick against which transactional remote invocations
could be evaluated. We have measured the round-trip times
of plain (non-transactional) remote invocations over IIOP,
SOAP/HTTP, and JBoss Remoting. The invocations were
targeted at a stateless EJB component [19] that was simul-
taneously accessible via those three transports and had its
transaction attribute set to Never.

For each transport, an EJB client invoked the following
methods:
• getInt100(), which returns an array containing 100

integers;
• getDouble100(), which returns an array containing

100 doubles;
• getString100(), which returns a string of length

100;
• getString1000(), which returns a string of length

1,000;
• getString10000(), which returns a string of length

10,000;
• getDataSet(), which returns an instance of the
DataSet class, shown in Fig. 1;

public class DataSet implements java.io.Serializable {

private byte _byte;

private boolean _boolean;

private short _short;

private int _int;

private long _long;

private float _float;

private double _double;

private String _string;

... // Getters and setters.

}

Figure 1. The DataSet class.

• getDataSet10(), which returns an array containing
10 DataSet instances;
• getDataSet100(), which returns an array containing

100 DataSet instances.
Each method had a trivial implementation that just re-

turned a constant value. Therefore, most of the time spent
in a remote invocation was due to marshalling and commu-
nication over the selected transport (IIOP, SOAP/HTTP, or
JBoss Remoting). We exercised a variety of return types to
determine their impact in the duration of the remote invoca-
tions.

Experimental results. Fig. 2 summarizes the results
of our first experiment. More specifically, the bar chart in
Fig. 2a depicts the average round-trip times of the remote
invocations, while the table in Fig. 2b presents the same
round-trip times, plus information on the total number of
bytes exchanged per remote invocation (the sum of the sizes
of the request and response messages).

Fig. 2 shows that IIOP and JBoss Remoting perform
quite similarly for non-transactional remote invocations.
More accurately, JBoss Remoting is on average slightly
faster than IIOP. SOAP/HTTP, however, is considerably
slower than those two. The asymmetry between SOAP and
the other two transports was expected, as SOAP is a textual,
XML-based, transport, while IIOP and JBoss Remoting are
both binary transports. The performance gap is most no-
table for the getDataSet100 method, where SOAP/HTTP
is about 20 times slower than IIOP or JBoss Remoting.

The results show that the influence of the return types on
the round-trip times is larger in the case of SOAP/HTTP.
For this transport, the methods that returned arrays or com-
plex data types were considerably slower than the ones
involving just character strings. For example, a SOAP
call to getDataSet10 took on average 9.29 ms, while a
SOAP call to getString10000 took only 6.57 ms on av-
erage (29% faster). Note that the SOAP invocation of
getString10000 was faster than the getDataSet10 in-
vocation, even though it involved bigger messages (11,010
bytes exchanged per getString10000 invocation, against
2,788 bytes exchanged per getDataSet10 invocation).
This fact shows that the number of bytes exchanged is not
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(a) Average round-trip times.

getInt100 getDouble100 getString100 getString1000 getString10000 getDataSet getDataSet10 getDataSet100

IIOP Average round-trip time 1.05 ms 1.21 ms 0.93 ms 1.30 ms 3.20 ms 1.07 ms 1.17 ms 1.42 ms
Data transfer per invocation 548 bytes 956 bytes 324 bytes 2,124 bytes 20,128 bytes 304 bytes 480 bytes 1204 bytes

SOAP/HTTP Average round-trip time 8.40 ms 8.65 ms 4.23 ms 4.48 ms 6.57 ms 6.85 ms 9.29 ms 32.43 ms
Data transfer per invocation 2,938 bytes 3,190 bytes 1,096 bytes 2,000 bytes 11,010 bytes 1,190 bytes 2,788 bytes 18,776 bytes

JBoss Remoting Average round-trip time 1.02 ms 1.15 ms 0.92 ms 1.16 ms 2.23 ms 1.15 ms 1.18 ms 1.28 ms
Data transfer per invocation 1,315 bytes 1,715 bytes 995 bytes 1,895 bytes 10,895 bytes 1,142 bytes 1,259 bytes 1,709 bytes

(b) Detailed results.

Figure 2. Results of the first experiment.

the major component of the remote invocation cost.
In comparison with SOAP messages containing just

strings, the ones that contain arrays or complex data types
have much more XML elements and therefore demand con-
siderable more work from the XML parser. For this reason,
the marshalling/unmarshalling of those messages is slower.
In other words, the more complex a SOAP message is, the
more work it will demand from the XML parser, and slower
the remote invocation will be.

Our results suggest that XML parsing is the bot-
tleneck of the SOAP/HTTP transport. Fig. 2b shows
that SOAP/HTTP and JBoss Remoting invocations to the
method getString1000 involve messages of approxi-
mately the same size (2,000 and 1,895 bytes, respectively).
In spite of that, Fig. 2a shows that the JBoss Remoting in-
vocation is much faster than its SOAP/HTTP counterpart
(1.16 versus 4.48 ms, respectively).

SOAP has been frequently criticized for its verbosity.
Nevertheless, our measurements show that one cannot
blame just the verbosity of SOAP for the bad performance
of that protocol. In some cases the other transports can be
as verbose as SOAP, but are still much faster, as they do not
incur the cost of XML parsing. In our experimental sce-
nario, the (XML-based) marshalling/unmarshalling mecha-
nism used by SOAP was much less efficient than the ones
employed by JBoss Remoting (JBoss Serialization) and by
IIOP. In other words, the SOAP/HTTP invocations were
slower than those performed over IIOP or JBoss Remoting
due to the parsing of XML messages. Previous research
had already pinpointed XML parsing as the bottleneck of
the SOAP protocol [1, 10, 4].

4.3. Transactional remote invocations

When a transaction spans more than one process, the
transactional context needs to be propagated across the pro-
cesses involved in the transaction. For example, if an EJB

client performs a remote invocation — within the scope of
a transaction — on an EJB deployed on some application
server, the remote invocation must carry the transactional
context. The EJB client could be either a stand-alone Java
application or a component deployed in another server.

The goal of our second experiment was to evaluate the
cost of context propagation. An EJB client performed a se-
ries of remote invocations against the same EJB component
used in the previous experiment. However, this time we set
to Required the transaction attribute of the EJB. Moreover,
the EJB client performed the whole sequence of invocations
within the scope of a single transaction. A transactional
context was therefore propagated along with every invoca-
tion.

Experimental results. Fig. 3a shows the average
round-trip times of the transactional remote invocations,
emphasizing (in dark gray) the overhead due to the prop-
agation of the transactional context. Except for the parts in
dark gray, Fig. 3a is identical to Fig. 2a. The measured over-
head does not include the time needed to create and commit
the transaction; it corresponds only to the propagation of the
transactional context. Fig. 3b presents the detailed results.

As we can see in Fig. 3a, the overhead imposed by the
propagation of the transactional context is approximately
constant for a given transport, i.e., it does not depend on the
method being invoked. This is expected, since the transac-
tional context has a roughly constant size for a given trans-
port (about 760 bytes for IIOP, 730 for SOAP/HTTP, and
1,050 for JBoss Remoting), and the process of injecting,
propagating, and extracting the context is identical for all
the invocations performed over the same transport.

Fig. 3b also shows the average overheads caused by the
propagation of the transactional context. In the case of IIOP,
those overheads were close to 1.5 ms. For SOAP/HTTP and
JBoss Remoting, they were around 1.0 and 0.4 ms, respec-
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(a) Average round-trip times.

getInt100 getDouble100 getString100 getString1000 getString10000 getDataSet getDataSet10 getDataSet100

IIOP

Average round-trip time 2.58 ms 2.69 ms 2.50 ms 2.73 ms 4.70 ms 2.63 ms 2.68 ms 2.78 ms
Data transfer per invocation 1,308 bytes 1,716 bytes 1,084 bytes 2,884 bytes 20,888 bytes 1,064 bytes 1,240 bytes 1,964 bytes

Average overhead 1.53 ms 1.48 ms 1.57 ms 1.43 ms 1.50 ms 1.56 ms 1.51 ms 1.36 ms
Transactional context size 760 bytes 760 bytes 760 bytes 760 bytes 760 bytes 760 bytes 760 bytes 760 bytes

SOAP/HTTP

Average round-trip time 9.35 ms 9.52 ms 5.21 ms 5.36 ms 7.44 ms 7.78 ms 10.48 ms 33.55 ms
Data transfer per invocation 3,673 bytes 3,925 bytes 1,831 bytes 2,735 bytes 11,745 bytes 1,925 bytes 3,523 bytes 19,511 bytes

Average overhead 0.95 ms 0.87 ms 0.98 ms 0.88 ms 0.87 ms 0.93 ms 1.19 ms 1.12 ms
Transactional context size 735 bytes 735 bytes 735 bytes 735 bytes 735 bytes 735 bytes 735 bytes 735 bytes

JBoss Remoting

Average round-trip time 1.40 ms 1.49 ms 1.38 ms 1.50 ms 2.58 ms 1.49 ms 1.51 ms 1.64 ms
Data transfer per invocation 2,367 bytes 2,767 bytes 2,047 bytes 2,947 bytes 11,947 bytes 2,194 bytes 2,311 bytes 2,761 bytes

Average overhead 0.38 ms 0.34 ms 0.46 ms 0.34 ms 0.35 ms 0.34 ms 0.33 ms 0.36 ms
Transactional context size 1,052 bytes 1,052 bytes 1,052 bytes 1,052 bytes 1,052 bytes 1,052 bytes 1,052 bytes 1,052 bytes

(b) Detailed results.

Figure 3. Results of the second experiment.

tively. It is surprising that IIOP — a binary transport —
presented the largest overheads. After careful analysis, we
found out that the main cause of those overheads was the
marshalling and unmarshalling of CORBA references. The
transactional context defined by the CORBA OTS specifica-
tion contains two such references3. Those references have
to be marshalled when the context is injected into an outgo-
ing CORBA invocation, and unmarshalled when the invo-
cation reaches its target. Our experiments have shown that
the marshalling/unmarshalling of CORBA references is a
slow process, at least in the case of the particular CORBA
implementation (JacORB) used by JBossAS.

Even though IIOP presented a large overhead in our
transactional scenario, it is still considerably faster than
SOAP/HTTP (whose performance was again hurt by XML
parsing). JBoss Remoting, in turn, is now noticeably faster
than IIOP, mainly because the overhead of propagating
transactional contexts over that transport is much smaller.

4.4. Transaction demarcation

The goal of our third experiment was to estimate
the transaction demarcation cost, i.e., the time spent
starting and committing empty transactions over IIOP,
SOAP/HTTP, and JBoss Remoting. For each of these trans-
ports, a remote client started new transactions and immedi-
ately committed them. This experiment allowed us to mea-
sure the cost of creating and committing transactions over
those transports. Such cost is relevant because it appears
in every transaction started by some remote client and suc-
cessfully completed.

3The OTS context contains not only a CORBA reference to the transac-
tion Coordinator, but also a second reference, which identifies the trans-
action Terminator.

Since in our experiment the transactions were created
and immediately committed, they did not involve any trans-
actional resources. As a result, the two-phase commit pro-
tocol did not run, and transaction completion was a very fast
process.

Experimental results. Fig. 4a shows the average time
spent creating and committing a transaction over a selected
transport. Each bar in that figure has two parts: the bottom
part corresponds to the time employed to create a new trans-
action; the upper part corresponds to the time employed to
commit the transaction. The whole bar therefore represents
the overall time spent in transaction demarcation. Fig. 4b
presents the detailed results.

As Fig. 4a shows, JBoss Remoting again presented better
performance than IIOP and SOAP/HTTP. At the root of this
better performance is JBoss Serialization, the very efficient
marshalling/unmarshalling mechanism used by JBoss Re-
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(a) Average demarcation times.

Create Commit Total

IIOP Average time 2.75 ms 0.97 ms 3.72 ms
Data transfer 1,168 bytes 89 bytes 1,257 bytes

SOAP/HTTP Average time 1.23 ms 0.93 ms 2.16 ms
Data transfer 1,758 bytes 1,000 bytes 2,758 bytes

JBoss Remoting Average time 0.81 ms 0.43 ms 1.23 ms
Data transfer 1,661 bytes 682 bytes 2,343 bytes

(b) Detailed results.

Figure 4. Results of the third experiment.
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moting. Surprisingly, Fig. 4a also shows that SOAP/HTTP
was faster than IIOP in this experiment. The reason, again,
is the marshalling and unmarshalling of CORBA references.
Whenever a client creates a new transaction, a transactional
context is also created and is returned to the client. As we
have already seen in 4.3, the transactional context defined
by CORBA OTS contains two CORBA references, and the
marshalling and unmarshalling of those references is a slow
process.

The presence of CORBA references in the transactional
context is what makes the creation of a transaction over
IIOP much slower than the creation of a transaction over
SOAP/HTTP (2.75 versus 1.23 ms). On the other hand,
commit messages carry no transactional context. If we con-
sider the transaction commit operation, we see that it con-
sumes about the same time over IIOP and over SOAP/HTTP
(0.97 and 0.93 ms, respectively).

4.5. Two-phase commit overhead

The experiments presented so far did not involve any
transactional resource. In order to evaluate the total over-
head of distributed transactions, we performed an experi-
ment that actually runs the 2PC protocol.

Our fourth experiment employed a simple distributed ap-
plication, which comprises an EJB client and two identical
EJB components4. We ran the EJB client as a stand-alone
application, on its own machine, and deployed each of the
EJB components on a distinct JBossAS instance. Each of
these server instances ran on a separate computer. A fourth
machine hosted another JBossAS instance, whose transac-
tion manager (an instance of XActor) played the role of
transaction coordinator. Each of the EJB components kept
persistent data on a separate DBMS, as shown in Fig. 5.
We used the Derby DBMS in its embedded mode and em-
ployed Derby’s “embedded JDBC driver”, so that each of
the DBMS instances ran in the same virtual machine as
the JBossAS instance that contains the corresponding EJB
component.

The EJB client performs the following steps (Fig. 5):
1. it creates a new transaction,
2. it invokes a method of the EJB on the first server,

triggering a write operation to a database in the first
DBMS,

3. it invokes a method of the EJB on the second server,
triggering a write operation to a database in the second
DBMS, and then

4. it commits the transaction.

Steps 2 and 3 involve the propagation of a transactional con-
text along with the remote invocations targeted at the EJBs.

4Those EJB components are different from the one used on the previous
experiments.

Figure 5. The fourth experiment.

In those same steps, each database write triggers the reg-
istration of an application server5 with the transaction co-
ordinator. Finally, in step 4, the coordinator runs the 2PC
protocol.

We performed this experiment using IIOP, SOAP/HTTP,
and JBoss Remoting. For each transport, we have actually
performed three variations of the experiment and measured
the duration of the steps above in the following scenarios:

(i) using no transactions at all (steps 1 and 4 were skipped
in this scenario),

(ii) using transactions, but with the transaction log dis-
abled, and

(iii) using transactions, with the transaction log enabled.
In the first scenario, steps 2 and 3 do not propagate a

transactional context (since no transaction was created) and
thus no application server registers remote Resources with
the coordinating server instance. Moreover, scenario (i)
does not include a 2PC run. Since scenario (i) comprises
only a pair of non-transactional invocations to EJB methods,
it provides a yardstick against which the transactional sce-
narios (ii) and (iii) can be compared. The two transactional
scenarios allow us to evaluate the impact of the transaction
log on the overall cost of distributed transactions.

Experimental results. For every transport, Fig. 6a
presents a set of three bars. The leftmost bar of each set
(in white) corresponds to scenario (i). It represents the total
time spent on steps 2 and 3, with no transactions involved.
(Recall that steps 1 and 4 are not executed in scenario (i).)
The bar in the middle corresponds to scenario (ii). It shows
the time spent on steps 1 to 4 when transactions are em-
ployed, but the transaction log is disabled. Finally, the right-
most bar of each set corresponds to scenario (iii). It reports
the time spent on steps 1 to 4 when transactions are em-
ployed and the transaction log is enabled. Fig. 6b shows the
detailed results for scenario (iii) (transactions employed and
transaction log enabled).

As Fig. 6a shows, JBoss Remoting was the fastest trans-
port in our three experimental scenarios. This result makes
sense, as JBoss Remoting was the fastest transport for trans-

5More precisely, each database write triggers the enlistment of an ap-
plication server’s transaction manager (an instance of XActor) as a remote
Resource registered with the transaction coordinator (also an instance of
XActor).
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Create Invocation 1 Invocation 2 Commit Total
IIOP 2.80 ms 7.11 ms 7.07 ms 7.99 ms 24.97 ms

SOAP/HTTP 1.27 ms 13.34 ms 10.22 ms 15.57 ms 40.40 ms
JBoss Remoting 0.94 ms 4.43 ms 4.08 ms 6.03 ms 15.49 ms

(b) Detailed results for scenario (iii).

Figure 6. Results of the fourth experiment.

actional remote invocations (Fig. 3a) and for transaction
demarcation (Fig. 4a). Therefore, it is not surprising to
see JBoss Remoting also as the fastest transport when the
2PC protocol actually runs. IIOP presented a considerably
slower performance when compared to JBoss Remoting, but
it was still noticeably faster than SOAP/HTTP.

We can also see in Fig. 6a the cost of transaction creation
was largest in the IIOP case. Again, this fact was due to
marshalling/unmarshalling of the CORBA references con-
tained in the OTS context returned by the operation that cre-
ates a new transaction. For the same reason, the EJB invo-
cations over IIOP were considerably slower than their coun-
terparts over JBoss Remoting: all those invocations carried
the transactional context, but in the IIOP case the propa-
gated context contained CORBA references. SOAP/HTTP
once again presented the worst execution times, due to its
use of XML-based communication.

Fig. 6a also shows that the use of the transaction log did
not impose a significant overhead on the execution of a dis-
tributed transaction. The difference between the second and
third bars of each transport was minimal. This means that
the cost of force-writing transaction log records to disk is
much smaller than the communication costs (marshalling,
unmarshalling, and context propagation included) of all the
interactions between the parties involved in a distributed
transaction, regardless of the transport employed. In the
end, the communication overheads dominate the execution
time and the 2PC logging activity becomes irrelevant.

Finally, Fig. 6a shows that the use of distributed trans-
actions imposes a very high overhead, independently of the
selected transport. If we look at the IIOP set of bars, we see
an execution time of 4.74 ms when no transactions were em-
ployed. Since this time increases to 24.97 ms when we em-
ploy transactions and enable the 2PC log, the transactional
overhead is 427%. In the case of SOAP/HTTP, the execu-
tion time increases from 14.84 ms to 40.40 ms: an overhead
of 172%. For JBoss Remoting, the transactional overhead
is 233% (a time increase from 4.65 ms to 15.48 ms).

5. Related work

Very little has been published about the performance of
transactional remote invocations. There is, however, plenty
of research on the performance of plain (non-transactional)
remote invocations. In [7], Elfwing et al. compare the
performance of remote invocations over SOAP/HTTP and
IIOP. The authors identify some reasons for the poor per-
formance of SOAP/HTTP and suggest ways of improving
SOAP/HTTP implementations. In [5], Davis and Parashar
evaluate the performance of five SOAP stacks and identify
sources of inefficiency in them. The distinguishing points of
their work are: (i) it evaluates several SOAP stacks and (ii) it
compares the performance of non-transactional remote in-
vocations via SOAP/HTTP, CORBA, and Java RMI. In [6],
Demarey et al. present a benchmark to evaluate the round-
trip times of non-transactional remote invocations. They ap-
ply that benchmark to a set of middleware platforms that in-
cludes five IIOP-based ORBs, one SOAP/HTTP stack, and
two Java EE servers.

Previous research on the performance of transactional re-
mote invocations is scarce and focused exclusively on the
IIOP transport. In [9], Gorton et al. examine three imple-
mentations of the CORBA OTS specification and present a
valuable comparison between them. The authors also as-
sess the cost of transaction demarcation over IIOP. The two
major differences between their work and ours are: (i) we
examine other transactional costs besides demarcation, and
(ii) we evaluate those costs not only for the IIOP transport,
but also for SOAP/HTTP and JBoss Remoting.

In [20], Tran and Gorton discuss the scalability of trans-
actional CORBA applications. By using a simple transac-
tional application, the authors evaluate the impact of simul-
taneous clients on the performance of a particular OTS im-
plementation.

6. Concluding remarks

This paper considered transactional remote invocations
in single-client scenarios. Our ongoing work addresses
scalability issues. We are currently investigating the behav-
ior of the same transport protocols (IIOP, SOAP/HTTP and
JBoss Remoting) when transactional invocations are con-
currently performed by a growing number of remote clients.

The performance cost of transactional remote invoca-
tions has three components: transaction demarcation, prop-
agation of the transactional context along with each in-
vocation, and two-phase commit. Most of the first com-
ponent can be avoided if transaction demarcation takes
place within an application server. This indeed happens in
many Java EE scenarios, either with the usage of container-
managed transactions or with the explicit demarcation of
transaction boundaries by application components deployed
in the Java EE server. The other two components of the
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transactional cost are unavoidable. Note that the third com-
ponent comprises both the 2PC execution, at commit time,
and the dynamic registration of transaction participants with
the 2PC coordinator.

Our last experiment allowed us to evaluate the total cost
of transactional remote invocations in a very simple dis-
tributed application. It is interesting to look at the break-
down of that cost into its three components. The trans-
actional overhead of 427%, observed in the IIOP case, is
the sum of the following three components: a demarcation
overhead of 80%, a context propagation overhead of 65%,
and a 2PC overhead of 283%. For SOAP/HTTP, the over-
all cost of 172% corresponds to a demarcation overhead of
15%, plus a context propagation overhead of 13%, plus a
2PC overhead of 145%. For JBoss Remoting, the transac-
tional cost of 233% corresponds to a demarcation overhead
of 29%, plus a context propagation overhead of 16%, plus a
2PC overhead of 187%.

We believe that the high overheads in the IIOP case could
be substantially reduced by optimizations on the ORB code
that marshals/unmarshals CORBA references. Reference
marshalling/unmarshalling takes a heavy toll not only in
transaction demarcation and context propagation. It also
accounts for significant part of the 2PC overhead, as the
OTS operation that registers a transaction participant with
the 2PC coordinator receives a CORBA reference as input
parameter and returns another reference to its caller.

In the SOAP/HTTP case, the relatively low overheads
are probably due to the highly optimized implementa-
tion of the WS-C and WS-AT specifications by XActor’s
SOAP/HTTP plug-in [18]. Even so, the SOAP/HTTP trans-
port still has the worst execution times. XML parsing is at
the root of the bad performance of that transport.

The usage of the Derby DBMS in “embedded mode”
certainly affected the relative overheads that we observed.
Running the DBMS in the same process as the applica-
tion server makes the database accesses faster than what
would be possible with a separate database server. If we had
placed the DBMSs on separate machines, the EJB invoca-
tions would take longer and the cost of transactional remote
invocations would be smaller in relative terms. Neverthe-
less, that cost would still be very high. Transactional remote
invocations should therefore be used wisely. They are indis-
pensable in many situations, but their overuse can severely
impair the performance of a distributed application.
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