VISIGENIC

Programmer’s
Guide

\isIBroker for C++

COPYRIGHT NOTICE

Copyright © 1996 Visigenic Software, Inc.
All Rights Reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system,

or translated into any human or computer language, in any form, or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission
of the copyright owner, Visigenic Software, Inc., a Delaware corporation.

The copyrighted software that accompanies this manual is licensed to the End User for use only in
strict accordance with the End User License Agreement which Licensee should read carefully
before using the software.

U.S. GOVERNMENT RESTRICTED RIGHTS

THIS SOFTWARE AND DOCUMENTATION ARE PROVIDED WITH RESTRICTED RIGHTS.
USE, DUPLICATION OR DISCLOSURE BY THE GOVERNMENT IS SUBJECT TO
RESTRICTIONS AS SET FORTH IN SUBPARAGRAPH (c)(1)(ii) OF THE RIGHTS IN
TECHNICAL DATA AND COMPUTER SOFTWARE CLAUSE AT DFARS 252.227-7013 OR
SUBPARAGRAPHS (a)—(d) OF THE COMMERCIAL COMPUTER LICENSED TECHNOLOGY-
RESTRICTED RIGHTS AT 48 CFR 52.227-19, AS APPLICABLE. THIS SOFTWARE IS
UNPUBLISHED UNDER THE COPYRIGHT LAWS OF THE UNITED STATES. ALL RIGHTS
RESERVED.

CONTRACTOR/MANUFACTURER IS VISIGENIC SOFTWARE, INC., A DELAWARE
CORPORATION, 951 MARINER'S ISLAND BLVD., SAN MATEO, CA 94404.

Visigenic™ and the Visigenic logo are trademarks of Visigenic Software, Inc.

Microsoft® is a registered trademark and Microsoft SQL Server™, ODBC™, Windows™ and
Windows NT™ are trademarks of Microsoft Corporation in the United States and other countries.
ORACLE® is a registered trademark of Oracle Corporation.

UNIX® is a registered trademark of Novell, Inc.

All other trademarks and tradenames are the property of their respective owners. All specifications
are subject to change without notice.

Release, 10/15/96

TABLE OF CONTENTS

PREFACE

Organization of this Manualvi
Typographic Conventionsvii

Platform Conventionsvii

Syntax Conventionsviii

Where to Find Additional Informationix

Contacting Visigenic Technical Support ix

CHAPTER 1

VISIBROKERBASICS

What is CORBA?1-2

What is VisiBroker?1-3

Developing Applications with VisiBroker1-3
VisiBroker Features1-5

CHAPTER 2

GETTING STARTED

The Library Application2-2
Application Development2-2
Running the IDL Compiler2-4

The Client Files2-5

Implementing the Server2-8
Implementing the Client2-11
Compiling the Client and Server2-15
Running the Client and Server2-16
Conclusion2-17

CHAPTER 3

NAMING AND BINDING TO OBJECTS

Interface and Object Names3-2
Binding to Objects3-5

Specifying Bind Options3-8
Operations on Object References3-12

Widening and Narrowing Object References3-18

- TABLE OF CONTENTS

CHAPTER 4 OBIJECT AND IMPLEMENTATION ACTIVATION 4-1

Object Implementation4-2

The Basic Object Adaptor4-4
Object Activation Daemon4-5
Unregistering Implementations4-11
ORB Interface to the OAD4-14
Activating Objects Directly4-15
Activating Objects with the BOA4-16

Object and Implementation Deactivation4-20

CHAPTER 5 THE SMART AGENT . . e e 5-1

Smart Agent Features5-2

ORB Domains5-4

Connecting Agents on Different Local Networks5-5
Using Point-to-point Communications5-6

Object Implementation Fault Tolerance5-7

Object Migration5-8

Advanced Networking Options5-9

CHAPTER 6 ERROR HANDLING e e 6-1

Exceptions in the CORBA Model6-2
System Exceptions6-3

User Exceptions6-8

CHAPTER 7 HANDLING EVENTS e 7-1

Event Handler Concepts7-2
Client Event Handlers7-2
Implementation Event Handlers7-9

TABLE OF CONTENTS

CHAPTER 8

ADVANCED PROGRAMMING TOPICS.o 8-1

Using Threads with VisiBroker8-2

Threads in an Object Implementation8-2

Threads in a Client Application8-4

Linking Multi-threaded Applications8-6

Event Loop Integration8-6

Integration with XWindows8-12

Integration with the Windows/NT Event Loop8-12
Integration with Microsoft Foundation Classes8-14
Multithreaded Servers: Windows 95 and Windows NT8-15
Integration with Galaxy8-16

Integration with Other Environments8-18

CHAPTER 9

DYNAMIC INTERFACES. oottt e e e e e e 9-1

Dynamic Invocation Interface9-2
The Interface Repository9-2
The Request Class9-5

Creating a DIl request9-6
Initializing a DIl Request9-7
Sending a DIl Request9-14

CHAPTER 10

THEIDL COMPILERttt e 10-1

The IDL Compiler10-2

Code Generated for Clients10-3
Code Generated for Servers10-6
Interface Attributes10-8

Oneway methods10-10

Mapping Object References10-11
Interface Inheritance10-11

- TABLE OF CONTENTS

CHAPTER 11 IDL TO C++ LANGUAGE MAPPING i 11-1

Primitive Data Types11-2
Strings11-2
Constants11-4
Enumerations11-6

Type Definitions11-6
Modules11-8

Complex Data Types11-9

CHAPTER 12 PARAMETER PASSING RULESo 12-1

Implicit Arguments12-2
Explicit Arguments12-2
Primitive Data Types12-2
Complex Data Types12-3
T_var Data Types12-12

APPENDIX A PLATFORMS WITHOUT C++ EXCEPTION SUPPORT A-1

For Platforms without C++ Exception SupportA-2
The Exception MacrosA-2
Using the Exception MacrosA-2

Object Implementation ConsiderationsA-3

vi

PREFACE PreFaCE

The VisiBroker for C+ Programmer’s Guide provides information on develop-
ing distributed object-based applications. The Preface lists the contents of the
VisiBroker for C+ Programmer’s Guide, describes typographic and syntax con-
ventions used throughout the manual and provides references for more informa-

tion about CORBA.

Organization of this Manual Vi
Typographic Conventions vii
Platform Conventions vii
Syntax Conventions viii
Where to Find Additional Information ix

Contacting Visigenic Technical Support ix

I -

viii

ORGANIZATION OF THIS MANUAL

This manual includes the following sections:

Chapter 1,"VisiBroker Basics', introduces CORBA concepts and describes the software
devel opment process using VisiBroker for C+-.

Chapter 2, "Getting Started", provides in-depth descriptions of application development using an
example application.

Chapter 3, "Naming and Binding to Objects", describes how objects are identified and located by
client applications.

Chapter 4, "Object and Implementation Activation", discusses how objects are implemented and
made available for use by client applications.

Chapter 5, "The ORB Smart Agent", describes the directory service agent and its features.

Chapter 6, "Error Handling", provides detailed information on handling error with C++
exceptions and Environments.

Chapter 7, "Handling Events", describes the VisiBroker event handling mechanism.

Chapter 8, "Advanced Programming Topics', discusses multi-threaded programming and how to
integrate event processing with other event-based services.

Chapter 9, "Dynamic Interfaces’, describes the how to dynamically obtain object interfaces and
build requests.

Chapter 10, "The IDL Compiler", describes the VisiBroker IDL compiler for C+.
Chapter 11, "IDL to C++ Language Mapping", describes the language mapping for C++.

Chapter 12, "Parameter Passing Rules', describes the conventions for passing parameters.
Appendix A providesinformation about platforms without C++ exception support.

PREFACE

Typographic Conventions

This manual uses the following conventions:

CONVENTION USED FOR

boldface Bold type indicates that syntax should be typed exactly as shown. For
UNIX, used to indicate database names, filenames, and similar terms.

italics Italics indicates information that the user or application provides, such as
variables in syntax diagrams. It is also used to introduce new terms.

conput er Computer typeface is used for sample command lines and code.
UPPER CASE Uppercase letters indicate Windows file names.
1 Brackets indicate optional items.

An ellipsis indicates that the previous argument can be repeated.
A vertical bar separates two mutually exclusive choices.

A column of three dots indicates the continuation of previous lines
of code.

Platform Conventions

This manual uses the following symbols to indicate that information is platform-specific:

All Windows platforms including Windows 3.1, Windows NT, and Windows 95
Windows NT only
Windows 95 only

All UNIX platforms

EPHEE

I -

Syntax Conventions
This manual also uses the following style for command syntax descriptions.
A small diamond to the left of an

explanation indicates that theterm is Callouts describes the parameter to
required for the syntax. which the callout line points.

The reference data to pass to
this server to distinguish

€ Theinterface name provided by The name of the executable Arguments to between different instances of
an object in this program that implements the pass to the the same object
implementation object. server.

regobj -o library,Harvard -p shared -f /home/user/dir/libsrv -a arg1 -e env1 -r refdata

@ The object name of the ORB @ The activation policy for this Environment variables to be set
object provided by this server. for this server.
implementation.

€ = required
THIS STYLISTIC DEVICE... INDICATES THIS SYNTACTICAL MEANING...
] These small squares indicate the continuation of code (this
- device is not shown in the previous syntax diagram).
. A small diamond to the left of an explanation indicates that the
term is required for the syntax.
[;UID=user-name] Brackets around a term indicate that the term is optional. (An

example of this is not shown in the previous syntax diagram.)

data-source-name A term in italics is a variable, or something for which you must
supply a definition.

Table 0-1 Stylistic devices used and their meaning.

PREFACE

Where to Find Additional Information

For more information about VisiBroker for G+, refer to the following information sources:
» \MisiBroker for G+ Reference Guide. This guide contains the information on developing
distributed object applicationsin C++ for Windows and UNIX platforms.

» MisiBroker for G+ Installation Guide. This guide contains the instructions for installing
VisiBroker for C+ on Windows and UNIX.

= VisiBroker for C+ Release Notes. These notes contain late-breaking information about the
current release of VisiBroker for G+.

For more information about the CORBA specification, refer to the following sources:
= The Common Object Request Broker: Architecture and Specification - 96-03-04. This
document is available from the Object Management Group and describes the
architectural details of CORBA. You can access the CORBA specification using the
World Wide Web at the following URL: www.omg.org/corbask.htm.

= |DL to C+ Language Mapping - 94-9-14. This document is available from the Object
Management Group and describes the Interface Definition Language mappings for
C++.

CONTACTING VISIGENIC TECHNICAL SUPPORT

Visigenic offers avariety of support options to help you get the most from your Visigenic products. For
information about these options, see the service and support information available in the Services’
section of Visigenic’s web site at http://www.visigenic.com or contact our Sales Department at 1-800-
632-2864. If you have purchased Premium or Incident Support for your Visigenic products, Visigenic's
Technical Support group can be reached at:

= Phone: 415-286-1700
= E-mail: support@visigenic.com
= Fax: 415-286-2475

Please be prepared to provide complete information about your environment, the version of the Visigenic
product you are using, and a detailed description of the problem you are having.

I -

Xii

VISIBROKER BASICS

CHAPTER 1

This chapter introduces VisiBroker for C+, acomplete implementation of the
CORBA 2.0 specification for devel oping distributed obj ect-based applications.

It includes the following major sections:

What is CORBA?
What is VisiBroker?
Developing Applications with VisiBroker

VisiBroker Features

1-2
1-3
1-3

VISIBROKER BASICS

WHAT Is CORBA?

The Common Object Request Broker Architecture (CORBA) specification was devel oped by the Object
Management Group to address the complexity and high cost of developing software applications.
CORBA specifies an object oriented approach to creating software components that can be reused and
shared between applications. Each object encapsul ates the details of its inner workings and presents a
well defined interface, which reduces application complexity. The cost of developing applicationsis also
reduced because once an object isimplemented and tested, it may be used over and over again.

The Object Request Broker (ORB) in Figure 1-1 connects a client application with the objectsit wishes
to use. The client application does not need to know whether the object resides on the same computer or
islocated on aremote computer somewhere on the network. The client application only needs to know
the object’s name and understand how to use the object’s interface. The ORB takes care of the details of
locating the object, routing the request and returning the result.

Loca Host Remote Host

Client
Application

Object
Implementation

request request

| Object Request Broker I

Figure 1-1 Client application acting on an object through an ORB.

Accessing Distributed Objects

To use an object, your application must first bind itself to the object, specifying the object’s interface
name. The ORB locates the host that offers an object with the requested interface name. If the server that
implements the requested object is not currently executing, the ORB can ensure that the appropriate
server is started. After the bind is completed, the client application can invoke operations on the object.
The client's method invocations are translated into requests that are sent to the object server.

WHAT IS VISIBROKER?

WHAT IS VISIBROKER?

VisiBroker is an ORB that offers a complete implementation of the CORBA specification. VisiBroker
makes it easy for you to devel op distributed, object-based client applications and servers. VisiBroker
offers these important features.

= Support for the C+ programming language.

= Object naming.

= The ability to distribute objects across a network.
= Support for persistent objects.

= Support for dynamic object creation

= Interoperability with other ORB implementations.

DEVELOPING APPLICATIONS WITH VISIBROKER

Thefirst step to creating an application with VisiBroker is to specify al of your objects interfaces using
CORBA's I nterface Definition language (IDL). The IDL mappings for the C+ language are covered in
Chapter 11.

The interface specification you create is used by the VisiBroker IDL compiler to generates stub routines

for the client application and skeleton code for the object implementation. The stub routines are used by

the client application for all method invocations. You use the skeleton code, along with code you write, to
create the server that implements the objects.

The code for the client and object, once completed, is used as input to your C+ compiler and linker to
produce the executabl e client application and object server. These steps are shown in Figure 1-2 and are
covered in detail in Chapter 2.

VISIBROKER BASICS

Client
Application
Code
written by
you

Definitions

Object

in _\
IDL

VisiBroker
IDL
Compiler

Client Object
Stubs Skeletons
S Object
\ / Implementation
\ / written by

you

C++
Compiler/
Linker

Client
Application

Object
\ Implementation

y 4
skeleton
VisiBroker
Object Request Broker

Figure 1-2 Creating an application using VisiBroker.

1-4

VISIBROKER FEATURES

VISIBROKER FEATURES

In addition to providing the features defined in the CORBA specification, VisiBroker offers enhance-
ments that increase application performance and reliability.

Fault Tolerance

VisiBroker can determineif the connection between your client application and an object server has been
lost, due to a server crash or network failure. When afailure is detected, an attempt is made to restart the
server or to connect your client to a suitable server on a different host. The details of fault tolerance are
covered in Chapter 5.

Optimized Binding

When your application binds to an object, VisiBroker selects and establishes the most efficient communi-
cation mechanism. Depending on the platform and the location of the requested object, the bind may be
established through a pointer reference, shared memory or a TCP/IP socket. Chapter 3 describes opti-
mized binding in detail.

Dynamic Invocation Interface

VisiBroker maintains an interface repository that contains the IDL specificationsfor all of the objects that
have been activated. This repository can be used by client applications to discover arecently added
object, obtain the object’s interface and dynamically construct requests to act on the object. The Dynamic
Invocation Interface (DI1) is covered in Chapter 9.

Support for Threads

On those platforms that support threads, VisiBroker is thread-safe and reentrant for both the client appli-
cation and the server. For each thread within your client application, each bind is allocated its own thread
within the server. When your client disconnects, the server thread allocated for your client will exit.
Thread support is discussed in Chapter 8.

Event Handling Facilities

VisiBroker allows you to monitor the following events:
= Connection establishment and destruction.

= Theentry to and exit from an object method.

You can use these events to provide debugging, logging, accounting, performance monitoring or security
information for your applications. Chapter 7 describes event handling.

VISIBROKER BASICS

Event Loop Integration - For Single Threaded Applications Only

You may find that the objects you implement require interaction with an event-driven environ-
ments.Object implementations are al so event driven because they must wait for client requests. VisiBro-
ker gives you the ability to incorporate your object’s event polling into the network or windowing
component’s event loop. This frees you from the complexity of managing nested event loops in your
code. Chapter 8 explains the details of event loop integration.

CHAPTER 2

GETTING STARTED

This chapter describes the devel opment of distributed, object-based
applications with VisiBroker for C+ on Unix platforms. A sample application
is used to illustrate each step of the development process. It includes the
following major sections:

The Library Application 2-2
Application Development 2-2
Running the IDL Compiler 2-4
The Client Files 2-5
Implementing the Server 2-8
Implementing the Client 2-11
Compiling the Client and Server 2-15
Running the Client and Server 2-16

Conclusion 2-17

GETTING STARTED

2-2

THE LIBRARY APPLICATION

NOTE

In this chapter, you will build a sample client application that adds a book to alibrary’s book server. The
book server could be used by auniversity’s library to track the books in its inventory. The client applica-
tion could be used by the university’s purchasing department to add titles when new books arrive.

The directory examples/library, located within the directory where your VisiBroker package was
installed, contains the files discussed in this chapter. If you do not know the location of the VisiBroker
package on your system, see your administrator.

Some of the file names used as examplesin this chapter have more than eight characters and may not
work with your platform.

APPLICATION DEVELOPMENT

You will use the following steps to devel op and run the sample application.

Identify the objects required by the application.

Write a specification for the objects using the Interface Definition Language (IDL).
Use the IDL compiler to generate the client stub code and server skeleton code.
Write the client application code.

Write the object server code.

Compile the client and server code.

Start the object server.

Run the client application.

APPLICATION DEVELOPMENT

Library
Object

Definitions _\\
in IDL
VisiBroker

IDL
Compiler

Client Object @
Stubs Skeletons

Client s Library Object
Application \ , Implementation
Code \ / written by
written by you
you

C++

Compiler/
Linker

Library
Object
Implementation

Client
Application

skeleton

VisiBroker
Object Request Broker

Figure 2-1 Developing the sample library book application.

GETTING STARTED

The Library Object

One of the objectsin your sample application isthe library that contains a selection of books. A complete
library server would probably offer methods to checkout and check-in books as well as add, remove and
search for books. In this simple example, our | i br ar y object will only offer asingle method named
add_book to add abook to the library.

Defining the Library Objects

Thefilelib.idl, shown below, contains the IDL specifications for the book structure and the library inter-
face. Thebook structure consists of just two strings; one for the author of the book and one for the
book’stitle. Thel i br ary objectsadd_book method requiresast r uct book asitsonly argu-
ment.

struct book {
string authors;
string title;

}s

interface library {
bool ean add_book(in book book_i nfo);

}s

Figure 2-2 IDL specification for the book structure and library object.

RUNNING THE IDL COMPILER

The VisiBroker IDL compiler is named orbeline. Since your lib.idl file requires no special handling, it
can be complied by typing the following command.

pronpt> orbeline lib.idl

For moreinformation on the command line options for the IDL compiler, see theVisiBroker for C++ Ref-
erence Guide.

Code Generation

The DL compiler generatesfour files; lib_client.cc, lib_client.hh, lib_server.cc and lib_server.hh. Two
of thefiles are for building the client application and two are for building the object server. All generated
fileshave either a“cc “or “hh” suffix to help you distinguish them from source files that you create, which
should use the “C” and “h” extensions.

THE CLIENT FILES

THE CLIENT FILES

Theincludefilelib_client.hh contains the C+ type definitions for the book structure aswell as a C+
definition for thel i br ar y class. The IDL compiler also generatesabook _var classthat actsasa
wrapper for the book structure.You may find it more convenient to usethebook _var classrather
than the book structure.

struct book {
CORBA: : String_var author;
CORBA: : String_var title;
/1 operator= is generated for internal use

b

cl ass book_var
{
public:

book_var();
book_var (book *ptr);
book_var (const book_var & var);
~book_var();
book_var & operat or=(book *ptr);
book_var & operat or=(const book_var& var);
book *operator->();
operator book *();
operator book &();

/1 other methods for internal use
private:
book * _ptr;
H

Figure 2-3 A portion of the lib_client.hh file generated by the IDL compiler.

The Library Class

Thel i br ary classdefinition generated inlib_client.hh containstheadd _book method specifiedin
the IDL file, along with avariety of other methods. Thelib_client.cc file contains the C++ implementa-
tion of methods for use by the client application as well asinternally used methods. Your client applica-
tion will usetheadd__book method to send an “add book” request to the library server.

GETTING STARTED

class library: public virtual CORBA::Object

{
private:
/1 methods used internally
public:
static library_ptr _duplicate(library_ptr obj);
static library_ptr _nil();
static library_ptr _narrow CORBA:: Obj ect *obj);
static library_ptr _bind(
const char *object_name = NULL,
const char *host_name = NULL,
const CORBA: : Bi ndOpti ons* opt =NULL);
virtual CORBA:: Bool ean add_book(
const book& book_info);
h

Figure2-4 Thel i brary class.

THE _BIND METHOD

When your application invokesthe _bi nd method, the ORB locates and establishes a connection with
the library server and returns a handle to the library object. If the ORB cannot locate or connect to the
library server object, the _bi nd method will return NULL and a system exception will be raised. The
binding processis described in detail in Chapter 3.

THE ADD_BOOK METHOD

Theadd_book method generated by the IDL compiler for your client application is actually a stub
method. When your client application calls add_book, arequest is sent to the ORB with all the necessary
parameters. The ORB ensures that the request is sent to the library server object. Once the method is exe-
cuted on the server, the ORB returns the results to your client application.

OTHER METHODS

Several other methods are provided that allow your client application to duplicate, initialize and narrow a
| i brary object reference. These methods are not used in the example client application, but they are
discussed in detail in Chapter 3.

The library_var Class

A classnamed| i brary_var isalso generated by the IDL complier, though it is not used in the
example application. Thel i brary_var class adds the ability to automatically delete object refer-
ences when the object isdeleted or re-initialized. The_var classesare described in detail in Chapter 10.

2-6

THE CLIENT FILES

The Server Files

Theincludefile lib_server.hh contains the C++ definitionsfor the_sk_| i br ar y classthat you use
to derive the implementation of the library object server. This class contains a skeleton method
_add_book. This skeleton method is used by the ORB on the server side to unpack the parameters
from your client application’s “add book” request and invoke the actual add_book method on the
server object.

The add_book method is a pure virtual function. You create the actual implementation of this method for
the library server object. The following excerpt showsthe _sk_| i br ar y class definition contained in
thelib_server.hh file.

Thelib_server.cc file contains the implementation for the _add _book method and other methods that
are used internally by the ORB.

class _sk_library: public library

{
public:
/* The followi ng operations need to be inplenented
* by the server */
virtual CORBA:: Bool ean add_book(
const book& book_info) = 0;
/* The follow ng operations are inplenented
* automatically */
static void _add_book(void *obj,
CORBA: : Mar shal Stream &strm
CORBA: : Princi pal _ptr principal,
const char *oper);
H

Figure2-5 The_sk_I| i brary class.

GETTING STARTED

IMPLEMENTING THE SERVER

There are two tasks you must complete to implement the library object server; create the server's
Li br ary classand implement the mai n routine. To create the server’s Li br ar y class, you must
first understand its relationship with the client’s| i br ary classandthe_sk_| i brary class.

The library Class Hierarchy

TheLi br ary server class that you implement is derived fromthe _sk_| i br ary classthat was
generated by the IDL compiler. Look closely atthe _sk_| i br ary class definition and notice it is
derived fromthel i br ar y classdefined inthelib_client.hh file. Figure 2-6 showsthe class hierarchy.

class library

(generated in lib_client.hh
and used by the client)

class _sk_ library
(generated in lib_server.hh)

class Library

(written by programmer
and used by the server)

Figure 2-6 Class hierarchy for thelibrary interface.

2-8

IMPLEMENTING THE SERVER

Creating the Library Class

TheLi br ary classisthe actual implementation of the library object, defined in the libsrv.h file. This
classusesabook | i st classto provide afixed array of book structures. The method

add _to |ist iscdledbytheLi brary: :add_book method. Thisfileis not generated by the
IDL compiler.

#i nclude <lib_server. hh>
const CORBA::ULong MAX BOCKS = 3;

class book_li st

{
private:
short _book_count;
book* _book_array[MAX_BOCKS] ;
public:
book_list() { _book _count = 0; }
~book_list() {
for (int i=0; i < _book_count; i++) {
del ete _book_array[i];
}
}
CORBA: : Bool ean add_to_list (const book &bk) {
if (_book_count >= MAX_BOCKS)
return O;
} else {
_book_array[_book_count] = new book(bk);
_book_count ++;
return 1
}
H
class Library: public _sk_library
{ .
private:
book_list bk_list;
public:
Li brary(const char *object_name = NULL);
CORBA: : Bool ean add_book(const book& book_i nfo);
H

Figure2-7 TheLi brary andbook_|i st classes.

GETTING STARTED

2-10

IMPLEMENTING LIBRARY METHODS

You must provide implementations for the server'sLi br ar y: : add_book method aswell asthe
object’s constructor. In our example these implementations are placed in the lib_srvr.C file, along with
the mai n routine. This codeis not generated by the IDL compiler.

The Li brary:: Li brary constructor must call the_sk_1 i br ary constructor to perform inter-
nal initialization and to register the object’s interface with the ORB.

Theadd_book method involvesasimplecall tothebk | i st objectsadd_t o_| i st method,
theLi br ary class internal representation of the list of books.

#i nclude <lib_server. hh>
int main(int argc, char *const *argv)

{
/1 Initialize ORB and Basic Object Adaptor (BOA)
CORBA: : ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA: : BOA var boa = orb->BOA_init(argc, argv);
/1 Instantiate Library C ass
Library library_server;
/1 Notify BOA that object is ready
boa->obj _is_ready(& ibrary_server);
/1 Begin event |oop of receving nessages
boa- >i npl _i s_ready();
return(l);
}

/1 Library constructor

Li brary:: Library(const char *object_nane)
_sk_library(object_nane)

{

}

/1 Add book nethod
CORBA: : Bool ean Library::add_book(const book& book_i nf o)

{
}

return bk_list.add_to_list(book_info);

Figure 2-8 TheLi br ary server implementation.

IMPLEMENTING THE CLIENT

THE MAIN ROUTINE

Beforeinstantiating the Li br ar y object, the main routine must make two calls; one to the ORB and the
other to the Basic Object Adaptor (BOA). The BOA isthe interface between the object implementation
and the ORB. The BOA allows your object to notify the ORB when it is ready to accept client requests.

Thear gc and ar gv parameters are the same parameters passed to the main routine. These parameters
are described in “Advanced Networking Options’ on page 5-9 and can be used to specify options for the
ORB and BOA.

After instantiating the Li br ar y object, the server tellsthe BOA that the object isready by invoking the
obj _i s_r eady method.

Lastly, the server calsthei npl _i s_r eady method to start the event loop that receives client
reguests. The details of the event loop are discussed in Chapter 4.

IMPLEMENTING THE CLIENT

Thefilenamed lib_clInt.C containsthe library client application. The application accepts two parameters,
the author and title of a book. These parameters will be used to initialize abook structure which will
then be used as aparameter to thel i br ar y object'sadd__book method. Since your application will
usethel i brary cass, it mustincludethelib_cint.hfile.

INITIALIZATION

Thefirst thing your client application needsto do isinitialize the ORB.

#i ncl ude <i ostream h>
#include <lib_client.hh>
mai n(int argc, char *const *argv)
{
CORBA: : Bool ean ret;
/1 Initialize the ORB
CORBA: : ORB_var orb = CORBA:: ORB_init(argc, argv);

Figure 2-9 Initializing the ORB.

GETTING STARTED

2-12

CHECKING THE PARAMETERS

After initializing the ORB, your application validates the author and book title parameters and creates a
book structure. For moreinformation on using ar gc and ar gv, see“ORB_init Options’ on page 5-9.
Noticethat ar gv[1] andar gv[2] arecasttoconst char *.Thiscasting causes memory to

be allocated automatically because the author and title are defined as St r i ng_var types (see Figure
2-3).

if(argc < 3) {
cout << “You mnust specify an author and title”
<< endl;
return(0);
}
book book_entry;
book_entry.author = (const char *)argv[1];
book_entry.title = (const char *)argv[2];

Figure 2-10 Checking the author and title input parameters.

BINDING TO THE LIBRARY SERVER

Before your client application invokestheadd__book method, it must first invokethe _bi nd method.
Theimplementation of the_bi nd method is generated automatically by the IDL complier. The__bi nd
method requests the ORB to locate and establish a connection to the library server. If the server is suc-
cessfully located and a connection is established, a proxy object is created to represent the server’s

Li br ary object. It isareference to the proxy object that is returned to your client application.

If the__bi nd method fails, a system exception israised. You should use thet r y and cat ch state-
ments to detect any failures, print a message and exit the client application.

library *library_object;
try {

}

cat ch(const CORBA:: Exception& excep) {
cout << “Error binding to library object” << endl;
return(0);

library_object = library::bind();

Figure 2-11 Bindingtothel i br ary object.

IMPLEMENTING THE CLIENT

NOTE If your platform’'s C++ compiler does not supportt ry and cat ch, you can use the VisiBroker macros
PMCTRY and PMCCATCH, described in Appendix A of this guide.

ADDING THE BOOK

Theinvocation of theadd__book method, likethe _bi nd method, should uset r y and cat ch to
handle any exceptions that may beraised. Theadd_book method on the client sideis actually a stub
generated by the IDL compiler that marshals al the data required for the request so that it can be sent to
the object server.

try {
}
cat ch(const CORBA:: Exception& excep) {
cout << “Error adding book” << endl;

CORBA: :rel ease(library_object);
return(0);

ret = |library_object->add_book(book_entry);

Figure 2-12 Invoking theadd_book method.

GETTING STARTED

#i ncl ude <instream h>
#include <lib_client.hh>
mai n(int argc, char *const *argv)

{
CORBA: : Bool ean ret;
/'l Initialize the ORB
CORBA: : ORB_var orb = CORBA:: ORB_init(argc, argv);
if(argc < 3) {
cout << “You must specify an author and title”
<< endl;
return(0);
}
book book_entry;
book_entry.author = (const char *)argv[1];
book_entry.title = (const char *)argv[2];
/! Declare the library object
library *library_object;
try {
/1 Locate object and return a pointer to it
library_object = library::_bind();
}
/1 Check for errors
catch(const CORBA:: Exception& excep) ({
cout << “Error binding to library object” << endl;
return(0);
}
/1 performthe add_book invocation on |ibrary_object
try {
ret = library_object->add_book(book_entry);
}
/1 Check for errors
catch(const CORBA: : Exception& excep) {
cout << “Error adding book” << endl;
CORBA: : rel ease(library_object);
return(0);
}
if(ret == 1) {
cout << “Book added successfully” << endl;
} else {
cout << “Unable to add book” << endl;
}
CORBA: : rel ease(library_object);
return(l);
}

Figure 2-13 The complete library client application.

2-14

COMPILING THE CLIENT AND SERVER

COMPILING THE CLIENT AND SERVER

Thelib_cInt.C file that you created and the lib_client.cc file generated by the IDL compiler to create the
client application are compiled and linked together. Thelib_srvr.Clib_srvr.C file that you created, along
with the lib_server.cc and the lib_client.cc files generated by the IDL compiler, are compiled and linked
to create the library server. Both the client application and the library server must be linked with the Visi-
Broker liborb library.

Selecting a Makefile

The library subdirectory of the examples directory of your VisiBroker release contains an appropriate
makefile for your platform. You may need to customize the makefile to work with your environment.
Shown below is a sample makefile for the Solaris™ SPARCworks C+ compiler.

CC = CC # set to your C++ conpiler
ORBDI R = /usr/| ocal /vbroker # directory where VisiBroker was installed
CCI NCLUDES = -1. -1$(ORBDI R)/include
CCFLAGS = $(CCl NCLUDES) # conpiler flags you m ght need

such as “-g”
ORBLIB = -L$(ORBDIR)/1lib -lorb # The VisiBroker library (single threaded)
LDFLAGS = -Isocket -Insl -1dl # System libraries required by Solaris
SRCS = lib_client.cc lib_server.cc library_ client.cc library_server.cc

.SUFFI XES: .0 .cc .hh

. cc. o
$(CO $(CCFLAGS) -c -0 $@ $<

.C.o:
$(CO $(CCFLAGS) -c -0 3@ $<
all: lib_client lib_server
library_client: lib_client.o lib_clnt.o
$(CC -o lib_client lib_client.o \
lib_clnt.o $(ORBLIB) $(LDFLAGS)
library_server: lib_server.o lib_srvr.o lib_client.o
$(CC -0 lib_server lib_server.o \
lib_srvr.o lib_client.o $(ORBLIB) $(LDFLAGS)
cl ean:

rm-f *.0 *.hh *.cc core lib_client |ib_server

Figure 2-14 Sample makefile for Solaris™ SPARCworks compiler.

GETTING STARTED

RUNNING THE CLIENT AND SERVER

Now that you have compiled your client application and server, you are ready to run your first VisiBroker
application. Running the client application involves these steps:

1 Set your environment variables
2 Start the OSAgent.

3 Start the library server

4 Run the library client application.

Setting the VisiBroker Environment Variables

The environment ORBELINE must be set to point to the directory that contains your VisiBroker license
file.

pronpt > setenv ORBELI NE /usr/| ocal / vbroker/adm

Figure 2-15 Setting the ORBELINE environment variable with csh.

pronpt > ORBELI NE=/ usr/| ocal / vbr oker/adm
pronpt > export ORBELI NE

Figure 2-16 Setting the ORBELINE environment variable with the Bourne shell.

Starting the osagent

Before you run either your client application or the library server, you must first start the directory service
daemon, osagent. The osagent is described in Chapter 5.

pronpt > osagent &

Starting the Library Server

Start your library server by typing:

prompt> lib_server &

2-16

CONCLUSION

Running the Client

T o run your client and add the book Metamorphosis by Ovid, type:

pronpt> lib_client Ovid Metanorphosis

CONCLUSION

Congratulations! You have just completed the library application and have been introduced to all of the
basic features of VisiBroker. The remaining chaptersin this guide will cover the details you will need to
create more complex and powerful applications.

GETTING STARTED

2-18

CHAPTER 3

NAMING AND BINDING TO OBJECTS

This chapter describes how interface names and object names are used to
identify objects, the options associated with binding a client to an object
implementation, and the way these object references can be manipulated. This
chapter includes the following major sections:

Interface and Object Names 3-2
Binding to Objects 3-5
Specifying Bind Options 3-8
Operations on Object References 3-12

Widening and Narrowing Object References 3-18

NAMING AND BINDING TO OBJECTS

INTERFACE AND OBJECT NAMES

When you define an object’sinterface in an IDL specification, you must give it an interface name. For
example, the library object introduced in Chapter 2 was given the name “library” in the IDL specifica-
tion.

interface library {
voi d add_book();

b

The interface name is the least specific name by which an object can be identified when a client applica-
tioninvokesthe _bi nd method. An object name may also be used to further qualify an object. For infor-
mation on obtaining interface and object names from an object reference, see page 3-15.

Interface Names

You define an object’s interface name when you define the object in IDL. The interface name will be reg-
istered with the VisiBroker osagent, when the BOA: : obj ect _i s_r eady method iscalled by the
server that implements the object. The interface name is a so the name that client applications will use to
bind to an object.

Object Names

In addition to the required interface name, you may specify an optional object name when instantiating
an object. TheVisiBroker IDL compiler generates a NUL L object name as a default parameter. The use
of an object nameis required if your client application plans to bind to more than one instance of an
object at atime. Object names must be assigned at the time an object is registered with the Object Acti-
vation Daemon, described in Chapter 4.

Using Qualified Object Names with Servers

Consider the library example from Chapter 2 and imagine that you need to have two library objects avail-
able; onefor alibrary at Stanford and one for the Harvard library. You may even want to implement two
separate object servers, possibly on different hosts. Each server would instantiate a library object, but
each would use the Li br ar y object’s constructor that accepts an object name. Figure 3-1 showsthe
use of the default constructor. Figure 3-2 shows the library server changes that you would need to make
to create separate library objects for Stanford and Harvard.

INTERFACE AND OBJECT NAMES

#include <lib_srv.h>
int main(int argc, char **argv)

{
/1 Initialize ORB and Basic (bject Adaptor (BQA)
CORBA: : ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA: : BOA_var boa = orb->BOA_init(argc, argv);
/1 Instantiate the Library class
Library library_server();
orb->o0bj _is_ready(& ibrary_server);

H

Figure 3-1 The default use of an object’s constructor.

#include <lib_srv.h>
int main(int argc, char **argv)

{
/1 Initialize ORB and Basic (bject Adaptor (BQA)
CORBA: : ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA: : BOA_var boa = orb->BOA_init(argc, argv);
/1 Instantiate Harvard Library class
Library library_server(“Harvard”);
/I O
/1 Instantiate the Stanford Library class
Library library_server(“Stanford”);
orb->o0bj _is_ready(& ibrary_server);

h

Figure 3-2 Specifying an object name when instantiating an object’s implementation.

NAMING AND BINDING TO OBJECTS

Using Fully Qualified Names

Your client application is not required to specify an object name when binding to an object if the same
serviceis available from multiple servers or if thereis only one server that implements the object. The
VisiBroker IDL compiler generates a NULL parameter for the object name, by default.

Expanding the library example to represent two different libraries will require that you modify the client
application’s__bi nd invocation to specify a particular library object. Figure 3-3 shows the original
client code used to bind to a default object. Figure 3-4 shows how you would modify the client applica-

tion to specify an object name with the _bi nd call.

/'l Declare the library object
library *library_object;

try {
/1 Locate object and return a pointer to it
library_object = library::_bind();

}

[/ Check for errors

catch(const CORBA: : Exception& excep) {

cout << “Error binding to library object” << endl;

return(0);

Figure 3-3 Theuse of the _bi nd method without an object name.

/'l Declare the library object
library *library_object;

try {
/1 Locate object and return a pointer to it
library_object = library::_bind(“Harvard”);

/Il Check for errors
catch(const CORBA: : Excepti on& excep) {

cout << “Error binding to library object” << endl;

return(0);

Figure 3-4 The modified _bi nd method, using an object name.

34

BINDING TO OBJECTS

BINDING TO OBJECTS

Before your client application can invoke methods on an object, it must first obtain areference to the
object using the _bi nd method.

NOTE Your client application will never call the class’' constructor, it will always obtain an object reference
using the static _bi nd method.

The _bind Process

When your client application invokes the _bind method, the ORB performs several functions on behalf of
your application.

= The ORB contacts the osagent, VisiBroker’s directory service, to locate an object server that is
offering the specified inter face name. If an object name is specified, it will be used to further
qualify the directory service search.

= When an object implementation is located, the ORB attempts to establish a connection between
the object implementation that was located and your client application.

= |f the connection is successfully established, the ORB will create aproxy object, if necessary, and
return areference to that object.

Client and Server on Different Hosts

If the ORB determines that the requested object implementation resides on aremote host, a TCP/IP con-
nection will be established between the client and object server. The ORB will instantiate a proxy object
for your client to use. All methods invoked on the proxy object will be packaged as requests and sent to
the server on the remote host. The server on the remote host will unpack the request, invoke the desired
method, and send the results back to the client.

NAMING AND BINDING TO OBJECTS

Host A Host B
Client Object
Application Server
Process Process

stub Skeleton
ORB /ORB

Request via TCP/IP

Figure 3-5 Client and Server processes on different hosts.

Client and Server on the Same Host

If the ORB determines that the requested object implementation resides on the local host, a connection
will be established between the client and object server using shared memory —only if both the client
and server are multithreaded. The ORB will instantiate a proxy object for your client to use. All methods
invoked on the proxy object will be packaged as requests and sent to the server using shared memory.

Host A
Client Object
Application Server
Process Process
stub -s%eleton
ORB /ORB

\

Request via shared
memory

Figure 3-6 Client and Server processes on the same host.

BINDING TO OBJECTS

Client and Server in the Single Process

The previous discussions have assumed that object implementations have taken the form of a server pro-
cess. While thisis often the case, a client application and the object implementation can both be packaged
inside a single process. When your client application invokes a bind in this scenario, the ORB will return
apointer to the object implementation itself. That pointer will be widened to the object type used by your
client application. All methods invoked on your client’s object will get called directly as C+ virtual func-
tions on the object implementation. The ORB will be involved only during the bind process.

Host A
Client -
icati C++ Object
Application % i \
Process call Implementation
stub
ORB

Figure 3-7 Client and object implementation in the same process.

NAMING AND BINDING TO OBJECTS

3-8

SPECIFYING BIND OPTIONS

This section describes options that you can use to control the behavior of the _bi nd method. Figure
3-8 showsthe bi nd method generated for the library interface by the IDL compiler. The default value
for all of the parametersis NULL.

class library

{
static library_ptr _bind(
const char *object_nane = NULL,
const char *host_name = NULL,
const CORBA: : Bi ndOptions* opt = NULL);
h

Figure 3-8 The _bi nd method generated for thel i br ar y class.

The interface name specified in the interface specification becomes the name of the class. The use of the
obj ect _nane parameter is discussed on page 3-2.

Host Name

In addition to the object name, your client application can specify a particular host it wishesto use for the
object implementation. This can be useful if your application knows that a particular object implementa-
tion islocated on a particular host. If you do not specify a host name, the ORB will locate a host that
meets all of the other bind parameters.

BindOptions

Figure 3-9 showsthe Bi ndOpt i ons structure, used for the third parameter to the _bi nd method,
which enables you to control various aspects of the connection between the client application and the
object implementation. If the third parameter is NUL L, the default bind options will be used. Each of the
structure’s members will be discussed in turn.

struct BindOptions {

CORBA: : Bool ean def er _bi nd;

CORBA: : Bool ean enabl e_r ebi nd;
CORBA: : Long mex_bind_tries;
CORBA: : ULong send_ti meout ;
CORBA: : ULong recei ve_tineout;
CORBA: : ULong connection_ti meout;

b

Figure 3-9 The Bi ndOpt i ons structure.

SPECIFYING BIND OPTIONS

DEFERRING BINDS

Whenyousetdef er _bi ndtol,the bi nd method creates aproxy object (if necessary) and returns
an object reference to your client application. A connection will not be established with the object imple-
mentation until your client application actually invokes a method on the object. If you set defer_bind to
0, then the connection will be established when _bi nd isinvoked.

The default behavior isto establish the connection at thetimethe _bi nd method is invoked.

ENABLING RE-BINDS

If the connection between your client application and the object implementation fails because of a
network error, VisiBroker will automatically attempt to re-bind to the server process or areplica of that
server. This fault tolerant processing is described in Chapter 5. If you wish to enable this re-binding pro-
cess, you must set enabl e_r ebi nd to 1. If you wish to prevent this re-binding process, set

enabl e_rebi ndto0.

The default _bi nd behavior is to attempt to re-bind to the server if an error occurs.

MAXIMUM BIND ATTEMPTS

Object implementations may be registered with the Object Activation Daemon, described in Chapter 4, so
that an object server process is automatically launched when your client binds to the object. You can set
max_bi nd_tri es to specify the number of attempts the oad should make to launch the server pro-
cess.

The default 0ad behavior isto make no more than five attempts to launch a server process.

SEND TIME-OUTS

Yousetsend_ti meout to specify the number of seconds your client application will wait for a
request to be delivered to an object server. If the time-out period expires before the message is delivered
to the object server, a CORBA: : NO_RESPONSE exception is raised.

By default, send_t i meout isset to 0, which indicates that your client application wishes to block
indefinitely.

NAMING AND BINDING TO OBJECTS

3-10

RECEIVE TIME-OUTS

Yousetr ecei ve_ti meout to specify the number of seconds your client application will wait for a
response to be received from an object server. If the time-out period expires before the messageis
received from the object server, a CORBA: : NO_RESPONSE exception is raised.

By default, r ecei ve_ti meout issetto 0, which indicates that your client application wishes to
block indefinitely.

CONNECTION TIME-OUTS

Yousettheconnect i on_t i meout option to specify the number of seconds your client application
will wait for a connection to be established with an object server. If the time-out period expires before a
connection is established, a CORBA: : NO_| MPLEMENT exception is raised.

By default, connect i on_t i meout issetto0toindicate that your client application wishes to use
the default connection time-out.

Scope of BindOptions

VisiBroker allows you to specify three distinct levels of BindOptions. You can specify the options for
each invocation of the _bind method, for a particular object reference or for all invocations of _bind by
your client application.

PROCESS-LEVEL BINDOPTIONS

VisiBroker provides a global BindOptions structure that contains default values for the _bind method.
These defaults are used if you do not explicitly specify aBi ndOpt i ons parameter when you invoke
the _bind method. Figure 3-10 shows the static methods you can use to query and set these defaults.

class Object {
static const BindOptions *_default_bind_options();
static void _defaul t _bind_options(const BindOptions&);

}s

Figure 3-10 Satic methods for getting and setting the default bind options for a process.

SPECIFYING BIND OPTIONS

BIND-LEVEL BINDOPTIONS

You can override the default, process-level bind options by passing anew Bi ndQpt i ons parameter
when you invoke the _bi nd method.These new options will remain in effect for the life of the object
reference returned by _bi nd, regardless of any changes to the process-level bind options.

OBJECT-LEVEL BINDOPTIONS

You can change bind options after you have invoked the _bi nd method. Figure 3-11 shows a method
you can use on the object reference returned by _bi nd. This method allows you to change send and
receive time-out values for any valid object reference. If you change the connection time-out and are-
bind occurs, the new connection time-out value will be apply. The bind options you set remain in effect
for this object reference for aslong as the referenceis valid.

class Object {

voi d _bind_options(const CORBA:: Bi ndOpti ons& opt);

Figure 3-11 The method for setting object-level bind options.

NAMING AND BINDING TO OBJECTS

OPERATIONS ON OBJECT REFERENCES

The object reference returned to your client application by the__bi nd method represents an ORB object.
Your client application can use the object reference to invoke methods on the object that have been
defined in the object’s IDL interface specification. In addition, there are methods that all ORB objects
inherit from the class CORBA: : Obj ect that you can use to manipulate the object.

Checking for Nil References

You can use the CORBA class static method shown to determineif an object referenceisnil. This method
returns 1 if the object reference passed is nil. It returns O if the object reference is not nil.

cl ass CORBA {

stati c Bool ean _nil(Qbject_ptr obj);

Figure 3-12 Method for checking for a nil object reference.

Obtaining a Nil Reference

You can obtain a nil object reference using the CORBA: : Qbj ect method shown. It returns a NULL
valuethat iscast toan Gbj ect _ptr.

class Object {

static Object_ptr _nil();

Figure 3-13 Method for obtaining a nil reference.

Duplicating a Reference

Your client application can usethe _dupl i cat e method to copy an object reference so that the copy
can be stored in adata structure or passed as a parameter. When this method is invoked, the reference
count for the object reference isincremented by one and the same object reference is returned to the
caler.

3-12

OPERATIONS ON OBJECT REFERENCES

The IDL compiler generatesa_dupl i cat e method for each object interface you specify. The
_dupl i cat e method shown accepts and returns ageneric Cbj ect _ptr.

class Object {
static Object_ptr _duplicate(Qbject_ptr obj);

b

Figure 3-14 The method for duplicating an object reference.

Releasing an Object Reference

You should release an object reference when it is no longer needed. One way of releasing an object refer-
enceis by invoking the CORBA: : Cbj ect classmethod _r el ease.

class CORBA {
class Object {

voi d _release();

Figure 3-15 The method for releasing an object reference.

You may also use the CORBA classmethod _r el ease, which is provided for compatibility with the
CORBA specification.

cl ass CORBA {

static void rel ease();

Figure 3-16 The CORBA method for releasing an object reference.

Obtaining the Reference Count

Each object reference has areference count that you can use to determine how many times the reference
has been duplicated.When you first obtain an object reference by invoking _bi nd, thereference count is
set to one. Releasing an object reference will decrement the reference count by one. Once the reference

NAMING AND BINDING TO OBJECTS

3-14

count reaches 0, VisiBroker automatically deletes the object reference. Figure 3-17 shows the method
for retrieving the reference count.

class Object {

ULong _ref_count() const;

b

Figure 3-17 Method for obtaining the reference count.

Cloning Object References

The IDL compiler generatesa__cl one method for each object interface that you specify. Unlike the
_duplicate method, _clone will create an exact copy of the object’s entire state and establish a new, sepa-
rate connection to the object implementation. The object reference returned and the original object refer-
ence will represent two distinct connections to the object implementation. Figure 3-18 showsthe

_ ¢l one method generated for the library interface introduced in Chapter 2.

class library: public virtual CORBA:: Object

{
public:

library_ptr _clone();

Figure 3-18 The _cl one method for thel i br ar y class.

Platforms that support multi-threaded client applications may increase their performance by cloning an
object reference for each by each thread that is created to access a particular object. See Chapter 8 for
information on multi-threaded applications.

Converting a Reference to a String

Object references are opaque and can vary from one ORB to another, so VisiBroker provides an ORB
class with methods that allow you to convert an object reference to a string as well as convert a string
back into an object reference. The CORBA specification refers to this process as “ stringification.” Figure
3-19 shows these conversion methods.

OPERATIONS ON OBJECT REFERENCES

NOTE Only object references representing persistent objects can be converted to a string. Any attempt to
convert a transient object reference to a string will fail. Usethe_i S_per si st ent method to ensure
that an object reference represents a persistent object before callingtheobj ect _to_stri ng

method.
class ORB {
public:

/1 Convert an object reference to a string
char *obj ect _to_string(Qoject_ptr obj);
/1 Convert a char * to an object reference
oj ect _ptr string_to_object(const char *);

H

Figure 3-19 The methods for converting an object reference to a string and vice versa.

Obtaining Object and Interface Names

Figure 3-20 shows the methods provided by the Cbj ect classthat you can use to obtain the interface
and object names aswell as the repository id associated with an object reference. The interface repository
is discussed in Chapter 9 of this guide.

class Object {

const char *_interface_name() const;
const char * _obj ect _nane() const;
const char * repository_id() const;

3

Figure 3-20 Methods for obtaining the interface name, object name and repository id.

Object Reference Equivalence and Casting

You can check whether an object referenceis of a particular type by usingthe i S_a method. You must
first obtain the repository id of the type you wish to check usingthe _r eposi t ory_i d method. This

NAMING AND BINDING TO OBJECTS

3-16

method returns 1 if the object is either an instance of the type represented by r eposi t ory_i d orif
it isasub-type. O isreturned if the object is not of the type specified.

class Object {
Bool ean _is_a(const char *repository_id);

b

Figure 3-21 Method for determining the type of an object reference.

Figure 3-22 showsthe i S_equi val ent method which you can use to check if two object refer-
ences are equivalent. This method returns 1 if the references are equivalent. This method returns 0 if the
references are not identical.

class Object {

Bool ean _is_equival ent (Ooj ect _ptr other_object);

Figure 3-22 Method for comparing object references.

You can usethe _hash method shown in Figure 3-23 to obtain a hash value for an object reference.
Whilethisvalueis not guaranteed to be unique, it will remain consistent through the lifetime of the object
reference.

class Object {

ULong _hash(ULong maxi mum;

Figure 3-23 The _hash method.

OPERATIONS ON OBJECT REFERENCES

Determining the Location and State of Bound Objects

Given avalid object reference, your client application can use the method shown in Figure 3-26 to
retrieve the current state of the bind for that object. The method returns 1 if the object is bound and O if
the object is not bound.

class Object {
public:

Bool ean _is_bound() const;

Figure 3-24 The method for querying the state of the bind for an object reference.

Figure 3-25 shows two methods your client application can use after asuccessful _bi nd invocation to
determine the location of the object implementation.

class Object {
virtual Bool ean _is_local () const;
Bool ean _is_renote() const;

Figure 3-25 Methods for determining the location of an object implementation.

NOTE If thereferred object isin the same process, i S_| ocal returns TRUE.

Obtaining the Current BindOptions

Given avalid object reference, your client application can use the method shown in Figure 3-26 to
retrieve the bind options currently in effect for that object.

class Object {
const CORBA: : Bi ndOpti ons _bind_options() const;

b

Figure 3-26 The method for retrieving an object’s bind options.

NAMING AND BINDING TO OBJECTS

3-18

WIDENING AND NARROWING OBJECT REFERENCES

Converting an object reference’ stype to a super-typeis called widening. Figure 3-27 shows an example
of widening al i br ary pointer to an Qbj ect pointer. The pointer | i b can be cast asan Cbj ect
pointer becausethel i br ary classinherits from the Obj ect class.

library *lib;
bj ect *obj ;
lib
obj

library::_bind();
(Object *)lib;

Figure 3-27 Wdening an object reference.

The process of converting an object reference’s type from a general super-type to a more specific sub-
typeis caled narrowing. VisiBroker maintains a typegraph for each object interface so that narrowing
can be accomplished by the object’'s_nar r owmethod. If the _nar r owmethod determinesit is not
possible to narrow an object to the type you request, it will return NULL.

library *lib;
library *1ibtwo;
oj ect *obj ;

lib = library::_bind();
obj = (Object *)lib;
libtwo = library:: _narrow obj);

Figure 3-28 Narrowing an object reference to a sub-type.

The _nar r owmethod constructs a new C+ object and returns a pointer to that object. When you no
longer need the object, you must rel ease the object reference returned by _nar r owaswell asthe object
reference you passed as an argument.

OBJECT AND IMPLEMENTATION
ACTIVATION

This chapter discusses how objects are implemented and made available to
client applications. It includes the following major sections:

CHAPTER 4

Object Implementation 4-2
The Basic Object Adaptor 4-4
Object Activation Daemon 4-5
Unregistering Implementations 4-11
ORB Interface to the OAD 4-14
Activating Objects Directly 4-15
Activating Objects with the BOA 4-16

Object and Implementation Deactivation 4-20

OBJECT AND IMPLEMENTATION ACTIVATION

OBJECT IMPLEMENTATION

An object implementation provides the state and processing activities for the ORB objects used by client
applications. An ORB aobject is created when its implementation classis instantiated in C+ by an imple-
mentation process or server. An object implementation uses the Basic Object Adaptor, or BOA, to acti-
vate its ORB objects so that they can be used by client applications. ORB objectsfall into two categories:
transient and persistent.

Transient Objects

Objectsthat are only available during the lifetime of the process that created them are called transient
objects. Transient objects are not registered with VisiBroker's directory service. Only those entities that
possess an explicit object reference to atransient object may invoke its methods. Figure 4-1 showsyou
how to modify the library application sothat | i br ary_ser ver iscreated asatransient object. The
scope must be set prior to instantiating the object.

#i nclude <lib_srv. h>

int main(int argc, char **argv)

{
/1 Initialize ORB and Basic Object Adaptor (BQA)
CORBA: : ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA: : BOA_var boa = orb->BOA init(argc, argv);

I/l Set local registration scope
boa- >scope(CORBA: : BOA: : SCOPE_LOCAL) ;

/'l Instantiate the Library class as a transient object
Library library_server();

I/l Since Library object is transient, it won't get
Il registered with the directory service
boa- >obj _is_ready(& ibrary_server);

Figure 4-1 Creating a transient object.

Handling Transient Object References

Clients can only access objects of transient objects when passed as an argument, as defined by the IDL;
for instance, obj ect _t o_st ri ng will fail.

OBJECT IMPLEMENTATION

Persistent Objects

An object that remains valid beyond the lifetime of the process that created it is called a per sistent

obj ect. These objects have a global scope and are registered with VisiBroker's directory service, which
allow them to be located and used by client applications. Persistent objects may also be registered with
the Object Activation Daemon, enabling the servers that implement them to be activated on demand. You
can use persistent objects to implement long-running servers that provide long-term tasks. Figure 4-2
shows the creation and registration of a persistent object.

NOTE Registrationishandled by theboa: : obj _i s_r eady method.

#include <lib_srv.h>
int main(int argc, char **argv)

{
/1 Initialize ORB and Basic (bject Adaptor (BQA)
CORBA: : ORB_var orb = CORBA:: ORB_init(argc, argv);
CORBA: : BOA_var boa = orb->BOA_init(argc, argv);
/1 Instantiate the Library class
Library library_server();
/I O
[/ Library * library_server = new Library;
/'l Register the Library object with directory service
boa->obj is_ready(& ibrary_server);
/1 Server is ready to receive requests
boa->i npl _i s_ready();

H

Figure 4-2 Creating and activating a persistent object.

NOTE You do not have to set the scope of a persistent object because the default scopeis global, or persistent.

Checking for Persistent Objects

Figure4-3 showsamethod your client application can use to determine whether a persistent or transient
object implementation is associated with a given object reference. It isimportant to know whether or not
an object is persistent because some methods for

OBJECT AND IMPLEMENTATION ACTIVATION

4-4

manipul ating object references will fail if the object istransient. The_i S_per si st ent method
returns 1 if the object is persistent and 0 if the object is transient.

class Object {

Bool ean _is_persistent() const;

Figure 4-3 The method for checking for persistent object implementations.

Object Registration

NOTE

Once aserver has instantiated the ORB objects that it offers, the BOA must be notified when the objects
have been initialized. Lastly, the BOA is notified when the server is ready to receive requests from client
applications.

Theobj _i s_ready method notifies the BOA that a particular ORB object is ready to receive
requests from client applications. If your server offers more than one ORB object, it must make acall to
obj _i s_r eady for each object, passing the object reference as an argument.

If the object reference passed to 0bj i s_r eady represents a persistent object, the BOA will register
the object with VisiBroker’s directory service. If the object is transient, no such registration will occur.

Whenobj i s _ready isnot called and a client attempts to call _bi nd, the exception
NO_| MPLEMENT is raised.

Once all of the objects have been instantiated and all thecallstoobj _i s_r eady have been made, the
server must call i npl _i s_r eady to enter an event loop and await client requests. Chapter 7 in this
guide discusses event handling in detail.

THE BASIC OBJECT ADAPTOR

VisiBroker’'s BOA provides several important functions to client applications and the object implementa-
tionsthey use. It isimportant to realize that an object may reside in the same process asiits client applica
tion or it may residein a separate process called a server. Servers may contain and offer asingle object or
multiple objects. Furthermore, servers may be activated by the BOA on demand or they may be started by
some entity external to the BOA.

OBJECT ACTIVATION DAEMON

Object Server Activation Policies

The CORBA specification defines four activation policies that describe the way in which an object imple-
mentation is started and the manner in which it may be accessed by a client application. These activation
policies only apply to persistent objects, not transient objects.

SHARED SERVER PoLICY

When the shared server policy is specified, only one server islaunched regardless of the number of cli-
ents; the clients share the server. Along with persistent servers, shared servers are the most common types
of servers.

PERSISTENT SERVER PoLICY

This policy describes servers that, like shared servers, implement multiple objects. Persistent servers are
started by some entity outside of the Basic Object Adaptor, but they still register their objects and receive
reguests using the BOA.

UNSHARED SERVER POLICY

Unshared servers are processes that implement a single object. A client application causes this type of
server to be activated. Once that client exits, the unshared server will exit.

SERVER-PER-METHOD PoLIcY

This activation policy requires a server process to be started for each method that isinvoked. After the
method has been completed, the server will exit. Subsequent method invocations on the same object will
require anew server process to be started.

OBJECT ACTIVATION DAEMON

You can register an object implementation with VisiBroker's Object Activation Daemon to automatically
activate the implementation when a client requests a bind to the object. Object implementations can be
registered using a command-line interface or programmatically with the BOA: : cr eat e method.
Thereis also an ORB interface to the OAD, described in “ORB Interface to the OAD” on page 4-14. In
each case, theinterface name, object name, the activation policy, and the executabl e program representing
the implementation must be specified.

The Implementation Repository

All object implementations registered with the OAD are stored in an implementation repository,
maintained by the OAD. By default, the implementation repository data are stored in afile named

i mpl _r ep. Thisfile's path name is dependent on where VisiBroker was installed on your system. If
VisiBroker wasinstalledin / usr/ | ocal / vi si br oker/, then the path to thisfile would be

OBJECT AND IMPLEMENTATION ACTIVATION

/usr/ 1l ocal/visibroker/adninpl _dir/inpl_rep.Thesedefaultscan be
overridden using OAD environment variables, described in the VisiBroker for C+ Reference Guide.

OAD Registration with regobj

Ther egobj command can be used to register an object implementation from the command line or
from within a script. The required parameters are the interface name, object name and path name. If the
activation policy is not specified, the default policy of shared server will be used. For complete informa-
tion on using this command, see the VisiBroker for C+ Reference Guide.

NOTE The implementation of your object does not need to be modified in order for you to use regobj. You may
write an implementation and start it manually during the development and testing phases. When your
implementation is ready to be deployed, you can simply use regobj to register your implementation with
the OAD.

NOTE When registering an object implementation, use the same object name asis used when the
implementation object is contructed.

The reference data to pass to
this server to distinguish

€ Theinterface name provided by The name of the executable Arguments to between diffe.rent instances of
an object in this server that implements the pass to the the same object
implementation object. server.

regobj -o library,Harvard -p shared -f /home/user/dir/libsrv -a arg1 -e env1 -r refdata

@ The object name of the ORB @ The activation policy for this Environment variables to be set
object provided by this server. for this server.
implementation.

& = required

Figure 4-4 Ther egobj command.

For information about the Windows implementation of r egobj , see the “Commands” chapter of the
\isiBroker for C++ Reference Guide.

OBJECT ACTIVATION DAEMON

OAD Registration using BOA::create

Instead of using ther egobj command manually or in ascript, VisiBroker allows applications written
in C+tousethe BOA: : cr eat e method to register one or more objects with the activation daemon.
Using this method results in an object implementation being registered with the OAD and the VisiBroker
directory service. The OAD will store the information in the implementation repository, allowing the
object implementation to be located and activated when a client attempts to bind to the object.

class CORBA {
typedef Cctet Sequence Ref er enceDat a;

class BOA {

virtual Object_ptr create(
const ReferenceDat a& ref _data,
InterfaceDef ptr inf_ptr,
I npl enent ati onDef _ptr inmpl _ptr) = 0;

3

Figure4-5 The BOA: : cr eat e method and its parameters.

Reference Data Parameter

You can usether ef _dat a parameter to distinguish between multiple instances of the same object.
The value of the reference datais chosen by the implementation at object creation time and remains con-
stant during the lifetime of the object. The Ref er enceDat a t ypedef isportable across plat-
forms and ORBs.

NOTE VisiBroker does not usethei nf _pt r, defined by the CORBA specification to identify the interface of
the object being created. Applications created with VisiBroker should always specify a NULL value for
this parameter.

Implementation Definition Parameter

The i npl _ptr parameter supplies the information that the BOA needs to register an ORB object.
Thel npl enment at i onDef class defines the interface name, object name, and reference id proper-
ties used by the BOA.. Figure 4-6 shows the methods for querying and setting these properties.

OBJECT AND IMPLEMENTATION ACTIVATION

4-8

class | npl enent ati onDef

{
public:
static |nplenentationDef_ptr _duplicate(
| mpl enent ati onDef _ptr obj);
static void _rel ease(
I mpl enent ati onDef _ptr obj);
static |nplenentationDef _ptr nil();
const char *interface_name() const;
voi d interface_name(const char *val);
const char *obj ect _name() const;
voi d obj ect _nane(const char *val);
Ref erenceDat a_ptr id() const;
voi d id(const ReferenceData ptré& data);
pr ot ect ed:
String_var _interface_nane;
String_var _obj ect _nane;
Ref er enceDat a _id;
H

Figure4-6 Thel npl enent at i onDef class.

The i nt er f ace_nane property represents the name specified in the object’s IDL specification.
The _obj ect _nane property isthe name of this object, provided by the implementor or the person
installing the object. The_i d property is chosen by the implementation and has no meaning to the
BOA or the OAD. Theimplementor may usethe i d property asthey chose.

Creation Definition

Thel nmpl enent at i onDef class, as defined by the CORBA specification, does not supply al the
information that the OAD needs to activate an object implementation when aclient attemptsto bind to the
object. The Cr eat i onl npl Def classisderived from | mpl enent at i onDef and addsthe
properties the OAD requires.The properties added are_pat h_nane, _pol i cy, _ar gs and
_env. Methods for setting and querying their values are also provided. These additional properties are
used by the OAD to activate an ORB object. Figure 4-7 showsthe Cr eat i onl npl Def class, its
properties and methods.

The _pat h_nane property specifies the exact path name of the executable program that implements
the object. The_pol i cy property represents the server’s activation policy, discussed in “ Object Server
Activation Policies’ on page 4-5. The _ar gs and _env properties represent optional arguments and
environment settings to be passed to the server.

OBJECT ACTIVATION DAEMON

enum Policy {
SHARED SERVER,
UNSHARED_SERVER,
SERVER_PER_NMETHOD

*interface_naneg,

_duplicate(Creationl npl Def _ptr obj);
_rel ease(Creationl npl Def _ptr obj);
_nil();

_narrow(| nmpl enent ati onDef _ptr
activation_policy() const;
activation_policy(Policy p);
*pat h_nane() const;

char *val);

ptr);

pat h_nane(const
*args() const;
*args(const StringSequence& val);
*env() const;

env(const StringSequence& val);

H
class Creationlnpl Def: public |nplenentationDef
{
public:
Creationl npl Def ();
Creati onl npl Def (const char
const char *object_nane,
const RefereneData& id,
const char *path_nane,
const StringSequence& args,
const StringSequence& env);
~Creationlnpl Def () {};
static Creationlnpl Def _ptr
static void
static Creationlnpl Def _ptr
static Creationlnpl Def _ptr
Pol i cy
voi d
const char
voi d
StringSequence
voi d
StringSequence
voi d
pr ot ect ed:
String_val _pat h_nane;
Pol i cy _policy;
StringSequence _args;
StringSequence _env;
H

Figure4-7 TheCr eat i onl npl Def class.

OBJECT AND IMPLEMENTATION ACTIVATION

BOA::create Example

Figure 4-8 shows how to usethe Cr eat i onl npl Def classandthe BOA: : cr eat e method to
create an ORB object and register it with the OAD.

#include “libsrv.h”
void main(int argc, char * const * argv)

{
CORBA: : Ohj ect _ptr obj;

/1l Initialize the ORB and BOA
CORBA: : ORB_var orb CORBA: : ORB_init(argc, argv);
CORBA: : BOA var boa orb->BOA init(argc, argv);

/1 Optional reference data
Ref erenceData i d;

CORBA: : Creati onl npl Def inpl_def(“library”, “Harvard”, id,
“/usr/home/dir/libsrv”,
NULL /* no args */, NULL /* no envs */);
obj = boa->create(id, NULL, & npl_def);

if (obj != NULL)
cout << “ORB object created successfully”
exit (1);

Figure 4-8 Creating an ORB object and registering with the OAD.

NoTE Ifthei npl _def parameter passed to BOA: : cr eat € cannot be narrowed to a
Creat i onl npl Def reference, the create will fail and a CORBA: : BAD PARAM exception will

be raised.

Changing an ORB Implementation

Figure4-9 showsthe BOA: : change_i npl enent at i on method which can be used to dynami-
cally change an object’simplementation. You can use this method to change the object’s activation policy,
path name, arguments and environment variables.

4-10

UNREGISTERING IMPLEMENTATIONS

If thei mpl parameter cannot be narrowed to aCr eat i onl npl Def , this method will fail and a
CORBA: : BAD_PARAMexception will be raised.

class BOA {

virtual void change_i npl enentati on(
const Object &obj,
const | nplenmentati onDef& inpl);

Figure4-9 Thechange_i npl enment at i on method.

Though you can change an object’s implementation name and object name with the this method,
you should exercise caution. Doing so will prevent client applications from locating the object
with the old name.

UNREGISTERING IMPLEMENTATIONS

When the services offered by an object are no longer available or temporarily suspended, the object
should be unregistered with the OAD. When an ORB object is unregistered, it is removed from the
OAD'’slist of objects. The object is aso removed from the directory service and from the implementation
repository. Once an object is unregistered, client applications will no longer be able to locate or useit. In
addition, the BOA::change_implementation method will no longer be able to be used to change the
object’s implementation. As with the registration process, unregistering may be done with a command
line or programmatically. Thereis aso an ORB object interface to the OAD, described in “ORB Interface
to the OAD” on page 4-14.

Unregistering with unregobj

Figure 4-10 shows the unregobj command, which can be used to unregister an object implementation
from the command line or from within a script. If the interface name is specified by itself, al objects
instances associated with that interface name will be unregistered. You can specify both the interface and
object name if you only wish to unregister a specific object within an interface. For complete information
on using this command, see the VisiBroker for C++ Reference Guide.

OBJECT AND IMPLEMENTATION ACTIVATION

€ Theinterface name provided by
an object in this
implementation

unregobj -i library,Harvard

The object name of the ORB
object provided by this
implementation.

@ = required
Figure 4-10 The unregobj command.

For information about the Windows implementation of unregobj, see the “Commands’ chapter of the
VisiBroker for C++ Reference Guide.

Unregistering with the BOA::dispose Method

An object’simplementation can usethe BOA: : di spose method to unregister an ORB object. Any
connections that might exist between a client application and the object will be terminated as soon as the
object is unregistered.

cl ass CORBA {
class BQOA {

virtual void di spose(Cbj ect _ptr);

b
}s

Figure4-11 The BOA: : di spose method.

4-12

UNREGISTERING IMPLEMENTATIONS

The listimpl Command

Youcanusethel i sti nmpl command to list the contents of a particular implementation repository. For
each implementation in the repository thel i st i npl command lists all the object instance names, the
path name of the executable program, the activation mode and the reference data. Any arguments or envi-
ronment variables that are to be passed to the executable program are also listed. For complete details on
using this command see the

VisiBroker for C+ Reference Guide.

Optional interface name to
restrict the list output

listimpl -i interface

Figure4-12 Theli sti mpl command.

For information about the Windows implementation of listimpl, see the “Commands” chapter of the Visi-
Broker for C++ Reference Guide.

OBJECT AND IMPLEMENTATION ACTIVATION

ORB INTERFACE TO THE OAD

The Object Activation Daemon isimplemented as an ORB object. Figure 4-13 showsthe IDL interface
specification for the OAD. You can create a client application that binds to the OAD and uses this inter-
face to query the status of objects that have been registered.

/1 1DL
nodul e Activation
{
enum State {
ACTI VE,
| NACTI VE,
WAI TI NG_FOR_ACTI VATI ON
h
struct ObjectStatus {
| ong process_id;
State activation_state;
oj ect obj Ref;
h

typedef sequence<Obj ect St atus> Obj ect St at usLi st;

struct |nplenentationStatus {
CORBA: : Creat i onl npl Def impl;
bj ect St at usLi st st at us;
h

typedef sequence<l| npl enentati onStatus> | npl StatusLi st;

exception Not Registered {};

interface QAD {
/1 Internal nethods are not shown here.

I/l Get status info for a given inplenentation
I mpl enent ati onSt at us get _stat us(

in string interface_nane,

in string object_nane)

rai ses (Not Regi stered);
// Get status of all inplementations for a given interface
| mpl St at usLi st get _status_interface(
in string interface_nane)

rai ses (Not Regi stered);
/1 Get list of all registered interfaces.
I mpl St at usLi st get _status_all ();

Figure 4-13 The OAD interface specification.

4-14

ACTIVATING OBJECTS DIRECTLY

ACTIVATING OBJECTS DIRECTLY

Inthelibrary exampleintroduced in Chapter 2, theLi br ar y object was activated directly by the server.
Direct activation of an object involvesinstantiating all the C+ implementation classes, invoking the
boa: : obj i s_ready method for each object and then invoking BOA: : i npl _i s_r eady to
begin receiving requests. Figure 4-14 shows how this processing would occur for a server offering two
Li br ary objects; one with the object name of “Stanford” and the other named "Harvard.” Once the
objects have been instantiated and activated, the server invokes BOA: : i npl _i s_r eady to begin
receiving client requests.

NoTeE TheBQA: : obj _i s_ready must be called for each object offered by the implementation.

#i nclude <lib_server.hh>
int main(int argc, char * const * argv)

{
/1 Initialize ORB and Basic (bject Adaptor (BQA)
CORBA: : ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA: : BOA_var boa = orb->BOA_init(argc, argv);
/1 Instantiate Harvard Library C ass
Li brary harvard_lib(“Harvard”);
boa- >obj _i s_ready(&harvard_|ib);
/1 Instantiate Stanford Library C ass
Li brary stanford_lib(“Stanford”);
boa- >obj _is_ready(&stanford_lib);
/1 Begin event |oop of receiving nmessages
boa->i npl _i s_ready();
return(l);
}

Figure 4-14 Server activating two objects and the implementation.

OBJECT AND IMPLEMENTATION ACTIVATION

4-16

ACTIVATING OBJECTS WITH THE BOA

When you design your object implementation, you may want to defer the activation of one or more ORB
objects until aclient requeststhem. The BOA: : obj i s_ready andBQA: : i npl _i s_ready

methods may be used withthe Act i vat i onl npl Def classto instantiate objects upon receipt of a
client request.

cl ass CORBA {
class BQOA {

virtual void obj_is_ready(Object_ptr,
| npl enent ati onDef _ptr inpl=NULL) = O;
virtual void inpl_is_ready(lnplenentationDef_ptr inpl=NULL) = O;

}s
b

Figure4-15 The BOA: : obj _i s_ready and BQA: : i npl _i s_r eady methods.

In previous examples, theobj _i s_r eady method was only passed an object reference. The

i mpl _i s_r eady was passed no parameters at all. It is possible to pass an

Acti vati onl npl Def pointer totheobj _i s_r eady method, which can be used to override
the activation and deactivation methods used by the BOA. Figure 4-16 showsthe

Acti vati onl npl Def class, whichaddsan Act i vat or pointer and provides methods for
setting and retrieving that pointer. Note that this classis derived from | npl enment at i onDef .

class ActivationlnplDef: public |nplenentationDef
{
public:
Acti vationl npl Def ();
Acti vationl npl Def (const char *interface_nane,
const char *object_naneg,
const ReferenceData& id,
Activator_ptr act);
~Acti vati onl mpl Def ();
static Activationlnpl Def _ptr _duplicate(ActivationlnplDef_ptr obj);
static ActivationlnplDef_ptr _nil();
static Activationlnpl Def _ptr _narrow(! npl ementationDef_ptr ptr);
Activator_ptr activator_obj();
voi d activator_obj (Activator_ptr val);
pr ot ect ed:
Activator_ptr _activator;

}s

Figure4-16 The Act i vat i onl npl Def class.

ACTIVATING OBJECTS WITH THE BOA

The Activator Class

Figure4-17 showsthe Act i vat or class, which provides the two methods used by the BOA to
activate and deactivate an ORB object.

class Activator {
public:
Activator();
~Activator();

static Activator_ptr _duplicate(Activator_ptr obj);

static void _rel ease(Activator_ptr);

static Activator_ptr _nil();

virtual Qoject_ptr activate(lnplenmentati onDef inpl) = 0;
virtual void deactivate(Object_ptr,

I mpl enent ati onDef _ptr inpl);
H

Figure4-17 TheAct i vat or class.

Deriving your own classfromthe ACct i vat or classletsyouto overridetheact i vat e anddeac-
t i vat e methodsthat the ORB will usefor the Li br ar y object. This alows you to delay the instan-
tiation of the Li br ar y object until the BOA activates the ORB object. It also allows you to provide
clean-up processing when the ORB deactivates the object. Figure 4-18 shows how to createan Act i -
vat or fortheli brary class.

OBJECT AND IMPLEMENTATION ACTIVATION

class LibraryActivator : CORBA::Activator {
public:
virtual CORBA:: Cbject_ptr activate(
CORBA: : | npl ermrent ati onDef _ptr inpl);
virtual void deactivate(CORBA: : Object_ptr,
CORBA: : | npl emrent ati onDef _ptr inpl);
H

CORBA: : Onj ect _ptr LibraryActivator::activate(
CORBA: : | npl enment at i onDef _ptr inpl)
{
/1 \When the BOA activates us, instantiate the Library object.
return new Library(inpl->o0bject_nanme());

}

voi d LibraryActivator::deactivate(CORBA: : Obj ect _ptr obj,
CORBA: : | npl ement ati onDef _ptr inpl)
{
/1 When the BOA deactivates us, release the Library object.
obj ->rel ease();

Figure 4-18 DerivingtheLi br ar yAct i vat or class, implementingtheact i vat e and
deact i vat e methods.

Putting it All Together

Figure4-19 showshow tousethe Act i vat i onl npl Def classtheLi braryActi vat or
class, to defer the activation of the Li br ar y object until aclient request is received. The instantiation
of theLi br ary object no longer appearsin the mai n routine. Instead, the Li br ar y object will be
instantiated when the BOA receives a client request and invokestheact i vat e method.

In thisexample, theinvocation of BOA: : obj i s_r eady ispassed aNULL object reference aswell
asanAct i vati onl npl Def reference. The creation of the Library object named “Harvard” will
now be deferred until thefirst client request for that object is received.

4-18

ACTIVATING OBJECTS WITH THE BOA

void main(int argc, char * const * argv)

{
/1 Initialize ORB and Basic Object Adaptor (BQA)
CORBA: : ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA: : BOA_var boa = orb->BOA init(argc, argv);
CORBA: : Ref erenceData i d;
CORBA: : Activationl mpl Def inpl(“library”, “Harvard”, id,
(CORBA: : Activator_ptr) new LibraryActivator);
/1 obj _is_ready is passed an Activationlnpl Def object to override
/1 the activation of the Library object.
boa- >obj _i s_ready(NULL, & npl);
/] activate other objects
/1 Begin event |oop of receiving requests
boa- >i npl _i s_ready();
return(l);
H

Figure4-19 Usingthe Act i vat i onl npl Def classwiththe BOA: : obj i s_r eady method.

If an implementation has only one object, thenthei npl _i s_r eady method can be called with the
Act i vati onl npl Def reference to activate both the object and the implementation. Since

i mpl _i s_r eady can accept only one object’simplementation, this approach cannot be used if
multiple objects reside in the same implementation. Figure 4-20 shows the use of a one invocation of the
i mpl _i s_r eady method.

OBJECT AND IMPLEMENTATION ACTIVATION

4-20

voi d mai n(

int argc, char * const * argv)

{
/1 Initialize ORB and Basic Object Adaptor (BQA)
CORBA: : ORB_var orb = CORBA:: ORB_init(argc, argv);
CORBA: : BOA var boa = orb->BOA_init(argc, argv);
CORBA: : Ref erenceData id;
CORBA: : Activationl mpl Def inpl(“library”, “Harvard”, id,
(CORBA: : Activator_ptr) new LibraryActivator);
/1 inpl_is_ready is passed an Activationlnpl Def object to override
/1 the activation of the Library object.
boa->i npl _i s_ready(& npl);
return(l);
H
Figure4-20 Theuseof asinglei npl _i s_r eady method.

OBJECT AND IMPLEMENTATION DEACTIVATION

The correct approach to deactivating objects and implementations depends on how the object and imple-
mentation were activated. Objects and their implementations can be activated manually, through C+

instantiation,

by the OAD, or by the BOA.

Deactivating a Manually Started Implementation

Animplementation that is started manually can be considered deactivated when the implementation exits.
VisiBroker will automatically unregister the objects within that implementation from the list maintained

by the directory service.

Deactivating C++

If an object was created by instantiating its C+ class, call CORBA: : r el ease(Cbj ect _ptr) on
unregister the object from the list of objects maintained by the directory service. Thisalso
ructor if no other references to the object exist. Calling delete on the object is not recom-

the object to
callsthe dest

Instantiated Objects

mended since the object could be deleted prematurely.

Deactivating Impl

Implementations started by the OAD can be deactivated by calling the BOA: : deact i vat e_i npl
method. Once this method is called, the implementation will not be available to service client requests.
The implementation can only be re-activated if it isrestarted or if it again callsthei npl _i s_r eady

method.

ementations Started by the OAD

OBJECT AND IMPLEMENTATION DEACTIVATION

Deactivating Objects Activated by the BOA

TheBOA: : deact i vat e_obj method isprovided to deactivate objects activated by the BOA. After
this method is called, the object will be removed from the directory service list of objects offered by that
implementation. Figure 4-21 shows the definition of thedeact i vat e_obj method.

class CORBA {
class BOA {

virtual void deacti vat e_obj (Cbj ect _ptr);

Figure4-21 The BOA: : deact i vat e_obj method.

OBJECT AND IMPLEMENTATION ACTIVATION

4-22

THEORBS MART AGENT

CHAPTER 5

Thischapter describesthe osagent, which providesdirectory servicefunctions,
fault tolerance and object migration facilities. It includes the following major

sections:

Smart Agent Features

ORB Domains

Connecting Agents on Different Local Networks
Using Point-to-point Communications

Object Implementation Fault Tolerance

Object Migration

Advanced Networking Options

5-2
5-4
5-5

THE ORB SMART AGENT

SMART AGENT FEATURES

VisiBroker's osagent is adynamic, distributed directory service that provides facilities for both client
applications and object implementations. When a client application invokesthe _bi nd method on an
object, the osagent locates the specified implementation and object so that a connection can be estab-
lished between the client and the implementation. Object implementations register their objects with the
osagent so that client applications can locate and use those objects. When an object or implementation is
destroyed, the osagent removes them from its list of available objects.

Agent Communication

NOTE

An osagent may be started on any host. To locate an osagent, client applications and object implementa-
tions send a broadcast message, and the first osagent to respond will be used. Once an osagent has been
located, a point-to-point UDP communication is established for registration and look-up requests. The
UDP protocol is used because it consumes fewer network resources than a TCP connection. All registra-
tion and locate requests are dynamic, so there are no required configuration files or mappings to maintain.

Broadcast messages are usually used only to locate an osagent. All other communication with the
osagent makes use of a point-to-point communication. “ Using Point-to-point Communications’ on
page 5-6 describes how to override the use of broadcast messages.

Agent-to-Agent Cooperation

When multipleinstances of the osagent are started on different hosts, each osagent will recogni ze a subset
of the objects available and communicate with other osagents to locate objectsit cannot find. If one of the
osagent processes should terminate unexpectedly, al implementations registered with that agent will be
notified and they will automatically re-register with another available osagent.

Cooperation with the OAD

The osagent maintains alist of all persistent object implementations that are registered with the Object
Activation Daemon. When the ORB requests the osagent to locate an object that has been registered
directly with the osagent, the address of the object is returned. If the requested object is registered with
the OAD, the osagent will return the address of the OAD capable of activating the object and the ORB
will contact that OAD.

SMART AGENT FEATURES

OAD activates
object

Object
Activation
Daemon

Client

Application Object

bind
request

object
address request
activate

| Object Request Broker I

Figure 5-1 The sequence of locating and activating an object registered with the OAD.

Starting the osagent

At least one instance of the osagent should be running on your local network. Figure 5-2 shows how to
start the osagent. The verbose mode option provides informational and diagnostic messages. Local
network refers to the part of the network within which broadcast message can be sent—machinesin the
same subnet.

Thisflag indicates that

information and diagnostic
messages are to be displayed.

osagent -v

Figure 5-2 Sarting the osagent.

Agent Fault Tolerance

If you run more than one instance of the osagent on alocal network and one of those agents becomes
unavailable, all object implementations registered with that agent will be automatically re-registered with
another agent. Likewise, client applications using an osagent that becomes unavailable will be automati-
cally switched to another agent by VisiBroker. No special coding techniques are required to take advan-
tage of this osagent fault-tolerance, aslong as more than one osagent exists on your local network.

THE ORB SMART AGENT

5-4

ORB DOMAINS

It is often desirable to have two or more separate ORB domains running at the same time. One domain
might consist of the production versions of client applications and object implementations while another
domain might be made up of test versions of the same clients and objects that have not yet been released

for general use.

Client
Application

Object
Activation
Daemon

Client
Application

Production
Domain

Object
Activation
Daemon

Figure 5-3 Separate ORB Domains.

VisiBroker allows you to distinguish between two or more ORB domains on the same network by using a
unique UDP port number for the osagents for each domain. The environment variable OSAGENT_PORT
must be set on each host running an osagent, an oad, object implementations, or client applications
assigned to that ORB domain.

Check with your system administrator to determine what port numbers are available for your use.

pronpt > setenv OSAGENT_PORT 5678
pronpt > osagent &
pronpt> oad &

Figure 5-4 Setting the OSAGENT_PORT environment variable for a UNIX system running csh.

CONNECTING AGENTS ON DIFFERENT LOCAL NETWORKS

CONNECTING AGENTS ON DIFFERENT LOCAL NETWORKS

NOTE

Client
Application

If you start multiple osagents on your local network, they will discover each other by using UDP broad-
cast messages. Your network administrator configures alocal network by specifying the scope of broad-
cast messages using the IP subnet mask. Figure 5-5 shows two local networks, connected by a network
link.

Object
Services
Agent

199.10.9.5

Object
Services
Agent

101.10.2.6

Local
Network
#1

Figure 5-5 Two osagent processes and their |P addresses, located on separate, connected |ocal
networks.

To alow the osagent on one network to contact an osagent on another local network, you must make the
IP address of the remote osagent available in afile named agentaddr. Figure 5-6 shows what thisfile
would contain to allow the osagent on local network #1 to connect to the osagent on the other network.
The path to thisfileis specified by the ORBEL INE environment variable that is set for the osagent pro-
cess.

101.10.2.6

Figure 5-6 Content of the agentaddr file for the osagent on network #1.

With the appropriate agentaddr file, the client application on network #1 could locate and use object
implementations on network #2. For more information on environment variables, see the VisiBroker for
C+ Reference Guide.

Even if a remote network has multiple osagents running, you need to list all of the osagents for that
network in the agentaddr file.

THE ORB SMART AGENT

USING POINT-TO-POINT COMMUNICATIONS

VisiBroker provides you with three different strategies for circumventing the use of UDP broadcast mes-
sages for locating osagent processes. When an osagent is located with any of these aternate approaches,
that agent will be used for all subsequent interactions. If an osagent cannot be located using any of these
alternate approaches, the ORB will revert to using the broadcast message scheme to locate an osagent.

Specifying IP addresses with the agentaddr File

You can use the agentaddr file to circumvent the use of UDP broadcast message to locate an osagent.
Simply create an agentaddr file containing the IP addresses of each node where an osagent is running
and then set the OSAGENT _ADDR environment variable to point to the location of the agentaddr file.
When aclient application or object implementation has this environment variable set, the ORB will try
each address in the file until an osagent islocated.

Specifying IP addresses as Run-time Parameters

Figure 5-7 shows how you can specify an osagent’s | P address as a run-time parameter for your client
application or object implementation. You can have a machine with many | P addresses. If you do have
many | P addresses on a machine, specify a particular address on the command line for any program using
the orb. See “Advanced Networking Options’ on page 5-9 for more information on this and other run-
time parameters.

pronpt > server -ORBagentaddr 101.10.2.6 &
or

pronpt> client -ORBagentaddr 199.10.9.5

Figure 5-7 Specifying an osagent’s | P address as a run-time parameter.

OBJECT IMPLEMENTATION FAULT TOLERANCE

OBJECT IMPLEMENTATION FAULT TOLERANCE

You can provide object implementation fault tolerance for statel ess objects by simply starting instances of
those objects on multiple hosts. The osagent will detect the loss of the connection between the client
application and the object implementation and the ORB will automatically attempt to establish a connec-
tion with another instance of the object implementation. The client can continue invoking methods on the
object without being concerned that a new instance of the object is being used.

The rebind option, discussed in “Enabling Re-Binds” on page 3-9, must be enabled if the ORB is
to be able re-connect the client with a replica object implementation.

Object Implementations that Maintain State

Fault tolerance can still be achieved with object implementations that maintain state, but it will not be
transparent to the client application. In these cases, the client application must register an event handler
for the ORB object. When the connection to an object implementation fails and the ORB re-connects the
client to areplica object implementation, the event handler'sr ebi nd_succeeded method will be
invoked by the ORB. The client can implement this method to bring the state of the replica up to date.
Event handlers are described in Chapter 7.

Replicating Instantiated Objects

If the ORB objects that you wish to be fault tolerant are created by a server process instantiating the
implementation’s C+ class, you need only ensure that the server processis started on multiple hosts.

Replicating Objects Registered with the OAD

NOTE

If the ORB objects that you wish to be fault tolerant are registered with the oad, you must ensure that the
oad is started on multiple hosts. Furthermore, you must ensure that the ORB objects are registered with
each of the oad processes.

The type of object replication provided by VisiBroker does not provide a multi-cast or mirroring facility.
At any given time there is always a one-to-one correspondence between a client application and a
particular object implementation.

THE ORB SMART AGENT

5-8

OBJECT MIGRATION

Object migration is the process of terminating an object implementation on one host and then starting it
on another host. Object migration can be used to move objects from overloaded hosts to hosts that have
more resources or processing power. Object migration can also be used to keep objects available when a
host has to be shutdown for hardware or software maintenance.

The rebind option, discussed in “Enabling Re-Binds” on page 3-9, must be enabled for the ORB to
be able re-connect a client with a object implementation that has migrated to a new host.

The migration of objects that do not maintain state is transparent to the client application. If aclientis
connected to an object implementation that has migrated, the osagent will detect the loss of the connec-
tion and transparently re-connect the client to the new object on the new host.

Migrating Object that Maintain State

The migration of objectsthat maintain stateis also possible, but it will not be transparent to a client appli-
cation that has connected before the migration process begins. In these cases, the client application must
register an event handler for the ORB object. When the connection to the original object islost and the
ORB re-connects the client to the object, the event handler'sr ebi nd_succeeded method will be
invoked by the ORB. The client can implement this method to bring the state of the object up to date.
Event handlers are described in Chapter 7.

Migrating Instantiated Objects

If the ORB objects that you wish to migrate were created by a server process instantiating the implemen-
tation's C+ class, you need only terminate the server process and start it on anew host. When the original
instance is terminated, it will be un-registered with the osagent. When the new instance is started on the
new host, it will register with the osagent. From that point on, client invocations will be routed to the
object implementation on the new host.

ADVANCED NETWORKING OPTIONS

Migrating Objects Registered with the OAD

If the ORB objects that you wish to migrate are registered with the oad, you will need to ensure they are
un-registered with the oad. Furthermore, you must ensure that the ORB objects are then registered with
the oad on the new host. Here are the steps:

1 Un-register the object implementation from the OAD on the old host.

2 Terminate the object implementation on the old host.

3 Register the object implementation with the OAD on the new host.

See Chapter 4 for detailed information on registering and unregistering object implementations.

ADVANCED NETWORKING OPTIONS

Although VisiBroker provides reasonable default settings for the network resources it uses, you may fine-
tune these setting through parameters passed to the ORB_i ni t method. The object implementation can
set similar options through parameters passed to the BOA i ni t method.

ORB_init Options

Figure 5-8 shows the definition of the ORB_init method and the arguments it accepts. The argc and argv

parameters are passed in exactly the same format as arguments passed to your client’s main routine. The

argc parameter defines the number of arguments and argv is an array of char pointers to those arguments.

ORB settings take the form of type-value pairs, enabling them to be distinguished from other arguments

passed to your client application. In fact, the ORB_init method will ignore any arguments it does not rec-
ognize. Table 5-9 summarizesthe ORB_i ni t options.

cl ass CORBA {

static ORB ptr ORB init(int& argc, char *const *argv,
*orb_id = (char *)NULL);

Figure5-8 The ORB_i ni t method definition.

In the preceding example, orb_id identifies the type of ORB. Currently “Internet ORB” is the only sup-
ported value.

THE ORB SMART AGENT

TYPE/VALUE PAIR PURPOSE

-ORBagentaddr ip_address Specifies the IP address of the host running the osagent this
client should use. If an osagent is not found at the specified
address or if this option is not specified, broadcast messages will
be used to locate an osagent.

You can have a machine with many IP addresses. If you do have
many IP addresses on a machine, specify a particular address
on the command line for any program using the orb.

-ORBagentport Specifies the port number of the osagent. This option can be
port_number used if multiple ORB domains are in use, described in “ORB
Domains” on page 5-4.

-ORBsendbufsize Specifies the size of the buffer used to send client requests. If
buffer_size not specified, an appropriate buffer size will be used.

-ORBrcvbufsize buffer_size Specifies the size of the buffer used to receive responses. If not
specified, an appropriate buffer size will be used.

-ORBmbufsize buffer_size Specifies the size of the intermediate buffer used by VisiBroker.
An argument will be copied to the intermediate buffer if it is not
too big, otherwise VisiBroker will maintain a pointer to the argu-
ment instead of copying it. Changing this parameter can seri-
ously affect the performance of your system.

-ORBshmsize size Specifies the size of the send and receive segments in shared
memory. If your client applications and object implementations
communicate via shared memory, you may use this option to
enhance performance.

Table 5-9 ORB_init options

BOA _init Options

Figure 5-10 shows the definition of the BOA_init method and the arguments it accepts. Like the
ORB_init method, the argc and argv parameters passed to BOA _init are in exactly the same format as
arguments passed to your object implementation’s main routine. All but two of the BOA settings take the
form of type-value pairs. The BOA_init method will ignore any argumentsit does not recognize.

5-10

ADVANCED NETWORKING OPTIONS

Table 5-11 summarizesthe BOA i ni t options. boa_identifier identifies the type of object-adaptor to
be used.

class CORBA {

static BOA ptr BOA init(int& argc, char *const *argv,
const char *boa_identifier = “PMC_BOA");

3

Figure5-10 The BOA i ni t method definition.

TYPE/VALUE PAIR PURPOSE

-OAipaddr ip_address Specifies the IP address to be used for the Object Adaptor. Use
this option if your machine has multiple network interfaces and
the BOA is associated with just one address. If no option is
specified, the host’'s default address is used.

-OAport port_number Specifies the port number to be used by this process. If none is
specified, an unused port will be selected.

-OAsendbufsize Specifies the size of the buffer used to send messages. If not
buffer_size specified, an appropriate value will be used.

-OArcvbufsize buffer_size Specifies the size of the buffer used to receive messages. If not
specified, an appropriate value will be used.

-OAnoshm Disables the use of shared memory as a message transport.

-OAshm Enables the use of shared memory as a message transport.
This option is the default.

Table 5-11 BOA _init options.

THE ORB SMART AGENT

5-12

CHAPTER 6

ERROR HANDLING

This chapter describes how errors are reflected and handled in the CORBA
model. User exceptions and system exceptions are discussed. If your platform
does not support the C+t r y and cat ch statements, an alternative error
mechanism is discussed. This chapter includes the following major sections:

Exceptions in the CORBA Model 6-2
System Exceptions 6-3
User Exceptions 6-8

m ERROR HANDLING

EXCEPTIONS IN THE CORBA MODEL

The CORBA specification defines a set of system exceptions that can be raised when errors occur in the
processing of aclient request. You can define user exceptionsin the IDL interface for an objects you
create and specify the circumstances under which those exceptions are to be raised. If an object raises an
exception while handling a client request, the ORB is responsible for reflecting this information back to
the client.

The Exception Class

VisiBroker uses C+ classesto represent both system and user exceptions. Since both types of exceptions
require similar functionality, Syst emExcept i on and User Except i on classesarederived from
acommon Except i on class. When an exception is raised, your application can narrow, or cast
down, from the Except i on classto aspecific User Except i on or Syst enExcepti on.
Figure 6-1 shows portions of the Except i on class definition.

cl ass Exception

{
public:
Exception(const Exception &);
~Exception();
Exception &operator=(const Exception &);
friend ostream& operator<<(ostream& strm

const Exception& exc);

const char *_nane() const;
const char*_repository_id() const;

h

Figure 6-1 Portionsof the Except i on class definition.

METHODS PROVIDED BY THE EXCEPTION CLASS

All exceptions have a name and arepository ID, though the name of the exception name is sufficient for
error reporting. The repository |D includes the name as well as additional information about the excep-
tion. You caninvokethe _nane and _r eposi t ory_i d methods on an exception to obtain this
information.

Assume you have a client application that requests a bind for an object whose server is currently not run-
ning, causing an exception to be raised. If your application called the__nane method on the exception
object it would return a string containing “CORBA::NO_IMPLEMENT”. If your application called the

_reposi tory_i d method, it would return a string containing

“1DL:0bg.omg/CORBA/NO_IMPLEMENT:1.0".

SYSTEM EXCEPTIONS

SYSTEM EXCEPTIONS

System exceptions are usually raised by the ORB, though it is possible for object implementations to
raise them using the Implementation Event Handler discussed in Chapter 7. When the ORB raises a
Syst enExcept i on, it will be one of the CORBA-defined error conditions shown in Figure 6-4 .

cl ass SystenkException: public Exception

{
public:
static const char *_id;
virtual ~Syst enException();
ULong m nor () const;
voi d m nor (ULong val);
Conpl eti onSt at us conpl eted() const;
voi d conpl et ed(Conpl eti onSt atus st atus);
static SystenException *_narrow Exception *exc);
private:
ULong _mnor;
conpl etion_status _status;
H

Figure6-2 The Syst emExcept i on class.

Completion Status

System exceptions have a completion status that tells you whether or not the operation that raised the
exception was completed. The Conpl et i onSt at us enumerated val ues are shown below.
COVPLETED_MAYBE is retuned when the status of the operation cannot be determined.

enum Conpl etionStatus {
COWPLETED_YES = O0;
COVPLETED_NO = 1;
COVPLETED_MAYBE = 2;
H

Figure6-3 The Conpl et i onSt at us values.

You can retrieve and set the completion status using these Sy st ermExcept i on methods.

Conpl eti onSt at us conpl et ed();
voi d conpl et ed(Conpl eti onSt at us st atus);

m ERROR HANDLING

Getting and Setting the Minor Code

You can retrieve and set the minor code using these Sy st ermExcept i on methods. Minor codes are
used to provide better information about the type of error.

ULong m nor () const;
voi d m nor (ULong val);

Casting to a SystemException

The design of the VisiBroker exception classes allows your application to catch any type of exception and
then determineitstype by using the__nar r owmethod. A static method, _nar r owaccepts apointer to
any Except i on object. If the pointer is of type Syst enExcept i on, _nar r owwill return the

pointer to you. If the pointer is not of type Syst emExcept i on, _nar r owwill return aNULL
pointer.

6-4

SYSTEM EXCEPTIONS

EXCEPTION NAME

DESCRIPTION

UNKNOWN Unknown exception.

BAD_PARAM An invalid parameter was passed.
NO_MEMORY Dynamic memory allocation failure.
IMP_LIMIT Implementation limit violated.

COMM_FAILURE

Communication failure.

INV_OBJREF

Invalid object reference specified.

NO_PERMISSION

No permission for attempted operation.

INTERNAL ORB internal error.
MARSHAL Error marshalling parameter or result.
INITIALIZE ORB initialization failure.

NO_IMPLEMENT

Operation implementation not available.

BAD_TYPECODE

Invalid typecode.

BAD_OPERATION

Invalid operation.

NO_RESOURCES

Insufficient resources to process request.

NO_RESPONSE

Response to request not yet available.

PERSIST_STORE

Persistent storage failure.

BAD_INV_ORDER

Routine invocations out of order.

TRANSIENT Transient failure.

FREE_MEM Unable to free memory.
INV_INDENT Invalid identifier syntax.

INV_FLAG Invalid flag was specified.
INTF_REPOS Error accessing interface repository.

BAD_CONTEXT

Error processing context object.

OBJ_ADAPTOR

Failure detected by object adaptor.

DATA_CONVERSION

Data conversion error.

OBJECT_NOT_EXIST

Object is not available.

Figure 6-4 CORBA-defined system exceptions.

m ERROR HANDLING

Handling System Exceptions

Your applications should always check for system exceptions after making ORB-related calls. Figure
6-5 illustrates how you might enhance the library client application, discussed in Chapter 2, to print an
exception using the << operator.

NOTE If the C+ compiler for your platform does not support exceptions, see page A-2 for a discussion on
using CORBA-defined Environments for handling exceptions.

library *library_object;
try {

}

I/ Check for errors

catch(const CORBA: : Exception& excep) {
cout << “Error binding to library:” << endl;
cout << excep; << endl;
return(0);

library_object = library::_bind();

Figure 6-5 Printing an exception.

If you were to execute the client application with these modifications without a server present, the output
shown in Figure 6-6 would explain that the operation did not complete and the reason for the exception.

Error binding to library:
Exception: CORBA:: NO_| MPLEMENT
Mnor: O
Conpl etion Status: NO

Figure 6-6 Output from modified library client application.

SYSTEM EXCEPTIONS

Narrowing to a System Exception

You can modify thelibrary client application to attempt to narrow any exception that is caught toa Sy s-
t emExcept i on. Figure 6-7 shows how you might modify the client application. Figure 6-8 shows
how the output would appear if a system exception occurred.

l'ibrary_var *library_object;
try {
library_object = library::_bind();
}
/Il Check for errors
cat ch(const CORBA: : Exception& excep) ({
CORBA: : Syst enExcepti on*sys_excep;
sys_excep = CORBA:: SystenException::_narrow &xcep);
i f(sys_excep !'= NULL) {
cout << “System Exception occurred:” << endl;

cout << * exception nane: “ <<
sys_excep->nanme() << endl;
cout << * m nor code: “ <<
sys_excep->mnor() << endl;
cout << * conpl etion code: “ <<
sys_excep->conpl eted() << endl;
} else {
cout << “Not a system exception” << endl;
}
return(0);

}

Figure 6-7 Narrowing an exception to a system exception.

System Exception occurred:
exception nane: CORBA: : NO_| MPLEMENT
m nor code: O
conpl etion code: 1

Figure 6-8 Output from the system exception.

m ERROR HANDLING

Catching System Exceptions

Rather than catching all types of exceptions, you may choose to specifically catch each type of exception
that you expect. Figure 6-9 shows thistechnique.

l'ibrary_var *library_object;

try {

library_object = library::_bind();

}

/Il Check for errors

catch(const CORBA: : Syst enExcepti on& excep) {

cout << “System Exception occurred:” << endl;

cout << “exception nanme: “ <<
sys_excep->nanme() << endl;

cout << “minor code: “ <<
sys_excep->m nor () << endl;

cout << “conpletion code: “ <<
sys_excep->conpl eted() << endl;

}

/1 Try catching other types of exceptions.

Figure 6-9 Catching specific types of exceptions.

USER EXCEPTIONS

Exceptions that can be raised by an object are called user exceptions. When you define your object’s
interface in IDL you can specify the user exceptions that the object may raise. Figure 6-10 showsthe
User Except i on classthat the IDL compiler will use to derive the user exceptions you specify for
your object.

class User Exception: public Exception

{
public:
static const char * id;
virtual ~User Exception();
static User Exception * _narrow(Exception *exc);
H

Figure6-10 The User Except i on class.

Defining User Exceptions

Assume that you want to enhance the library application, introduced in Chapter 2, so that the library
object will raise an exception. If thelibrary object’s book list isfull and an attempt is made to add a book,

6-8

USER EXCEPTIONS

you want a user exception named Capaci t yExceeded to be raised. The additions to the IDL speci-
fication for the library interface are shown in bold letters.

/1 1DL specification for book and library objects
struct book {

string author;

string title;

}

interface library {
exception CapacityExceeded {
b
bool ean add_book(in book book_info)
rai ses(Capacit yExceeded) ;
}

Figure 6-11 Defining User Exceptions

The IDL compiler will generate this C+ code for a CapacityExceeded exception class.

class library: public virtual CORBA:: Object

{
cl ass CapacityExceeded: public CORBA:: User Exception
{
public:
Capaci t yExceeded() ;
~Capaci t yExceeded();
static CapacityExceeded *_narrow(CORBA: : Excepti on *exc);
h
h

Figure6-12 The Capaci t yExceeded class generated by the IDL compiler.

On platforms that support C+ exceptions, thel i brary and_sk_I i br ary classes generated by
the IDL compiler from this specification will incorporate thet hr ow directiveinto theadd_book
methods signature.

virtual CORBA:: Bool ean add_book(const book& book_i nf o)
throw (library:: CapacityExceeded);

Figure 6-13 The new add_book method signature.

m ERROR HANDLING

Modifying the Object implementation

TheLi br ar y object must be modified to use the exception by changing theadd__book function pro-
totype and throwing the exception under the appropriate error conditions.

CORBA: : Bool ean Library::add_book(const book& book_i nf o)
throw (library:: CapacityExceeded)

{
CORBA: : Bool ean ret;
if((ret = bk_list.add_to_list(book_info)) == 0)
throw library:: CapacityExceeded();
return ret;
}

Figure 6-14 Modifying the object implementation to throw an exception.

Catching User Exceptions

When an object implementation rai ses an exception, the ORB is responsible for reflecting the exception
to your client application. Checking for aUserException is similar to checking for a SystemException. To
modify the library client application to catch the CapacityExceeded exception, you would make modifi-
cations like those shown below.

try {

}

/1 Check for System Exceptions

catch(const library:: CapacityExceeded& excep) {
cout << “CapacityExceeded returned:” << endl;
cout << excep; << endl;

/1 Do any necessary clean-up
return(0);

ret = library_object->add_book(book_entry);

Figure 6-15 Catchinga User Excepti on.

Adding Fields to User Exceptions

You can associate values with user exceptions. Figure 6-16 shows how to modify the IDL interface spec-
ification to add a size value to the CapacityExceeded user exception.The object implementation that

6-10

USER EXCEPTIONS

raises the exception is responsible for setting the value. The new valueis printed automatically when the
exception is put on the output stream.

/1 1DL specification for book and library objects
struct book {

string author;

string title;

}

interface library {
exception CapacityExceeded {
I ong size;
b
bool ean add_book(in book book_info)
rai ses(Capaci t yExceeded) ;
b

Figure 6-16 Adding a valueto the Capaci t yExceeded exception.

Portability considerations

You may want to consider always using these macros in your applications since they automatically adapt
to the capabilities of your C+ compiler. Applications that use these macros can be more easily ported
to all supported platforms. There are two sets of compatibility macros; one set for compilers with excep-
tion support and one set for compilers without exception support. The defined constant
_PMC_NCEXCEPTI ONS determines which macro set will be used. If _PMC_NOEXCEPTIONS is
not defined, then the compatibility macros will be mapped as shown in the following table.

MACRO NAME MACRO EXPANSION
PMCTRY try
PMCTHROW(type_name) throw(type)
PMCTHROW_LAST throw;
PMCCATCH(type_name, catch(const type &var)
variable_name)

PMCAND_CATCH catch(const type &var)
PMCEND_CATCH none
PMCTHROW_SPEC(x) none or throw(x)

Figure 6-17 Compatibility macro mapping for compilers that support exceptions.

m ERROR HANDLING

6-12

Understanding the Environment Class

The Envi r onnent class enables exceptions to be registered in your application’s environment.
Methods are provided that allow the PM C macrosto determineif a system or user exception has occurred
and obtain the details of the exception. If you use the PMC macros shown in Figure 6-17 , you should not
have to explicitly call these methods yourself.

VisiBroker createsadefault Envi r onment object for each process. If your platform supports threads,
an Envi r onment object is created for each thread.

The include file env.h containsthe Envi r onnent class definition.

cl ass Environnent

{

private:
Exception * _exception;
public:

Envi ronnent () ;
~Envi ronment () ;

Exception *exception() const;
voi d exception(Exception *exp);
voi d clear();

b

Figure 6-18 The Envi r onment class.

Environment Methods

The PMC macros make use of the Envi r onment classinternally. If you do not want to use the PMC
macros and do not have exception support, you can usethe Envi r onnment class.

Theexcept i on method is used by PMCTHROWto raise an exception.

voi d exception(Exception *exp);

This method is used by PMCCATCH to return the exception that has been set for the environment. If no
exception has been set, aNULL pointer is returned.

Exception excepti on(Exception *exp);

The clear method clears any exception that has been raised in the environment. This method is invoked
after the exception has been retrieved.

voi d clear();

Thei s_ni | method determinesif the supplied pointer is NULL. If the pointer isNULL, avalue other
than zero isreturned. If the pointer isnot NULL, zero isreturned. The behavior of the i S_ni | method
is defined in the CORBA specification.

stati c Bool ean is_nil (Environment_ptr env);

You can use the following CORBA class static method to obtain a pointer tothe Envi r onnent object
for the current process or current thread, if threads are supported.

cl ass CORBA {

static Environnent& current_environment();

m ERROR HANDLING

6-14

CHAPTER 7

HANDLING EVENTS

VisiBroker transparently manages networking and communication issues for
you, but there may be times when your client applications and object
implementations need to define their own error and recovery processing.
VisiBroker provides a set of event handling mechanisms for notifying clients
and object implementations of system events. Event handing can be used to
implement accounting, tracing, debugging, logging, security or encryption
features. This chapter includes the following major sections:

Event Handler Concepts 7-2
Client Event Handlers 7-2

Implementation Event Handlers 7-9

HANDLING EVENTS

EVENT HANDLER CONCEPTS

Event handlers objects allow client application and object implementations to define methods that the
ORB will invoke to handle events such as the success or failure of abind request or the failure of an
object implementation. Two different event handler classes are provided because the types of events that
can be handled are different for clients and object implementations. However, the procedure for using an
event handler is similar for clients and object implementations.

1 Derive an event handler class for your object, defining the event methods you wish to handle.
2 Provide Implementations for the event methods you wish to handle.

3 Add code to the client or object implementation to register the event handler.

CLIENT-SIDE EVENTS IMPLEMENTATION-SIDE EVENTS

BIND SUCCEEDED BIND REQUEST RECEIVED

BIND FAILED UNBIND REQUEST
RECEIVED

SERVER ABORTED CLIENT ABORTED

REBIND SUCCEEDED PRE-METHOD

REBIND FAILED POST-METHOD

Figure 7-1 A summary of the events that can be handled by client applications and object
implementations.

CLIENT EVENT HANDLERS

Client applications can register an event handler with the ORB to handle events for a particular ORB
object. The client can aso globally register an event handler to handle events for all ORB objects the
client uses.

-2

CLIENT EVENT HANDLERS

Figure 7-2 shows a portion of the pmcext.h include file that contains the class definition for the Cl i -
ent Event Handl er class.

class PMC_EXT

{
struct Connectionlnfo {
CORBA: : String_var host nane;
CORBA:: : UShor t port;
CORBA: : Long fd;
s
class dient Event Handl er
{
public:
virtual void bind_succeeded(CORBA: : Cbj ect _ptr,
const Connecti onl nf 0&);
virtual void bind_failed(CORBA:: Cbject_ptr);
virtual void server_aborted(CORBA: : Obj ect_ptr);
virtual void rebind_succeeded(CORBA: : Ohj ect _ptr,
const Connectionl nf 0&);
virtual void rebind_fail ed(CORBA: : Object_ptr);
b
H

Figure 7-2 TheConnect i

The ConnectionInfo Structure

onl nf o structureand the Cl i ent Event Handl er class.

This structure represents all the information needed for aconnection. It includes the host name where the
object implementation resides, the port number and the file descriptor used for the connection. This struc-
ture is modified when the connection to the object implementation is lost and are-bind operation is

attempted.

ClientEventHandler Methods

When an event handler object has been registered for a particular ORB object, the ORB will call the Cli-
entEventHandler methods when a specific event occurs. If the event handler isregistered asaglobal event
handler, the ClientEventHandler methods will be called for any event related to any object the client uses.

Thebi nd_succeeded method is called by the ORB when the client’s request to bind to the ORB
object has completed successfully. A pointer to the object that has been bound is provided as a parameter
as well as the connection information.

HANDLING EVENTS

Thebi nd_f ai | ed method is called if the client’s bind request fails. A pointer to the object to which
the event isrelated is provided as a parameter.

Theser ver _abort ed method iscalled if the connection to the object implementation islost. A
pointer to the object to which the event is related is provided as a parameter.

Ther ebi nd_succeeded method is called when an attempt to re-connect to an object implementa-
tion succeeds. A pointer to the object that has been re-bound is provided as a parameter aswell asthe new
connection information.

Ther ebi nd_f ai | ed method is called when an attempt to re-connect to an object implementation
fails. A pointer to the object to which the event isrelated is provided as a parameter.

Creating a Client Event Handler

To implement an event handler for your client application, you must derive your own event handler class
for the class you wish to monitor. You will need to implement only those event handler methods you wish
to override. If you do not override an event handler method, no special processing will occur and no per-
formance overhead will be added to the application.

Figure 7-3 shows how you would define an event handler for the library client, introduced in Chapter 2.
Only three of the possible five methods offered by ClientEventHandler have been overridden and Figure
7-4 shows simple implementations for these methods.

class LibraryCientHandl er : public PMC EXT::dient Event Handl er
{
public:
voi d bi nd_succeeded(CORBA: : Ohj ect _ptr, const Connectionl nfo&);
voi d bind_fail ed(CORBA: : Obj ect _ptr);
voi d server_aborted(CORBA: : Obj ect_ptr);

Figure 7-3 An example event handler for the library client.

CLIENT EVENT HANDLERS

void LibraryCientHandl er::bind_succeeded(CORBA: : Obj ect _ptr obj,
const Connecti onl nf 0&)

{
cout << “Event Handl er bind_succeeded for:
<< obj->_interface_nane() << endl;
}
voi d LibraryCdientHandl er::bind_fail ed(CORBA: : Cbj ect _ptr obj)
{
cout << “Event Handler bind failed for:
<< obj->_interface_nane() << endl;
}
voi d LibraryCientHandl er::server_aborted(CORBA: : Obj ect _ptr obj)
{
cout << “Event Handl er server_aborted for:
<< obj->_interface_nane() << endl;
}

Figure 7-4 Implementation for the Li br ar yCl i ent Handl er method.

The Handler Registry

You can use the static method Handl er Regi st ry: : i nst ance to obtain apointer to the registry
and then invoke the methods for registering and un-registering various types of event handlers.

cl ass Handl er Regi stry{
public:
static Handl erRegistry_ptr instance();
voi d reg_obj _client_handl er (CORBA: : Cbj ect _ptr obj,
Cl i ent Event Handl er _ptr handl er);
void reg_glob_client_handl er(dientEvent Handl er_ptr handl er);
voi d unreg_obj _client_handl er (CORBA: : Obj ect _ptr obj);
void unreg_glob_client_handler();
voi d reg_obj _i npl _handl er (CORBA: : Obj ect _ptr obj,
| npl Event Handl er _ptr handl er);
void reg_gl ob_i npl _handl er (| npl Event Handl er _ptr handl er);
voi d unreg_obj i npl _handl er (CORBA: : Cbj ect _ptr obj);
voi d unreg_gl ob_i npl _handl er();

}s

Figure 7-5 TheHandl er Regi st ry class.

HANDLING EVENTS

7-6

HandlerRegistry Methods for Clients Applications

NOTE

Ther eg_obj _client _handl er method can be called by your client application to register an
event handler for a specific object. The parameters passed to this method are a reference to the object and
apointer to the object'sCl i ent Event Handl er . If the object referenceisnot valid, an | nval i -
dObj ect exception will beraised. If an event handler has already been registered for the specified
object, aHandl er Exi st s exception will be raised. You can use the

unreg_obj _client _handl er method to un-register a previously registered event handler.

Ther eg_gl ob_cl i ent _handl er method can be called by your client application to register an
event handler for all object the client uses. The parameter passed to this method is a pointer to the object’s
Cl i ent Event Handl er. If aglobal handler has already been registered, aHandl er Exi st s
exception will beraised. You can usetheunr eg_gl ob_cl i ent _handl er method to un-register
apreviously registered global event handler.

If both an object event handler and a global event handler are registered, the object event handler will
take precedence for events that occur which arerelated to its object. All other events will be handled by
the global event handler.

Theunr eg_obj client _handl er method can called by your client application to un-register
an event handler for a specific object. A reference to the object whose event handler isto be removed is
passed as a parameter. If the object referenceis not valid, an | nval i dObj ect exception will be
raised. If no event handler has been registered for the specified object, aNoHand| er exception will be
raised.

The unreg_gl ob_cl i ent _handl er method can called by your client application to unregister
aglobal event handler. If no global event handler has been registered, a
NoHandl er exception will be raised.

Registering Client Event Handlers

There are methods for registering both global and per-object event handlers. In either case, the client uses
the PCM_EXT: : Handl er Regi stry: : i nst ance method to obtain a pointer to the ORB’s
event handler registry. Figure 7-6 shows the registration process for a global event handler and shows
how to register a per-object event handler. Both examples assume that the LibraryClientHandler class has
been defined and implemented, as shown in Figure 7-3 and Figure 7-4 .

CLIENT EVENT HANDLERS

#i ncl ude <fstream h>
#include <lib_client.hh>
mai n(int argc, char *const *argv)

{

CORBA: : Bool ean ret;
/1 Initialize the ORB
CORBA: : ORB_ptr orb = CORBA:: ORB_init(argc, argv);

/1 Parse argunents

/1 Declare the library object
l'ibrary_var *library_object;

/1 Declare the library event handler
Li braryd i ent Handl er client_handler;

// Cbtain a handle to the ORB's registry
PCM EXT: : Handl er Regi stery_ptr registry_handle =
PCM EXT: : Handl er Regi stry: :instance();
try {
/! Register the global event handler
regi stry_handl e->reg_gl ob_client_handl er (&client_handler);
}
cat ch(const PMC_EXT: : Handl er Exi st s& excep) {
cout << “A global handler was already registered” << endl;

}

// Bind to the library object and invoke nethods

try {
/1l Un-register the global event handler
regi stry_handl e- >unreg_gl ob_client_handler();
}
catch(const PMC_EXT: : NoHandl er & excep) {
cout << “No gl obal handler was registered” << endl;

}

return(l);

Figure 7-6 Registering a global client event handler.

HANDLING EVENTS

#i ncl ude <fstream h>
#include <lib_client.hh>
mai n(int argc, char *const *argv)
{
CORBA: : Bool ean ret;
/1 Initialize the ORB
CORBA: : ORB_ptr orb = CORBA:: ORB_init(argc, argv);
/| Parse argunents

/1 Declare the library object
library_var *library_object;
/1 Bind to the library object

/1 Declare the library event handler
Li braryCd i ent Handl er client_handl er;

/] Cbtain a handle to the ORB's registry
PCM EXT: : Handl er Regi stery_ptr registry_handle =
PCM EXT: : Handl er Regi stry: ::instance();
try {
/'l Register the library event handler
regi stry_handl e->reg_obj _client_handl er(library_object,
&cl i ent _handl er);
}
cat ch(const PMC_EXT: : Handl er Exi st s& excep) {
cout << “A handler was already registered” << endl;

}

/1 1nvoke methods on library object

try {
/1 Un-register the library event handler
regi stry_handl e- >unreg_obj _client_handler(library_object);
}
catch(const PMC_EXT:: NoHandl er & excep) {
cout << “No handler was registered” << endl;
}
catch(const PMC_EXT:: I nval i dOoject& excep) {
cout << “Invalid object reference” << endl;

}

return(l);

Figure 7-7 Registering a per-object client event handler.

-8

IMPLEMENTATION EVENT HANDLERS

IMPLEMENTATION EVENT HANDLERS

Like client applications, object implementations can register an event handler with the ORB to handle
events for a particular ORB object. The implementation can also globally register an event handler to
handle events for all ORB objects implemented. Implementation-side event handling can be used for a
variety of purposes. For example, the implementation may refuse a client connection request, based on
the caller’sidentity.

The ImplEventHandler Class

Figure 7-8 shows the ImplEventHandler class you will use to derive an implementation event handler.
All of the methods shown make use of the Connectioninfo structure, discussed on page 7-3.

class PCM _EXT

{
cl ass | npl Event Handl er
{
public:
virtual void bind(const Connectionl nfo&,
CORBA: : Princi pal _ptr, CORBA:: Object_ptr);
virtual void unbind(const Connectionlnfog&,
CORBA: : Princi pal _ptr, CORBA::Ohject_ptr);
virtual void client_aborted(const Connectionlnfog&,
CORBA: : Princi pal _ptr, CORBA::Cbject_ptr);
virtual void pre_nethod(const Connectionl nfo&,
CORBA: : Princi pal _ptr, CORBA:: vject_ptr,
const char *, CORBA::Object_ptr);
virtual void post_nethod(const Connecti onl nfog&,
CORBA: : Princi pal _ptr, CORBA:: vject_ptr,
const char *, CORBA::Object_ptr);
b
H

Figure 7-8 Thel npl Event Handl er class.

In the preceding figure, CORBA: : Pri nci pal _pt r alowsclientsto send information to the server
that can retrieve this data and, as the implementor, you can determine if the server allowsthe action (like
abind) to be performed.

HANDLING EVENTS

7-10

ImplEventHandler Methods

NOTE

The bi nd method will be called every time a client wishes to connect to this object. This method allow
your object implementation to do any special processing before the bind request is processed. Once this
method returns, the BOA will proceed with the normal binding process. The parameters passed to this
method are the connection information, the Principal value associated with the client and a pointer to the
ORB object requested. This method may choose to reject the bind, based on the requestor’s identity, by
raisinga CORBA: : NO_PERM SSI ON exception.

Theunbi nd method will be called every time aclient application callsthe CORBA ::release method for
apreviously bound object. The BOA will pass control to this method before the un-bind occurs. The con-
nection information and the object reference are passed to this method.

Thecl i ent _abort ed method will be called if the connection to aclient application islost. The
connection information and the object reference are passed to this method.

Thepr e_met hod method will be called every time a client application invokes amethod on the object
for which the handler is registered. After this method returns, the BOA will proceed with the method
invocation. The connection information, Principal of the client, method name and a pointer to the object
are all passed to this method.

Thepost _net hod method will be called after every invocation of a method by a client on the object
being traced. After this method returns, the results of the method invocation will be returned to the client.
The connection information, Pr i nci pal of the client, method name and a pointer to the object are al
passed to this method.

If the method invoked by the client raises an exception, post_method will not be called.

Creating Implementation Event Handlers

Figure 7-9 shows how you can create an implementation event handler for the Li br ar y object by
deriving your own class from the | npl Event Handl er class. Figure 7-10 shows the implementa-
tionfor theLi br ar yl npl Handl er methods defined. You only need to define and provide method
implementations for those events you wish to handle.

IMPLEMENTATION EVENT HANDLERS

class Librarylnpl Handl er : public PMC_EXT:: | npl Event Handl er

{
public:
voi d bi nd(const Connectionl nfo& CORBA: :Principal_ptr,
CORBA: : Ohj ect _ptr);
voi d unbi nd(const Connectionl nfo& CORBA:: Principal _ptr,
CORBA: : Obj ect _ptr);
H

Figure 7-9 Example event handler classfor theLi br ar y object implementation.

voi d Libraryl npl Handl er: : bi nd(const Connecti onl nf 0&,
CORBA: : Princi pal _ptr, CORBA:: bject_ptr obj)
{

cout << “Bind request arrived for “ << obj->_interface_name << endl;
H

voi d Libraryl npl Handl er: : unbi nd(const Connecti onl nf 0&,
CORBA: : Princi pal _ptr, CORBA:: bject_ptr obj)
{

cout << “Un-Bind request arrived for “ << obj->_interface_name << endl;

b

Figure 7-10 Method implementations for the Li br ar yl nmpl Handl er class methods.

Using the Handler Registry

Aswith client applications, the HandlerRegistry is used to register implementation event handlers. The
HandlerRegistry classis show in Figure 7-5 on page 7-5.

HandlerRegistry Methods for Object Implementations

Ther eg_obj _i mpl _handl er method can be called by your object implementation to register an
event handler with the BOA for a specific object. The parameters passed to this method are areference to
the object and a pointer to the object’s | npl Event Handl er . If the object reference is not valid, an
I nval i dObj ect exception will be raised. If an event handler has already been registered for the
specified object, aHandl er Exi st s exception will be raised. You can use the

unr eg_obj _i mpl _handl er method to un-register a previously registered event handler.

Ther eg_gl ob_i npl _handl er method can be called by your object implementation to register
an event handler with the BOA for all objects contained in the implementation. The parameter passed to
this method is a pointer to the object’s | npl Event Handl er . If aglobal handler has already been

HANDLING EVENTS

7-12

NOTE

registered for thisimplementation, aHandl er Exi st s exception will be raised. You can use the
unreg_gl ob_i npl _handl er method to un-register apreviously registered global event handler.

If both an object event handler and a global event handler are registered, the object event handler will
take precedence for events that occur which arerelated to its object. All other events will be handled by
the global event handler.

Theunr eg_obj i npl _handl er method can be called by your object implementation to un-reg-
ister an event handler for a specific object. A reference to the object whose event handler isto be removed
is passed as a parameter. If the object referenceis not valid, an | nval i dObj ect exception will be
raised. If no event handler has been registered for the specified object, a NoHandl er exception will
be raised.

Theunr eg_gl ob_i npl _handl er method can be called by your object implementation to un-
register aglobal event handler. If no global event handler has been registered, aNoHand| er exception
will be raised.

Registering Implementation Event Handlers

Like client applications, your object implementations will use similar procedures for registering both
global and per-object event handler. In both cases, the client uses the PCM_EXT::HandlerRegis-
try::instance method to obtain a pointer to the BOA's event handler registry. Figure 7-11 showsthe reg-
istration process for aglobal event handler and Figure 7-12 shows how to register a per-object event
handler. Both examples assume that the LibrarylmplHandler class has been defined and implemented, as
shown in Figure 7-10 .

IMPLEMENTATION EVENT HANDLERS

#i nclude <lib_server.hh>

int main(int argc, char **argv)

{
/1 Initialize ORB and Basic (bject Adaptor (BQA)
CORBA: : ORB_ptr orb = CORBA::ORB_init(argc, argv);
CORBA: : BOA ptr boa = orb->BOA_init(argc, argv);

/!l Instantiate the Library object
Library *library_obj = new Library(“Harvard”);

/1 Define the inpl_handler and registry instance
Li braryl npl Handl er i npl _handl er;
PMC_EXT: : Handl er Regi stry_ptr registry_handl e;
regi stry_handl e = PMC_EXT: : Handl er Regi stry: :i nstance();
try {
/'l Register a global event handler
regi stry_handl e->reg_gl ob_i npl _handl er (& npl _handl er);
}
cat ch(const PMC_EXT: : Handl er Exi st s& excep) {
cout << “dobal handl er already defined” << endl;

}
/1 Instantiate Library C ass, activate object and inplenentation
try {
regi stry_handl e- >unreg_gl ob_i npl _handl er () ;
}

catch(const PMC_EXT:: NoHandl er & excep) {
cout << “Renmpval of global event handler failed” << endl;

}

Figure 7-11 Registering a global event handler for an object implementation.

HANDLING EVENTS

7-14

#i nclude <lib_server. hh>

int

{

mai n(int argc, char **argv)

/1 Initialize ORB and Basic Object Adaptor (BOA)
CORBA: : ORB_ptr orb = CORBA:: ORB_init(argc, argv);
CORBA: : BOA ptr boa = orb->BOA_init(argc, argv);

/1 Instantiate the Library object
Library *library_obj = new Library(“Harvard”);

/1 Define the inpl_handler and registry instance
Li braryl npl Handl er i npl _handl er;
PMC_EXT: : Handl er Regi stry_ptr registry_handl e;
regi stry_handl e = PMC_EXT: : Handl er Regi stry: :instance();
try {

/'l Register a global event handler

regi stry_handl e->reg_obj _i npl _handl er(li brary_obj, & npl_handler);
}
catch(const PMC_EXT: : Handl er Exi st s& excep) {

cout << “Handler already defined for " <<

l'i brary_obj->_i nstance_nane << endl;

}
/1 Instantiate Library Class, activate object and inplenmentation
try {

regi stry_handl e- >unreg_obj _i npl _handl er (1 ibrary_obj);
E:atch(const PMC_EXT: : NoHandl er & excep) {

cout << “Renpval of event handler failed for " <<
I'i brary_obj->_i nstance_nane << endl;

Figure 7-12 Registering a per-object event handler for an object implementation.

ADVANCED PROGRAMMING

ToPICS

This chapter discusses devel oping multi-threaded client applications and

object implementations with VisiBroker. This chapter also coversthe

CHAPTER 8

integration of an object implementation’s event loop with other event-driven

software. It includes the following major sections:

Using Threads with VisiBroker

Threads in an Object Implementation

Threads in a Client Application

Linking Multi-threaded Applications

Event Loop Integration

Integration with XWindows

Integration with the Windows/NT Event Loop
Integration with Microsoft Foundation Classes
Multithreaded Servers: Windows 95 and Windows NT

Integration with Other Environments

8-2
8-2
8-3
8-5
8-5
8-11
8-11
8-13
8-15
8-17

m ADVANCED PROGRAMMING TOPICS

USING THREADS WITH VISIBROKER

For platforms that support threads, VisiBroker provides two sets of libraries; a single-threaded library and
another library that is thread-safe and re-entrant. In addition to providing thread-safe facilities for client
applications, the multi-threaded version of the library resultsin the internal use of threads by the VisiBro-
ker core.

For applications that never intend to use threads, the single-threaded library offers slightly better perfor-
mance. Both libraries provide identical interfaces, which allows your applications to take advantage of
multi-threaded support in the future without worrying about interface changes.

NOTE The Dispatcher classis useful for single-threaded applications only.

THREADS IN AN OBJECT IMPLEMENTATION

In the multi-threaded version of VisiBroker, the main thread of an object implementation is responsible
for initializing the ORB and BOA. The main thread then waits for connection requests from client appli-
cations. Each time a client connection request is received, a new worker thread is spawned within the
object implementation to perform all processing for that client. When the client application destroys the
connection, the worker thread exits. If several clients access the object implementation at one time,
worker threads will be created for each client.

Object
Implementation

main thread

Client
Application
#1

request

worker
thread

Client

Application request
#2

Figure 8-1 A multi-threaded object implementation.

THREADS IN A CLIENT APPLICATION

THREADS IN A CLIENT APPLICATION

Client applications can use threads in two ways in relation to an object implementation. The client can
use the object reference returned from asingle bind in all of the threads it creates. Alternatively, each
thread within the client can issue its own bind request.

One Bind with Multiple Client Threads

If your client application issues a single bind and then spawns several threads, it can pass the object refer-
ence received from the bind to each thread. A single connection to the object implementation is estab-
lished and all client worker threads utilize a single worker thread in the object implementation.

NOTE If aparticular client thread issues multiple bind requests to the same object implementation, VisiBroker
will not establish multiple connections. Instead, VisiBroker will detect that a connection already exists
and will re-use that connection.

Client
Application Object
main thread Implementation

main thread

request

worker
thread

worker
thread

request

Figure 8-2 One bind for multiple client application threads.

m ADVANCED PROGRAMMING TOPICS

84

Multiple Binds with Multiple Client Threads

Your client application can spawn severa threads and have each thread issue its own bind request to the
object implementation. In this case, VisiBroker will establish a separate connection to the object imple-
mentation for each client thread and the object implementation will create aworker thread for each client
worker thread. This arrangement allows for maximum efficiency because if one client thread issues a
blocking request it will not block other client threads that are accessing the same object implementation.

Client Object
Application Implementation

main thread

main thread

request

worker
thread

request

worker
thread

Figure 8-3 Multiple client threads, each making their own bind request.

Multiple Threads with Cloning

Cloning is another technique for achieving a separate object implementation worker thread for each client
worker thread. Using this approach, the main thread binds to the object and passes the object reference to
each client worker thread it creates. A client worker thread then invokesthe _cl one method on the
object reference, resulting in anew connection with the object implementation and the spawning of anew
worker thread. You should remember that the _duplicate method increases the reference count to the
object and that _clone makes a complete copy of the object reference and resultsin a new, separate con-
nection.

LINKING MULTI-THREADED APPLICATIONS

LINKING MULTI-THREADED APPLICATIONS

All the re-entrant versions of the VisiBroker libraries, regardless of platform, havea“_r” suffix.

For Unix systems, these libraries should be used:

FILE NAME DESCRIPTION
liborb_r.so Re-entrant version of the library liborb.so
liborb_r.a Re-entrant version of the library liborb.a

For Windows and Windows/NT, this library should be used:
FILE NAME DESCRIPTION

ORB_R.DLL Re-entrant version of the library ORB.DLL

EVENT LOOP INTEGRATION

When your object implementation invokes the BOA::impl_is_ready method, an event loop is entered that
waits for the arrival of requests from client applications. Your object implementation may also need to
interact with another event-driven system. In a multi-threaded environment, you can solve this problem
by simply using two threads; one thread waits for VisiBroker events and the other thread services other
events. If your platform does not support threads, you may find it helpful to integrate all event driven pro-
cessing by using the Di spat cher and | OHandl er classes.

The Dispatcher Class

This classis designed to detect events on several file descriptors and dispatch those events to the appro-
priate handler. The Di spat cher maintainsthree lists of file descriptors; one list for reading data, one
list for writing data and one for exceptions. You can usethel i nk method to add afile descriptor to one
of the Di spat cher class listsand definethe | OHandl er object to be called to handle events on
that file descriptor. You can find the include file for the Dispatcher classini ncl ude/ di s-

pat cher/ di spat ch. h.

NOTE The Dispatcher classis useful for single-threaded applications only.

m ADVANCED PROGRAMMING TOPICS

An gpplication should have only one instance of the Di spat cher classand thestatici nst ance
method is provided to create the object, if necessary, and return a pointer to it.

cl ass Dispatcher {

public:
enum Di spat cher Mask {
ReadMask,
WiteMask,
Except Mask
h

Di spat cher () ;
virtual ~Dispatcher();

virtual void link(int fd, DispatcherMask, |COHandler*);
virtual |OHandl er handl er (int fd, D spatcherMask) const;
virtual void unlink(int fd);

virtual void start Timer (1 ong sec, |ong usec, |OHandler*);
virtual void st opTi mer (1 OHandl er *) ;

virtual iv_bool ean di spatch(l ong& sec, |ong& usec);

virtual iv_bool ean di spatch(tinmeval *);

virtual iv_bool ean di spat ch();

static Dispatcheré& instance();

b

Figure8-4 TheDi spat cher class.

ADDING FILE DESCRIPTORS

When using thel i nk method to add afile descriptor to the Di spat cher, you specify thefile
descriptor, the Di spat cher Mask and apointer to an IOHandler obj ect . The Di spat cher -
Mask value determines whether the file descriptor is added to the read, write or exception event list.

When an event occurs on the file descriptor, the Di spat cher will invoke the appropriate IOHandler
method to service the event. The IOHandler object provides methods for reading data from or writing
data to afile descriptor aswell as for handling exceptions and expired timers. If an | OHandl er
method returns a negative value indicating it encountered an error, the Di spat cher will automati-
caly unlink thel OHandl er fromitsfile descriptor.

NOTE You must make multiple invocations of the link method if you want a particular file descriptor to be
placed in more than one of the dispatcher’s lists. DispatcherMask values cannot be ordered together
when calling | i nk.

NOTE

EVENT LOOP INTEGRATION

You can use the handler method to return the IOHandler object defined for a particular file descriptor and
DispatcherMask combination.

SETTING TIMERS

You can set an interval timer for aparticular | OHandl er object by invoking thest art Ti ner
method. This method lets you specify atime interval in a combination of seconds and microseconds.
When theiinterval expires, thel OHandl er object’'st i ner Expi r ed method isinvoked. The Di s-
pat cher method st opTi mer can be called to stop atimer.

Timers are one shot, not periodic—you have to set them again if you want to time another interval.

The use of the timer methods can be especially useful in single-threaded environments. Multi-threaded
applications have the flexibility of starting timers in separate threads.

DISPATCHING

Oneform of thedi spat ch method accepts no arguments and blocks indefinitely or until an event
occurs on one of its file descriptors. If afile descriptor event occurs, the appropriate | OHandl er
method isinvoked beforethe di spat ch method returns.

The other two forms of the di spat ch method accept atime interval specification. If the time interval
specified is zero, the Di spat cher will return immediately after checking al the file descriptors and
timers. If thetime interval is greater than zero, the Di spat cher will block until an event occurs on
one of the file descriptors or until the time interval expires. The di spat ch method returns aoneif an
event on afile descriptor caused the return. This method returns a zero if an expired timer caused the

di spat ch method to return.

REMOVING FILE DESCRIPTORS

Theunl i nk method removes the specified file descriptor from al lists maintained by the Di s-
pat cher.

m ADVANCED PROGRAMMING TOPICS

The IOHandler Class

You derive your own classfrom | OHandl er classto handle events on a particular file descriptor. You
associate your | OHandl er object with afile descriptor, using the Di spat cher object'sl i nk
method.

You can find the include file for this| OHandl er in the following location:
include/dispatch/iohandler.h

class | OHandl er {

pr ot ect ed:
| OHandl er () ;

publi c:
vi rtual ~| OHandl er () ;
virtual int inputReady(int fd);
virtual int outputReady(int fd);
virtual int exceptionRaised(int fd);
virtual void tinerExpired(long sec, |ong usec);

}s

Figure8-5 Thel OHandl er class.

IMPLEMENTING THE IOHANDLER METHODS

You must provide implementations for the |OHandler methods that you want to handle for your file
descriptor. Table 8-6 describes each of the methods and Table 8-7 shows the return code conventions
that the Di spat cher class assumes your methods will follow.

METHOD NAME DESCRIPTION
inputReady Called when the Dispatcher detects that data is ready to be read
from the file descriptor associated with this handler.

outputReady Called when the Dispatcher detects that the file descriptor associ-
ated with this handler is ready to accept more data.

exceptionRaised Called when the Dispatcher detects that an I/O exception has
occurred on the file descriptor associated with this handler.

timer expired Called when the Dispatcher is notified that an interval timer for this
handler has expired. The current time in seconds and microseconds
since January 1, 1970 is passed.

Table 8-6 The IOHandler class methods.

8-8

EVENT LOOP INTEGRATION

RETURN VALUE MEANING

-1 or negative The method encountered an error and does not want to handle any

value more events.

0 The method has completed successfully and currently has no more
work to do.

1 or a positive The method has completed successfully, but has more data to read or

value write. The dispatcher will keep calling this method, after checking all

other file descriptors, until this method returns 0 or a negative value.

Table 8-7 Return code conventions for IOHandler methods.

Using an IOHandler

To create your own | OHandl er , simply derive your own class and implement those methods you
intend to use. Figure 8-8 shows an example |OHandler-derived class.

#i ncl ude <di spatch/iohandl e. h>

class MyHandl er : public | OHandl er

{
public:
MyHandl er () ;
virtual ~MyHandl er();
virtual int inputReady(int fd) {
/1 read fromfile using fd
if(done) {
return(0);
} else if(nore_left_to read) {
return(l);
} else if(failure) {
return(-1);
}
}
H

Figure 8-8 An example | OHandl er -derived class.

m ADVANCED PROGRAMMING TOPICS

Figure 8-9 shows how you might instantiate your handler and link it to afile descriptor. In this example,
when an input event occurs on iy f d the dispatcher will call ny_handl er : : i nput Ready
method to handle the event.

MyHandl er ny_handl er
Di spat cher &di sp = Dispatcher::instance();
di sp.link(nyfd, Dispatcher::ReadMask, mny_handl er);

Figure 8-9 Instantiating an linking a handler to a file descriptor.

8-10

INTEGRATION WITH XWINDOWS

INTEGRATION WITH XWINDOWS

NOTE Thisimplementationis for single-threaded serversonly.

VisiBroker providesan XDi spat cher classthat you can use to integrate your application with the
XWindows XtMainLoop. The XDi spat cher registersthe file descriptors it uses for its connections
with the Xt event loop and installs the appropriate event handlers. The result is that the Xt event loop
receives and dispatches events for both X Window and VisiBroker events. When an event occurs on one of
VisiBroker'sfile descriptors, the Xt event loop will call the appropriate VisiBroker method to process the
data.

Figure 8-10 shows how you might usethe XDi spat cher classin you object implementation. Appli-
cationsthat usethe XDi spat cher classshould link with the library libxdispatch.a in addition to all
the other appropriate VisiBroker libraries.

#i ncl ude <di spat ch/ xdi sp. h>
int main(int argc, char * const *argv)

{
/1 Instantiate XD spatcher before invoking any VisiBroker nethods.
XDi spat cher xdi sp;
/1 Initialize ORB and BOA.
CORBA: : ORB_ptr orb = CORBA::ORB_init(argc, argv);
CORBA: : BOA ptr boa = orb->BOA_init(argc, argv);
boa->i npl _i s_ready();
/1 You can call XtMinLoop() instead of inpl_is_ready().
}

Figure 8-10 Using the XDi spat cher class.

INTEGRATION WITH THE WINDOWS/NT EVENT LOOP

NOTE Thisimplementation isfor single-threaded serversonly.

VisiBroker providesa\ADi spat cher classthat you can use to integrate VisiBroker events with
Windows message events. The WDi spat cher must be instantiated before any ORB object implemen-
tations are instantiated and before ORB or BOA methods are invoked. When you instantiate the WDis-
patcher object, you must pass it the window handle.

m ADVANCED PROGRAMMING TOPICS

NOTE There are significant advantages to building a multithreaded server rather than integrating the orb with
the Windows event loop. For more information, see Multithreaded Servers and Windows 95/\Windows NT
later in this chapter.

#i ncl ude <di spat ch/ wdi sp. h>

/1 Wndows main entry point
W NAPI W nMai n(H NSTANCE hl nst ance, H NSTANCE hPrevl nstance, LPSTR
int nCndShow)
{
static char szAppNanme[] = “Library”;
HWAD hwnd;
MSG msg;
WADCLASS wndcl ass;

/1 lInitialize wndcl ass

hwnd = Creat eW ndow(szAppNare, “LibraryServer”, W5 OVERLAPPEDW NDOW
CW USEDEFAULT, CW USEDEFAULT, 200, 200,
NULL, NULL, hlnstance, NULL);

WDi spat ech *w nDi spat echr = new WD spat cher (hwnd) ;
CORBA: : ORB_var orb = CORBA::ORB_init(__argc, __argv);
CORBA: : BOA var orb = orb->BOA init(__argc, __argv);

Li brary server(“Harvard”);
boa- >obj _i s_ready(&server);

ShowW ndow(hwnd, nCndShow) ;
Updat eW ndow(hwnd) ;

/1 Enter nmessage |oop

whi | e(Get Message(&rsy, NULL, 0, 0)) {
Tr ansl at eMessage(&18Q) ;
Di spat chMessage(&nsQ) ;

}

return nsg. wParam

Figure8-11 Usingthe WDi spat cher classwith the Windows event loop.

8-12

INTEGRATION WITH MICROSOFT FOUNDATION CLASSES

INTEGRATION WITH MICROSOFT FOUNDATION CLASSES

NOTE Thisimplementationis for single-threaded serversonly.

You may aso use the WDispatcher class when developing client applications with the Microsoft Founda-
tion Classes. When you derive your application class from the Microsoft CWinApp class, you need to
provide an Initlnstance method. The WDispatcher object should be instantiated in the Initlnstance

method.

#i ncl ude <af xwi n. h>
#i ncl ude <di spat ch/ wdi sp. h>

/'l Application class
class LibraryClientApp : public CW nApp

{
public:
BOOL I nitlnstance();
H
BOOL LibraryCdientApp::Initlnstance()
{
m_pMai nWhd = new Mai nW ndow;
m_pMai nWhd- >showW ndow m_nCndShow) ;
m_pMai nWhd- >Updat eW ndow() ;
/1 \Di spatcher instantiation goes here?
WDi spat cher *w nDi spat cher = new WD spat cher (m_pMai nWd) ;
CORBA: : ORB_var orb = CORBA:: ORB_init(__argc, __argv);
return 1,
}

Figure8-12 Using the WDi spat cher with MFC-based applications.

m ADVANCED PROGRAMMING TOPICS

MULTITHREADED SERVERS: WINDOWS 95 AND WINDOWS NT

Itis straightforward to build multithreaded servers using VisiBroker for C++. There are significant advan-
tages to building a multithreaded server rather than integrating the orb with the Windows event loop. The
advantages are:
= Because VisiBroker for C++ automatically creates worker threads to handle incoming calls,
servers can handle multiple incoming requests. On multiprocessor systems running Windows NT,

servers automatically distribute work among processors. A server implemented with VisiBroker
functions integrated into the Windows event loop can process only a single request at atime.

= If asingle worker thread should fail, the server can continue processing other requests. A server
implemented with VisiBroker functions integrated into the Windows event loop may fail if any
request should fail, because there is no way for the hung thread to process other requests.

You may build multithreaded servers either directly on theWin32 API, or using MFC. Thefollowing code
examples show how to initialize the orb in both cases.

8-14

MULTITHREADED SERVERS: WINDOWS 95 AND WINDOWS NT

The following code example shows how to initialize the orb for a multithreaded Win32 server without
using MFC.

EXAMPLE// Wndows main entry point
W NAPI W nMai n(HE NSTANCE hl nst ance, HI NSTANCE hPrevl nstance, LPSTR
i nt nCndShow)

{
static char szAppNane[] = "Library";
HWAD hwnd;
MSG nsg;
WADCLASS wndcl ass;
/Il Initialize wndcl ass

hwnd = Creat eW ndow szAppNane, "LibraryServer",
W5_OVERLAPPEDW NDOW
CW USEDEFAULT, CW USEDEFAULT, 200, 200,
NULL, NULL, hlnstance, NULL);
CORBA: : ORB_var orb = CORBA::ORB_init(__argc, __argv);
CORBA: : BOA var orb = orb->BOA init(__argc, __argv);
Li brary server("Harvard");
boa- >obj _i s_ready(&server);

Showw ndow(hwnd, nCndShow) ;

Updat eW ndow(hwnd) ;

/1 Enter message |oop

whi | e(Get Message(&rsy, NULL, 0O, 0)) {
Tr ansl at eMessage(&1sQ) ;
Di spat chMessage(&sQ) ;

}

return nsg. wPar am

Thisexampleisidentical to the preceding WDispatcher example, except it does not create a\WDispatcher
object. The event loop handles normal Windows messages as usual. Orb reguests, however, do not flow
through the event loop. Rather, the orb automatically creates worker threads when a request comesin.
These threads are compl etely independent of the Windows event loop.

m ADVANCED PROGRAMMING TOPICS

8-16

Creating amultithreaded server using MFC is equally straightforward:

EXAMPLE#i ncl ude <stdaf x. h>

/1 Application class
class LibrarydientApp : public CWnApp

{
public:
BOOL I nitlnstance();
b
BOOL LibraryCientApp::Initlnstance()
{
m pMai nWhAd = new Mai nW ndow,
m_pMai nWhd- >showW ndow(m_nCrrdShow) ;
m_pMai nWhd- >Updat eW ndow() ;
CORBA: : ORB_var orb = CORBA::ORB_init(__argc, __argv);
CORBA: : BOA_var boa = orb->BOA init(__argc, __argv);
Li brary server("Harvard");
boa- >obj _i s_ready(&server);
return 1;

The InitInstance() method provides all orb initialization. After initializing the orb and boa objects, theini-
tialization code creates the Library object and declares the object is ready.

Whether the server is built directly on the Win32 APl or using MFC, the multithreaded
VisiBroker library listens for incoming requests and creates worker threads to handle each request. The
application need do no other thread-specific coding.

Thread-safe Code

All code within the server that implements an ORB-visible object must be thread-safe. Incoming requests
execute within aVisiBroker-generated thread. Simultaneous incoming requests execute simultaneously in
separate threads.

Devel opers must take special care when accessing a system-wide resource within an object implementa-
tion. For example, many database access methods are not thread-safe. If an object implementation must
access such a database, it must lock access to the resource using a mutex or critical section.

INTEGRATION WITH OTHER ENVIRONMENTS

Multithreaded Servers and Windows User Interfaces

A multithreaded server can implement a complex Windows user interface either directly on the Win32
API or using MFC.

A key point in building a multithreaded server with an MFC-based Windows user interface is that only
certain threads may do user interface update. Within an MFC application, either the main application
thread or a CWinThread-derived class that the application created may do user interface updates. These
restrictions are because MFC threads contain thread-local storage important in doing user interface
updates. Performing a user interface update from a non-MFC thread causes errors because the system
does not have the required local storage within the thread.

Because VisiBroker for C++ creates aworker thread for each incoming connection, these threads are not
MFC threads. Such aworker thread cannot perform user interface updates directly.

Itis straightforward to interface between VisiBroker threads and MFC threads. The

VisiBroker thread can post an invalidate message to the window to update. The message may contain
either the needed information for update or the two threads may use acommon object or data structure to
pass information.

For example, a server needs to update the user interface when it handles a request. The object implemen-
tation that handles the request updates a shared data structure that contains the request count. It then posts
aWM_PAINT message to the window to paint. In an MFC-based server, the worker thread can call the
MFC function CWnd::Invalidate() to post the WM_PAINT message.

In either case, the window's painting code accesses the common data structure containing the needed
counter and repaints the window. Because the window updates in response to a message, the painting
occurs within the window's own thread.

The counter data structure is a global resource shared between threads. All code updating the counter
must synchronize accesses with amutex or acritical section. Within an MFC-based server, the classes
derived from CSyncObject provide C++ wrappers for Win32 mutexes and critical sections.

INTEGRATION WITH OTHER ENVIRONMENTS

To integrate your application with another system’s event loop, you need to derive your own class from
the Dispatcher class. The methods of your new class need to be implemented using the methods and inter-
faces provided by the event handling mechanism with which you are integrating. The details of theimple-

m ADVANCED PROGRAMMING TOPICS

mentation will depend on the event system with which VisiBroker isbeing integrated. Figure 8-13 shows
how you might create your own dispatcher class.

cl ass MyDi spatcher : public Dispatcher

{
public:
MyDi spat cher () ;
virtual ~MyDi spatcher();
virtual void link(int fd, DispatcherMask, |OHandler*);
virtual |OHandl er* handler(int fd, DispatcherMsk) const;
virtual void ulink(int fd);
virtual void startTinmer(long sec, long usec, |OHandler *);
virtual void st opTi mer (| OHandl er *);
virtual iv_boolean setReady(int, DispatcherMask)
{ return 0; } // No need to inplenment
virtual void di spatch();
virtual iv_boolean dispatch(long& [ong&)
{ return 0; } // No need to inplenment
virtual iv_boolean dispatch(tineval *val);
private:
h

Figure 8-13 Deriving your own dispatcher classfromDi spat cher.

8-18

CHAPTER 9

DYNAMIC INTERFACES

Thischapter discusses how client applications can use the Interface Repository
to discover object interfaces and dynamically create requests for using those
interfaces. It includes the following major sections:

Dynamic Invocation Interface 9-2
The Interface Repository 9-2
The Request Class 9-5
Creating a DIl request 9-6
Initializing a DIl Request 9-7

Sending a DIl Request 9-13

m DYNAMIC INTERFACES

DYNAMIC INVOCATION INTERFACE

The Dynamic Invocation Interface lets your client applications use any registered object without having
to first link the client stubs created for that object by the IDL compiler. With the DI, your client applica
tion can dynamically build requests for any object interface that has been stored in the Interface Reposi-
tory. Even recently registered object can be accessed by a client application using the DII. Your object
implementations are not required to provide any extra code to handle DIl requests.

While client applications that use the DIl are not as efficient as applications that use statically-linked
client stubs, they offer some important advantages. Clients are not restricted to using just those objects
that were defined at the time the client application was compiled. In addition, client applications do not
need to be re-compiled in order to access newly added object implementations.

Steps for Dynamic Invocation

There are five steps that a client follows for dynamic invocation.

Retrieve an object’s interface definition from the interface repository.
Identify and retrieve the desired operation definition from the object’s interface definition.
Bind to the object and obtain an object reference.

Create the dynamic invocation request.

5 Invoke the request and receive the results.

THE INTERFACE REPOSITORY

The Interface Repository (IR) contains information on a variety of objects that the ORB or aclient appli-
cation may need to access. The IR offers an object interface that provides your client applications with a
variety of methods for obtaining the interfaces offered by all currently active objects. Your client applica
tion can bind tothe Reposi t or y and then invoke the methods defined by the Reposi t or y classto
locate object implementations. Table 9-1 shows the various types of objects that can be contained in the
IR. A complete description of thisclasscan befoundintheVi si Br oker for C+ Reference
Gui de.

THE INTERFACE REPOSITORY

OBJECT TYPE DESCRIPTION

Repository Represents the top-level module that contains all other objects in this
repository.

ModuleDef Contains a grouping of interfaces. Can also contain constants, type-

defs and even other ModuleDef objects.

InterfaceDef Contains a list of operations, exceptions, typedefs, constants and
attributes that make up an interface.

AttributeDef Defines an attribute associated with an interface.

OperationDef Defines an operation on an interface. It includes a list of parameters

required for this operation and a list of exceptions that may be raised
by this operation.

TypedefDef Defines a base interface for named types that are not interfaces.
ConstantDef Defines a named constant.
ExceptionDef Defines an exception that may be raised by an operation.

Table 9-1 Objectsthat can be stored inthe IR.

cl ass CORBA {

class Repository : public Container {
Cont ai ned_ptr | ookup_id(const char * search_id);
PrimtiveDef_ptr get_primtive(PrimtiveKind kind);
StringDef _ptr create_string(ULong bound);
SequenceDef _ptr create_sequence(CORBA: : ULong bound,
| DLType_ptr el ement_type);
ArrayDef _ptr create_array(ULong | ength,
| DLType_ptr el enent _type);

3

Figure 9-2 TheReposi t ory Class.

Obtaining an Object’s Interface

The library client application, introduced in Chapter 2, could be enhanced to dynamically obtain the
Li br ar y interface and obtain information about theadd_book operation.

m DYNAMIC INTERFACES

#include <lib_client.hh>
mai n(int argc, char *const *argv)

{
CORBA: : Bool ean ret;
/1l Initialize the ORB
CORBA: : ORB_var orb = CORBA:: ORB_init(argc, argv);
/1 Declare the library object
library_var library_object;
/1 Declare an interface repository pointer
CORBA: : Repository_var rep_object;
try {
// Attenpt to bind to the interface repository
rep_object = CORBA:: Repository::_bind();
/1 Check for errors
catch(const CORBA:: Exception& excep) ({
cout << “Error binding to interface repository” << endl;
return(0);
}
/1 Locate the add_book operation definition. Can the operation be
/1 located without first locating the interface?
CORBA: : Cont ai ned_var add_req = rep_object
->| ookup_i d(“Library::add_book”);
try {
// Bind to the library object.
library_object = library::bind();
}
/1 Check for errors
catch(const CORBA:: Exception& excep) ({
cout << “Error binding to library object” << endl;
return(0);
}
/] Create a request, initializing the operation nane.
Request _var req = library_object->_request(add_req->nane());
}

Figure 9-3 Dynamically obtainingtheLi br ary: : add_book method.

THE REQUEST CLASS

THE REQUEST CLASS

When your client application invokes a method on an object, aRequest must be created to represent
the method invocation. ThisRequest iswritten to a buffer and sent to the object implementation.

When your client application uses client stubs, this processing occurs transparently. Client applications
that use the DIl must create and send the Request themselves. Figure 9-4 showsthe Request class.

NOTE Thereisno constructor for thisclass. The Cbj ect : : _request method or Object::_create request
methods are used to create a Request object, given an object reference.

class CORBA {
cl ass Request {

public:
CORBA: : Ohj ect _ptr target() const;
const char* operation() const;
CORBA: : NVLi st _ptr argunents();
CORBA: : NanedVal ue_ptr result();
CORBA: : Envi ronment _ptr env();
voi d ct x(CORBA: : Context _ptr ctx);
CORBA: : Cont ext _ptr ctx() const;
CORBA: : St at us invoke();
CORBA: : St at us send_oneway();
CORBA: : St at us send_deferred();
CORBA: : St at us get _response();
CORBA: : St at us pol | _response();

Figure9-4 TheRequest class.

Thet ar get issetimplicitly from the object reference used to create the Request . The name of the
oper at i on must be specified when the Request is created. The initialization of the remaining proper-
tiesis coveredin “Initializing a DIl Request” on page 9-7. A compl ete description of this class can be
found in the VisiBroker for C++ Reference Guide.

m DYNAMIC INTERFACES

CREATING A DIl REQUEST

Once you have obtained the interface to an object, issued a bind to that object and obtained an object ref-
erence, you can use one of two methods for creatingaRequest object. Figure 9-5 showsthe methods
offered by the Obj ect class.

cl ass CORBA {
class Object {

St at us _create_request (Context_ptr ctx,

const char * operation,

NVLi st _ptr arg_list,

NamedVal ue_ptr result,

Request _ptr request,

Fl ags req_flags);
Request _ptr _request(ldentifier operation);

}s

Figure 9-5 Two methods for creating a Request object.

You can use the _create_request method to create aRequest object, initializing the Cont ext , the
oper at i on name, the argument list to be passed and the result. The request parameter points to the
Request object that was created for this operation. Ther eq_f | ags must be set to
OUT_LIST_MEMORY if one or more of the argumentsinthear g_| i st are output parameters.

You can also usethe _r equest method to create aRequest object, specifying only the operation
name. You must then perform the rest of the initialization manually.

INITIALIZING A DIl REQUEST

Setting the Context

INITIALIZING A DIl REQUEST

The Cont ext object containsalist of properties, stored as NanmedVal ue objects, that are passed to
the object implementation as part of the Request . These properties represent information that would

otherwise be difficult to communicate to the object implementation. A complete description of this class
can befound inthe Vi si Br oker for

C+ Reference Cuide.

cl ass CORBA {
cl ass Context ({

public:
const char *cont ext _nanme() const;
CORBA: : Cont ext _prt parent ();
CORBA: : St at us create_child(const char *nane,
CORBA: : Context _ptré&);
CORBA: : St at us set _one_val ue(const char *nane,
const CORBA: : Any&);
CORBA: : St at us set _val ues(CORBA: : NVLi st _ptr);
CORBA: : St at us del et e_val ues(const char *nane);
CORBA: : St at us get _val ues(const char *start_scope,
CORBA: : Fl ags,
const char *nane,
CORBA: : NVLi st_ptr&) const;
H
Figure 9-6 The Cont ext class.

Setting the Arguments

The arguments for aRequest are represented with aNVLi St object, which stores name-value pairs
asNanedVal ue objects. You can use the arguments method to obtain a pointer to the arguments. This
pointer can then be used to set the names and values of each of the arguments.

m DYNAMIC INTERFACES

9-8

THE NVLIsT

This classimplements alist of NamedVal ue objects that represent the arguments for amethod invocation.
Methods are provided for adding, removing and querying the objectsin thelist. A compl ete description of
this class can be found in the VisiBroker for C++ Reference Guide.

class NVList {

public:
Long count () const;
NanedVal ue_ptr add(Fl ags);
NanmedVal ue_ptr add_item(const char *name, Flags);
NanedVal ue_pt r add_val ue(const char *name, const Any&, Flags);
NanedVal ue_ptr item(Long);
St at us renmove(Long);
St at us free_out _menory();

THE NAMEDVALUE

This classimplements a name-value pair that represents both input and output arguments for a method
invocation request. The NamedValue classis also used to represent the result of arequest that is returned
to the client application. The name property is simply a character string and the value property is repre-
sented by an Any class. A complete description of this class can be found in the VisiBroker for C++ Ref-
erence Guide.

cl ass NanedVal ue {

public:
const char *nanme() const;
Any *val ue() const;
Fl ags flags() const;

}s

Figure 9-7 The NanedVal ue class.

INITIALIZING A DIl REQUEST

METHOD DESCRIPTION
name() Returns a pointer to the name of the item that you can then use
to initialize the name.

value() Returns a pointer to an Any object representing the item’s value
that you can then use to initialize the value. For more informa-
tion, see “The Any Class” on page 9-10.

flags() Indicates if this item in an input argument, an output argument

or both an input and output argument. If the item is both an
input and output argument, you can specify a flag indicating
that the ORB should make a copy of the argument and leave
the caller’'s memory intact. Flags are:

ARG_IN

ARG_OUT

ARG_INOUT

IN_COPY_VALUE

Table9-8 The NarmedVal ue class methods.

m DYNAMIC INTERFACES

9-10

The Any Class

Thisclassis used to represent any IDL type so that they may be passed in a type-safe manner. Objects of
this class have a pointer to a Ty peCode that defines the object’s type and a pointer to the value associ-
ated with the object. Methods are provide to construct, copy and destroy an object aswell asinitialize and
query the object’s properties. In addition, streaming operators are provided to write the object to astream.
A complete description of this class can be found in the VisiBroker for C++ Reference Guide.

cl ass Any
{
public:
Any();
Any(const Any&);
Any(TypeCode_ptr tc, void *value, Bool ean rel ease=0);
~Any();

Any& operat or=(const Anyg&);

/1 Overl oaded operators for all data types
voi d oper at or <<=(Short);

voi d oper at or <<=(UShort);

voi d operat or<<=(Long);

voi d oper at or <<=(ULong) ;

TypeCode_ptr type();

const void *val ue() const;
static Any_ptr _nil();

static Any_ptr _duplicate(Any *ptr);
static void _rel ease(Any *ptr);

/] Stream ng operators to wite Anys to stdout, etc.
ostream& oper at or <<(ostreanm&, const Any&);

i strean& operator>>(istrean& strm Any& any);

i strean& operator>>(istream& strm Any_ptr& any);

Figure9-9 The Any class.

The TypeCode Class

This classis used by the Interface Repository and the IDL compiler to represent the type of arguments or
attributes. TypeCode objects are also used in the DI to specify an argument’ s typein conjunction with the
Any class. Ty peCode objects have akind property and parameter list property. A complete description
of thisclasscan befoundinthe Vi si Broker for C+ Reference Cuide.

TYPECODE CONST KIND PARAMETER LIST
TC_null tk_null None

TC_void tk_void None

TC_short tk_short None

TC_long tk_long None

TC_ushort tk_ushort None

TC_ulong tk_ulong None

TC_float tk_float None

TC_double tk_double None

TC_boolean tk_boolean None

TC char tk_char None

TC_octet tk_octet None

TC_any tk_any None

TC_TypeCode tk_TypeCode None

TC_Principal tk_Principal None

TC_Object tk_objref interface_id

Structure tk_struct struct-name, {member, TypeCode}
(const generated)

Union tk_union union-name, switch TypeCode, {label-value, member-
(const generated) name, TypeCode}
Enum tk_enum {enum-name, enum-id}
(const generator)

TC_string tk_string maxlen

Sequence tk_sequence TypeCode, maxlen

(const generator)

Array
(const generator)

tk_array

TypeCode, length

Table 9-10 TypeCode kinds and their associated parameter lists.

INITIALIZING A DIl REQUEST

m DYNAMIC INTERFACES

9-12

TYPE

NAME

TypeCode_ptr
TypeCode_ptr
TypeCode_ptr
TypeCode_ptr
TypeCode_ptr
TypeCode_ptr
TypeCode_ptr
TypeCode_ptr
TypeCode_ptr
TypeCode_ptr
TypeCode_ptr
TypeCode_ptr
TypeCode_ptr
TypeCode_ptr
TypeCode_ptr
TypeCode_ptr
TypeCode_ptr

_tc_null
_tc_void
_tc_short
_tc_long
_tc_ushort
_tc_ulong
_tc_float
_tc_double
_tc_boolean
_tc_char
_tc_octet
_tc_Any
_tc_TypeCode
_tc_Principal
_tc_Object
_tc_string

_tc_NamedValue

Table 9-11 Ty peCode constants for IDL data types.

SENDING A DIl REQUEST

SENDING A DIl REQUEST

The Request class provides several methods for sending the request, once it has been properly initial-
ized. The simplest of theseisthei Nvoke method which sends the request and blocks waiting for a
response before returning to your client application. The non-blocking method send_def er r ed
allows your client to send the request and then usethe pol | _r esponse method to determine when
theresponseis available. Theget _r esponse method blocks until aresponseis received.

Thesend_oneway method can be used to send a oneway request. Oneway requests do not involve a
response being sent from the object implementation.

Ther esul t method returns a pointer to aNanmedVal ue object that represents the return value.

EXAMPLE

/1 Assumes that req has been set to Request
/1 See page 9-4

/'l Create TypeCode for structure

CORBA: : Struct Menber Seq nenbers;

menbers. | engt h(2);

menber s[0] . name = (const char *)"author";
menbers[0].type =

CORBA: : TypeCode: : _duplicate(CORBA: : _tc_string);

menber s[1] . name = (const char *)"title";
menbers[1].type =

CORBA: : TypeCode: : _duplicate(CORBA: : _tc_string);

bookTypeCode = orb->create_struct_tc(
"book", "book", nemnbers);

// Wite out author and title to a Marshal QutBuffer
CORBA: : Mar shal Qut Buf fer buf;

buf << argv[1];// Author

buf << argv[2];// Title

bookVal ue. repl ace(bookTypeCode, buf);

/1 Get Argunent list fromrequest.

CORBA: : NVLi st _var argunments = req->argunents();

m DYNAMIC INTERFACES

ar gunent s- >add_val ue("book", bookVal ue, CORBA:: ARG | N);

/1 Set result

/1 NOTE: Al paraneters types (IN, OUT, INOUT and
RETURN) need

11 to be set so that DIl knows the data types of all

11 argunents.

CORBA: : Bool ean ret =0;

CORBA: : NanedVal ue_var result(reg->result());

CORBA: : Any_var resul tAny(result->value());

resul t Any->repl ace(CORBA: : _tc_bool ean, &result);

/'l Execute the function
reqg->i nvoke();
CORBA: : Envi ronment _var env = reg->env();
if (env->exception())
cout << "Exception occured" << endl;
else {
Il Get the return val ue;
ret = *(CORBA:: Bool ean *)resul t Any->val ue();

}

cout << "Return value frominvoke: " << (int)ret <<
endl ;

return(1);
}

Sending and Receiving Multiple Requests

A sequence of DIl Request objects can be created using Request Seq, defined in the
CORBA: : ORB class and shownin Figure 9-12 . A sequence of requests can be sent using the ORB
methodssend_nul ti pl e_r equest s_oneway or

send_mul ti pl e_request s_def err ed. If the sequence of requestsis sent as oneway
requests, no response is expected from the server to any of the requests.

If the requestsin the sequence aresent usingsend_nul ti pl e_requests_def erred, the
pol | _next _responseandget next response methods are used to receive the response
the server sends for each request.

The ORB method pol | _next _r esponse can be used to determine if aresponse has been received
from the server. This method returns one if one or more responses are available. This method returns zero
if there are no responses available.

The ORB method get _next _r esponse can be used to receive aresponse. If no responseis avail-
able, this method will block until aresponseis received. If you do not wish your client application to
block, usethe pol | _next _r esponse method to determine when aresponse is available.

9-14

cl ass CORBA {

class ORB {
t ypedef sequence<Request _ptr> Request Seq;
St at us send_mul ti pl e_requests_oneway(const RequestSeq &);
St at us send_mul ti pl e_requests_def erred(const Request Seq &);
Bool ean pol | _next _response();
St at us get _next_response();

s

}s

Figure 9-12 ORB methods for sending multiple requests and receiving the results.

m DYNAMIC INTERFACES

9-16

CHAPTER 10

THE IDL COMPILER

Thischapter discussestheVisiBroker IDL compiler and includesthefollowing
major sections:

The IDL Compiler 10-2
Code Generated for Clients 10-3
Code Generated for Servers 10-6
Interface Attributes 10-8

Oneway Methods 10-10
Mapping Object References 10-11

Interface Inheritance 10-11

THE IDL COMPILER

THE IDL COMPILER

You use the Interface Definition Language, IDL, to define the object interfaces that client applications
may use. The IDL compiler uses your interface definition to generate C+ code. Figure 10-1 shows how
the compiler generates code for the client application and for the object implementation, or server. The
file names used for discussion in this chapter apply to systems that support long file names.

Example

Object
Definition

IDL to C++
Compiler

Object
Skeletons

- Object
ex_client.hh Skelétons ex_server.hh

ex_client.cc ex_server.cc

Figure 10-1 C+ files generated by the IDL compiler.

The Interface Definition

Your interface definition defines the name of the object aswell as all of the methods the object offers.
Each method specifies the parameters that will be passed to the method, their type and whether they are
for input or output. Figure 10-2 shows an IDL specification for an object named exanpl e. The
exanpl e object has only one method, op1.

10-2

CODE GENERATED FOR CLIENTS

/1 1DL specification for the exanple object
interface exanple

{
}s

long opl(in char x, out short y);

Figure 10-2 Theexanpl e IDL specification.

CODE GENERATED FOR CLIENTS

Figure 10-1 shows how the IDL compiler generates two client files; ex_client.hh and ex_client.cc. These
two files provide an exanpl e classin C+ that the client will use. Files generated by the IDL compiler
always have either a*“.cc” or “.hh” suffix to make them easy to distinguish from file you create yourself.

% You should not modify the contents of the files generated by the IDL compiler.

class exanple : public virtual CORBA: : hject

{
private:
// Methods used internally by VisiBroker to store type information
public:
/1 More methods used internally by VisiBroker to create object
/'l references and manage type information
pr ot ect ed:
exanpl e(const char *obj _name = NULL) : CORBA:: Obj ect (obj _nane,
exanpl e(NC stream& strn) : CORBA : Obj ect(strm;
virtual -~exanple();
public:
static exanple_ptr _bind(const char *object_name = NULL,
const char *host_nanme = NULL,
const CORBA: : Bi ndOptions* opt = NULL);
static exanple_ptr _duplicate(exanple_ptr obj);
static exanple_ptr _nil();
static exanple_ptr _narrow(CORBA: : Obj ect *obj)
virtual CORBA::Long opl(CORBA::Char x, CORBA::Shorté& y);
H

Figure 10-3 Theexanpl e classgenerated in ex_client.hh.

THE IDL COMPILER

104

Methods Generated

Figure 10-3 showsthe 0p1 method generated by the IDL complier, along with several other methods.
Theopl method is called a stub because when your client application invokesit, it actually packages the
interface request and arguments into a message, sends the message to the object implementation, waits
for aresponse, decodes the response, and reflects the results to your application.

Since the example class is derived from the CORBA::Object class, several inherited methods are avail-
able for your use. The CORBA::Object class methods are described in the VisiBroker for C+ Reference
Guide.

The _ptr Definition

The IDL compiler always provides apointer type definition. Figure 10-4 showsthe type definition for the
example class.

typedef exanple *exanple_ptr;

Figure 10-4 The _ptr type definition.

The _var Class

The IDL compiler also generates a class named exanpl e_var , which you can use instead of the
exanpl e class. Theexanpl e_var classwill automatically manage the memory associated with
the object reference. When the an exanpl e_var object is deleted, the object associated with
exanpl e_ptr isreleased. When an exanpl e_var object is assigned, the old object reference
pointed to by exanpl e_pt r isreleased after the assignment takes place. A casting operator is aso
provided to allow you to assign an exanpl e_var toatypeexanpl e_ptr.

CODE GENERATED FOR CLIENTS

cl ass exanpl e_var

{
public:
exanpl e_var () ;
exanpl e_var (exanpl e_ptr ptr);
exanpl e_var (const exanpl e_var& var);
~exanpl e_var () ;
exanpl e_var & oper at or =(exanpl e_ptr p);
exanpl e operator=(const exanple_ptr p);
exanpl e_ptr operator->();
pr ot ect ed:
exanple_ptr _ptr;
private:
H

Figure 10-5 Theexanpl e_var class.

METHOD

DESCRIPTION

example_var()

example_var(example_ptr ptr)

example_var(const example_var& var)

~example()

operator=(example_ptr p)

operator=(const example_ptr p)

operator->()

Constructor that initializes the _ptr to NULL.

Constructor that creates an object with the _ptr initial-
ized to the argument passed. When the object is
destroyed, the object to which _pt r points will
destroyed.

Constructor that makes a copy of the object passed as
a parameter var and points _pt r to the newly
copied object. When this object is destroyed, the object
to which _pt r points will be destroyed.

Destructor that frees any memory associated with
_Ppt r before destroying this object.

Assignment operator that frees any memory associated
with _ptr before performing the assignment.

Assignment that frees any memory associated with _ptr
before making a complete copy of the specified object
and assigning _ptr to point to the newly created object.

Returns the _ptr stored in this class. This operator
should not be called until this class has been properly
initialized.

Table 10-6 The_var class method descriptions.

THE IDL COMPILER

CODE GENERATED FOR SERVERS

Figure 10-1 shows how the IDL compiler generates two server files: ex_ser ver . hh and
ex_server. cc.Thesstwofilesprovidean sk _exanpl e classin C+- that the server will useto
derive an implementation class. The _sk_exanpl e classis derived from the client'sexanpl e
class.

CAUTION You should not modify the contents of the files generated by the IDL compiler.

class _sk_exanple : public exanple

{
pr ot ect ed:
_sk_exanpl e(const char *object_name = (const char *)NULL);
virtual ~_sk_exanple();
public:
static const CORBA:: Typelnfo _skel _info;
virtual CORBA::Long opl(CORBA: :Char x, CORBA::Short& y) = O;
static void _opl(void *obj), CORBA::Marshal Stream &strm
CORBA: : Princi pal _ptr principal,
const char *oper);
H

Figure 10-7 The _sk_exanpl e class generated in ex_server.hh.

Generated Methods

Notice that the op1 method defined in the IDL specification in Figure 10-2 is generated, along with an
_0p1 method. The op1 method is a pure virtual method and must be implemented by the class you
derivefrom _sk_exanpl e.

The _op1 method iscalled askeleton and isinvoked by the BOA when aclient request isreceived. This
method will marshal all the parameters from the request, invoke the 0p1 method and then marshal the
return parameters or exceptionsinto a response message. The ORB will then send the response to the
client application. Skeleton methods should not be explicitly invoked by the server or object implementa-
tion.

The constructor and destructor are both protected. The constructor accepts an object name so that multi-
ple objects can be instantiated by a server.

10-6

CODE GENERATED FOR SERVERS

The Class Template

In additiontothe sk _exanpl e class, the IDL compiler generates a class template named
_tie_exanpl e. Thistemplate can be used if you wish to avoid the overhead associated with deriv-
ingaclassfrom _sk_exanpl e. Templates can also be useful for providing awrapper class for exist-
ing applications that cannot be modified to inherit from anew class. Figure 10-8 shows the template
class generated by the IDL compiler for the example class.

tenpl ate <class T>
class _tie_exanple : public exanple
{
public:
_tie_exanpl e(T& t, const char *obj _name=(char *)NULL);
~_tie_exanple();
CORBA: : Long opl(CORBA:: Char x, CORBA::Shorté& y);
private:
T& _ref;
H

Figure 10-8 Atemplate class generated for the example class.

USING THE TEMPLATE

Tousethe ti e_exanpl e template class you must first create your own Exanpl e class. Figure
10-9 showswhat your Exanpl e class might look like. Notice that, unlike most object implementation
classes, this Exanpl e class does not inherit from the client’s example class or any class supplied by
VisiBroker.

cl ass Exanpl e

{
public:
Exanpl e() ;
CORBA: : Long opl(CORBA:: Char x, CORBA::Shorté& y);
H

Figure 10-9 Aclassto beused withthe ti e_exanpl e template.

THE IDL COMPILER

Given the _tie_example template generated by the IDL compiler and the Example class you defined,
Figure 10-10 shows the server’s main routine.

void main(int argc, char * const *argv)

{
/1 Initialize ORB and BOA
CORBA: : ORB_ptr orb = CORBA::ORB_init(argc, argv);
CORBA: : BOA ptr boa = orb->BOA init(argc, argv);
/'l Instantiate the Exanple class
Exanpl e nyExanpl e;
I/l Instantiate the tenplate, passing a reference to the
/] exanpl e object instantiated above and an ORB object instance
/1 name.
_tie_exanpl e<Exanpl e> ti eExanpl e(nyExanple, “test”);
boa- >i npl _i s_ready();
return(l);
h

Figure 10-10 Usingthe t i e_exanpl e template class.

INTERFACE ATTRIBUTES

In addition to operations, an interface specification can also define attributes as part of the interface. By
default, all attributes are read-write and the IDL compiler will generate two methods; one to set the
attribute’s value and one to get the attribute's value. You can also specify read-only attributes.

Figure 10-11 showsan IDL specification that defines two attributes; one read-write and one read-only.
Figure 10-12 shows the resulting class definition generated by the IDL compiler for the client applica-
tion. Figure 10-13 shows the class definition generated for the object implementation.

/1 1DL
interface test
{
attribute |long count;
readonly attribute string nane;

10-8

INTERFACE ATTRIBUTES

Figure 10-11 IDL specification with two attributes; one read-write and one read-only.

class test : public virtual CORBA: : Object

{
/1 Methods for read-wite attribute
virtual CORBA::Long count();
virtual void count(CORBA: :Long val);
/1 Method for read-only attribute.
virtual char * name();

H

Figure 10-12 The class generated for the client application.

class _sk_test : public test

{
virtual CORBA::Long count() = O;
virtual void count (CORBA::Long val) = O;
virtual char * name() = O;

Figure 10-13 The class generated the server.

THE IDL COMPILER

10-10

ONEWAY METHODS

NOTE

The IDL alows you to specify operations that have no return value, called oneway methods. These
operations may only have input parameters. When aoneway method isinvoked, areguest is sent to the
server but there is no confirmation from the object implementation that the request was actually received.
VisiBroker uses TCP/IP for connecting clients to servers. This provides guaranteed delivery of all data-
grams so the client can be sure the request will be delivered to the server—as long as the server remains
available. Still, the client has no way of knowing if the request was actually processed by the object
implementation itself.

Oneway operations cannot throw exceptions.

/1 1DL
interface oneway_exanpl e

{
b

oneway void set_value(in long val);

Figure 10-14 Defining a oneway operation.

cl ass oneway_exanple : public virtual CORBA:: (bject
{

virtual void set_val ue(CORBA::Long val);

b

Figure 10-15 Code generated for the client application.

class _sk_oneway_exanpl e : public oneway_exanpl e

{
}s

virtual void set_val ue(CORBA::Long val) = 0;

Figure 10-16 Base class generated for the implementation.

MAPPING OBJECT REFERENCES

MAPPING OBJECT REFERENCES

In addition to generating C+ classes from your interface specification, the IDL compiler will also create
object references for your classes. Figure 10-17 shows the object references generated by the IDL com-
piler when the exampl e interface specification shown in

Figure 10-2 is compiled.

typedef exanple *exanple_ptr;
typedef exanpl e_ptr exanpl eRef;

Figure 10-17 Object references generated by the IDL compiler.

INTERFACE INHERITANCE

IDL alows you to specify an interface that inherits from another interface. The C+ classes generated by
the IDL compiler will reflect the inheritance relationship. All methods, data type definitions, constants
and enumerations declared by the parent interface will be visible to the derived interface.

/1 1DL
interface parent

{
}

voi d operationl();

interface child : parent

{

| ong operation2(in short s);

Figure 10-18 An example of inheritance in an interface specification.

10-11

THE IDL COMPILER

class parent : public virtual CORBA:: Object

{
v0| d operationl(CORBA: : Envi ronment & _env);
H
class child : public virtual parent
{
édQBA: :Long operation2(CORBA: : Short s, CORBA::Environnent& _env);
H o

Figure 10-19 The C+ code generated from Figure 10-19 .

10-12

IDL TO C++ LANGUAGE MAPPING

This chapter discusses the IDL to C+ language mapping provided by the
VisiBroker IDL to C+ compiler, which compliesstrictly with the CORBA C+
language mapping specification. This chapter includes the following major

sections:

CHAPTER

Primitive Data Types
Strings

Constants
Enumerations

Type Definitions
Modules

Complex Data Types

11-2
11-2
11-4
11-6
11-6
11-8
11-9

1

1

IDL TO C++ LANGUAGE MAPPING

PRIMITIVE DATA TYPES

The basic data types provided by the Interface Definition Language are summarized in Table 11-1 . Due
to hardware differences between platform, some of the IDL primitive data types have a definition that is
marked “platform dependent.” On a platform that has 64-bit integral representations, for example, the
CORBA: : Long typewould still be only 32 bits. You should consult the include file or btypes.h for an
exact mapping of these primitive data types for your particular platform.

IDL TYPE VISIBROKER TYPE C++ DEFINITION

SHORT CORBA::SHORT SHORT

LONG CORBA::LONG PLATFORM DEPEN-
DENT

UNSIGNED CORBA::USHORT UNSIGNED SHORT

SHORT

UNSIGNED CORBA::ULONG UNSIGNED LONG

LONG

FLOAT CORBA::FLOAT FLOAT

DOUBLE CORBA::DOUBLE DOUBLE

CHAR CORBA::CHAR CHAR

BOOLEAN CORBA::BOOLEAN UNSIGNED CHAR

OCTET CORBA::OCTET UNSIGNED CHAR

LONGLONG CORBA::(LONGLONG PLATFORM DEPEN-
DENT

ULONGLONG CORBA::ULONGLONG BII_EAN'I_'I_FORM DEPEN-

Table 11-1 The mapping of primitive data types.

The IDL boolean type is defined by the CORBA specification to have only one of two values: 1 or
A 0. Using other values for a boolean will result in undefined behavior.

STRINGS

String typesin IDL may specify alength or may be unbounded, but both are mapped to the C+ type
char *.Youmust usethefunctions shownin Figure 11-2 for dynamically allocating strings to ensure
that your applications and VisiBroker use the same memory management facilities. All CORBA string
types are null-terminated.

11-2

STRINGS

cl ass CORBA
{

static char *string_all oc(CORB::ULong |en);
static void string_free(char *data);

}

Figure 11-2 Methods for allocating and freeing memory for strings.

METHOD DESCRIPTION

CORBA::string_alloc Dynamically allocates a string and returns a pointer to the string. A
NULL pointer is returned if the allocation fails. The length specified
by the | en parameter does not need to include the NULL termina-
tor.

CORBA::string_free Releases the memory associated with a string that was allocated
with CORBA: : string_all oc.

Table 11-3 CORBA string allocation and release methods.

String_var Class

In additionto mappingan IDL st ri ngtoa char *,theVisiBroker IDL to C+ compiler generates
aString_var classthat contains a pointer to the memory allocated to hold the string. When a
String_var object is destroyed or goes out of scope, the memory allocated to the string is automatically
freed. Figure 11-4 showsthe St ri ng_var classand the methods it supports. For detailed informa-
tion on the _var classes, see “The _var Class’ on page 10-4.

IDL TO C++ LANGUAGE MAPPING

class CORBA {
class String_var {
pr ot ect ed:
char * p;

public:
String_var();
String_var(char *p);
~String_var();

String_varé& operator=(const char *p);
String_varé& operator=(char *p);
String_varé& operator=(const String_varé& s);

operator const char *() const;
operator char *();
char &operator[] (CORBA:: ULong i ndex);
char operator[] (CORBA:: ULong index) const;
friend ostreanm& oper ator<<(ostrean& const String_var&);
inline friend Bool ean operator==(const String_varé& sl,
const String_var& s2);

b

Figure 11-4 The St ri ng_var class.

CONSTANTS

Figure 11-6 shows how IDL constants defined outside of any interface specification will be mapped
directly to a C+ constant declaration. Figure 11-6 shows how constants defined within an interface
specification are declared in the include file and assigned a value in the source file.

/'l These top-level definitions in IDL

const string str_exanple = “this is an exanple”;
const |ong | ong_exanpl e = 100;
const bool ean bool _exanpl e = TRUE;

/!l Result in the generation of this C++ code

const char * str_exanple = “this is an exanple”;
const CORBA: : Long | ong_exanpl e 100;

const CORBA: : Bool ean bool _exanple = 1;

Figure 11-5 Top-lever constant definitionsin IDL and the resulting C+ code.

11-4

CONSTANTS

/1 These definitions are in the IDL file exanple.idl
interface exanple {

const string str_exanple = “this is an exanple”;
const |ong | ong_exanpl e = 100;
const bool ean bool _exanpl e = TRUE;

/1 Result in the generation of this C++ code in exanple_client.hh
class exanple :: public virtual CORBA: : Object

{
static const char * str_exanple; /* “this is an exanple” */
static const CORBA::Long | ong_exanple; /* 100 */
static const CORBA:: Bool ean bool _exanple; /* 1 */

H

/1 And the generation of this C++ code in exanple_client.cc

const char * exanpl e::str_exanple = “this is an exanple”;
const CORBA: : Long exanpl e: : l ong_exanpl e = 100;

const CORBA: : Bool ean exanpl e: : bool _exanple = 1;

Figure 11-6 Constant definitions within an interface specification and the resulting C+ code.

Under some circumstances, the IDL compiler must generate C+ code containing the value of an IDL
constant rather than the name of the constant. Figure 11-7 shows how the value of the constant len must
be generated for the typedef V to allow the C+ code to compile properly.

/1 1DL
interface foo {
const long length = 10;
typedef long V[length];
H

/1l Results in this C++ code being generated by the IDL conpiler
class foo : public virtual CORBA::Object
{

const CORBA::Long |ength;

typedef CORBA::Long V[10];

Figure 11-7 Sometimes the value of an IDL constant must be generated in C+-.

IDL TO C++ LANGUAGE MAPPING

ENUMERATIONS

Figure 11-8 shows how enumerationsin IDL map directly to C+ enumerations.

/1 1DL

enum enum type {
first,
second,
third

H

/! Results in this C++ code
enum enum type {

first,

second,

third

Figure 11-8 Enumerationsin IDL map directly to C+-.

TYPE DEFINITIONS

Figure 11-9 shows how type definitionsin IDL are mapped directly to C+ type definitions. If the origi-
nal IDL type definition maps to several C+ types, the IDL compiler generates the corresponding aliases
for each typein C+. Figure 11-10 and Figure 11-11 show other type definition mapping examples.

11-6

TYPE DEFINITIONS

/1 1DL
typedef octet exanpl e_octet;
typedef enum enum val ues {

first,

second,

third

} enum exanpl e;

/!l Results in the generation of this C++ code
typedef octet exanpl e_octet;
enum enum val ues {
first,
second,
third
H

typedef enum val ues enum exanpl e;

Figure 11-9 The mapping of simple type definitions from IDL to C+

/1 1DL
interface Al;
typedef Al A2;

/1 Results in the generation of this C++ code
class Al;

typedef Al *Al ptr;

typedef Al ptr AlRef;

class Al_var;

typedef Al A2;

typedef Al _ptr A2 _ptr;
typedef AlRef A2Ref;
typedef Al var A2 var;

Figure 11-10 Mapping an IDL interface type definition to C+.

IDL TO C++ LANGUAGE MAPPING

11-8

/1 1DL
t ypedef sequence<l| ong> Si;
typedef S1 S2;

/!l Results in the generation of this C++ code
class S1;

typedef S1 *Sl1 ptr;

typedef S1_ptr SilRef;

class Sl1_var;

typedef S1 S2;

typedef S1_ptr S2_ptr;
typedef Sl1Ref S2Ref;
typedef S1_var S2_var;

Figure 11-11 Mapping an IDL sequence type definition to C+-.

For more information, see“The _var Class’ on page 10-4.

MODULES

The OMG IDL to C+ language mapping specifies that an IDL nodul e should be mapped to a C+
nanespace with the same name. Since few compilers currently support the nanespace, the C+
language mapping allowsthe use of ¢l ass inits place. Figure 11-12 shows how VisiBroker's IDL
compiler mapsnmodul e tocl ass.

/1 1DL
nmodul e ABC
{

/1 Definitions

b

/!l Results in the generation of this C++ code
class ABC

{
/1 Definitions

b

Figure 11-12 Mapping an IDL nodul e toaC+cl ass.

COMPLEX DATA TYPES

COMPLEX DATA TYPES

The C+ mappings for IDL structures, unions, sequences and arrays depend on whether or not the data
members they contain are of afixed or variable length. These types are considered to have variable

lengths

and, consequently, any complex data type that contains them will also have a variable length.
Theany type.

Thest ri ng type, bounded or unbounded.

Thesequence type, bounded or unbounded.

An object reference.

Other st r uct ur es or uni ons that contain a variable-length member.

Anar r ay with variable-length elements.

At ypedef with variable-length elements.

Table 11-13 shows a summary of the C+ mappings for complex data types.

IDL TYPE C++ MAPPING

STRUCT (FIXED STRUCT

LENGTH)

STRUCT (VARIABLE STRUCT (_VAR TYPES FOR VARIABLE LENGTH MEMBERS)
LENGTH)

UNION CLASS AND _VAR CLASS

SEQUENCE CLASS AND _VAR CLASS

ARRAY ARRAY

Table 11-13 Summary of the C+ mappings for complex data types.

IDL TO C++ LANGUAGE MAPPING

11-10

Fixed-length Structures

Figure 11-14 shows how fixed-length structuresin IDL are mapped to C+ code. In addition to the struc-
ture, VisiBroker's IDL compiler will also generate an example_var class for the structure. For moreinfor-
mation, see “The _var Class’ on page 10-4. Figure 11-15 shows how you might use the struct and class.

/1 1DL

struct exanple {
short a;
I ong b;

}s

/! Results in the generation of this C++ code.
struct exanple {

CORBA: : Short a;

CORBA: : Long b;

H
cl ass exanpl e_var
{
private:
exanple *_ptr;
H

Figure 11-14 Mapping fixed-length a IDL structure to C+.

/1 Declare an exanple struct and initialize its fields.
exanple exl = { 2, 5 };

/1 Declare a _var class and assign it to a newy created exanple structure.
/1l This results in the _ptr pointing to an allocated struct with

/1 uninitialized fields.

exanpl e_var ex2 = new exanpl e;

/1 Initialize the fields of ex2 from exl
ex2->a = exl.b;

Figure 11-15 Useof theexanpl e structure and theexanpl e_var class.

To access the fields of the _var classex?2, the- > operator must always be used. When ex 2 goes out
of scope, the memory allocated to it will be freed automatically.

COMPLEX DATA TYPES

Variable Length Structures

Figure 11-16 shows how you could modify theexanpl e structure, replacing thel ong member with
ast ri ng and adding an object reference, to change to a variable-length structure.

/1 1DL
interface ABC {
/1 Definitions ...

H

struct vexanple {
short a;
ABC C;
string nane;

/1 Results in the generation of this C++ code
struct vexanple {

CORBA: : Short a;

ABC _var C;

CORBA: : String_var nane;

vexanpl e& operator=(const vexanple& s);

H
cl ass vexanpl e_var {

3

Figure 11-16 Mapping a variable-length structure to C+.
Notice how the ABC object reference is mapped to an ABC_var class. In asimilar fashion, the string

nane ismapped to aCORBA: : St ri ng_var class. In addition, an assignment operator is also gen-
erated for variable-length structures.

11-11

IDL TO C++ LANGUAGE MAPPING

MEMORY MANAGEMENT FOR STRUCTURES

The use of _var classesin variable-length structures ensures that memory allocated to the variable-length
members are managed transparently.

= If astructure goes out of scope, all memory associated with variable-length membersis
automatically freed.

= If astructureisinitialized or assigned and then re-initialized or re-assigned, the memory
associated with the origina datais always freed.

= When avariable-length member is assigned to an object reference, a copy is always made of the
object reference. If avariable-length member is assigned to a pointer, no copying takes place.

Unions

Figure 11-18 showshow an IDL uni on ismapped to aC+ cl ass with methods for setting and
retrieving the value of the data members. A data member named _d of the discriminant typeisalso
defined. The value of this discriminant is not set when the union isfirst created, so an application must set
it before using the union. Setting any data member using one of the provided methods automatically sets
the discriminant. Table 11-17 describes some of the methodsin the un_ex class.

METHOD DESCRIPTION

un_ex() The default constructor sets the discriminant to zero but does
not initialize any of the other data members.

un_ex(const un_ex& obj) The copy constructor performs a deep copy of the source object.

~un_ex() The destructor frees all memory owned by the union.

operator=(const un_ex& The assignment operator performs a deep copy, releasing old

obj) storage, if necessary.

Table 11-17 TheUN_eX methods.

VisiBroker's IDL compiler may also generate hash and compare methods for unions, which you can
control with compiler options. See the VisiBroker for C+ Reference Guide for more information on com-
piler options.

11-12

COMPLEX DATA TYPES

/1 1DL

struct st_ex

{
| ong abc;

H

uni on un_ex sw tch(l ong)

{
case 1: long x; // a primtive data type
case 2: string y; // a sinple data type
case 3: st_ex z; /1 a conplex data type

}s

/! Results in the generation of this C++ code
struct st_ex

{
CORBA: : Long abc;
H
class un_ex
{ .
private:
CORBA: : Long _d;
CORBA: : Long _X;
CORBA: : String_var _y;
st_ex _z,
public:
un_ex();
~un_ex();
un_ex(const un_ex& obj);
un_ex& oper ator=(const un_ex& obj);
voi d _d(CORBA: : Long val);
CORBA: : Long _d() const;
voi d x(CORBA: : Long val);
CORBA: : Long x() const;
voi d y(char *val);
voi d y(const char *val);
voi d y(const CORBA:: String_varé& val);
const char *y() const;
const st_ex& z() const;
st_ex& z();
h

Figure 11-18 Mapping an IDL union to a C+- class.

MANAGED TYPES FOR UNIONS

In addition to theun_ex classshownin Figure 11-18 ,aun_ex_var classwould aso be generated.
See “The _var Class’ on page 10-4 for detailson the _var classes.

11-13

IDL TO C++ LANGUAGE MAPPING

11-14

MEMORY MANAGEMENT FOR UNIONS

Here are some important points to remember about memory management of complex data types within a

union:

Sequences

When you use an accessor method to set the value of a data member, a deep copy is performed.
You should pass parameters to accessor methods by value, for smaller types, or by a constant
reference, for larger types.

When you set a data member using an accessor method, any memory previously associated with
that member is freed. If the member being assigned is an object reference, the reference count of
that object will be incremented before the accesor method returns.

A char * accessor method will free any storage before ownership of the passed pointer is
assumed.

Bothconst char * andString_var accessor methods will free any old memory
before the new parameter’s storage is copied.

Accessor methods for array data members will return a pointer to the array slice. For more
information, see “Array Slices’ on page 11-18.

IDL sequences, both bounded and unbounded, are mapped to a C+ class that has a current length and a
maximum length. The maximum length of a bounded sequence is defined by the sequence’s type.
Unbounded sequences can specify their maximum length when their C+ constructor is called. The
current length can be modified programmatically. Figure 11-19 shows how an IDL sequence is mapped
to a C+ class with accessor methods.

COMPLEX DATA TYPES

NOTE When the length of an unbounded sequence exceeds the maximum length you specify, VisiBroker will
transparently allocate a larger buffer, copy the old buffer to the new buffer and free the memory allocated
to the old buffer. However, no attempt will be made to free any unused memory if the maximum length
decreases.

/1 1DL
typedef sequence<l ong> LongSeq;

/'l Results in the generation of this C++ code
cl ass LongSeq

{
public:
LongSeq(CORBA: : ULong nax=0) ;
LongSeq(CORBA: : ULong max=0, CORBA:: ULong | ength,
CORBA: : Long *data, CORBA::Bool ean release = 0);
LongSeq(const LongSeq&) ;
~LongSeq();
LongSeq& operat or=(const LongSeq&);
CORBA: : ULong maxi mum() const;
voi d | engt h(CORBA: : ULong | en);
CORBA: : ULong I ength() const;
const CORBA: : ULong& operator[] (CORBA: : ULong i ndex) const;
static LongSeq * duplicate(LongSeg* ptr);
static void _rel ease(LongSeq *ptr);
static CORBA::Long *al | ocbuf (CORBA: : ULong nel ens) ;
static void freebuf (CORBA: : Long *data);
private:
CORBA: : Long * _contents;
CORBA: : ULong _count;
CORBA: : ULong _num_ al | ocat ed:
CORBA: : Bool ean _rel ease_fl ag;
CORBA: : Long _ref_count;
H

Figure 11-19 Mapping an IDL unbounded sequence to a C+- class.

11-15

IDL TO C++ LANGUAGE MAPPING

METHOD

DESCRIPTION

LongSeq(CORBA::ULong max=0)

LongSeq(CORBA::ULong max=0,
CORBA::ULong length,
CORBA::Long *data,
CORBA::Boolean release=0)

LongSeq(const LongSeq&)

~LongSeq();

operator=(const LongSeq&j)

maximum()

length()

operatorf]()

_release()

allocbuf()
freebuf()

The constructor for an unbounded sequence takes a maxi-
mum length as an argument. Bounded sequences have a
defined maximum length.

This constructor allows you to set the maximum length, the
current length, a pointer to the data buffer associated and
a release flag. If release is not zero, VisiBroker will free
memory associated with the data buffer when increasing
the size of the sequence. If release is zero, the old data
buffer's memory is not freed. Bounded sequences have all
of these parameters except for max.

The copy constructor performs a deep copy of the source
object.

The destructor frees all memory owned by the sequence
only if the release flag had a non-zero value when con-
structed.

The assignment operator performs a deep copy, releasing
old storage, if necessary.

Returns the size of the sequence

Two methods are defined for setting and returning the
length of the sequence.

Two indexing operators are provided for accessing an ele-
ment within a sequence. One operator allows the element
to be modified and one allows only read access to the ele-
ment.

Releases the sequence. If the constructor’s release flag
was non-zero when the object was created and the
sequence element type is a string or object reference,
each element will be released before the buffer is
released.

You should use these two static methods to allocate or
free any memory used by a sequence.

Table 11-20 The LongSeq methods.

11-16

COMPLEX DATA TYPES

MANAGED TYPES FOR SEQUENCES

In addition to the LongSeq classshownin Figure 11-19 ,aLongSeq_var classwould also be gen-
erated. See“The _var Class’ on page 10-4 for detailson the _var classes. In addition to the usual _var
methods, there are two indexing methods defined for sequences.

CORBA: : Long& operator[](CORBA: : ULong i ndex);
const CORBA::Long& operator[] (CORBA:: ULong idex) const

Figure 11-21 The two indexing methods added for _var classes representing sequences.

MEMORY MANAGEMENT FOR SEQUENCES

You should carefully consider the memory management issues listed below. Figure 11-22 contains
sample C+ code that illustrates these points.

= If therelease flag was set to a non-zero value when the sequence was created, the sequence will
assume management of the user’s memory. When an element is assigned, the old memory isfreed
before ownership of the memory on the right hand side of the expression is assumed.

= If therelease flag was set to a non-zero value when the sequence was created and the sequence
elements are strings or object references, each element will be rel eased before the sequence’s
contents buffer is released and the object is destroyed.

= Avoid assigning a sequence element using the[] operator unless the release flag was set to one,
Or memory management errors may occur.

= Sequences created with the release flag set to zero should not be used as input/output parameters
because memory management errors in the object server may resullt.

= Alwaysuseal | ocbuf andfr eebuf to create and free storage used with sequences.

/! Gven this IDL specification for a bounded sequence
typedef sequence<string, 3> String_seq;

/1 Consider this C++ code
char *static_array[] = (*“1", “2", “3"};
char *dynami c_array = StringSeq::allocbuf(3);

/Il Create a sequence, release flag is set to FALSE by default
StringSeq static_seq(3, static_array);

/] Create another sequence, release flag set to TRUE
StringSeq dynam c_seq(3, dynami c_array, 1);

static_seq[1l] = “1"; /1 old menmory not freed, no copying occurs

char *str = string_alloc(2);
dynam c_seq[1] = str; // old nmenory is freed, no copying occurs

11-17

IDL TO C++ LANGUAGE MAPPING

11-18

Arrays

Figure 11-22 An example of memory management with two bounded sequences.

IDL arrays are mapped to C+ arrays, which can be statically initialized. If the array elements are strings
or object references, the elements of the C+ array will be of thetype _var . Figure 11-23 showsthree
arrays with different element types.

/1 1DL
interface Intf

/1 definitions...
H
typedef long L[10];
typedef string S[10];
typedef Intf A[10];

/!l Results in the generation of this C++ code
typedef CORBA::Long L[10];

typedef CORBA:: String_var S[10];

typedef Intf_var Al 10];

Figure 11-23 Mapping IDL arraysto C+ arrays.

The use of the managed type, _var, for strings and object references, allows memory to be managed trans-
parently when array elements are assigned.

ARRAY SLICES

The array_slice typeis used when passing parameters for multi-dimensional arrays. VisiBroker's IDL
compiler also generatesa_ S| i ce typefor arraysthat contains all but the first dimension of the array.
Thearray _sl i ce type provides aconvenient way to pass and return parameters. Figure 11-24 shows
two examples of the _Sl i ce type.

/1 1DL
typedef long L[10];
typedef string str[1][2][3];

/!l Results in the generation of these slices
typedef CORBA::Long L_slice[10];

typedef CORBA::String_var str_slice[2][3];
typedef str_slice *str_slice_ptr;

Figure 11-24 The sl i ce type.

COMPLEX DATA TYPES

MANAGED TYPES FOR ARRAYS

In addition to generating a C+ array for IDL arrays, VisiBroker’s IDL compiler will also generate a
_var class. Thisclass offers some additional featuresfor array.

= Theoper at or [] isoverloaded to provide intuitive access to array elements.

= A constructor and assignment operator are provided that take apointer toanarray _sl i ce
object as an argument.

/1 1DL
typedef long L[10];

/! Results in the generation of this C++ code
class L_var

{
public:
L_var();
L_var(L_slice *slice);
L_var(const L_varé& var);
~L_var();
L_varé& operator=(L_slice *slice);
L_varé& operator=(const L_varé& var);
CORBA: : Long& operator[] (CORBA:: ULong i ndex);
operator L_slice *();
operator L &() const;
private:
L_slice * ptr;
H

Figure 11-25 The _var classgenerated for arrays.

TYPE-SAFE ARRAYS

A special _f or any classisgenerated to handle arrays with elements mapped to the type any. Aswith
the_var class, the _f or any classalows you to access the underlying array type. The _f or any
class does not release any memory upon destruction because the any type maintains ownership of the
memory. The _f or any classisnot implemented asat ypedef becauseit must be distinguishable
from other types for overloading to functions properly.

11-19

IDL TO C++ LANGUAGE MAPPING

/1 1DL
typedef long L[10];

/! Results in the generation of this C++ code
class L_forany

{
public:
L_forany();
L_forany(L_slice *slice);
~L_forany();
CORBA: : Long& operator[] (CORBA: : ULong i ndex);
const CORBA: : Long&operator[] (CORBA: : ULong i ndex) const;
operator L_slice *();
operator L &() const;
operator const L & () const;
operator const L& () const;
L_forany& operator=(const L_forany obj);
private:
L_slice * _ptr;
H

Figure 11-26 The f or any class generated for an IDL array.

MEMORY MANAGEMENT FOR ARRAYS

VisiBroker’s IDL compiler generates two functions for allocating and releasing the memory associated
with arrays. These functions allow the ORB to manage memory without having to override the newand
del et e operators.

/1 1DL
typedef long L[10];

/1 Results in the generation of this C++ code
inline L_slice *L_alloc(); // Dynamically allocates array. Returns
/1 NULL on failure.

inline void L_free(L_slice *data); // Releases array nenory allocated with
/1 L_alloc.

Figure 11-27 Methods generated for allocating and releasing array memory.

11-20

COMPLEX DATA TYPES

Principal

A Principal representsinformation about principals requesting operations. The IDL interface of Principal
does not define any operations. The Principal isimplemented as a sequence of octets. The Principal is set
by the client application and checked by the ORB implementation. VisiBroker for C++ treats the Princi-
pal as an opague type. To see an example of the Principal interface in use, see Figure 7-8 in this guide.

11-21

IDL TO C++ LANGUAGE MAPPING

11-22

CHAPTER 12

PARAMETER PASSING RULES

This chapter discusses the parameter passing rules followed by the VisiBroker
IDL to C+ compiler. It includes the following major sections:

Implicit Arguments 12-2
Explicit Arguments 12-2
Primitive Data Types 12-2
Complex Data Types 12-3

T_var Data Types 12-11

PARAMETER PASSING RULES

12-2

IMPLICIT ARGUMENTS

Arguments can be passed using contexts as defined in IDL. For more information, see The Common
Object Request Broker: Architecture and Specification - 96-03-04. This document is available from the

Object Management Group and describes the architectural details of CORBA.

EXPLICIT ARGUMENTS

When you specify aninterfacein IDL, arguments you pass to methods that are returned may be one of the

following:

MODE DESCRIPTION

in Parameter used as input only.

out Parameter used to hold an output result.

inout Parameter used both as input and to hold an output
result.

return Result of an operation on an interface.

Table 12-1 Argument types.

PRIMITIVE DATA TYPES

Table 12-2 summarizes the parameter passing mode for primitive data types.

DATA TYPE IN INOUT ouT RETURN
short Short Short& Short& Short
unsigned UShort UShort& UShort& UShort
short

long Long Long& Long& Long
unsigned ULong ULong& ULong& ULong
long

float Float Float& Float& Float
double Double Double& Double& Double
boolean Boolean Boolean& Boolean& Boolean
char Char Char& Char& Char
octet Octet Octet& Octet& Octet
enum enum enum& enum& enum

Table 12-2 Parameter passing modes for primitive data types.

COMPLEX DATA TYPES

Memory Management

The following are the memory management rules for al primitive data types and parameter passing
modes.

MODE DESCRIPTION
in The caller allocates the necessary storage and initializes it. The callee uses the value.

out The caller allocates the necessary storage, but need not initialize it. The callee must
set the value.

inout The caller allocates the necessary storage and initializes it. The callee may change
the value.

return The callee initializes and returns the data by value. The caller receives the value.

Table 12-3 Memory management rules for primitive data types.

COMPLEX DATA TYPES

Parameter and memory management rules for aggregate data types are more complex. Theissue of when
memory is alocated and freed deserves specia attention. Table 12-4 summarizes the parameter passing
rules for complex data types.

DATA TYPE IN INOUT ouT RETURN
object reference objref_ptr objref_ptr & objref_ptr & objref_ptr
pointer

struct, fixed length const struct & struct & struct & struct
struct, variable length const struct & struct & struct *& struct *
union, fixed length const union & union & union & union
union, variable length const union & union & union *& union *
string const char * char *& char *& char *
sequence const sequence & sequence & sequence *& sequence *
array, fixed length const array array array array slice *
array, variable length const array array array slice *& array slice *
any const any & any & any *& any *

Table 12-4 Parameter passing modes for complex data types.

Memory Management

The memory management rules for complex data types vary, depending on the passing mode and the type
of the parameter. The following tables describe the rules for each parameter type.

PARAMETER PASSING RULES

12-4

Object Reference Pointers

MODE

DESCRIPTION

in

The caller allocates the necessary storage for the object reference and is responsible
for freeing it when finished.

The caller receives the parameter from the ORB and cannot modify it. The memory
associated with the parameter is freed by the ORB upon returning. The callee can
preserve the object reference by invoking the _duplicate method.

out

The caller allocates the necessary storage, but need not initialize it. Once the method
returns, the storage will hold an object reference and the caller is responsible for
releasing it when finished.

On the server side, the ORB allocates the memory and the callee must provide the
object reference. Once the data has been sent to the client, the ORB invokes the
_release method on the reference to decrement its reference count.

inout

The caller allocates the necessary storage and initializes it. If the callee modifies the
object reference, the ORB will release the old object and assign it a new value. If the
caller wants to continue to use the object reference, it must invoke the _duplicate
method prior to passing it to the callee.

On the server side, the ORB will allocate memory for the reference. If the callee
wishes to assign a new value to the object reference, it must first invoke the _release
method.

return

On the server side, the callee initializes and returns the object reference. The ORB
will invoke _release on the object reference once it has been returned to the caller.

The caller receives the object reference and is responsible for releasing it.

Table 12-5 Memory management rules for object reference pointers.

COMPLEX DATA TYPES

Fixed Structures and Unions

MODE

DESCRIPTION

in

The caller allocates the necessary storage for the structure and is responsible for
freeing it when finished.

The callee receives the parameter from the ORB and cannot modify it. The memory
associated with the parameter is freed by the ORB upon returning. The callee can
preserve the structure by copying it.

out

The caller allocates the necessary storage, but need not initialize it. Once the method
returns, the storage will hold the structure and the caller is responsible for freeing the
memory when finished.

On the server side, the ORB allocates the memory and the callee must set the value.
Once the data has been sent to the client, the ORB releases the memory.

inout

The caller allocates the necessary storage and initializes it. Upon return, the caller
must release the memory.

On the server side, the ORB will allocate memory for the structure. The callee may
assign a new value to the structure. Once the structure is returned to the client, the
ORB releases the memory.

return

On the server side, the callee initializes and returns the data by value.

The caller receives the structure by value.

Table 12-6 Memory management rules for fixed-length structures and unions.

PARAMETER PASSING RULES

12-6

Variable Structures and Unions

MODE

DESCRIPTION

in

The caller allocates the necessary storage for the structure and is responsible for
freeing it when finished.

The callee receives the parameter from the ORB and cannot modify it. The memory
associated with the parameter is freed by the ORB upon returning. The callee can
preserve the structure by copying it.

out

The caller allocates a pointer and passes it by reference to the ORB. Once the
method returns, the caller is responsible for freeing the memory when finished.

On the server side, the ORB allocates a pointer and passes it by reference to the
callee. The callee sets the pointer to a valid instance of the parameter’s type. If the
callee wishes to keep the data buffer, it is must make a copy.

inout

The caller allocates the necessary storage and initializes it. Upon return, the caller
must release the memory.

On the server side, the ORB will allocate memory for the structure. If the callee
wishes to change the value, it must first release the old data prior to assigning it a
new value. Once the data is returned to the client, the ORB releases the memory.

return

On the server side, the callee returns to the ORB a pointer to the data buffer. The
ORB will free the memory upon returning. The client cannot return a NULL pointer.

The caller receives a pointer to the structure or union. If the caller wishes to modify
any of the values, it must make a copy of the structure or union and modify the copy.
The caller is responsible for releasing the memory.

Table 12-7

Memory management rules for variable-length structures and unions.

Strings

MODE

COMPLEX DATA TYPES

DESCRIPTION

The caller allocates the necessary storage for the string and is responsible for freeing
it when finished.

The callee receives the parameter from the ORB and cannot modify it. The memory
associated with the parameter is freed by the ORB upon returning. The callee can
preserve the string by copying it.

out

The caller allocates a pointer and passes it by reference to the ORB. Once the
method returns, the caller is responsible for freeing the memory when finished.

On the server side, the ORB allocates a pointer and passes it by reference to the
callee. The callee sets the pointer to a valid instance of the parameter’s type. If the
callee wishes to keep the data buffer, it is must make a copy. The callee is not
allowed to return a NULL pointer.

inout

The caller allocates the necessary storage for both input string the char * pointing to
it. Upon return, the caller must release the memory using the string_free method. The
ORB will delete the old buffer and allocate a new buffer for the out parameter. The
size of the output string may be larger that the input string.

On the server side, the ORB will allocate memory for the string. To return a new
string, the callee must free the old memory using string_free and allocate new storage
using the string_alloc method. Once the data is returned to the client, the ORB
releases the memory. The callee may not return a NULL pointer.

return

On the server side, the callee returns to the ORB a pointer to the data buffer. The
buffer must have been allocated using string_alloc. The ORB will free the memory
upon returning. The client cannot return a NULL pointer.

The caller receives a char * pointer to the string. If the caller wishes to modify any of
the values, it must make a copy of the string and modify the copy. The caller is
responsible for releasing the memory using string_free.

Table 12-8 Memory management rules for strings.

PARAMETER PASSING RULES

12-8

Sequences and Type-safe Arrays

MODE

DESCRIPTION

in

The caller allocates the necessary storage for the structure and is responsible for
freeing it when finished.

The callee receives the parameter from the ORB and cannot modify it. The memory
associated with the parameter is freed by the ORB upon returning. The callee can
preserve the data buffer by copying it or increasing the object’s reference count.

out

The caller allocates a pointer and passes it by reference to the ORB. Once the
method returns, the caller is responsible for freeing the memory when finished.

On the server side, the ORB allocates a pointer and passes it by reference to the
callee. The callee sets the pointer to a valid instance of the parameter’s type. If the
callee wishes to keep the data buffer, it is must make a copy or increase the object’s
reference count.

inout

The caller allocates the sequence or any and initializes it. The ORB may free the old
buffer and allocate a new buffer for the output parameter., depending on the state of
the boolean release parameter used to construct the object. Upon return, the caller
must release the memory.

On the server side, the ORB will allocate memory for the structure. The callee may
free the old buffer and allocate a new buffer, depending on the state of the boolean
release parameter used to construct the object. Once the data is returned to the cli-
ent, the ORB releases the memory.

return

On the server side, the callee returns to the ORB a pointer to the sequence or any.
The ORB will free the memory upon returning. The client cannot return a NULL
pointer.

The caller receives a pointer to the sequence or any. If the caller wishes to modify any
of the values, it must make a copy of the object and modify the copy. The caller is
responsible for releasing the returned object’'s memory.

Table 12-9 Memory management rules for sequences and any arrays.

Fixed Arrays

MODE

COMPLEX DATA TYPES

DESCRIPTION

in

The caller allocates the necessary storage for the array and is responsible for freeing
it when finished.

The callee receives the array from the ORB and cannot modify it. The memory asso-
ciated with the array is freed by the ORB upon returning. The callee can preserve the
array by copying it.

out

The caller allocates the necessary storage, but need not initialize it. Once the method
returns, the storage will hold the array and the caller is responsible for freeing the
memory when finished.

On the server side, the ORB allocates the memory and the callee initializes the array.
Once the array has been sent to the client, the ORB releases the memory.

inout

The caller allocates the necessary storage and initializes it. Upon return, the caller
must release the memory.

On the server side, the ORB will allocate memory for the array. The callee may the
elements in the array. Once the array has been returned to the client, the ORB
releases the memory.

return

On the server side, the callee returns a pointer to the array slice. The callee may not
return a NULL pointer.

The caller receives a pointer to the array slice, but may not modify it. If the caller
wishes to modify any of the elements, it must make a copy of the array slice and
modify the copy. The caller is responsible for releasing the returned array slice’s
memory.

Table 12-10 Memory management rules for fixed-length arrays.

PARAMETER PASSING RULES

12-10

Variable-Length Arrays

MODE

DESCRIPTION

in

The caller allocates the necessary storage for the array and initializes it. The caller is
responsible for freeing the memory when finished.

The callee receives the parameter from the ORB and cannot modify it. The memory
associated with the parameter is freed by the ORB upon returning. The callee can
preserve the array by copying it.

out

The caller allocates a pointer to an array slice and passes it by reference to the ORB.
Once the method returns, the caller is responsible for freeing the memory when fin-
ished.

On the server side, the ORB allocates a pointer to an array slice and passes it by ref-
erence to the callee. The callee sets the pointer to a valid instance of an array. Once
the data is returned, the ORB will free the storage. The callee is not allowed to return
a NULL pointer.

inout

The caller allocates the array and initializes it. Upon return, the caller must release
the memory.

On the server side, the ORB will allocate memory for the array. The callee may
modify elements of the array. Once the data is returned to the client, the ORB
releases the memory.

return

On the server side, the callee returns to the ORB a pointer to an array slice. The ORB
will free the memory upon returning. The client cannot return a NULL pointer.

The caller receives a pointer to the array slice. If the caller wishes to modify any of
the elements, it must make a copy of the array and modify the copy. The caller is
responsible for releasing the memory.

Table 12-11 Memory management rules for variable-length arrays.

T_VAR DATA TYPES

Table 12-2 summarizes the parameter passing mode for T_var data types.

T_VAR DATA TYPES

DATA TYPE IN INOUT ouT RETURN

object ref var const objref_var& objref_var& objref_var&' objref_var
struct_var const struct_var& struct_var& struct_var& struct_var
union_var const union_var& union_var& union_var& union_var
string_var const string_var& string_var& string_var& string_var

sequence_var

array_var

any_var

const
sequence_var&

const array_var&

const any_var&

sequence_var&

array_var&

any_var&

sequence_var&

array_var&

any_var&

sequence_var

array_var

any_var

Table 12-12 Parameter passing modes for T_var types.

12-11

PARAMETER PASSING RULES

12-12

Memory Management for T_var Types

MODE

DESCRIPTION

in

The caller allocates the necessary storage for the object and is responsible for freeing
it when finished.

The callee receives the object from the ORB and cannot modify it. The memory asso-
ciated with the object is freed by the ORB upon returning. The callee can preserve the
object by copying it or increasing the object’s reference count.

out

The caller allocates a pointer and passes it by reference to the ORB. Once the
method returns, the caller is responsible for freeing the memory when finished.

On the server side, the ORB allocates a pointer and passes it by reference to the
callee. The callee sets the pointer to a valid instance of the parameter’s type. If the
callee wishes to preserve the object, it is must make a copy or increase the object’s
reference count.

inout

The caller allocates the sequence or any and initializes it. Upon return, the caller must
release the memory.

On the server side, the ORB will allocate memory for the object. Once the data is
returned to the client, the ORB releases the memory. If the callee wishes to preserve
the object, it is must make a copy or increase the object’s reference count.

return

On the server side, the callee returns to the ORB a pointer to the object. The ORB will
free the memory upon returning. The client cannot return a NULL pointer.

The caller receives a pointer to the object. The caller is responsible for releasing the
returned object’'s memory.

Table 12-13 Memory management rules for T_var Types.

PLATFORMS WITHOUT C+ +
EXCEPTION SUPPORT

This appendix provides information about the Environment class. The

Environment classis used when your compiler does not support exceptions

through thet r y and cat ch statements.

APPENDIX A

For Platforms without C++ Exception Support
The Exception Macros
Using the Exception Macros

Object Implementation Considerations

A-2

A-2

A-3

A-3

PLATFORMS WITHOUT C++ EXCEPTION SUPPORT

FOR PLATFORMS WITHOUT C++ EXCEPTION SUPPORT

Not all C+ compilers support exceptionsthrough thet r y and cat ch statements, so the CORBA spec-
ification definesan Envi r onnment class for reflecting exceptions. VisiBroker uses the Environment
class, along with a set of macros, to provide your applications with exception handling capabilities when
t ry and cat ch are not supported.

The Exception Macros

The Envi r onnent classisused internaly by the ORB and is transparent to you as a programmer.
The only requirement is that you use these exception macros to throw, try and catch exceptions. These
macros will transparently manipulate the Envi r onrent classfor you if your compiler does not
support exceptions.

MACRO NAME PURPOSE

PMCTRY Use this as you would use the try statement.
PMCTHROW(type_name) Throws the specified exception.
PMCTHROW_LAST Used to re-throw the specified exception. Used

only in an event handler or in a method called by
an event handler.

PMCCATCH(type_name, Use this to catch an exception of the specified
variable_name) type.
PMCAND_CATCH If several exceptions are to be specified for a

PMCTRY block, use PMCCATCH for the first catch
statement and PMCAND_CATCH for all subse-
quent catch statements.

PMCEND_CATCH Used to terminate a PMCTRY block.

Figure A-1 The PMC exception macros.

A-2

USING THE EXCEPTION MACROS

Using the Exception Macros

You can modify the application client code shown in Figure 6-9 to use the compatibility macros. shows
the modificationsin bold type.

library *library_object;
PMCTRY {
library_object = library::_bind();

/Il Check for errors
PMCCATCH(CORBA: : Syst enExcepti on excep) {
cout << “System Exception occurred:” << endl;
cout << “exception name: “ <<
excep. _nanme() << endl;
cout << “minor code: “ <<
excep. mnor() << endl;
cout << “conpletion code: * <<
excep. conpleted() << endl;

}
PMCENDCATCH

Figure A-2 Using the compatibility macros to catch a system exception.

Object Implementation Considerations

The IDL compiler detects whether or not your C+ compiler supports exceptions and generates code
accordingly. The object implementation code shown in Figure 6-13 would appear as follows for acom-
piler without C+ support. Note that thet hr ow statement is not generated.

virtual CORBA: : Bool ean add_book(const book& book_i nfo);

The object’simplementation of add_book would use PMCTHROWto raise the exception.

CORBA: : Bool ean Library::add_book(const book& book_i nf o)
{
CORBA: : Bool ean ret;
if((ret = bk_list.add_to_list(book_info)) == 0)
PMCTHROW (1i brary: : Capaci t yExceeded() ;)
return ret;

PLATFORMS WITHOUT C++ EXCEPTION SUPPORT

Symbols

... dlipsis ix

[] brackets ix
| vertical bar ix

A
accessing
distributed objects 1-2
activating
objects directly 4-15
objectswith BOA 4-16
activation policies 4-5
persistent server policy 4-5
server-per-method policy 4-5
shared server policy 4-5
unshared server policy 4-5
Activator class
activating an ORB object 4-17
deactivating an ORB object 4-17
adding
fields to user exceptions 6-10
file descriptors 8-6
advanced networking options 5-9
agentaddr file
specifying |P addresses 5-6
agents
connecting on different local networks 5-5
agent-to-agent cooperation 5-2
Any
class 9-10
arguments
explicit 12-2
implicit 12-2
array slice
passing parameters for multi-dimensional
arrays 11-18
arrays 11-18
managed types 11-19
memory management 11-20

I NDEKX

type-safe 11-19
attributes
interface 10-8

B
Basic Object Adaptor
(BOA) 2-11, 4-4
bind
method 2-6
multiple bind with multiple client threads 8-4
process 3-5
single bind with multiple client threads 8-3
bind options
bind-level 3-11
enabling re-binds 3-9
maximum bind attempts 3-9
object-level 3-11
obtaining the current 3-17
process-level 3-10
scope 3-10
specifying 3-8
binding
to objects 1-2, 3-5
tothe server 2-12
bind-level
bind options 3-11
BOA
(Basic Object Adaptor) 2-11, 4-4
create 4-7
BOA_init
method 5-9
options 5-10
bound objects
determining the location and state 3-17

C
casting

object references 3-15

to a system exception 6-4
catching

I o

IX-6

system exceptions 6-8
user exceptions 6-10

changing

an object’simplementation dynamically 4-10

checking

for nil references 3-12
for persistent objects 4-3
the parameters 2-12

class

Activator 4-17

Any 9-10
dispatcher 8-5
Environment A-2
HandlerRegistry 7-5

HandlerRegistry methods for client applications 7-
6

ImplEventHandler 7-9
IOHandler 8-8
NamedVaue 9-8
Request 9-5

string_var 11-3
TypeCode 9-10

un_ex 11-12
WhDispatcher 8-11, 8-13
XDispatcher 8-11

classtemplate 10-7
client

files 2-5

client and server

compiling 2-15

on different hosts 3-5
on samehost 3-6
running 2-16

client application

multi-threads 8-3

client event handlers 7-2

connection information 7-3
cregting 7-4

methods 7-3

registering 7-6

cloning

object references 3-14
using multi-threads 8-4

Common Object Request Broker Architecture
(CORBA) 1-2
communications
agent 5-2
point-to-point 5-6
compiling
the client and server 2-15
completion status 6-3
complex
datatypes 12-3
connecting
client applications with objects 1-2
to agents on different local networks 5-5
using point-to-point communications 5-6
connection time-outs 3-10
considerations
object implementation A-3
constants 11-4
conventions
platformicons ix
syntax X
typographic ix
converting
areferenceto astring 3-14
CORBA

(Common Object Request Broker Architecture) 1-2

C++ language mapping specifications 11-1
creating

aclient event handler 7-4

aDll request 9-6

an ORB object for registration with OAD 4-10

implementation event handlers 7-10
software components 1-2
the server class 2-9
creation definition
CreationlmplDef class 4-8

D
datatypes
basic 11-2
complex 11-9, 12-3
primitives 12-2
T var 12-11
deactivating implementations 4-20

manually started implementations 4-20
started by OAD 4-20
deactivating objects 4-20
deactivating C++ instantiated objects 4-20
defining
the name of the object 10-2
the objects 2-4
user exceptions 6-8
determing
location of bound objects 3-17
state of bound objects 3-17
DIl
(Dynamic Invocation Interface) 9-2
creating aDll request 9-6
initializing aDII request 9-7
sending arequest 9-13
sending and receiving multiple requests 9-14
DIl request
setting the arguments 9-7
dispatcher
class 8-5
dispatching 8-7
DLL request
setting the context 9-7
DriverSet
sources of information Xi
duplicating
areference 3-12
Dynamic Invocation Interface
(Dol 9-2
creating aDlI request 9-6
initializingaDLL request 9-7
sending arequest 9-13
sending and receiving multiple requests 9-14

E
enabling re-binds 3-9
enumerations
mapping IDL enumerationsto C++ 11-6
Environment
class A-2
environment
methods 6-12

registering exceptions in the environment class 6-

12
equivalence
object references 3-15
error handling 6-1
event handler
client 7-2
client connection information 7-3
client methods 7-3
concepts 7-2
creating aclient event handler 7-4
implementations 7-9
objects 7-2
event loop integration 8-5
exception support A-2
portability considerations 6-11
exceptions
adding fields to user exceptions 6-10
casting to a system exception 6-4
catching system exceptions 6-8
catching user exceptions 6-10
class 6-2
completion status for system exceptions 6-3
CORBA-defined system exceptions 6-5
defining user exceptions 6-8
handling system exceptions 6-6
macros A-2
modifying the object implementation 6-10
narrowing to system exceptions 6-7
platforms with C++ exception support A-2
system 6-2, 6-3
user 6-2, 6-8
explicit
arguments 12-2
F
fault tolerance
object implementation 5-7
replicating instantiated objects 5-7

replicating objects registered with the OAD 5-7, 6-
12

files
client 2-5
server 2-7

INDEX

I o

IX-8

fixed-length
structures 11-10
fixed-length arrays
memory management rules 12-9
fixed-length structures and unions
memory management rules 12-5

G

generated files 2-4

generating
_var class 10-4
aclasstemplate 10-7
a String_var class 11-3
codefor clients 10-3
code for servers 10-6
methods 10-6
theclient files 2-5

H
handler registry
class 7-5
methods 7-11
methods for client applications 7-6
using 7-10, 7-11
handling
events 8-8
system exceptions 6-6
host name 3-8

|
identifying
the required object 2-4
IDL
arrays 11-18
compiler 2-4,10-2, 10-3
complex datatypes 11-9
constants 11-4
methods generated 10-4
primitive data types 11-2
to C++ language mapping 11-1
implementation definition parameter 4-7
implementation event handlers
creating 7-10
registering 7-12
implementation repository

maintained by OAD 4-5
implementing
alist of NamedValue objects 9-8
IOHandler methods 8-8
theclient 2-11
themain routine 2-11
the server 2-8
implementing the server
creating the server class 2-9
implementing the main routine 2-11
ImplEventHandler class 7-9
methods 7-10
implicit arguments 12-2
information, whereto find xi
inheritance
interface 10-11
initializing
the ORB 2-11
input/output arguments
for method invocation requests 9-8
instantiating
aproxy object 3-5
integration
with Microsoft Foundation Classes 8-13
with other environments 8-17
with Windows/NT event loop 8-11
with XWindows 8-11
interface
attributes 10-8
inheritance 10-11
names 3-15
Interface Definition Language
(IDL) 10-2
compiler 10-2
Interface Repository 9-2
(IR) 9-2
objects stored within 9-3
IOHandler class 8-8
implementing |OHandler methods 8-8
using IOHandler 8-9

L
linking
adding afile descriptor 8-6

dispatcher class 8-5

multi-threaded applications 8-5
listimpl command

contents of an implementation repository 4-13
listing

contents of an implementation repository 4-13
local host 3-6
locating

the osagent 5-2

M
maintaining
list of persistent object implementations 5-2
managed types
arrays 11-19
for sequences 11-17
for unions 11-13
mapping
IDL enumerationsto C++ 11-6
IDL modules to C++ namespace 11-8
IDL type definitions to C++ definitions 11-6
object references 10-11
maximum bind attempts 3-9
memory management
arrays 11-20
for sequences 11-17
for structures 11-12
for T_var types 12-12
rules for complex datatypes 12-3
rules for fixed-length arrays 12-9
rules for fixed-length structures and unions 12-5
rules for object reference pointers 12-4
rulesfor primitive datatypes 12-3
rules for sequences and type-safe arrays 12-8
rules for variable-length structures and unions 12-6
rules strings 12-7
rules variable length arrays 12-10
methods
dispatching 8-7
handler registry 7-11
ImplEventHandler 7-10
IOHandler 8-8
unlink 8-7
Microsoft Foundation Classes

INDEX

integration with 8-13
migrating
instantiated objects 5-8
objects 5-8
objects registered with the OAD 5-9
objects that maintain state 5-8
modifying
object implementation for user exceptions 6-10
modules
mapping IDL modules to C++ namespace 11-8
multi-thread 8-2
client applications 8-3
client with multiple binds 8-4
client with onebind 8-3
linking these applications 8-5
servers 8-17
servers with Windows User Interfaces 8-17
threads in an object implementation 8-2
with cloning 8-4
multi-threaded servers
Windows 95 8-14
multithreaded servers
Windows NT 8-14

N
NamedValue

class 9-8

objects 9-8

pair 9-8
narrowing object references 3-18
network resources

fine-tuning settings 5-9
NULL object name 3-2
NVList 9-8

O

OAD
(Object Activation Daemon) 4-5, 4-14
registration using BOA create 4-7
registration with regobj command 4-6

Object Activation Daemon
(OAD) 4-5,4-14

object implementation 4-2
considerations A-3

I o

fault tolerance 5-7

implementations that maintain state 5-7
object migration

migrating instantiated objects 5-8

migrating objects registered with the OAD 5-9

migrating objects that maintain state 5-8

terminating objects on one host and starting on

another 5-8

object names 3-2, 3-15
object oriented approach

software component creation 1-2
object reference pointers

memory management rules 12-4
object references

checking for nil references 3-12

the reference count 3-13
oneway methods
no return values 10-10
ORB
(Object Broker Request) 1-2
(Object Request Broker) 5-4
domains 5-4
interface to the OAD 4-14
ORB_init
method 5-9
options 5-9
osagent 2-16, 5-2
cooperation with the OAD 5-2
fault tolerance 5-3
locating 5-2

cloning 3-14
converting areferenceto astring 3-14
determing the locations and state of bound

multiple instances started by different hosts 5-2
running more than one instance of agent 5-3
specifying | P addresses as run-time parameters 5-6

IX-10

objects 3-17

duplicating areference 3-12
equivalence and casting 3-15
narrowing 3-18
obtaining anil reference 3-12
obtaining object and interface names 3-15
obtaining the reference count 3-13
operationson 3-12
releasing 3-13
widening 3-18

object registration 4-4

Object Reguest Broker

(ORB) 1-2,5-4
object server

activation policies 4-5
object-level

bind options 3-11
objects

activating directly 4-15
activating with BOA 4-16
transient 4-2

obtaining
anil reference 3-12
an object’sinterface 9-3
current bindoptions 3-17
object and interface names 3-15

starting 5-2, 5-3

P
parameter passing 12-1
explicit arguments 12-2
for multi-dimensional arrays 11-18
for primitive data types 12-2
for T_var types 12-11
implicit arguments 12-2
persistent objects 4-3
checking for 4-3
persistent server policy 4-5
platform designation with icons ix
platforms without C++ exception support A-2
pointer type definition
_ptr definition 10-4
portability considerations 6-11
primitive
datatypes 12-2
principal
IDL interface 11-21
process-level
bind options 3-10
proxy object 3-5

R
receiving
multiple requests 9-14
time-outs 3-10
reducing
application development costs 1-2
reference data parameters
distinguishing between multiple instances 4-7
registering
an object implementation from the command
line 4-6
an object implementation from within ascript 4-6
client event handlers 7-6
implementation event handlers 7-10, 7-11, 7-12
one or more objects with the activation daemon 4-7
regobj command 4-6
releasing
object references 3-13
remote host 3-5
removing
file descriptors 8-7
replicating
instantiated objects 5-7
objects registered with the OAD 5-7, 6-12
Request
class 9-5
running
the client 2-17
the client and server 2-16
the IDL compiler 2-4

S
scope
bind options 3-10
selecting
aMakefile 2-15
sending
aDlIl request 9-13
multiple requests 9-14
time-outs 3-9
sequences
managed types 11-17
memory management 11-17
sequences and type-safe arrays

INDEX

memory management rules 12-8
server
files 2-7
server-per-method policy 4-5
setting
timers 8-7
shared server policy 4-5
singlethread 8-2
dispatcher class 8-5
smart agent
features 5-2
specifying
bind options 3-8
| P addresses as run-time parameters 5-6
| P addresses with the agentaddr file 5-6
object names 3-2
starting
the osagent 2-16, 5-2, 5-3
the server 2-16
string 3-14
memory management rules 12-7
types 11-2
string_var
class 11-3
structures
fixed-length 11-10
memory management 11-12
variable length 11-11
syntax conventions x
system exceptions 6-2, 6-3
casting to a system exception 6-4
catching 6-8
completion status 6-3
CORBA-defined 6-5
handling 6-6
narrowing any exceptions 6-7

T
T_var datatypes 12-11
T_var types

memory management 12-12

terminating objects on one host and starting on
another 5-8

threads

IX-11

I o

IX-12

multi- 8-2
single 8-2
thread-safe code 8-16
time-outs
connection 3-10
receiving 3-10
sending 3-9
transient objects 4-2
type definitions
mapping IDL typesto C++ type definitions 11-6
TypeCode
class 9-10
types
complex datatypes 11-9
IDL primitive data types 11-2
strings 11-2
type-safe
arrays 11-19
typographic conventions ix

U
un_ex
class 11-12
understanding
the Environment class 6-12
unions
managed types 11-13
unregistering implementations
with BOA dispose method 4-12
with the OAD 4-11
with unregobj 4-11
unshared server policy 4-5
user exceptions 6-2, 6-8
adding fieldsto 6-10
catching user exceptions 6-10
defining 6-8
modifying the object implementation 6-10
using
fully qualified names
object names 3-4
IOHandler 8-9
qualified object names with servers 3-2
registered objects from client applications 9-2

\Y,

var class 2-6

variable length
arrays 12-10
structures 11-11

variable-length structures and unions
memory management rules 12-6

W

WDispatcher class 8-11, 8-13

what is COBRA 1-2

widening object references 3-18

Windows User Interfaces 8-17

Windows/NT event loop
integration with 8-11

X
XDispatcher class 8-11
XWindows

integration with 8-11

	Typographic Conventions
	Platform Conventions
	Syntax Conventions
	Where to Find Additional Information
	Contacting Visigenic Technical Support
	VisiBroker Basics
	Accessing Distributed Objects
	What is VisiBroker?
	Developing Applications with VisiBroker
	VisiBroker Features
	Fault Tolerance
	Optimized Binding
	Dynamic Invocation Interface
	Support for Threads
	Event Handling Facilities
	Event Loop Integration - For Single Threaded Appli...

	Getting Started
	Application Development
	The Library Object
	Defining the Library Objects

	Running the IDL Compiler
	Code Generation

	The Client Files
	The Library Class
	The library_var Class
	The Server Files

	Implementing the Server
	The library Class Hierarchy
	Creating the Library Class

	Implementing the Client
	Compiling the Client and Server
	Selecting a Makefile

	Running the Client and Server
	Setting the VisiBroker Environment Variables
	Starting the osagent
	Starting the Library Server
	Running the Client

	Conclusion

	Naming and Binding to Objects
	Interface Names
	Object Names
	Using Qualified Object Names with Servers
	Using Fully Qualified Names
	Binding to Objects
	The _bind Process
	Client and Server on Different Hosts
	Client and Server on the Same Host
	Client and Server in the Single Process

	Specifying Bind Options
	Host Name
	BindOptions
	Scope of BindOptions

	Operations on Object References
	Checking for Nil References
	Obtaining a Nil Reference
	Duplicating a Reference
	Releasing an Object Reference
	Obtaining the Reference Count
	Cloning Object References
	Converting a Reference to a String
	Obtaining Object and Interface Names
	Object Reference Equivalence and Casting
	Determining the Location and State of Bound Object...
	Obtaining the Current BindOptions

	Widening and Narrowing Object References

	Object and Implementation Activation
	Transient Objects
	Handling Transient Object References
	Persistent Objects
	Checking for Persistent Objects
	Object Registration
	The Basic Object Adaptor
	Object Server Activation Policies

	Object Activation Daemon
	The Implementation Repository
	OAD Registration with regobj
	OAD Registration using BOA::create
	Reference Data Parameter
	Implementation Definition Parameter
	Creation Definition
	BOA::create Example
	Changing an ORB Implementation

	Unregistering Implementations
	Unregistering with unregobj
	Unregistering with the BOA::dispose Method
	The listimpl Command

	ORB Interface to the OAD
	Activating Objects Directly
	Activating Objects with the BOA
	The Activator Class
	Putting it All Together

	Object and Implementation Deactivation
	Deactivating a Manually Started Implementation
	Deactivating C++ Instantiated Objects
	Deactivating Implementations Started by the OAD
	Deactivating Objects Activated by the BOA

	The ORB Smart Agent
	Agent Communication
	Agent-to-Agent Cooperation
	Cooperation with the OAD
	Starting the osagent
	Agent Fault Tolerance
	ORB Domains
	Connecting Agents on Different Local Networks
	Using Point-to-point Communications
	Specifying IP addresses with the agentaddr File
	Specifying IP addresses as Run-time Parameters

	Object Implementation Fault Tolerance
	Object Implementations that Maintain State
	Replicating Instantiated Objects
	Replicating Objects Registered with the OAD

	Object Migration
	Migrating Object that Maintain State
	Migrating Instantiated Objects
	Migrating Objects Registered with the OAD

	Advanced Networking Options
	ORB_init Options
	BOA_init Options

	Error Handling
	The Exception Class
	System Exceptions
	Completion Status
	Getting and Setting the Minor Code
	Casting to a SystemException
	Handling System Exceptions
	Narrowing to a System Exception
	Catching System Exceptions

	User Exceptions
	Defining User Exceptions
	Modifying the Object implementation
	Catching User Exceptions
	Adding Fields to User Exceptions
	Portability considerations
	Understanding the Environment Class
	Environment Methods

	Handling Events
	Client Event Handlers
	The ConnectionInfo Structure
	ClientEventHandler Methods
	Creating a Client Event Handler
	The Handler Registry
	HandlerRegistry Methods for Clients Applications
	Registering Client Event Handlers

	Implementation Event Handlers
	The ImplEventHandler Class
	ImplEventHandler Methods
	Creating Implementation Event Handlers
	Using the Handler Registry
	HandlerRegistry Methods for Object Implementations...
	Registering Implementation Event Handlers

	Advanced Programming Topics
	Threads in an Object Implementation
	Threads in a Client Application
	One Bind with Multiple Client Threads
	Multiple Binds with Multiple Client Threads
	Multiple Threads with Cloning

	Linking Multi-threaded Applications
	Event Loop Integration
	The Dispatcher Class
	The IOHandler Class
	Using an IOHandler

	Integration with XWindows
	Integration with the Windows/NT Event Loop
	Integration with Microsoft Foundation Classes
	Thread-safe Code
	Multithreaded Servers and Windows User Interfaces

	Integration with Other Environments

	Dynamic Interfaces
	Steps for Dynamic Invocation
	The Interface Repository
	Obtaining an Object’ s Interface

	The Request Class
	Creating a DII request
	Initializing a DII Request
	Setting the Context
	Setting the Arguments
	The Any Class
	The TypeCode Class

	Sending a DII Request
	Sending and Receiving Multiple Requests

	The IDL Compiler
	The Interface Definition
	Code Generated for Clients
	Methods Generated
	The _ptr Definition
	The _var Class

	Code Generated for Servers
	Generated Methods
	The Class Template

	Interface Attributes
	Oneway methods
	Mapping Object References
	Interface Inheritance

	IDL to C++ Language Mapping
	Strings
	String_var Class

	Constants
	Enumerations
	Type Definitions
	Modules
	Complex Data Types
	Fixed-length Structures
	Variable Length Structures
	Unions
	Sequences
	Arrays
	Principal

	Parameter Passing Rules
	Explicit Arguments
	Primitive Data Types
	Memory Management

	Complex Data Types
	Memory Management
	Object Reference Pointers
	Fixed Structures and Unions
	Variable Structures and Unions
	Strings
	Sequences and Type-safe Arrays
	Fixed Arrays
	Variable-Length Arrays

	T_var Data Types
	Memory Management for T_var Types

	Platforms without C++ Exception Support
	The Exception Macros
	Using the Exception Macros
	Object Implementation Considerations

