

VISIGENIC

VisiBroker for C++

Programmer’s
Guide

Version 2.0

vbpg.bk Page i Thursday, December 19, 1996 2:25 PM

COPYRIGHT NOTICE

Copyright © 1996 Visigenic Software, Inc.
All Rights Reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system,
or translated into any human or computer language, in any form, or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission
of the copyright owner, Visigenic Software, Inc., a Delaware corporation.

The copyrighted software that accompanies this manual is licensed to the End User for use only in
strict accordance with the End User License Agreement which Licensee should read carefully
before using the software.

U.S. GOVERNMENT RESTRICTED RIGHTS

THIS SOFTWARE AND DOCUMENTATION ARE PROVIDED WITH RESTRICTED RIGHTS.
USE, DUPLICATION OR DISCLOSURE BY THE GOVERNMENT IS SUBJECT TO
RESTRICTIONS AS SET FORTH IN SUBPARAGRAPH (c)(1)(ii) OF THE RIGHTS IN
TECHNICAL DATA AND COMPUTER SOFTWARE CLAUSE AT DFARS 252.227-7013 OR
SUBPARAGRAPHS (a)–(d) OF THE COMMERCIAL COMPUTER LICENSED TECHNOLOGY-
RESTRICTED RIGHTS AT 48 CFR 52.227-19, AS APPLICABLE. THIS SOFTWARE IS
UNPUBLISHED UNDER THE COPYRIGHT LAWS OF THE UNITED STATES. ALL RIGHTS
RESERVED.

CONTRACTOR/MANUFACTURER IS VISIGENIC SOFTWARE, INC., A DELAWARE
CORPORATION, 951 MARINER’S ISLAND BLVD., SAN MATEO, CA 94404.

Visigenic™ and the Visigenic logo are trademarks of Visigenic Software, Inc.
Microsoft® is a registered trademark and Microsoft SQL Server™, ODBC™, Windows™ and
Windows NT™ are trademarks of Microsoft Corporation in the United States and other countries.
ORACLE® is a registered trademark of Oracle Corporation.
UNIX® is a registered trademark of Novell, Inc.

All other trademarks and tradenames are the property of their respective owners. All specifications
are subject to change without notice.

Release, 10/15/96

vbpg.bk Page ii Thursday, December 19, 1996 2:25 PM

T

ABLE

OF

 C

ONTENTS

vbpg.bk Page iii Thursday, December 19, 1996 2:25 PM
PREFACE . V

Organization of this Manualvi

Typographic Conventionsvii

Platform Conventionsvii

Syntax Conventionsviii

Where to Find Additional Informationix

Contacting Visigenic Technical Support ix

CHAPTER 1 VISIBROKER BASICS .1-1

What is CORBA?1-2

What is VisiBroker?1-3

Developing Applications with VisiBroker1-3

VisiBroker Features1-5

CHAPTER 2 GETTING STARTED .2-1

The Library Application2-2

Application Development2-2

Running the IDL Compiler2-4

The Client Files2-5

Implementing the Server2-8

Implementing the Client2-11

Compiling the Client and Server2-15

Running the Client and Server2-16

Conclusion2-17

CHAPTER 3 NAMING AND BINDING TO OBJECTS .3-1

Interface and Object Names3-2

Binding to Objects3-5

Specifying Bind Options3-8

Operations on Object References3-12

Widening and Narrowing Object References3-18
iii

T

ABLE

OF

 C

ONTENTS

iv

vbpg.bk Page iv Thursday, December 19, 1996 2:25 PM
CHAPTER 4 OBJECT AND IMPLEMENTATION ACTIVATION 4-1

Object Implementation4-2

The Basic Object Adaptor4-4

Object Activation Daemon4-5

Unregistering Implementations4-11

ORB Interface to the OAD4-14

Activating Objects Directly4-15

Activating Objects with the BOA4-16

Object and Implementation Deactivation4-20

CHAPTER 5 THE SMART AGENT . 5-1

Smart Agent Features5-2

ORB Domains5-4

Connecting Agents on Different Local Networks5-5

Using Point-to-point Communications5-6

Object Implementation Fault Tolerance5-7

Object Migration5-8

Advanced Networking Options5-9

CHAPTER 6 ERROR HANDLING . 6-1

Exceptions in the CORBA Model6-2

System Exceptions6-3

User Exceptions6-8

CHAPTER 7 HANDLING EVENTS . 7-1

Event Handler Concepts7-2

Client Event Handlers7-2

Implementation Event Handlers7-9

T

ABLE

OF

 C

ONTENTS

vbpg.bk Page v Thursday, December 19, 1996 2:25 PM
CHAPTER 8 ADVANCED PROGRAMMING TOPICS .8-1

Using Threads with VisiBroker8-2

Threads in an Object Implementation8-2

Threads in a Client Application8-4

Linking Multi-threaded Applications8-6

Event Loop Integration8-6

Integration with XWindows8-12

Integration with the Windows/NT Event Loop8-12

Integration with Microsoft Foundation Classes8-14

Multithreaded Servers: Windows 95 and Windows NT8-15

Integration with Galaxy8-16

Integration with Other Environments8-18

CHAPTER 9 DYNAMIC INTERFACES. .9-1

Dynamic Invocation Interface9-2

The Interface Repository9-2

The Request Class9-5

Creating a DII request9-6

Initializing a DII Request9-7

Sending a DII Request9-14

CHAPTER 10 THE IDL COMPILER .10-1

The IDL Compiler10-2

Code Generated for Clients10-3

Code Generated for Servers10-6

Interface Attributes10-8

Oneway methods10-10

Mapping Object References10-11

Interface Inheritance10-11
v

T

ABLE

OF

 C

ONTENTS

vi

vbpg.bk Page vi Thursday, December 19, 1996 2:25 PM
CHAPTER 11 IDL TO C++ LANGUAGE MAPPING . 11-1

Primitive Data Types11-2

Strings11-2

Constants11-4

Enumerations11-6

Type Definitions11-6

Modules11-8

Complex Data Types11-9

CHAPTER 12 PARAMETER PASSING RULES . 12-1

Implicit Arguments12-2

Explicit Arguments12-2

Primitive Data Types12-2

Complex Data Types12-3

T_var Data Types12-12

APPENDIX A PLATFORMS WITHOUT C++ EXCEPTION SUPPORT A-1

For Platforms without C++ Exception SupportA-2

The Exception MacrosA-2

Using the Exception MacrosA-2

Object Implementation ConsiderationsA-3

P

R E F A C E

P

REFACE

vbpg.bk Page vii Thursday, December 19, 1996 2:25 PM
The VisiBroker for C++ Programmer’s Guide provides information on develop-

ing distributed object-based applications. The Preface lists the contents of the

VisiBroker for C++ Programmer’s Guide, describes typographic and syntax con-

ventions used throughout the manual and provides references for more informa-

tion about CORBA.

Organization of this Manual vi

Typographic Conventions vii

Platform Conventions vii

Syntax Conventions viii

Where to Find Additional Information ix

Contacting Visigenic Technical Support ix

P

REFACE

viii

vbpg.bk Page viii Thursday, December 19, 1996 2:25 PM
ORGANIZATION OF THIS MANUAL

This manual includes the following sections:

n Chapter 1,"VisiBroker Basics", introduces CORBA concepts and describes the software
development process using VisiBroker for C++.

n Chapter 2, "Getting Started", provides in-depth descriptions of application development using an
example application.

n Chapter 3, "Naming and Binding to Objects", describes how objects are identified and located by
client applications.

n Chapter 4, "Object and Implementation Activation", discusses how objects are implemented and
made available for use by client applications.

n Chapter 5, "The ORB Smart Agent", describes the directory service agent and its features.

n Chapter 6, "Error Handling", provides detailed information on handling error with C++
exceptions and Environments.

n Chapter 7, "Handling Events", describes the VisiBroker event handling mechanism.

n Chapter 8, "Advanced Programming Topics", discusses multi-threaded programming and how to
integrate event processing with other event-based services.

n Chapter 9, "Dynamic Interfaces", describes the how to dynamically obtain object interfaces and
build requests.

n Chapter 10, "The IDL Compiler", describes the VisiBroker IDL compiler for C++.

n Chapter 11, "IDL to C++ Language Mapping", describes the language mapping for C++.

n Chapter 12, "Parameter Passing Rules", describes the conventions for passing parameters.

n Appendix A provides information about platforms without C++ exception support.

PREFACE

vbpg.bk Page ix Thursday, December 19, 1996 2:25 PM
Typographic Conventions

This manual uses the following conventions:

Platform Conventions

This manual uses the following symbols to indicate that information is platform-specific:

CONVENTION USED FOR

boldface Bold type indicates that syntax should be typed exactly as shown. For
UNIX, used to indicate database names, Þlenames, and similar terms.

italics Italics indicates information that the user or application provides, such as
variables in syntax diagrams. It is also used to introduce new terms.

computer Computer typeface is used for sample command lines and code.

UPPER CASE Uppercase letters indicate Windows Þle names.

[] Brackets indicate optional items.

... An ellipsis indicates that the previous argument can be repeated.

| A vertical bar separates two mutually exclusive choices.

.

.

.

A column of three dots indicates the continuation of previous lines
of code.

W

U

All Windows platforms including Windows 3.1, Windows NT, and Windows 95

Windows NT only

Windows 95 only

All UNIX platforms

NT

95
ix

PREFACE

x

vbpg.bk Page x Thursday, December 19, 1996 2:25 PM
Syntax Conventions

This manual also uses the following style for command syntax descriptions.

THIS STYLISTIC DEVICE... INDICATES THIS SYNTACTICAL MEANING...

▪
▪
▪

These small squares indicate the continuation of code (this
device is not shown in the previous syntax diagram).

l A small diamond to the left of an explanation indicates that the
term is required for the syntax.

[;UID=user-name] Brackets around a term indicate that the term is optional. (An
example of this is not shown in the previous syntax diagram.)

data-source-name A term in italics is a variable, or something for which you must
supply a deÞnition.

Table 0-1 Stylistic devices used and their meaning.

regobj -o library,Harvard -p shared -f /home/user/dir/libsrv -a arg1 -e env1 -r refdata

The object name of the ORB
object provided by this
implementation.

The name of the executable
program that implements the
object.

The reference data to pass to
this server to distinguish
between different instances of
the same object

= required

Arguments to
pass to the
server.

Environment variables to be set
for this server.

l

l

The interface name provided by
an object in this
implementation

l

lThe activation policy for this
server.

A small diamond to the left of an
explanation indicates that the term is
required for the syntax.

Callouts describes the parameter to
which the callout line points.

PREFACE

vbpg.bk Page xi Thursday, December 19, 1996 2:25 PM
Where to Find Additional Information

For more information about VisiBroker for C++, refer to the following information sources:
n VisiBroker for C++ Reference Guide. This guide contains the information on developing

distributed object applications in C++ for Windows and UNIX platforms.

n VisiBroker for C++ Installation Guide. This guide contains the instructions for installing
VisiBroker for C++ on Windows and UNIX.

n VisiBroker for C++ Release Notes. These notes contain late-breaking information about the
current release of VisiBroker for C++.

For more information about the CORBA specification, refer to the following sources:

n The Common Object Request Broker: Architecture and Specification - 96-03-04. This
document is available from the Object Management Group and describes the
architectural details of CORBA. You can access the CORBA specification using the
World Wide Web at the following URL: www.omg.org/corbask.htm.

n IDL to C++ Language Mapping - 94-9-14. This document is available from the Object
Management Group and describes the Interface Definition Language mappings for
C++.

CONTACTING VISIGENIC TECHNICAL SUPPORT

Visigenic offers a variety of support options to help you get the most from your Visigenic products. For
information about these options, see the service and support information available in the “Services”
section of Visigenic’s web site at http://www.visigenic.com or contact our Sales Department at 1-800-
632-2864. If you have purchased Premium or Incident Support for your Visigenic products, Visigenic's
Technical Support group can be reached at:

n Phone: 415-286-1700

n E-mail: support@visigenic.com

n Fax: 415-286-2475

Please be prepared to provide complete information about your environment, the version of the Visigenic
product you are using, and a detailed description of the problem you are having.
xi

PREFACE

xii

vbpg.bk Page xii Thursday, December 19, 1996 2:25 PM

C H A P T E R 1

vbpg.bk Page 1 Thursday, December 19, 1996 2:25 PM
1V I S I B R O K E R B A S I C S

This chapter introduces VisiBroker for C++, a complete implementation of the

CORBA 2.0 specification for developing distributed object-based applications.

It includes the following major sections:

What is CORBA? 1-2

What is VisiBroker? 1-3

Developing Applications with VisiBroker 1-3

VisiBroker Features 1-5

VISIBROKER BASICS

1–2

1

vbpg.bk Page 2 Thursday, December 19, 1996 2:25 PM
WHAT IS CORBA?

The Common Object Request Broker Architecture (CORBA) specification was developed by the Object
Management Group to address the complexity and high cost of developing software applications.
CORBA specifies an object oriented approach to creating software components that can be reused and
shared between applications. Each object encapsulates the details of its inner workings and presents a
well defined interface, which reduces application complexity. The cost of developing applications is also
reduced because once an object is implemented and tested, it may be used over and over again.

The Object Request Broker (ORB) in Figure 1-1 connects a client application with the objects it wishes
to use. The client application does not need to know whether the object resides on the same computer or
is located on a remote computer somewhere on the network. The client application only needs to know
the object’s name and understand how to use the object’s interface. The ORB takes care of the details of
locating the object, routing the request and returning the result.

Figure 1-1 Client application acting on an object through an ORB.

Accessing Distributed Objects

To use an object, your application must first bind itself to the object, specifying the object’s interface
name. The ORB locates the host that offers an object with the requested interface name. If the server that
implements the requested object is not currently executing, the ORB can ensure that the appropriate
server is started. After the bind is completed, the client application can invoke operations on the object.
The client’s method invocations are translated into requests that are sent to the object server.

Client
Application

Object

Object Request Broker

request request

Local Host Remote Host

Implementation

WHAT IS VISIBROKER?

vbpg.bk Page 3 Thursday, December 19, 1996 2:25 PM
WHAT IS VISIBROKER?

VisiBroker is an ORB that offers a complete implementation of the CORBA specification. VisiBroker
makes it easy for you to develop distributed, object-based client applications and servers. VisiBroker
offers these important features.

n Support for the C++ programming language.

n Object naming.

n The ability to distribute objects across a network.

n Support for persistent objects.

n Support for dynamic object creation

n Interoperability with other ORB implementations.

DEVELOPING APPLICATIONS WITH VISIBROKER

The first step to creating an application with VisiBroker is to specify all of your objects interfaces using
CORBA’s Interface Definition language (IDL). The IDL mappings for the C++ language are covered in
Chapter 11.

The interface specification you create is used by the VisiBroker IDL compiler to generates stub routines
for the client application and skeleton code for the object implementation. The stub routines are used by
the client application for all method invocations. You use the skeleton code, along with code you write, to
create the server that implements the objects.

The code for the client and object, once completed, is used as input to your C++ compiler and linker to
produce the executable client application and object server. These steps are shown in Figure 1-2 and are
covered in detail in Chapter 2.
1–3

VISIBROKER BASICS

1–4

1

vbpg.bk Page 4 Thursday, December 19, 1996 2:25 PM
Figure 1-2 Creating an application using VisiBroker.

VisiBroker

Object
Definitions

in
IDL

Client
Stubs

Object
Skeletons

VisiBroker
IDL

Compiler

Client
Application
Code
written by
you

Object
Implementation
written by
you

C++
Compiler/

Client
Application

Object

Object Request Broker

stub skeleton

Linker

Implementation

VISIBROKER FEATURES

vbpg.bk Page 5 Thursday, December 19, 1996 2:25 PM
VISIBROKER FEATURES

In addition to providing the features defined in the CORBA specification, VisiBroker offers enhance-
ments that increase application performance and reliability.

Fault Tolerance

VisiBroker can determine if the connection between your client application and an object server has been
lost, due to a server crash or network failure. When a failure is detected, an attempt is made to restart the
server or to connect your client to a suitable server on a different host. The details of fault tolerance are
covered in Chapter 5.

Optimized Binding

When your application binds to an object, VisiBroker selects and establishes the most efficient communi-
cation mechanism. Depending on the platform and the location of the requested object, the bind may be
established through a pointer reference, shared memory or a TCP/IP socket. Chapter 3 describes opti-
mized binding in detail.

Dynamic Invocation Interface

VisiBroker maintains an interface repository that contains the IDL specifications for all of the objects that
have been activated. This repository can be used by client applications to discover a recently added
object, obtain the object’s interface and dynamically construct requests to act on the object.The Dynamic
Invocation Interface (DII) is covered in Chapter 9.

Support for Threads

On those platforms that support threads, VisiBroker is thread-safe and reentrant for both the client appli-
cation and the server. For each thread within your client application, each bind is allocated its own thread
within the server. When your client disconnects, the server thread allocated for your client will exit.
Thread support is discussed in Chapter 8.

Event Handling Facilities

VisiBroker allows you to monitor the following events:

n Connection establishment and destruction.

n The entry to and exit from an object method.

You can use these events to provide debugging, logging, accounting, performance monitoring or security
information for your applications. Chapter 7 describes event handling.
1–5

VISIBROKER BASICS

1–6

1

vbpg.bk Page 6 Thursday, December 19, 1996 2:25 PM
Event Loop Integration - For Single Threaded Applications Only

You may find that the objects you implement require interaction with an event-driven environ-
ments.Object implementations are also event driven because they must wait for client requests. VisiBro-
ker gives you the ability to incorporate your object’s event polling into the network or windowing
component’s event loop. This frees you from the complexity of managing nested event loops in your
code. Chapter 8 explains the details of event loop integration.

C H A P T E R 2

vbpg.bk Page 1 Thursday, December 19, 1996 2:25 PM
2G E T T I N G S T A R T E D

This chapter describes the development of distributed, object-based

applications with VisiBroker for C++ on Unix platforms. A sample application

is used to illustrate each step of the development process. It includes the

following major sections:

The Library Application 2-2

Application Development 2-2

Running the IDL Compiler 2-4

The Client Files 2-5

Implementing the Server 2-8

Implementing the Client 2-11

Compiling the Client and Server 2-15

Running the Client and Server 2-16

Conclusion 2-17

GETTING STARTED

2–2

2

vbpg.bk Page 2 Thursday, December 19, 1996 2:25 PM
THE LIBRARY APPLICATION

In this chapter, you will build a sample client application that adds a book to a library’s book server. The
book server could be used by a university’s library to track the books in its inventory. The client applica-
tion could be used by the university’s purchasing department to add titles when new books arrive.

The directory examples/library, located within the directory where your VisiBroker package was
installed, contains the files discussed in this chapter. If you do not know the location of the VisiBroker
package on your system, see your administrator.

 NOTE Some of the file names used as examples in this chapter have more than eight characters and may not
work with your platform.

APPLICATION DEVELOPMENT

You will use the following steps to develop and run the sample application.

1 Identify the objects required by the application.

2 Write a speciÞcation for the objects using the Interface DeÞnition Language (IDL).

3 Use the IDL compiler to generate the client stub code and server skeleton code.

4 Write the client application code.

5 Write the object server code.

6 Compile the client and server code.

7 Start the object server.

8 Run the client application.

APPLICATION DEVELOPMENT

vbpg.bk Page 3 Thursday, December 19, 1996 2:25 PM
Figure 2-1 Developing the sample library book application.

VisiBroker

Library
Object

Definitions
in IDL

Client
Stubs

Object
Skeletons

VisiBroker
IDL

Compiler

Client
Application
Code
written by
you

Library Object
Implementation
written by
you

C++
Compiler/

Client
Application

Library

Object Request Broker

stub skeleton

2.

3.

4. 5.

6.

Object

Linker

Implementation
2–3

GETTING STARTED

2–4

2

vbpg.bk Page 4 Thursday, December 19, 1996 2:25 PM
The Library Object

One of the objects in your sample application is the library that contains a selection of books. A complete
library server would probably offer methods to checkout and check-in books as well as add, remove and
search for books. In this simple example, our library object will only offer a single method named
add_book to add a book to the library.

DeÞning the Library Objects

The file lib.idl, shown below, contains the IDL specifications for the book structure and the library inter-
face. The book structure consists of just two strings; one for the author of the book and one for the
book’s title. The library object’s add_book method requires a struct book as its only argu-
ment.

 struct book {
string authors;
string title;

};

interface library {
boolean add_book(in book book_info);

};

Figure 2-2 IDL specification for the book structure and library object.

RUNNING THE IDL COMPILER

The VisiBroker IDL compiler is named orbeline. Since your lib.idl file requires no special handling, it
can be complied by typing the following command.

 prompt> orbeline lib.idl

For more information on the command line options for the IDL compiler, see the VisiBroker for C++ Ref-
erence Guide.

Code Generation

The IDL compiler generates four files; lib_client.cc, lib_client.hh, lib_server.cc and lib_server.hh. Two
of the files are for building the client application and two are for building the object server. All generated
files have either a “cc “or “hh” suffix to help you distinguish them from source files that you create, which
should use the “C” and “h” extensions.

THE CLIENT FILES

vbpg.bk Page 5 Thursday, December 19, 1996 2:25 PM
THE CLIENT FILES

The include file lib_client.hh contains the C++ type definitions for the book structure as well as a C++
definition for the library class. The IDL compiler also generates a book_var class that acts as a
wrapper for the book structure.You may find it more convenient to use the book_var class rather
than the book structure.

 struct book {
CORBA::String_var author;
CORBA::String_var title;
// operator= is generated for internal use
.
.
.

};

class book_var
{

public:
book_var();
book_var(book *ptr);
book_var(const book_var& var);
~book_var();
book_var& operator=(book *ptr);
book_var& operator=(const book_var& var);
book *operator->();
operator book *();
operator book &();
. . .
// other methods for internal use

private:
book *_ptr;

};

Figure 2-3 A portion of the lib_client.hh file generated by the IDL compiler.

The Library Class

The library class definition generated in lib_client.hh contains the add_book method specified in
the IDL file, along with a variety of other methods. The lib_client.cc file contains the C++ implementa-
tion of methods for use by the client application as well as internally used methods. Your client applica-
tion will use the add_book method to send an “add book” request to the library server.
2–5

GETTING STARTED

2–6

2

vbpg.bk Page 6 Thursday, December 19, 1996 2:25 PM
 class library: public virtual CORBA::Object
{

private:
... // methods used internally

public:
static library_ptr _duplicate(library_ptr obj);
static library_ptr _nil();
static library_ptr _narrow(CORBA::Object *obj);
static library_ptr _bind(

const char *object_name = NULL,
const char *host_name = NULL,
const CORBA::BindOptions* opt=NULL);

virtual CORBA::Boolean add_book(
const book& book_info);

...
};

Figure 2-4 The library class.

THE _BIND METHOD

When your application invokes the _bind method, the ORB locates and establishes a connection with
the library server and returns a handle to the library object. If the ORB cannot locate or connect to the
library server object, the _bind method will return NULL and a system exception will be raised. The
binding process is described in detail in Chapter 3.

THE ADD_BOOK METHOD

The add_book method generated by the IDL compiler for your client application is actually a stub
method. When your client application calls add_book, a request is sent to the ORB with all the necessary
parameters. The ORB ensures that the request is sent to the library server object. Once the method is exe-
cuted on the server, the ORB returns the results to your client application.

OTHER METHODS

Several other methods are provided that allow your client application to duplicate, initialize and narrow a
library object reference. These methods are not used in the example client application, but they are
discussed in detail in Chapter 3.

The library_var Class

A class named library_var is also generated by the IDL complier, though it is not used in the
example application. The library_var class adds the ability to automatically delete object refer-
ences when the object is deleted or re-initialized. The _var classes are described in detail in Chapter 10.

THE CLIENT FILES

vbpg.bk Page 7 Thursday, December 19, 1996 2:25 PM
The Server Files

The include file lib_server.hh contains the C++ definitions for the _sk_library class that you use
to derive the implementation of the library object server. This class contains a skeleton method
_add_book. This skeleton method is used by the ORB on the server side to unpack the parameters
from your client application’s “add book” request and invoke the actual add_book method on the
server object.

The add_book method is a pure virtual function. You create the actual implementation of this method for
the library server object. The following excerpt shows the _sk_library class definition contained in
the lib_server.hh file.

The lib_server.cc file contains the implementation for the _add_book method and other methods that
are used internally by the ORB.

 class _sk_library: public library
{

...
public:

...
/* The following operations need to be implemented
 * by the server */
virtual CORBA::Boolean add_book(

const book& book_info) = 0;

/* The following operations are implemented
 * automatically */
static void _add_book(void *obj,

CORBA::MarshalStream &strm,
CORBA::Principal_ptr principal,
const char *oper);

};

Figure 2-5 The _sk_library class.
2–7

GETTING STARTED

2–8

2

vbpg.bk Page 8 Thursday, December 19, 1996 2:25 PM
IMPLEMENTING THE SERVER

There are two tasks you must complete to implement the library object server; create the server’s
Library class and implement the main routine. To create the server’s Library class, you must
first understand its relationship with the client’s library class and the _sk_library class.

The library Class Hierarchy

The Library server class that you implement is derived from the _sk_library class that was
generated by the IDL compiler. Look closely at the _sk_library class definition and notice it is
derived from the library class defined in the lib_client.hh file. Figure 2-6 shows the class hierarchy.

Figure 2-6 Class hierarchy for the library interface.

class library
(generated in lib_client.hh

class _sk_library
(generated in lib_server.hh)

class Library
(written by programmer

and used by the client)

and used by the server)

IMPLEMENTING THE SERVER

vbpg.bk Page 9 Thursday, December 19, 1996 2:25 PM
Creating the Library Class

The Library class is the actual implementation of the library object, defined in the libsrv.h file. This
class uses a book_list class to provide a fixed array of book structures. The method
add_to_list is called by the Library::add_book method. This file is not generated by the
IDL compiler.

 #include <lib_server.hh>

const CORBA::ULong MAX_BOOKS = 3;

class book_list
{

private:
short _book_count;
book* _book_array[MAX_BOOKS];

public:
book_list() { _book_count = 0; }
~book_list() {

for (int i=0; i < _book_count; i++) {
delete _book_array[i];

}
}
CORBA::Boolean add_to_list (const book &bk) {

if (_book_count >= MAX_BOOKS)
return 0;

} else {
_book_array[_book_count] = new book(bk);
_book_count++;
return 1

}
};

class Library: public _sk_library
{

private:
book_list bk_list;

public:
Library(const char *object_name = NULL);
CORBA::Boolean add_book(const book& book_info);

};

Figure 2-7 The Library and book_list classes.
2–9

GETTING STARTED

2–10

2

vbpg.bk Page 10 Thursday, December 19, 1996 2:25 PM
IMPLEMENTING LIBRARY METHODS

You must provide implementations for the server’s Library::add_book method as well as the
object’s constructor. In our example these implementations are placed in the lib_srvr.C file, along with
the main routine. This code is not generated by the IDL compiler.

The Library::Library constructor must call the _sk_library constructor to perform inter-
nal initialization and to register the object’s interface with the ORB.

The add_book method involves a simple call to the bk_list object’s add_to_list method,
the Library class’ internal representation of the list of books.

 #include <lib_server.hh>
int main(int argc, char *const *argv)
{

// Initialize ORB and Basic Object Adaptor (BOA)
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::BOA_var boa = orb->BOA_init(argc, argv);

// Instantiate Library Class
Library library_server;

// Notify BOA that object is ready
boa->obj_is_ready(&library_server);

// Begin event loop of receving messages
boa->impl_is_ready();
return(1);

}

// Library constructor
Library::Library(const char *object_name) :

_sk_library(object_name)
{
}

// Add book method
CORBA::Boolean Library::add_book(const book& book_info)
{

return bk_list.add_to_list(book_info);
}

Figure 2-8 The Library server implementation.

IMPLEMENTING THE CLIENT

vbpg.bk Page 11 Thursday, December 19, 1996 2:25 PM
THE MAIN ROUTINE

Before instantiating the Library object, the main routine must make two calls; one to the ORB and the
other to the Basic Object Adaptor (BOA). The BOA is the interface between the object implementation
and the ORB. The BOA allows your object to notify the ORB when it is ready to accept client requests.

The argc and argv parameters are the same parameters passed to the main routine. These parameters
are described in “Advanced Networking Options” on page 5-9 and can be used to specify options for the
ORB and BOA.

After instantiating the Library object, the server tells the BOA that the object is ready by invoking the
obj_is_ready method.

Lastly, the server calls the impl_is_ready method to start the event loop that receives client
requests. The details of the event loop are discussed in Chapter 4.

IMPLEMENTING THE CLIENT

The file named lib_clnt.C contains the library client application. The application accepts two parameters,
the author and title of a book. These parameters will be used to initialize a book structure which will
then be used as a parameter to the library object’s add_book method. Since your application will
use the library class, it must include the lib_clnt.h file.

INITIALIZATION

The first thing your client application needs to do is initialize the ORB.

 #include <iostream.h>
#include <lib_client.hh>
main(int argc, char *const *argv)
{

CORBA::Boolean ret;
// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

...

Figure 2-9 Initializing the ORB.
2–11

GETTING STARTED

2–12

2

vbpg.bk Page 12 Thursday, December 19, 1996 2:25 PM
CHECKING THE PARAMETERS

After initializing the ORB, your application validates the author and book title parameters and creates a
book structure. For more information on using argc and argv, see “ORB_init Options” on page 5-9.
Notice that argv[1] and argv[2] are cast to const char *. This casting causes memory to
be allocated automatically because the author and title are defined as String_var types (see Figure
2-3).

 ...
if(argc < 3) {

cout << “You must specify an author and title”
<< endl;

return(0);
}
book book_entry;
book_entry.author = (const char *)argv[1];
book_entry.title = (const char *)argv[2];
...

Figure 2-10 Checking the author and title input parameters.

BINDING TO THE LIBRARY SERVER

Before your client application invokes the add_book method, it must first invoke the _bind method.
The implementation of the _bind method is generated automatically by the IDL complier. The _bind
method requests the ORB to locate and establish a connection to the library server. If the server is suc-
cessfully located and a connection is established, a proxy object is created to represent the server’s
Library object. It is a reference to the proxy object that is returned to your client application.

If the _bind method fails, a system exception is raised. You should use the try and catch state-
ments to detect any failures, print a message and exit the client application.

 ...
library *library_object;

try {
library_object = library::bind();

}
catch(const CORBA::Exception& excep) {

cout << “Error binding to library object” << endl;
return(0);

}
...

Figure 2-11 Binding to the library object.

IMPLEMENTING THE CLIENT

vbpg.bk Page 13 Thursday, December 19, 1996 2:25 PM
 NOTE If your platform’s C++ compiler does not support try and catch, you can use the VisiBroker macros
PMCTRY and PMCCATCH, described in Appendix A of this guide.

ADDING THE BOOK

The invocation of the add_book method, like the _bind method, should use try and catch to
handle any exceptions that may be raised. The add_book method on the client side is actually a stub
generated by the IDL compiler that marshals all the data required for the request so that it can be sent to
the object server.

 ...
try {

ret = library_object->add_book(book_entry);
}
catch(const CORBA::Exception& excep) {

cout << “Error adding book” << endl;
CORBA::release(library_object);
return(0);

}
...

Figure 2-12 Invoking the add_book method.
2–13

GETTING STARTED

2–14

2

vbpg.bk Page 14 Thursday, December 19, 1996 2:25 PM
 #include <instream.h>
#include <lib_client.hh>
main(int argc, char *const *argv)
{

CORBA::Boolean ret;
// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
if(argc < 3) {

cout << “You must specify an author and title”
<< endl;

return(0);
}
book book_entry;
book_entry.author = (const char *)argv[1];
book_entry.title = (const char *)argv[2];

// Declare the library object
library *library_object;

try {
// Locate object and return a pointer to it
library_object = library::_bind();

}
// Check for errors
catch(const CORBA::Exception& excep) {

cout << “Error binding to library object” << endl;
return(0);

}

// perform the add_book invocation on library_object
try {

ret = library_object->add_book(book_entry);
}
// Check for errors
catch(const CORBA::Exception& excep) {

cout << “Error adding book” << endl;
CORBA::release(library_object);
return(0);

}
if(ret == 1) {

cout << “Book added successfully” << endl;
} else {

cout << “Unable to add book” << endl;
}
CORBA::release(library_object);
return(1);

}

Figure 2-13 The complete library client application.

COMPILING THE CLIENT AND SERVER

vbpg.bk Page 15 Thursday, December 19, 1996 2:25 PM
COMPILING THE CLIENT AND SERVER

The lib_clnt.C file that you created and the lib_client.cc file generated by the IDL compiler to create the
client application are compiled and linked together. The lib_srvr.Clib_srvr.C file that you created, along
with the lib_server.cc and the lib_client.cc files generated by the IDL compiler, are compiled and linked
to create the library server. Both the client application and the library server must be linked with the Visi-
Broker liborb library.

Selecting a MakeÞle

The library subdirectory of the examples directory of your VisiBroker release contains an appropriate
makefile for your platform. You may need to customize the makefile to work with your environment.
Shown below is a sample makefile for the Solaris™ SPARCworks C++ compiler.

 CC = CC # set to your C++ compiler
ORBDIR = /usr/local/vbroker # directory where VisiBroker was installed
CCINCLUDES = -I. -I$(ORBDIR)/include
CCFLAGS = $(CCINCLUDES) # compiler flags you might need

such as “-g”
ORBLIB = -L$(ORBDIR)/lib -lorb # The VisiBroker library (single threaded)
LDFLAGS = -lsocket -lnsl -ldl # System libraries required by Solaris

SRCS = lib_client.cc lib_server.cc library_client.cc library_server.cc

.SUFFIXES: .o .cc .hh

.cc.o:
$(CC) $(CCFLAGS) -c -o $@ $<

.C.o:
$(CC) $(CCFLAGS) -c -o $@ $<

all: lib_client lib_server

library_client: lib_client.o lib_clnt.o
$(CC) -o lib_client lib_client.o \

lib_clnt.o $(ORBLIB) $(LDFLAGS)

library_server: lib_server.o lib_srvr.o lib_client.o
$(CC) -o lib_server lib_server.o \

lib_srvr.o lib_client.o $(ORBLIB) $(LDFLAGS)

clean:
rm -f *.o *.hh *.cc core lib_client lib_server

Figure 2-14 Sample makefile for Solaris™ SPARCworks compiler.
2–15

GETTING STARTED

2–16

2

vbpg.bk Page 16 Thursday, December 19, 1996 2:25 PM
RUNNING THE CLIENT AND SERVER

Now that you have compiled your client application and server, you are ready to run your first VisiBroker
application. Running the client application involves these steps:

1 Set your environment variables

2 Start the OSAgent.

3 Start the library server

4 Run the library client application.

Setting the VisiBroker Environment Variables

The environment ORBELINE must be set to point to the directory that contains your VisiBroker license
file.

 prompt> setenv ORBELINE /usr/local/vbroker/adm

Figure 2-15 Setting the ORBELINE environment variable with csh.

 prompt> ORBELINE=/usr/local/vbroker/adm
prompt> export ORBELINE

Figure 2-16 Setting the ORBELINE environment variable with the Bourne shell.

Starting the osagent

Before you run either your client application or the library server, you must first start the directory service
daemon, osagent. The osagent is described in Chapter 5.

 prompt> osagent &

Starting the Library Server

Start your library server by typing:

 prompt> lib_server &

CONCLUSION

vbpg.bk Page 17 Thursday, December 19, 1996 2:25 PM
Running the Client

T o run your client and add the book Metamorphosis by Ovid, type:

 prompt> lib_client Ovid Metamorphosis

CONCLUSION

Congratulations! You have just completed the library application and have been introduced to all of the
basic features of VisiBroker. The remaining chapters in this guide will cover the details you will need to
create more complex and powerful applications.
2–17

GETTING STARTED

2–18

2

vbpg.bk Page 18 Thursday, December 19, 1996 2:25 PM

C H A P T E R 3

vbpg.bk Page 1 Thursday, December 19, 1996 2:25 PM
3NAMING AND BINDING TO OBJECTS

This chapter describes how interface names and object names are used to

identify objects, the options associated with binding a client to an object

implementation, and the way these object references can be manipulated. This

chapter includes the following major sections:

Interface and Object Names 3-2

Binding to Objects 3-5

Specifying Bind Options 3-8

Operations on Object References 3-12

Widening and Narrowing Object References 3-18

NAMING AND BINDING TO OBJECTS

3–2

3

vbpg.bk Page 2 Thursday, December 19, 1996 2:25 PM
INTERFACE AND OBJECT NAMES

When you define an object’s interface in an IDL specification, you must give it an interface name. For
example, the library object introduced in Chapter 2 was given the name “library” in the IDL specifica-
tion.

 interface library {
void add_book();

};

The interface name is the least specific name by which an object can be identified when a client applica-
tion invokes the _bind method. An object name may also be used to further qualify an object. For infor-
mation on obtaining interface and object names from an object reference, see page 3-15.

Interface Names

You define an object’s interface name when you define the object in IDL. The interface name will be reg-
istered with the VisiBroker osagent, when the BOA::object_is_ready method is called by the
server that implements the object. The interface name is also the name that client applications will use to
bind to an object.

Object Names

In addition to the required interface name, you may specify an optional object name when instantiating
an object. The VisiBroker IDL compiler generates a NULL object name as a default parameter. The use
of an object name is required if your client application plans to bind to more than one instance of an
object at a time. Object names must be assigned at the time an object is registered with the Object Acti-
vation Daemon, described in Chapter 4.

Using QualiÞed Object Names with Servers

Consider the library example from Chapter 2 and imagine that you need to have two library objects avail-
able; one for a library at Stanford and one for the Harvard library. You may even want to implement two
separate object servers, possibly on different hosts. Each server would instantiate a library object, but
each would use the Library object’s constructor that accepts an object name. Figure 3-1 shows the
use of the default constructor. Figure 3-2 shows the library server changes that you would need to make
to create separate library objects for Stanford and Harvard.

INTERFACE AND OBJECT NAMES

vbpg.bk Page 3 Thursday, December 19, 1996 2:25 PM
 #include <lib_srv.h>
int main(int argc, char **argv)
{

// Initialize ORB and Basic Object Adaptor (BOA)
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::BOA_var boa = orb->BOA_init(argc, argv);

// Instantiate the Library class
Library library_server();

orb->obj_is_ready(&library_server);
...

};

Figure 3-1 The default use of an object’s constructor.

 #include <lib_srv.h>
int main(int argc, char **argv)
{

// Initialize ORB and Basic Object Adaptor (BOA)
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::BOA_var boa = orb->BOA_init(argc, argv);

// Instantiate Harvard Library class
Library library_server(“Harvard”);
...

// Or

// Instantiate the Stanford Library class
Library library_server(“Stanford”);
...

orb->obj_is_ready(&library_server);
};

Figure 3-2 Specifying an object name when instantiating an object’s implementation.
3–3

NAMING AND BINDING TO OBJECTS

3–4

3

vbpg.bk Page 4 Thursday, December 19, 1996 2:25 PM
Using Fully QualiÞed Names

Your client application is not required to specify an object name when binding to an object if the same
service is available from multiple servers or if there is only one server that implements the object. The
VisiBroker IDL compiler generates a NULL parameter for the object name, by default.

Expanding the library example to represent two different libraries will require that you modify the client
application’s _bind invocation to specify a particular library object. Figure 3-3 shows the original
client code used to bind to a default object. Figure 3-4 shows how you would modify the client applica-
tion to specify an object name with the _bind call.

 ...
// Declare the library object
library *library_object;

try {
// Locate object and return a pointer to it
library_object = library::_bind();

}
// Check for errors
catch(const CORBA::Exception& excep) {

cout << “Error binding to library object” << endl;
return(0);

}
...

Figure 3-3 The use of the _bind method without an object name.

 ...
// Declare the library object
library *library_object;

try {
// Locate object and return a pointer to it
library_object = library::_bind(“Harvard”);

}
// Check for errors
catch(const CORBA::Exception& excep) {

cout << “Error binding to library object” << endl;
return(0);

}
...

Figure 3-4 The modified _bind method, using an object name.

BINDING TO OBJECTS

vbpg.bk Page 5 Thursday, December 19, 1996 2:25 PM
BINDING TO OBJECTS

Before your client application can invoke methods on an object, it must first obtain a reference to the
object using the _bind method.

 NOTE Your client application will never call the class’ constructor, it will always obtain an object reference
using the static _bind method.

The _bind Process

When your client application invokes the _bind method, the ORB performs several functions on behalf of
your application.

n The ORB contacts the osagent, VisiBroker’s directory service, to locate an object server that is
offering the specified interface name. If an object name is specified, it will be used to further
qualify the directory service search.

n When an object implementation is located, the ORB attempts to establish a connection between
the object implementation that was located and your client application.

n If the connection is successfully established, the ORB will create a proxy object, if necessary, and
return a reference to that object.

Client and Server on Different Hosts

If the ORB determines that the requested object implementation resides on a remote host, a TCP/IP con-
nection will be established between the client and object server. The ORB will instantiate a proxy object
for your client to use. All methods invoked on the proxy object will be packaged as requests and sent to
the server on the remote host. The server on the remote host will unpack the request, invoke the desired
method, and send the results back to the client.
3–5

NAMING AND BINDING TO OBJECTS

3–6

3

vbpg.bk Page 6 Thursday, December 19, 1996 2:25 PM
Figure 3-5 Client and Server processes on different hosts.

Client and Server on the Same Host

If the ORB determines that the requested object implementation resides on the local host, a connection
will be established between the client and object server using shared memory —only if both the client
and server are multithreaded. The ORB will instantiate a proxy object for your client to use. All methods
invoked on the proxy object will be packaged as requests and sent to the server using shared memory.

Figure 3-6 Client and Server processes on the same host.

ORB

Client
Application

Object

stub skeleton

Server

ORB

ProcessProcess

Host A Host B

Request via TCP/IP

ORB

Client
Application

Object

stub skeleton

Server

ORB

ProcessProcess

Host A

Request via shared
memory

BINDING TO OBJECTS

vbpg.bk Page 7 Thursday, December 19, 1996 2:25 PM
Client and Server in the Single Process

The previous discussions have assumed that object implementations have taken the form of a server pro-
cess. While this is often the case, a client application and the object implementation can both be packaged
inside a single process. When your client application invokes a bind in this scenario, the ORB will return
a pointer to the object implementation itself. That pointer will be widened to the object type used by your
client application. All methods invoked on your client’s object will get called directly as C++ virtual func-
tions on the object implementation. The ORB will be involved only during the bind process.

Figure 3-7 Client and object implementation in the same process.

ORB

Client
Application

stub

Process

Host A

C++
call

Object
Implementation
3–7

NAMING AND BINDING TO OBJECTS

3–8

3

vbpg.bk Page 8 Thursday, December 19, 1996 2:25 PM
SPECIFYING BIND OPTIONS

This section describes options that you can use to control the behavior of the _bind method. Figure
3-8 shows the _bind method generated for the library interface by the IDL compiler. The default value
for all of the parameters is NULL.

 class library
{

static library_ptr _bind(
const char *object_name = NULL,
const char *host_name = NULL,
const CORBA::BindOptions* opt = NULL);

...
};

Figure 3-8 The _bind method generated for the library class.

The interface name specified in the interface specification becomes the name of the class. The use of the
object_name parameter is discussed on page 3-2.

Host Name

In addition to the object name, your client application can specify a particular host it wishes to use for the
object implementation. This can be useful if your application knows that a particular object implementa-
tion is located on a particular host. If you do not specify a host name, the ORB will locate a host that
meets all of the other bind parameters.

BindOptions

Figure 3-9 shows the BindOptions structure, used for the third parameter to the _bind method,
which enables you to control various aspects of the connection between the client application and the
object implementation. If the third parameter is NULL, the default bind options will be used. Each of the
structure’s members will be discussed in turn.

 struct BindOptions {
CORBA::Boolean defer_bind;
CORBA::Boolean enable_rebind;
CORBA::Long max_bind_tries;
CORBA::ULong send_timeout;
CORBA::ULong receive_timeout;
CORBA::ULong connection_timeout;

};

Figure 3-9 The BindOptions structure.

SPECIFYING BIND OPTIONS

vbpg.bk Page 9 Thursday, December 19, 1996 2:25 PM
DEFERRING BINDS

When you set defer_bind to 1, the _bind method creates a proxy object (if necessary) and returns
an object reference to your client application. A connection will not be established with the object imple-
mentation until your client application actually invokes a method on the object. If you set defer_bind to
0, then the connection will be established when _bind is invoked.

The default behavior is to establish the connection at the time the _bind method is invoked.

ENABLING RE-BINDS

If the connection between your client application and the object implementation fails because of a
network error, VisiBroker will automatically attempt to re-bind to the server process or a replica of that
server. This fault tolerant processing is described in Chapter 5. If you wish to enable this re-binding pro-
cess, you must set enable_rebind to 1. If you wish to prevent this re-binding process, set
enable_rebind to 0.

The default _bind behavior is to attempt to re-bind to the server if an error occurs.

MAXIMUM BIND ATTEMPTS

Object implementations may be registered with the Object Activation Daemon, described in Chapter 4, so
that an object server process is automatically launched when your client binds to the object. You can set
max_bind_tries to specify the number of attempts the oad should make to launch the server pro-
cess.

The default oad behavior is to make no more than five attempts to launch a server process.

SEND TIME-OUTS

You set send_timeout to specify the number of seconds your client application will wait for a
request to be delivered to an object server. If the time-out period expires before the message is delivered
to the object server, a CORBA::NO_RESPONSE exception is raised.

By default, send_timeout is set to 0, which indicates that your client application wishes to block
indefinitely.
3–9

NAMING AND BINDING TO OBJECTS

3–10

3

vbpg.bk Page 10 Thursday, December 19, 1996 2:25 PM
RECEIVE TIME-OUTS

You set receive_timeout to specify the number of seconds your client application will wait for a
response to be received from an object server. If the time-out period expires before the message is
received from the object server, a CORBA::NO_RESPONSE exception is raised.

By default, receive_timeout is set to 0, which indicates that your client application wishes to
block indefinitely.

CONNECTION TIME-OUTS

You set the connection_timeout option to specify the number of seconds your client application
will wait for a connection to be established with an object server. If the time-out period expires before a
connection is established, a CORBA::NO_IMPLEMENT exception is raised.

By default, connection_timeout is set to 0 to indicate that your client application wishes to use
the default connection time-out.

Scope of BindOptions

VisiBroker allows you to specify three distinct levels of BindOptions. You can specify the options for
each invocation of the _bind method, for a particular object reference or for all invocations of _bind by
your client application.

PROCESS-LEVEL BINDOPTIONS

VisiBroker provides a global BindOptions structure that contains default values for the _bind method.
These defaults are used if you do not explicitly specify a BindOptions parameter when you invoke
the _bind method. Figure 3-10 shows the static methods you can use to query and set these defaults.

 class Object {
static const BindOptions *_default_bind_options();
static void _default_bind_options(const BindOptions&);

...
};

Figure 3-10 Static methods for getting and setting the default bind options for a process.

SPECIFYING BIND OPTIONS

vbpg.bk Page 11 Thursday, December 19, 1996 2:25 PM
BIND-LEVEL BINDOPTIONS

You can override the default, process-level bind options by passing a new BindOptions parameter
when you invoke the _bind method.These new options will remain in effect for the life of the object
reference returned by _bind, regardless of any changes to the process-level bind options.

OBJECT-LEVEL BINDOPTIONS

You can change bind options after you have invoked the _bind method. Figure 3-11 shows a method
you can use on the object reference returned by _bind. This method allows you to change send and
receive time-out values for any valid object reference. If you change the connection time-out and a re-
bind occurs, the new connection time-out value will be apply. The bind options you set remain in effect
for this object reference for as long as the reference is valid.

 class Object {
...

void _bind_options(const CORBA::BindOptions& opt);
...

};

Figure 3-11 The method for setting object-level bind options.
3–11

NAMING AND BINDING TO OBJECTS

3–12

3

vbpg.bk Page 12 Thursday, December 19, 1996 2:25 PM
OPERATIONS ON OBJECT REFERENCES

The object reference returned to your client application by the _bind method represents an ORB object.
Your client application can use the object reference to invoke methods on the object that have been
defined in the object’s IDL interface specification. In addition, there are methods that all ORB objects
inherit from the class CORBA::Object that you can use to manipulate the object.

Checking for Nil References

You can use the CORBA class static method shown to determine if an object reference is nil. This method
returns 1 if the object reference passed is nil. It returns 0 if the object reference is not nil.

 class CORBA {
...
static Boolean _nil(Object_ptr obj);
...

};

Figure 3-12 Method for checking for a nil object reference.

Obtaining a Nil Reference

You can obtain a nil object reference using the CORBA::Object method shown. It returns a NULL
value that is cast to an Object_ptr.

 class Object {
...
static Object_ptr _nil();
...

};

Figure 3-13 Method for obtaining a nil reference.

Duplicating a Reference

Your client application can use the _duplicate method to copy an object reference so that the copy
can be stored in a data structure or passed as a parameter. When this method is invoked, the reference
count for the object reference is incremented by one and the same object reference is returned to the
caller.

OPERATIONS ON OBJECT REFERENCES

vbpg.bk Page 13 Thursday, December 19, 1996 2:25 PM
The IDL compiler generates a _duplicate method for each object interface you specify. The
_duplicate method shown accepts and returns a generic Object_ptr.

 class Object {
...
static Object_ptr _duplicate(Object_ptr obj);
...
};

};

Figure 3-14 The method for duplicating an object reference.

Releasing an Object Reference

You should release an object reference when it is no longer needed. One way of releasing an object refer-
ence is by invoking the CORBA::Object class method _release.

 class CORBA {
class Object {
...

void _release();
...
};

};

Figure 3-15 The method for releasing an object reference.

You may also use the CORBA class method _release, which is provided for compatibility with the
CORBA specification.

 class CORBA {
...

static void release();
...

};

Figure 3-16 The CORBA method for releasing an object reference.

Obtaining the Reference Count

Each object reference has a reference count that you can use to determine how many times the reference
has been duplicated.When you first obtain an object reference by invoking _bind, the reference count is
set to one. Releasing an object reference will decrement the reference count by one. Once the reference
3–13

NAMING AND BINDING TO OBJECTS

3–14

3

vbpg.bk Page 14 Thursday, December 19, 1996 2:25 PM
count reaches 0, VisiBroker automatically deletes the object reference. Figure 3-17 shows the method
for retrieving the reference count.

 class Object {
...

ULong _ref_count() const;
...

};

Figure 3-17 Method for obtaining the reference count.

Cloning Object References

The IDL compiler generates a _clone method for each object interface that you specify. Unlike the
_duplicate method, _clone will create an exact copy of the object’s entire state and establish a new, sepa-
rate connection to the object implementation. The object reference returned and the original object refer-
ence will represent two distinct connections to the object implementation. Figure 3-18 shows the
_clone method generated for the library interface introduced in Chapter 2.

 class library: public virtual CORBA::Object
{

public:
...
library_ptr _clone();
...

};

Figure 3-18 The _clone method for the library class.

Platforms that support multi-threaded client applications may increase their performance by cloning an
object reference for each by each thread that is created to access a particular object. See Chapter 8 for
information on multi-threaded applications.

Converting a Reference to a String

Object references are opaque and can vary from one ORB to another, so VisiBroker provides an ORB
class with methods that allow you to convert an object reference to a string as well as convert a string
back into an object reference. The CORBA specification refers to this process as “stringification.” Figure
3-19 shows these conversion methods.

OPERATIONS ON OBJECT REFERENCES

vbpg.bk Page 15 Thursday, December 19, 1996 2:25 PM
 NOTE Only object references representing persistent objects can be converted to a string. Any attempt to
convert a transient object reference to a string will fail. Use the _is_persistent method to ensure
that an object reference represents a persistent object before calling the object_to_string
method.

 class ORB {
public:

// Convert an object reference to a string
char *object_to_string(Object_ptr obj);
// Convert a char * to an object reference
Object_ptr string_to_object(const char *);

...
};

Figure 3-19 The methods for converting an object reference to a string and vice versa.

Obtaining Object and Interface Names

Figure 3-20 shows the methods provided by the Object class that you can use to obtain the interface
and object names as well as the repository id associated with an object reference. The interface repository
is discussed in Chapter 9 of this guide.

 class Object {
...
const char *_interface_name() const;
const char *_object_name() const;
const char *_repository_id() const;
...

};

Figure 3-20 Methods for obtaining the interface name, object name and repository id.

Object Reference Equivalence and Casting

You can check whether an object reference is of a particular type by using the _is_a method. You must
first obtain the repository id of the type you wish to check using the _repository_id method. This
3–15

NAMING AND BINDING TO OBJECTS

3–16

3

vbpg.bk Page 16 Thursday, December 19, 1996 2:25 PM
method returns 1 if the object is either an instance of the type represented by repository_id or if
it is a sub-type. 0 is returned if the object is not of the type specified.

 class Object {
...
Boolean _is_a(const char *repository_id);
...

};

Figure 3-21 Method for determining the type of an object reference.

Figure 3-22 shows the _is_equivalent method which you can use to check if two object refer-
ences are equivalent. This method returns 1 if the references are equivalent. This method returns 0 if the
references are not identical.

 class Object {
...
Boolean _is_equivalent(Object_ptr other_object);
...

};

Figure 3-22 Method for comparing object references.

You can use the _hash method shown in Figure 3-23 to obtain a hash value for an object reference.
While this value is not guaranteed to be unique, it will remain consistent through the lifetime of the object
reference.

 class Object {
...
ULong _hash(ULong maximum);
...

};

Figure 3-23 The _hash method.

OPERATIONS ON OBJECT REFERENCES

vbpg.bk Page 17 Thursday, December 19, 1996 2:25 PM
Determining the Location and State of Bound Objects

Given a valid object reference, your client application can use the method shown in Figure 3-26 to
retrieve the current state of the bind for that object. The method returns 1 if the object is bound and 0 if
the object is not bound.

 class Object {
public:

...
Boolean _is_bound() const;
...

};

Figure 3-24 The method for querying the state of the bind for an object reference.

Figure 3-25 shows two methods your client application can use after a successful _bind invocation to
determine the location of the object implementation.

 class Object {
virtual Boolean _is_local() const;
Boolean _is_remote() const;

...
};

Figure 3-25 Methods for determining the location of an object implementation.

 NOTE If the referred object is in the same process, _is_local returns TRUE.

Obtaining the Current BindOptions

Given a valid object reference, your client application can use the method shown in Figure 3-26 to
retrieve the bind options currently in effect for that object.

 class Object {
...

const CORBA::BindOptions _bind_options() const;
...

};

Figure 3-26 The method for retrieving an object’s bind options.
3–17

NAMING AND BINDING TO OBJECTS

3–18

3

vbpg.bk Page 18 Thursday, December 19, 1996 2:25 PM
WIDENING AND NARROWING OBJECT REFERENCES

Converting an object reference’s type to a super-type is called widening. Figure 3-27 shows an example
of widening a library pointer to an Object pointer. The pointer lib can be cast as an Object
pointer because the library class inherits from the Object class.

 library *lib;
Object *obj;

lib = library::_bind();
obj = (Object *)lib;

Figure 3-27 Widening an object reference.

The process of converting an object reference’s type from a general super-type to a more specific sub-
type is called narrowing. VisiBroker maintains a typegraph for each object interface so that narrowing
can be accomplished by the object’s _narrow method. If the _narrow method determines it is not
possible to narrow an object to the type you request, it will return NULL.

 library *lib;
library *libtwo;
Object *obj;

lib = library::_bind();
obj = (Object *)lib;

libtwo = library::_narrow(obj);

Figure 3-28 Narrowing an object reference to a sub-type.

The _narrow method constructs a new C++ object and returns a pointer to that object. When you no
longer need the object, you must release the object reference returned by _narrow as well as the object
reference you passed as an argument.

C H A P T E R 4

vbpg.bk Page 1 Thursday, December 19, 1996 2:25 PM
4O B J E C T A N D I M P L E M E N T A T I O N
A C T I V A T I O N

This chapter discusses how objects are implemented and made available to

client applications. It includes the following major sections:

Object Implementation 4-2

The Basic Object Adaptor 4-4

Object Activation Daemon 4-5

Unregistering Implementations 4-11

ORB Interface to the OAD 4-14

Activating Objects Directly 4-15

Activating Objects with the BOA 4-16

Object and Implementation Deactivation 4-20

OBJECT AND IMPLEMENTATION ACTIVATION

4–2

4

vbpg.bk Page 2 Thursday, December 19, 1996 2:25 PM
OBJECT IMPLEMENTATION

An object implementation provides the state and processing activities for the ORB objects used by client
applications. An ORB object is created when its implementation class is instantiated in C++ by an imple-
mentation process or server. An object implementation uses the Basic Object Adaptor, or BOA, to acti-
vate its ORB objects so that they can be used by client applications. ORB objects fall into two categories:
transient and persistent.

Transient Objects

Objects that are only available during the lifetime of the process that created them are called transient
objects. Transient objects are not registered with VisiBroker’s directory service. Only those entities that
possess an explicit object reference to a transient object may invoke its methods. Figure 4-1 shows you
how to modify the library application so that library_server is created as a transient object. The
scope must be set prior to instantiating the object.

 #include <lib_srv.h>
int main(int argc, char **argv)
{

// Initialize ORB and Basic Object Adaptor (BOA)
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::BOA_var boa = orb->BOA_init(argc, argv);

// Set local registration scope
boa->scope(CORBA::BOA::SCOPE_LOCAL);

// Instantiate the Library class as a transient object
Library library_server();

// Since Library object is transient, it won’t get
// registered with the directory service
boa->obj_is_ready(&library_server);

...
};

Figure 4-1 Creating a transient object.

Handling Transient Object References

Clients can only access objects of transient objects when passed as an argument, as defined by the IDL;
for instance, object_to_string will fail.

OBJECT IMPLEMENTATION

vbpg.bk Page 3 Thursday, December 19, 1996 2:25 PM
Persistent Objects

An object that remains valid beyond the lifetime of the process that created it is called a persistent
object. These objects have a global scope and are registered with VisiBroker’s directory service, which
allow them to be located and used by client applications. Persistent objects may also be registered with
the Object Activation Daemon, enabling the servers that implement them to be activated on demand. You
can use persistent objects to implement long-running servers that provide long-term tasks. Figure 4-2
shows the creation and registration of a persistent object.

 NOTE Registration is handled by the boa::obj_is_ready method.

 #include <lib_srv.h>
int main(int argc, char **argv)
{

// Initialize ORB and Basic Object Adaptor (BOA)
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::BOA_var boa = orb->BOA_init(argc, argv);

// Instantiate the Library class
Library library_server();
// Or
// Library * library_server = new Library;

// Register the Library object with directory service
boa->obj_is_ready(&library_server);

// Server is ready to receive requests
boa->impl_is_ready();

};

Figure 4-2 Creating and activating a persistent object.

 NOTE You do not have to set the scope of a persistent object because the default scope is global, or persistent.

Checking for Persistent Objects

Figure 4-3 shows a method your client application can use to determine whether a persistent or transient
object implementation is associated with a given object reference. It is important to know whether or not
an object is persistent because some methods for
4–3

OBJECT AND IMPLEMENTATION ACTIVATION

4–4

4

vbpg.bk Page 4 Thursday, December 19, 1996 2:25 PM
manipulating object references will fail if the object is transient. The _is_persistent method
returns 1 if the object is persistent and 0 if the object is transient.

 class Object {
...
Boolean _is_persistent() const;
...

};

Figure 4-3 The method for checking for persistent object implementations.

Object Registration

Once a server has instantiated the ORB objects that it offers, the BOA must be notified when the objects
have been initialized. Lastly, the BOA is notified when the server is ready to receive requests from client
applications.

The obj_is_ready method notifies the BOA that a particular ORB object is ready to receive
requests from client applications. If your server offers more than one ORB object, it must make a call to
obj_is_ready for each object, passing the object reference as an argument.

If the object reference passed to obj_is_ready represents a persistent object, the BOA will register
the object with VisiBroker’s directory service. If the object is transient, no such registration will occur.

 NOTE When obj_is_ready is not called and a client attempts to call _bind, the exception
NO_IMPLEMENT is raised.

Once all of the objects have been instantiated and all the calls to obj_is_ready have been made, the
server must call impl_is_ready to enter an event loop and await client requests. Chapter 7 in this
guide discusses event handling in detail.

THE BASIC OBJECT ADAPTOR

VisiBroker’s BOA provides several important functions to client applications and the object implementa-
tions they use. It is important to realize that an object may reside in the same process as its client applica-
tion or it may reside in a separate process called a server. Servers may contain and offer a single object or
multiple objects. Furthermore, servers may be activated by the BOA on demand or they may be started by
some entity external to the BOA.

OBJECT ACTIVATION DAEMON

vbpg.bk Page 5 Thursday, December 19, 1996 2:25 PM
Object Server Activation Policies

The CORBA specification defines four activation policies that describe the way in which an object imple-
mentation is started and the manner in which it may be accessed by a client application. These activation
policies only apply to persistent objects, not transient objects.

SHARED SERVER POLICY

When the shared server policy is specified, only one server is launched regardless of the number of cli-
ents; the clients share the server. Along with persistent servers, shared servers are the most common types
of servers.

PERSISTENT SERVER POLICY

This policy describes servers that, like shared servers, implement multiple objects. Persistent servers are
started by some entity outside of the Basic Object Adaptor, but they still register their objects and receive
requests using the BOA.

UNSHARED SERVER POLICY

Unshared servers are processes that implement a single object. A client application causes this type of
server to be activated. Once that client exits, the unshared server will exit.

SERVER-PER-METHOD POLICY

This activation policy requires a server process to be started for each method that is invoked. After the
method has been completed, the server will exit. Subsequent method invocations on the same object will
require a new server process to be started.

OBJECT ACTIVATION DAEMON

You can register an object implementation with VisiBroker’s Object Activation Daemon to automatically
activate the implementation when a client requests a bind to the object. Object implementations can be
registered using a command-line interface or programmatically with the BOA::create method.
There is also an ORB interface to the OAD, described in “ORB Interface to the OAD” on page 4-14. In
each case, the interface name, object name, the activation policy, and the executable program representing
the implementation must be specified.

The Implementation Repository

All object implementations registered with the OAD are stored in an implementation repository,
maintained by the OAD. By default, the implementation repository data are stored in a file named
impl_rep. This file’s path name is dependent on where VisiBroker was installed on your system. If
VisiBroker was installed in /usr/local/visibroker/, then the path to this file would be
4–5

OBJECT AND IMPLEMENTATION ACTIVATION

4–6

4

vbpg.bk Page 6 Thursday, December 19, 1996 2:25 PM
/usr/local/visibroker/adm/impl_dir/impl_rep. These defaults can be
overridden using OAD environment variables, described in the VisiBroker for C++ Reference Guide.

OAD Registration with regobj

The regobj command can be used to register an object implementation from the command line or
from within a script. The required parameters are the interface name, object name and path name. If the
activation policy is not specified, the default policy of shared server will be used. For complete informa-
tion on using this command, see the VisiBroker for C++ Reference Guide.

 NOTE The implementation of your object does not need to be modified in order for you to use regobj. You may
write an implementation and start it manually during the development and testing phases. When your
implementation is ready to be deployed, you can simply use regobj to register your implementation with
the OAD.

 NOTE When registering an object implementation, use the same object name as is used when the
implementation object is contructed.

Figure 4-4 The regobj command.

For information about the Windows implementation of regobj, see the “Commands” chapter of the
VisiBroker for C++ Reference Guide.

regobj -o library,Harvard -p shared -f /home/user/dir/libsrv -a arg1 -e env1 -r refdata

The object name of the ORB
object provided by this
implementation.

The name of the executable
server that implements the
object.

The reference data to pass to
this server to distinguish
between different instances of
the same object

= required

Arguments to
pass to the
server.

Environment variables to be set
for this server.

l

l

The interface name provided by
an object in this
implementation

l

lThe activation policy for this
server.

U

W

OBJECT ACTIVATION DAEMON

vbpg.bk Page 7 Thursday, December 19, 1996 2:25 PM
OAD Registration using BOA::create

Instead of using the regobj command manually or in a script, VisiBroker allows applications written
in C++ to use the BOA::create method to register one or more objects with the activation daemon.
Using this method results in an object implementation being registered with the OAD and the VisiBroker
directory service. The OAD will store the information in the implementation repository, allowing the
object implementation to be located and activated when a client attempts to bind to the object.

 class CORBA {
...
typedef OctetSequence ReferenceData;
...
class BOA {

virtual Object_ptr create(
const ReferenceData& ref_data,
InterfaceDef_ptr inf_ptr,
ImplementationDef_ptr impl_ptr) = 0;

...
};
...

};

Figure 4-5 The BOA::create method and its parameters.

Reference Data Parameter

You can use the ref_data parameter to distinguish between multiple instances of the same object.
The value of the reference data is chosen by the implementation at object creation time and remains con-
stant during the lifetime of the object. The ReferenceData typedef is portable across plat-
forms and ORBs.

 NOTE VisiBroker does not use the inf_ptr, defined by the CORBA specification to identify the interface of
the object being created. Applications created with VisiBroker should always specify a NULL value for
this parameter.

Implementation DeÞnition Parameter

The impl_ptr parameter supplies the information that the BOA needs to register an ORB object.
The ImplementationDef class defines the interface name, object name, and reference id proper-
ties used by the BOA. Figure 4-6 shows the methods for querying and setting these properties.
4–7

OBJECT AND IMPLEMENTATION ACTIVATION

4–8

4

vbpg.bk Page 8 Thursday, December 19, 1996 2:25 PM
 class ImplementationDef
{

public:
static ImplementationDef_ptr _duplicate(

ImplementationDef_ptr obj);
static void _release(

ImplementationDef_ptr obj);
static ImplementationDef_ptr _nil();
const char *interface_name() const;
void interface_name(const char *val);
const char *object_name() const;
void object_name(const char *val);
ReferenceData_ptr id() const;
void id(const ReferenceData_ptr& data);
...

protected:
String_var _interface_name;
String_var _object_name;
ReferenceData _id;

...
};

Figure 4-6 The ImplementationDef class.

The _interface_name property represents the name specified in the object’s IDL specification.
The _object_name property is the name of this object, provided by the implementor or the person
installing the object. The _id property is chosen by the implementation and has no meaning to the
BOA or the OAD. The implementor may use the _id property as they chose.

Creation DeÞnition

The ImplementationDef class, as defined by the CORBA specification, does not supply all the
information that the OAD needs to activate an object implementation when a client attempts to bind to the
object. The CreationImplDef class is derived from ImplementationDef and adds the
properties the OAD requires.The properties added are _path_name, _policy, _args and
_env. Methods for setting and querying their values are also provided. These additional properties are
used by the OAD to activate an ORB object. Figure 4-7 shows the CreationImplDef class, its
properties and methods.

The _path_name property specifies the exact path name of the executable program that implements
the object. The _policy property represents the server’s activation policy, discussed in “Object Server
Activation Policies” on page 4-5. The _args and _env properties represent optional arguments and
environment settings to be passed to the server.

OBJECT ACTIVATION DAEMON

vbpg.bk Page 9 Thursday, December 19, 1996 2:25 PM
 enum Policy {
SHARED_SERVER,
UNSHARED_SERVER,
SERVER_PER_METHOD

};

class CreationImplDef: public ImplementationDef
{

public:
CreationImplDef();
CreationImplDef(const char *interface_name,

const char *object_name,
const RefereneData& id,
const char *path_name,
const StringSequence& args,
const StringSequence& env);

~CreationImplDef() {};
static CreationImplDef_ptr _duplicate(CreationImplDef_ptr obj);
static void _release(CreationImplDef_ptr obj);
static CreationImplDef_ptr _nil();
static CreationImplDef_ptr _narrow(ImplementationDef_ptr ptr);
Policy activation_policy() const;
void activation_policy(Policy p);
const char *path_name() const;
void path_name(const char *val);
StringSequence *args() const;
void *args(const StringSequence& val);
StringSequence *env() const;
void env(const StringSequence& val);

...
protected:

String_val _path_name;
Policy _policy;
StringSequence _args;
StringSequence _env;

};

Figure 4-7 The CreationImplDef class.
4–9

OBJECT AND IMPLEMENTATION ACTIVATION

4–10

4

vbpg.bk Page 10 Thursday, December 19, 1996 2:25 PM
BOA::create Example

Figure 4-8 shows how to use the CreationImplDef class and the BOA::create method to
create an ORB object and register it with the OAD.

 #include “libsrv.h”
void main(int argc, char * const * argv)
{

CORBA::Object_ptr obj;

// Initialize the ORB and BOA
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::BOA_var boa = orb->BOA_init(argc, argv);

// Optional reference data
ReferenceData id;

CORBA::CreationImplDef impl_def(“library”, “Harvard”, id,
“/usr/home/dir/libsrv”,
NULL /* no args */, NULL /* no envs */);

obj = boa->create(id, NULL, &impl_def);
if (obj != NULL)

cout << “ORB object created successfully”
exit (1);

}

Figure 4-8 Creating an ORB object and registering with the OAD.

 NOTE If the impl_def parameter passed to BOA::create cannot be narrowed to a
CreationImplDef reference, the create will fail and a CORBA::BAD_PARAM exception will
be raised.

Changing an ORB Implementation

Figure 4-9 shows the BOA::change_implementation method which can be used to dynami-
cally change an object’s implementation. You can use this method to change the object’s activation policy,
path name, arguments and environment variables.

UNREGISTERING IMPLEMENTATIONS

vbpg.bk Page 11 Thursday, December 19, 1996 2:25 PM
If the impl parameter cannot be narrowed to a CreationImplDef, this method will fail and a
CORBA::BAD_PARAM exception will be raised.

 class BOA {
...
virtual void change_implementation(

const Object &obj,
const ImplementationDef& impl);

...
};

Figure 4-9 The change_implementation method.

 Though you can change an object’s implementation name and object name with the this method,
you should exercise caution. Doing so will prevent client applications from locating the object
with the old name.

UNREGISTERING IMPLEMENTATIONS

When the services offered by an object are no longer available or temporarily suspended, the object
should be unregistered with the OAD. When an ORB object is unregistered, it is removed from the
OAD’s list of objects. The object is also removed from the directory service and from the implementation
repository. Once an object is unregistered, client applications will no longer be able to locate or use it. In
addition, the BOA::change_implementation method will no longer be able to be used to change the
object’s implementation. As with the registration process, unregistering may be done with a command
line or programmatically. There is also an ORB object interface to the OAD, described in “ORB Interface
to the OAD” on page 4-14.

Unregistering with unregobj

Figure 4-10 shows the unregobj command, which can be used to unregister an object implementation
from the command line or from within a script. If the interface name is specified by itself, all objects
instances associated with that interface name will be unregistered. You can specify both the interface and
object name if you only wish to unregister a specific object within an interface. For complete information
on using this command, see the VisiBroker for C++ Reference Guide.
4–11

OBJECT AND IMPLEMENTATION ACTIVATION

4–12

4

vbpg.bk Page 12 Thursday, December 19, 1996 2:25 PM
Figure 4-10 The unregobj command.

For information about the Windows implementation of unregobj, see the “Commands” chapter of the
VisiBroker for C++ Reference Guide.

Unregistering with the BOA::dispose Method

An object’s implementation can use the BOA::dispose method to unregister an ORB object. Any
connections that might exist between a client application and the object will be terminated as soon as the
object is unregistered.

 class CORBA {
class BOA {

...
virtual void dispose(Object_ptr);
...

};
};

Figure 4-11 The BOA::dispose method.

unregobj -i library,Harvard

The object name of the ORB
object provided by this
implementation.

= requiredl

The interface name provided by
an object in this
implementation

l

U

W

UNREGISTERING IMPLEMENTATIONS

U

vbpg.bk Page 13 Thursday, December 19, 1996 2:25 PM
The listimpl Command

You can use the listimpl command to list the contents of a particular implementation repository. For
each implementation in the repository the listimpl command lists all the object instance names, the
path name of the executable program, the activation mode and the reference data. Any arguments or envi-
ronment variables that are to be passed to the executable program are also listed. For complete details on
using this command see the
VisiBroker for C++ Reference Guide.

Figure 4-12 The listimpl command.

For information about the Windows implementation of listimpl, see the “Commands” chapter of the Visi-
Broker for C++ Reference Guide.

listimpl -i interface

Optional interface name to
restrict the list output

W

4–13

OBJECT AND IMPLEMENTATION ACTIVATION

4–14

4

vbpg.bk Page 14 Thursday, December 19, 1996 2:25 PM
ORB INTERFACE TO THE OAD

The Object Activation Daemon is implemented as an ORB object. Figure 4-13 shows the IDL interface
specification for the OAD. You can create a client application that binds to the OAD and uses this inter-
face to query the status of objects that have been registered.

 // IDL
module Activation
{

enum State {
ACTIVE,
INACTIVE,
WAITING_FOR_ACTIVATION

};

struct ObjectStatus {
long process_id;
State activation_state;
Object objRef;

};
typedef sequence<ObjectStatus> ObjectStatusList;

struct ImplementationStatus {
CORBA::CreationImplDef impl;
ObjectStatusList status;

};
typedef sequence<ImplementationStatus> ImplStatusList;

exception NotRegistered {};
...

interface OAD {
// Internal methods are not shown here.
...

// Get status info for a given implementation
ImplementationStatus get_status(

in string interface_name,
in string object_name)

raises (NotRegistered);
// Get status of all implementations for a given interface
ImplStatusList get_status_interface(

in string interface_name)
raises (NotRegistered);

// Get list of all registered interfaces.
ImplStatusList get_status_all();

...

Figure 4-13 The OAD interface specification.

ACTIVATING OBJECTS DIRECTLY

vbpg.bk Page 15 Thursday, December 19, 1996 2:25 PM
ACTIVATING OBJECTS DIRECTLY

In the library example introduced in Chapter 2, the Library object was activated directly by the server.
Direct activation of an object involves instantiating all the C++ implementation classes, invoking the
boa::obj_is_ready method for each object and then invoking BOA::impl_is_ready to
begin receiving requests. Figure 4-14 shows how this processing would occur for a server offering two
Library objects; one with the object name of “Stanford” and the other named ”Harvard.” Once the
objects have been instantiated and activated, the server invokes BOA::impl_is_ready to begin
receiving client requests.

 NOTE The BOA::obj_is_ready must be called for each object offered by the implementation.

 #include <lib_server.hh>
int main(int argc, char * const * argv)
{

// Initialize ORB and Basic Object Adaptor (BOA)
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::BOA_var boa = orb->BOA_init(argc, argv);

// Instantiate Harvard Library Class
Library harvard_lib(“Harvard”);
boa->obj_is_ready(&harvard_lib);

// Instantiate Stanford Library Class
Library stanford_lib(“Stanford”);
boa->obj_is_ready(&stanford_lib);

// Begin event loop of receiving messages
boa->impl_is_ready();
return(1);

}

Figure 4-14 Server activating two objects and the implementation.
4–15

OBJECT AND IMPLEMENTATION ACTIVATION

4–16

4

vbpg.bk Page 16 Thursday, December 19, 1996 2:25 PM
ACTIVATING OBJECTS WITH THE BOA

When you design your object implementation, you may want to defer the activation of one or more ORB
objects until a client requests them. The BOA::obj_is_ready and BOA::impl_is_ready
methods may be used with the ActivationImplDef class to instantiate objects upon receipt of a
client request.

 class CORBA {
class BOA {

...
virtual void obj_is_ready(Object_ptr,

ImplementationDef_ptr impl=NULL) = 0;
virtual void impl_is_ready(ImplementationDef_ptr impl=NULL) = 0;
...

};
};

Figure 4-15 The BOA::obj_is_ready and BOA::impl_is_ready methods.

In previous examples, the obj_is_ready method was only passed an object reference. The
impl_is_ready was passed no parameters at all. It is possible to pass an
ActivationImplDef pointer to the obj_is_ready method, which can be used to override
the activation and deactivation methods used by the BOA. Figure 4-16 shows the
ActivationImplDef class, which adds an Activator pointer and provides methods for
setting and retrieving that pointer. Note that this class is derived from ImplementationDef.

 class ActivationImplDef: public ImplementationDef
{

public:
ActivationImplDef();
ActivationImplDef(const char *interface_name,

const char *object_name,
const ReferenceData& id,
Activator_ptr act);

~ActivationImplDef();
static ActivationImplDef_ptr _duplicate(ActivationImplDef_ptr obj);
static ActivationImplDef_ptr _nil();
static ActivationImplDef_ptr _narrow(ImplementationDef_ptr ptr);
Activator_ptr activator_obj();
void activator_obj(Activator_ptr val);

protected:
Activator_ptr _activator;
...

};

Figure 4-16 The ActivationImplDef class.

ACTIVATING OBJECTS WITH THE BOA

vbpg.bk Page 17 Thursday, December 19, 1996 2:25 PM
The Activator Class

Figure 4-17 shows the Activator class, which provides the two methods used by the BOA to
activate and deactivate an ORB object.

 class Activator {
public:

Activator();
~Activator();
static Activator_ptr _duplicate(Activator_ptr obj);
static void _release(Activator_ptr);
static Activator_ptr _nil();
virtual Object_ptr activate(ImplementationDef impl) = 0;
virtual void deactivate(Object_ptr,

ImplementationDef_ptr impl);
};

Figure 4-17 The Activator class.

Deriving your own class from the Activator class lets you to override the activate and deac-
tivate methods that the ORB will use for the Library object. This allows you to delay the instan-
tiation of the Library object until the BOA activates the ORB object. It also allows you to provide
clean-up processing when the ORB deactivates the object. Figure 4-18 shows how to create an Acti-
vator for the Library class.
4–17

OBJECT AND IMPLEMENTATION ACTIVATION

4–18

4

vbpg.bk Page 18 Thursday, December 19, 1996 2:25 PM
 class LibraryActivator : CORBA::Activator {
public:

virtual CORBA::Object_ptr activate(
CORBA::ImplementationDef_ptr impl);

virtual void deactivate(CORBA::Object_ptr,
CORBA::ImplementationDef_ptr impl);

};

CORBA::Object_ptr LibraryActivator::activate(
CORBA::ImplementationDef_ptr impl)

{
// When the BOA activates us, instantiate the Library object.
return new Library(impl->object_name());

}

void LibraryActivator::deactivate(CORBA::Object_ptr obj,
CORBA::ImplementationDef_ptr impl)

{
// When the BOA deactivates us, release the Library object.
obj->release();

}

Figure 4-18 Deriving the LibraryActivator class, implementing the activate and
deactivate methods.

Putting it All Together

Figure 4-19 shows how to use the ActivationImplDef class the LibraryActivator
class, to defer the activation of the Library object until a client request is received. The instantiation
of the Library object no longer appears in the main routine. Instead, the Library object will be
instantiated when the BOA receives a client request and invokes the activate method.

In this example, the invocation of BOA::obj_is_ready is passed a NULL object reference as well
as an ActivationImplDef reference. The creation of the Library object named “Harvard” will
now be deferred until the first client request for that object is received.

ACTIVATING OBJECTS WITH THE BOA

vbpg.bk Page 19 Thursday, December 19, 1996 2:25 PM
 void main(int argc, char * const * argv)
{

// Initialize ORB and Basic Object Adaptor (BOA)
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::BOA_var boa = orb->BOA_init(argc, argv);

CORBA::ReferenceData id;
CORBA::ActivationImplDef impl(“library”, “Harvard”, id,

(CORBA::Activator_ptr) new LibraryActivator);

// obj_is_ready is passed an ActivationImplDef object to override
// the activation of the Library object.
boa->obj_is_ready(NULL, &impl);

// activate other objects
...

// Begin event loop of receiving requests
boa->impl_is_ready();
return(1);

};

Figure 4-19 Using the ActivationImplDef class with the BOA::obj_is_ready method.

If an implementation has only one object, then the impl_is_ready method can be called with the
ActivationImplDef reference to activate both the object and the implementation. Since
impl_is_ready can accept only one object’s implementation, this approach cannot be used if
multiple objects reside in the same implementation. Figure 4-20 shows the use of a one invocation of the
impl_is_ready method.
4–19

OBJECT AND IMPLEMENTATION ACTIVATION

4–20

4

vbpg.bk Page 20 Thursday, December 19, 1996 2:25 PM
 void main(int argc, char * const * argv)
{

// Initialize ORB and Basic Object Adaptor (BOA)
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::BOA_var boa = orb->BOA_init(argc, argv);

CORBA::ReferenceData id;
CORBA::ActivationImplDef impl(“library”, “Harvard”, id,

(CORBA::Activator_ptr) new LibraryActivator);

// impl_is_ready is passed an ActivationImplDef object to override
// the activation of the Library object.
boa->impl_is_ready(&impl);

return(1);
};

Figure 4-20 The use of a single impl_is_ready method.

OBJECT AND IMPLEMENTATION DEACTIVATION

The correct approach to deactivating objects and implementations depends on how the object and imple-
mentation were activated. Objects and their implementations can be activated manually, through C++
instantiation, by the OAD, or by the BOA.

Deactivating a Manually Started Implementation

An implementation that is started manually can be considered deactivated when the implementation exits.
VisiBroker will automatically unregister the objects within that implementation from the list maintained
by the directory service.

Deactivating C++ Instantiated Objects

If an object was created by instantiating its C++ class, call CORBA::release(Object_ptr) on
the object to unregister the object from the list of objects maintained by the directory service. This also
calls the destructor if no other references to the object exist. Calling delete on the object is not recom-
mended since the object could be deleted prematurely.

Deactivating Implementations Started by the OAD

Implementations started by the OAD can be deactivated by calling the BOA::deactivate_impl
method. Once this method is called, the implementation will not be available to service client requests.
The implementation can only be re-activated if it is restarted or if it again calls the impl_is_ready
method.

OBJECT AND IMPLEMENTATION DEACTIVATION

vbpg.bk Page 21 Thursday, December 19, 1996 2:25 PM
Deactivating Objects Activated by the BOA

The BOA::deactivate_obj method is provided to deactivate objects activated by the BOA. After
this method is called, the object will be removed from the directory service list of objects offered by that
implementation. Figure 4-21 shows the definition of the deactivate_obj method.

 class CORBA {
class BOA {

...
virtual void deactivate_obj(Object_ptr);
...

};
};

Figure 4-21 The BOA::deactivate_obj method.
4–21

OBJECT AND IMPLEMENTATION ACTIVATION

4–22

4

vbpg.bk Page 22 Thursday, December 19, 1996 2:25 PM

C H A P T E R 5

vbpg.bk Page 1 Thursday, December 19, 1996 2:25 PM
5THE ORB S M A R T A G E N T

This chapter describes the osagent, which provides directory service functions,

fault tolerance and object migration facilities. It includes the following major

sections:

Smart Agent Features 5-2

ORB Domains 5-4

Connecting Agents on Different Local Networks 5-5

Using Point-to-point Communications 5-6

Object Implementation Fault Tolerance 5-7

Object Migration 5-8

Advanced Networking Options 5-9

THE ORB SMART AGENT

5–2

5

vbpg.bk Page 2 Thursday, December 19, 1996 2:25 PM
SMART AGENT FEATURES

VisiBroker’s osagent is a dynamic, distributed directory service that provides facilities for both client
applications and object implementations. When a client application invokes the _bind method on an
object, the osagent locates the specified implementation and object so that a connection can be estab-
lished between the client and the implementation. Object implementations register their objects with the
osagent so that client applications can locate and use those objects. When an object or implementation is
destroyed, the osagent removes them from its list of available objects.

Agent Communication

An osagent may be started on any host. To locate an osagent, client applications and object implementa-
tions send a broadcast message, and the first osagent to respond will be used. Once an osagent has been
located, a point-to-point UDP communication is established for registration and look-up requests. The
UDP protocol is used because it consumes fewer network resources than a TCP connection. All registra-
tion and locate requests are dynamic, so there are no required configuration files or mappings to maintain.

 NOTE Broadcast messages are usually used only to locate an osagent. All other communication with the
osagent makes use of a point-to-point communication. “Using Point-to-point Communications” on
page 5-6 describes how to override the use of broadcast messages.

Agent-to-Agent Cooperation

When multiple instances of the osagent are started on different hosts, each osagent will recognize a subset
of the objects available and communicate with other osagents to locate objects it cannot find. If one of the
osagent processes should terminate unexpectedly, all implementations registered with that agent will be
notified and they will automatically re-register with another available osagent.

Cooperation with the OAD

The osagent maintains a list of all persistent object implementations that are registered with the Object
Activation Daemon. When the ORB requests the osagent to locate an object that has been registered
directly with the osagent, the address of the object is returned. If the requested object is registered with
the OAD, the osagent will return the address of the OAD capable of activating the object and the ORB
will contact that OAD.

SMART AGENT FEATURES

vbpg.bk Page 3 Thursday, December 19, 1996 2:25 PM
Figure 5-1 The sequence of locating and activating an object registered with the OAD.

Starting the osagent

At least one instance of the osagent should be running on your local network. Figure 5-2 shows how to
start the osagent. The verbose mode option provides informational and diagnostic messages. Local
network refers to the part of the network within which broadcast message can be sent—machines in the
same subnet.

Figure 5-2 Starting the osagent.

Agent Fault Tolerance

If you run more than one instance of the osagent on a local network and one of those agents becomes
unavailable, all object implementations registered with that agent will be automatically re-registered with
another agent. Likewise, client applications using an osagent that becomes unavailable will be automati-
cally switched to another agent by VisiBroker. No special coding techniques are required to take advan-
tage of this osagent fault-tolerance, as long as more than one osagent exists on your local network.

Client
Application

Object

Object Request Broker

bind request

ORB Object
Activation
Daemon

OAD activates
object

locate

OAD

activate

object
address address1.

2.request

3.

4.

6.

5.

7.

Agent
Smart

osagent -v

This flag indicates that
information and diagnostic
messages are to be displayed.
5–3

THE ORB SMART AGENT

5–4

5

vbpg.bk Page 4 Thursday, December 19, 1996 2:25 PM
ORB DOMAINS

It is often desirable to have two or more separate ORB domains running at the same time. One domain
might consist of the production versions of client applications and object implementations while another
domain might be made up of test versions of the same clients and objects that have not yet been released
for general use.

Figure 5-3 Separate ORB Domains.

VisiBroker allows you to distinguish between two or more ORB domains on the same network by using a
unique UDP port number for the osagents for each domain. The environment variable OSAGENT_PORT
must be set on each host running an osagent, an oad, object implementations, or client applications
assigned to that ORB domain.

Check with your system administrator to determine what port numbers are available for your use.

 prompt> setenv OSAGENT_PORT 5678
prompt> osagent &
prompt> oad &

Figure 5-4 Setting the OSAGENT_PORT environment variable for a UNIX system running csh.

Object
Activation
Daemon

Client
Application

Object
Impl.

Object
Activation
Daemon

Client
Application

Object
Impl.

Production
Domain

Test
Domain

Agent

ORB
Smart
Agent

Smart
ORB

CONNECTING AGENTS ON DIFFERENT LOCAL NETWORKS

vbpg.bk Page 5 Thursday, December 19, 1996 2:25 PM
CONNECTING AGENTS ON DIFFERENT LOCAL NETWORKS

If you start multiple osagents on your local network, they will discover each other by using UDP broad-
cast messages. Your network administrator configures a local network by specifying the scope of broad-
cast messages using the IP subnet mask. Figure 5-5 shows two local networks, connected by a network
link.

Figure 5-5 Two osagent processes and their IP addresses, located on separate, connected local
networks.

To allow the osagent on one network to contact an osagent on another local network, you must make the
IP address of the remote osagent available in a file named agentaddr. Figure 5-6 shows what this file
would contain to allow the osagent on local network #1 to connect to the osagent on the other network.
The path to this file is specified by the ORBELINE environment variable that is set for the osagent pro-
cess.

 101.10.2.6

Figure 5-6 Content of the agentaddr file for the osagent on network #1.

With the appropriate agentaddr file, the client application on network #1 could locate and use object
implementations on network #2. For more information on environment variables, see the VisiBroker for
C++ Reference Guide.

 NOTE Even if a remote network has multiple osagents running, you need to list all of the osagents for that
network in the agentaddr file.

Client
Application

Object
Impl.

Local
Network

Local
Network
#1 #2Link

199.10.9.5 101.10.2.6

Object
Services
Agent

Object
Services
Agent
5–5

THE ORB SMART AGENT

5–6

5

vbpg.bk Page 6 Thursday, December 19, 1996 2:25 PM
USING POINT-TO-POINT COMMUNICATIONS

VisiBroker provides you with three different strategies for circumventing the use of UDP broadcast mes-
sages for locating osagent processes. When an osagent is located with any of these alternate approaches,
that agent will be used for all subsequent interactions. If an osagent cannot be located using any of these
alternate approaches, the ORB will revert to using the broadcast message scheme to locate an osagent.

Specifying IP addresses with the agentaddr File

You can use the agentaddr file to circumvent the use of UDP broadcast message to locate an osagent.
Simply create an agentaddr file containing the IP addresses of each node where an osagent is running
and then set the OSAGENT_ADDR environment variable to point to the location of the agentaddr file.
When a client application or object implementation has this environment variable set, the ORB will try
each address in the file until an osagent is located.

Specifying IP addresses as Run-time Parameters

Figure 5-7 shows how you can specify an osagent’s IP address as a run-time parameter for your client
application or object implementation. You can have a machine with many IP addresses. If you do have
many IP addresses on a machine, specify a particular address on the command line for any program using
the orb. See “Advanced Networking Options” on page 5-9 for more information on this and other run-
time parameters.

 prompt> server -ORBagentaddr 101.10.2.6 &
...

or

prompt> client -ORBagentaddr 199.10.9.5

Figure 5-7 Specifying an osagent’s IP address as a run-time parameter.

OBJECT IMPLEMENTATION FAULT TOLERANCE

vbpg.bk Page 7 Thursday, December 19, 1996 2:25 PM
OBJECT IMPLEMENTATION FAULT TOLERANCE

You can provide object implementation fault tolerance for stateless objects by simply starting instances of
those objects on multiple hosts. The osagent will detect the loss of the connection between the client
application and the object implementation and the ORB will automatically attempt to establish a connec-
tion with another instance of the object implementation. The client can continue invoking methods on the
object without being concerned that a new instance of the object is being used.

The rebind option, discussed in “Enabling Re-Binds” on page 3-9, must be enabled if the ORB is
to be able re-connect the client with a replica object implementation.

Object Implementations that Maintain State

Fault tolerance can still be achieved with object implementations that maintain state, but it will not be
transparent to the client application. In these cases, the client application must register an event handler
for the ORB object. When the connection to an object implementation fails and the ORB re-connects the
client to a replica object implementation, the event handler’s rebind_succeeded method will be
invoked by the ORB. The client can implement this method to bring the state of the replica up to date.
Event handlers are described in Chapter 7.

Replicating Instantiated Objects

If the ORB objects that you wish to be fault tolerant are created by a server process instantiating the
implementation’s C++ class, you need only ensure that the server process is started on multiple hosts.

Replicating Objects Registered with the OAD

If the ORB objects that you wish to be fault tolerant are registered with the oad, you must ensure that the
oad is started on multiple hosts. Furthermore, you must ensure that the ORB objects are registered with
each of the oad processes.

 NOTE The type of object replication provided by VisiBroker does not provide a multi-cast or mirroring facility.
At any given time there is always a one-to-one correspondence between a client application and a
particular object implementation.
5–7

THE ORB SMART AGENT

5–8

5

vbpg.bk Page 8 Thursday, December 19, 1996 2:25 PM
OBJECT MIGRATION

Object migration is the process of terminating an object implementation on one host and then starting it
on another host. Object migration can be used to move objects from overloaded hosts to hosts that have
more resources or processing power. Object migration can also be used to keep objects available when a
host has to be shutdown for hardware or software maintenance.

The rebind option, discussed in “Enabling Re-Binds” on page 3-9, must be enabled for the ORB to
be able re-connect a client with a object implementation that has migrated to a new host.

The migration of objects that do not maintain state is transparent to the client application. If a client is
connected to an object implementation that has migrated, the osagent will detect the loss of the connec-
tion and transparently re-connect the client to the new object on the new host.

Migrating Object that Maintain State

The migration of objects that maintain state is also possible, but it will not be transparent to a client appli-
cation that has connected before the migration process begins. In these cases, the client application must
register an event handler for the ORB object. When the connection to the original object is lost and the
ORB re-connects the client to the object, the event handler’s rebind_succeeded method will be
invoked by the ORB. The client can implement this method to bring the state of the object up to date.
Event handlers are described in Chapter 7.

Migrating Instantiated Objects

If the ORB objects that you wish to migrate were created by a server process instantiating the implemen-
tation’s C++ class, you need only terminate the server process and start it on a new host. When the original
instance is terminated, it will be un-registered with the osagent. When the new instance is started on the
new host, it will register with the osagent. From that point on, client invocations will be routed to the
object implementation on the new host.

ADVANCED NETWORKING OPTIONS

vbpg.bk Page 9 Thursday, December 19, 1996 2:25 PM
Migrating Objects Registered with the OAD

If the ORB objects that you wish to migrate are registered with the oad, you will need to ensure they are
un-registered with the oad. Furthermore, you must ensure that the ORB objects are then registered with
the oad on the new host. Here are the steps:

1 Un-register the object implementation from the OAD on the old host.

2 Terminate the object implementation on the old host.

3 Register the object implementation with the OAD on the new host.

See Chapter 4 for detailed information on registering and unregistering object implementations.

ADVANCED NETWORKING OPTIONS

Although VisiBroker provides reasonable default settings for the network resources it uses, you may fine-
tune these setting through parameters passed to the ORB_init method. The object implementation can
set similar options through parameters passed to the BOA_init method.

ORB_init Options

Figure 5-8 shows the definition of the ORB_init method and the arguments it accepts. The argc and argv
parameters are passed in exactly the same format as arguments passed to your client’s main routine. The
argc parameter defines the number of arguments and argv is an array of char pointers to those arguments.
ORB settings take the form of type-value pairs, enabling them to be distinguished from other arguments
passed to your client application. In fact, the ORB_init method will ignore any arguments it does not rec-
ognize. Table 5-9 summarizes the ORB_init options.

 class CORBA {
...
static ORB_ptr ORB_init(int& argc, char *const *argv,

*orb_id = (char *)NULL);
...

};

Figure 5-8 The ORB_init method definition.

In the preceding example, orb_id identifies the type of ORB. Currently “Internet ORB” is the only sup-
ported value.
5–9

THE ORB SMART AGENT

5–10

5

vbpg.bk Page 10 Thursday, December 19, 1996 2:25 PM
BOA_init Options

Figure 5-10 shows the definition of the BOA_init method and the arguments it accepts. Like the
ORB_init method, the argc and argv parameters passed to BOA_init are in exactly the same format as
arguments passed to your object implementation’s main routine. All but two of the BOA settings take the
form of type-value pairs. The BOA_init method will ignore any arguments it does not recognize.

TYPE/VALUE PAIR PURPOSE

-ORBagentaddr ip_address SpeciÞes the IP address of the host running the osagent this
client should use. If an osagent is not found at the speciÞed
address or if this option is not speciÞed, broadcast messages will
be used to locate an osagent.

You can have a machine with many IP addresses. If you do have
many IP addresses on a machine, specify a particular address
on the command line for any program using the orb.

-ORBagentport
port_number

SpeciÞes the port number of the osagent. This option can be
used if multiple ORB domains are in use, described in ÒORB
DomainsÓ on page 5-4.

-ORBsendbufsize
buffer_size

SpeciÞes the size of the buffer used to send client requests. If
not speciÞed, an appropriate buffer size will be used.

-ORBrcvbufsize buffer_size SpeciÞes the size of the buffer used to receive responses. If not
speciÞed, an appropriate buffer size will be used.

-ORBmbufsize buffer_size SpeciÞes the size of the intermediate buffer used by VisiBroker.
An argument will be copied to the intermediate buffer if it is not
too big, otherwise VisiBroker will maintain a pointer to the argu-
ment instead of copying it. Changing this parameter can seri-
ously affect the performance of your system.

-ORBshmsize size SpeciÞes the size of the send and receive segments in shared
memory. If your client applications and object implementations
communicate via shared memory, you may use this option to
enhance performance.

Table 5-9 ORB_init options

ADVANCED NETWORKING OPTIONS

vbpg.bk Page 11 Thursday, December 19, 1996 2:25 PM
Table 5-11 summarizes the BOA_init options. boa_identifier identifies the type of object-adaptor to
be used.

 class CORBA {
...
static BOA_ptr BOA_init(int& argc, char *const *argv,

const char *boa_identifier = “PMC_BOA”);
...

};

Figure 5-10 The BOA_init method definition.

TYPE/VALUE PAIR PURPOSE

-OAipaddr ip_address SpeciÞes the IP address to be used for the Object Adaptor. Use
this option if your machine has multiple network interfaces and
the BOA is associated with just one address. If no option is
speciÞed, the hostÕs default address is used.

-OAport port_number SpeciÞes the port number to be used by this process. If none is
speciÞed, an unused port will be selected.

-OAsendbufsize
buffer_size

SpeciÞes the size of the buffer used to send messages. If not
speciÞed, an appropriate value will be used.

-OArcvbufsize buffer_size SpeciÞes the size of the buffer used to receive messages. If not
speciÞed, an appropriate value will be used.

-OAnoshm Disables the use of shared memory as a message transport.

-OAshm Enables the use of shared memory as a message transport.
This option is the default.

Table 5-11 BOA_init options.
5–11

THE ORB SMART AGENT

5–12

5

vbpg.bk Page 12 Thursday, December 19, 1996 2:25 PM

C H A P T E R 6

vbpg.bk Page 1 Thursday, December 19, 1996 2:25 PM
6ERROR HANDLING

This chapter describes how errors are reflected and handled in the CORBA

model. User exceptions and system exceptions are discussed. If your platform

does not support the C++ try and catch statements, an alternative error

mechanism is discussed. This chapter includes the following major sections:

Exceptions in the CORBA Model 6-2

System Exceptions 6-3

User Exceptions 6-8

ERROR HANDLING

6–2

6

vbpg.bk Page 2 Thursday, December 19, 1996 2:25 PM
EXCEPTIONS IN THE CORBA MODEL

The CORBA specification defines a set of system exceptions that can be raised when errors occur in the
processing of a client request. You can define user exceptions in the IDL interface for an objects you
create and specify the circumstances under which those exceptions are to be raised. If an object raises an
exception while handling a client request, the ORB is responsible for reflecting this information back to
the client.

The Exception Class

VisiBroker uses C++ classes to represent both system and user exceptions. Since both types of exceptions
require similar functionality, SystemException and UserException classes are derived from
a common Exception class. When an exception is raised, your application can narrow, or cast
down, from the Exception class to a specific UserException or SystemException.
Figure 6-1 shows portions of the Exception class definition.

 class Exception
{

...
public:
Exception(const Exception &);
~Exception();
Exception &operator=(const Exception &);
...

friend ostream& operator<<(ostream& strm,
const Exception& exc);

const char *_name() const;
const char*_repository_id() const;

};

Figure 6-1 Portions of the Exception class definition.

METHODS PROVIDED BY THE EXCEPTION CLASS

All exceptions have a name and a repository ID, though the name of the exception name is sufficient for
error reporting. The repository ID includes the name as well as additional information about the excep-
tion. You can invoke the _name and _repository_id methods on an exception to obtain this
information.

Assume you have a client application that requests a bind for an object whose server is currently not run-
ning, causing an exception to be raised. If your application called the _name method on the exception
object it would return a string containing “CORBA::NO_IMPLEMENT”. If your application called the
_repository_id method, it would return a string containing
“IDL:obg.omg/CORBA/NO_IMPLEMENT:1.0”.

SYSTEM EXCEPTIONS

vbpg.bk Page 3 Thursday, December 19, 1996 2:25 PM
SYSTEM EXCEPTIONS

System exceptions are usually raised by the ORB, though it is possible for object implementations to
raise them using the Implementation Event Handler discussed in Chapter 7. When the ORB raises a
SystemException, it will be one of the CORBA-defined error conditions shown in Figure 6-4 .

 class SystemException: public Exception
{

public:
static const char *_id;
virtual ~SystemException();
ULong minor() const;
void minor(ULong val);
CompletionStatus completed() const;
void completed(CompletionStatus status);
...
static SystemException *_narrow(Exception *exc);

private:
ULong _minor;
completion_status _status;
...

};

Figure 6-2 The SystemException class.

Completion Status

System exceptions have a completion status that tells you whether or not the operation that raised the
exception was completed. The CompletionStatus enumerated values are shown below.
COMPLETED_MAYBE is retuned when the status of the operation cannot be determined.

 enum CompletionStatus {
COMPLETED_YES = 0;
COMPLETED_NO = 1;
COMPLETED_MAYBE = 2;

};

Figure 6-3 The CompletionStatus values.

You can retrieve and set the completion status using these SystemException methods.

 CompletionStatus completed();
void completed(CompletionStatus status);
6–3

ERROR HANDLING

6–4

6

vbpg.bk Page 4 Thursday, December 19, 1996 2:25 PM
Getting and Setting the Minor Code

You can retrieve and set the minor code using these SystemException methods. Minor codes are
used to provide better information about the type of error.

 ULong minor() const;
void minor(ULong val);

Casting to a SystemException

The design of the VisiBroker exception classes allows your application to catch any type of exception and
then determine its type by using the _narrow method. A static method, _narrow accepts a pointer to
any Exception object. If the pointer is of type SystemException, _narrow will return the
pointer to you. If the pointer is not of type SystemException, _narrow will return a NULL
pointer.

SYSTEM EXCEPTIONS

vbpg.bk Page 5 Thursday, December 19, 1996 2:25 PM
Figure 6-4 CORBA-defined system exceptions.

EXCEPTION NAME DESCRIPTION

UNKNOWN Unknown exception.

BAD_PARAM An invalid parameter was passed.

NO_MEMORY Dynamic memory allocation failure.

IMP_LIMIT Implementation limit violated.

COMM_FAILURE Communication failure.

INV_OBJREF Invalid object reference speciÞed.

NO_PERMISSION No permission for attempted operation.

INTERNAL ORB internal error.

MARSHAL Error marshalling parameter or result.

INITIALIZE ORB initialization failure.

NO_IMPLEMENT Operation implementation not available.

BAD_TYPECODE Invalid typecode.

BAD_OPERATION Invalid operation.

NO_RESOURCES InsufÞcient resources to process request.

NO_RESPONSE Response to request not yet available.

PERSIST_STORE Persistent storage failure.

BAD_INV_ORDER Routine invocations out of order.

TRANSIENT Transient failure.

FREE_MEM Unable to free memory.

INV_INDENT Invalid identiÞer syntax.

INV_FLAG Invalid ßag was speciÞed.

INTF_REPOS Error accessing interface repository.

BAD_CONTEXT Error processing context object.

OBJ_ADAPTOR Failure detected by object adaptor.

DATA_CONVERSION Data conversion error.

OBJECT_NOT_EXIST Object is not available.
6–5

ERROR HANDLING

6–6

6

vbpg.bk Page 6 Thursday, December 19, 1996 2:25 PM
Handling System Exceptions

Your applications should always check for system exceptions after making ORB-related calls. Figure
6-5 illustrates how you might enhance the library client application, discussed in Chapter 2, to print an
exception using the << operator.

 NOTE If the C++ compiler for your platform does not support exceptions, see page A–2 for a discussion on
using CORBA-defined Environments for handling exceptions.

library *library_object;
try {

library_object = library::_bind();
}
// Check for errors
catch(const CORBA::Exception& excep) {

cout << “Error binding to library:” << endl;
cout << excep; << endl;
return(0);

}
...

Figure 6-5 Printing an exception.

If you were to execute the client application with these modifications without a server present, the output
shown in Figure 6-6 would explain that the operation did not complete and the reason for the exception.

 Error binding to library:
Exception: CORBA::NO_IMPLEMENT

Minor: 0
Completion Status: NO

Figure 6-6 Output from modified library client application.

SYSTEM EXCEPTIONS

vbpg.bk Page 7 Thursday, December 19, 1996 2:25 PM
Narrowing to a System Exception

You can modify the library client application to attempt to narrow any exception that is caught to a Sys-
temException. Figure 6-7 shows how you might modify the client application. Figure 6-8 shows
how the output would appear if a system exception occurred.

library_var *library_object;
try {
library_object = library::_bind();
}
// Check for errors
catch(const CORBA::Exception& excep) {
CORBA::SystemException*sys_excep;
sys_excep = CORBA::SystemException::_narrow(&excep);
if(sys_excep != NULL) {

cout << “System Exception occurred:” << endl;
cout << “ exception name: “ <<
sys_excep->name() << endl;
cout << “ minor code: “ <<
sys_excep->minor() << endl;
cout << “ completion code: “ <<
sys_excep->completed() << endl;

} else {
cout << “Not a system exception” << endl;

}
return(0);
}
...

Figure 6-7 Narrowing an exception to a system exception.

 System Exception occurred:
exception name: CORBA::NO_IMPLEMENT
minor code: 0
completion code: 1

Figure 6-8 Output from the system exception.
6–7

ERROR HANDLING

6–8

6

vbpg.bk Page 8 Thursday, December 19, 1996 2:25 PM
Catching System Exceptions

Rather than catching all types of exceptions, you may choose to specifically catch each type of exception
that you expect. Figure 6-9 shows this technique.

library_var *library_object;
try {
library_object = library::_bind();
}
// Check for errors
catch(const CORBA::SystemException& excep) {
cout << “System Exception occurred:” << endl;
cout << “exception name: “ <<

sys_excep->name() << endl;
cout << “minor code: “ <<

sys_excep->minor() << endl;
cout << “completion code: “ <<

sys_excep->completed() << endl;
}
// Try catching other types of exceptions.
...

Figure 6-9 Catching specific types of exceptions.

USER EXCEPTIONS

Exceptions that can be raised by an object are called user exceptions. When you define your object’s
interface in IDL you can specify the user exceptions that the object may raise. Figure 6-10 shows the
UserException class that the IDL compiler will use to derive the user exceptions you specify for
your object.

 class UserException: public Exception
{

public:
...
static const char *_id;
virtual ~UserException();
static UserException *_narrow(Exception *exc);

};

Figure 6-10 The UserException class.

DeÞning User Exceptions

Assume that you want to enhance the library application, introduced in Chapter 2, so that the library
object will raise an exception. If the library object’s book list is full and an attempt is made to add a book,

USER EXCEPTIONS

vbpg.bk Page 9 Thursday, December 19, 1996 2:25 PM
you want a user exception named CapacityExceeded to be raised. The additions to the IDL speci-
fication for the library interface are shown in bold letters.

 // IDL specification for book and library objects
struct book {

string author;
string title;

};

interface library {
exception CapacityExceeded {
};
boolean add_book(in book book_info)

raises(CapacityExceeded);
};

Figure 6-11 Defining User Exceptions

The IDL compiler will generate this C++ code for a CapacityExceeded exception class.

 class library: public virtual CORBA::Object
{

...
class CapacityExceeded: public CORBA::UserException
{

public:
CapacityExceeded();
~CapacityExceeded();
static CapacityExceeded *_narrow(CORBA::Exception *exc);
...

};

...
};

Figure 6-12 The CapacityExceeded class generated by the IDL compiler.

On platforms that support C++ exceptions, the library and _sk_library classes generated by
the IDL compiler from this specification will incorporate the throw directive into the add_book
methods signature.

 virtual CORBA::Boolean add_book(const book& book_info)
throw (library::CapacityExceeded);

Figure 6-13 The new add_book method signature.
6–9

ERROR HANDLING

6–10

6

vbpg.bk Page 10 Thursday, December 19, 1996 2:25 PM
Modifying the Object implementation

The Library object must be modified to use the exception by changing the add_book function pro-
totype and throwing the exception under the appropriate error conditions.

 CORBA::Boolean Library::add_book(const book& book_info)
throw (library::CapacityExceeded)

{
CORBA::Boolean ret;
if((ret = bk_list.add_to_list(book_info)) == 0)

throw library::CapacityExceeded();
return ret;

}

Figure 6-14 Modifying the object implementation to throw an exception.

Catching User Exceptions

When an object implementation raises an exception, the ORB is responsible for reflecting the exception
to your client application. Checking for a UserException is similar to checking for a SystemException. To
modify the library client application to catch the CapacityExceeded exception, you would make modifi-
cations like those shown below.

 ...
try {

ret = library_object->add_book(book_entry);
}
// Check for System Exceptions
catch(const library::CapacityExceeded& excep) {

cout << “CapacityExceeded returned:” << endl;
cout << excep; << endl;
// Do any necessary clean-up
return(0);

}
...

Figure 6-15 Catching a UserException.

Adding Fields to User Exceptions

You can associate values with user exceptions. Figure 6-16 shows how to modify the IDL interface spec-
ification to add a size value to the CapacityExceeded user exception.The object implementation that

USER EXCEPTIONS

vbpg.bk Page 11 Thursday, December 19, 1996 2:25 PM
raises the exception is responsible for setting the value. The new value is printed automatically when the
exception is put on the output stream.

 // IDL specification for book and library objects
struct book {

string author;
string title;

};

interface library {
exception CapacityExceeded {

long size;
};
boolean add_book(in book book_info)

raises(CapacityExceeded);
};

Figure 6-16 Adding a value to the CapacityExceeded exception.

Portability considerations

You may want to consider always using these macros in your applications since they automatically adapt
to the capabilities of your C++ compiler. Applications that use these macros can be more easily ported
to all supported platforms. There are two sets of compatibility macros; one set for compilers with excep-
tion support and one set for compilers without exception support. The defined constant
_PMC_NOEXCEPTIONS determines which macro set will be used. If _PMC_NOEXCEPTIONS is
not defined, then the compatibility macros will be mapped as shown in the following table.

Figure 6-17 Compatibility macro mapping for compilers that support exceptions.

MACRO NAME MACRO EXPANSION

PMCTRY try

PMCTHROW(type_name) throw(type)

PMCTHROW_LAST throw;

PMCCATCH(type_name,
variable_name)

catch(const type &var)

PMCAND_CATCH catch(const type &var)

PMCEND_CATCH none

PMCTHROW_SPEC(x) none or throw(x)
6–11

ERROR HANDLING

6–12

6

vbpg.bk Page 12 Thursday, December 19, 1996 2:25 PM
Understanding the Environment Class

The Environment class enables exceptions to be registered in your application’s environment.
Methods are provided that allow the PMC macros to determine if a system or user exception has occurred
and obtain the details of the exception. If you use the PMC macros shown in Figure 6-17 , you should not
have to explicitly call these methods yourself.

VisiBroker creates a default Environment object for each process. If your platform supports threads,
an Environment object is created for each thread.

The include file env.h contains the Environment class’ definition.

 class Environment
{

private:
Exception *_exception;

public:
Environment();
~Environment();
...
Exception *exception() const;
void exception(Exception *exp);
void clear();
...

};

Figure 6-18 The Environment class.

Environment Methods

The PMC macros make use of the Environment class internally. If you do not want to use the PMC
macros and do not have exception support, you can use the Environment class.

The exception method is used by PMCTHROW to raise an exception.

 void exception(Exception *exp);

This method is used by PMCCATCH to return the exception that has been set for the environment. If no
exception has been set, a NULL pointer is returned.

 Exception exception(Exception *exp);

vbpg.bk Page 13 Thursday, December 19, 1996 2:25 PM
The clear method clears any exception that has been raised in the environment. This method is invoked
after the exception has been retrieved.

 void clear();

The is_nil method determines if the supplied pointer is NULL. If the pointer is NULL, a value other
than zero is returned. If the pointer is not NULL, zero is returned. The behavior of the is_nil method
is defined in the CORBA specification.

 static Boolean is_nil(Environment_ptr env);

You can use the following CORBA class static method to obtain a pointer to the Environment object
for the current process or current thread, if threads are supported.

 class CORBA {
...
static Environment& current_environment();
...

}

6–13

ERROR HANDLING

6–14

6

vbpg.bk Page 14 Thursday, December 19, 1996 2:25 PM

C H A P T E R 7

vbpg.bk Page 1 Thursday, December 19, 1996 2:25 PM
7HANDLING EVENTS

VisiBroker transparently manages networking and communication issues for

you, but there may be times when your client applications and object

implementations need to define their own error and recovery processing.

VisiBroker provides a set of event handling mechanisms for notifying clients

and object implementations of system events. Event handing can be used to

implement accounting, tracing, debugging, logging, security or encryption

features. This chapter includes the following major sections:

Event Handler Concepts 7-2

Client Event Handlers 7-2

Implementation Event Handlers 7-9

HANDLING EVENTS

7–2

7

vbpg.bk Page 2 Thursday, December 19, 1996 2:25 PM
EVENT HANDLER CONCEPTS

Event handlers objects allow client application and object implementations to define methods that the
ORB will invoke to handle events such as the success or failure of a bind request or the failure of an
object implementation. Two different event handler classes are provided because the types of events that
can be handled are different for clients and object implementations. However, the procedure for using an
event handler is similar for clients and object implementations.

1 Derive an event handler class for your object, deÞning the event methods you wish to handle.

2 Provide Implementations for the event methods you wish to handle.

3 Add code to the client or object implementation to register the event handler.

Figure 7-1 A summary of the events that can be handled by client applications and object
implementations.

CLIENT EVENT HANDLERS

Client applications can register an event handler with the ORB to handle events for a particular ORB
object. The client can also globally register an event handler to handle events for all ORB objects the
client uses.

CLIENT-SIDE EVENTS IMPLEMENTATION-SIDE EVENTS

BIND SUCCEEDED BIND REQUEST RECEIVED

BIND FAILED UNBIND REQUEST
RECEIVED

SERVER ABORTED CLIENT ABORTED

REBIND SUCCEEDED PRE-METHOD

REBIND FAILED POST-METHOD

CLIENT EVENT HANDLERS

vbpg.bk Page 3 Thursday, December 19, 1996 2:25 PM
Figure 7-2 shows a portion of the pmcext.h include file that contains the class definition for the Cli-
entEventHandler class.

 class PMC_EXT
{

struct ConnectionInfo {
CORBA::String_var hostname;
CORBA::UShort port;
CORBA::Long fd;
...

};

class ClientEventHandler
{

public:
virtual void bind_succeeded(CORBA::Object_ptr,

const ConnectionInfo&);
virtual void bind_failed(CORBA::Object_ptr);
virtual void server_aborted(CORBA::Object_ptr);
virtual void rebind_succeeded(CORBA::Object_ptr,

const ConnectionInfo&);
virtual void rebind_failed(CORBA::Object_ptr);

...
};
...

};

Figure 7-2 The ConnectionInfo structure and the ClientEventHandler class.

The ConnectionInfo Structure

This structure represents all the information needed for a connection. It includes the host name where the
object implementation resides, the port number and the file descriptor used for the connection. This struc-
ture is modified when the connection to the object implementation is lost and a re-bind operation is
attempted.

ClientEventHandler Methods

When an event handler object has been registered for a particular ORB object, the ORB will call the Cli-
entEventHandler methods when a specific event occurs. If the event handler is registered as a global event
handler, the ClientEventHandler methods will be called for any event related to any object the client uses.

The bind_succeeded method is called by the ORB when the client’s request to bind to the ORB
object has completed successfully. A pointer to the object that has been bound is provided as a parameter
as well as the connection information.
7–3

HANDLING EVENTS

7–4

7

vbpg.bk Page 4 Thursday, December 19, 1996 2:25 PM
The bind_failed method is called if the client’s bind request fails. A pointer to the object to which
the event is related is provided as a parameter.

The server_aborted method is called if the connection to the object implementation is lost. A
pointer to the object to which the event is related is provided as a parameter.

The rebind_succeeded method is called when an attempt to re-connect to an object implementa-
tion succeeds. A pointer to the object that has been re-bound is provided as a parameter as well as the new
connection information.

The rebind_failed method is called when an attempt to re-connect to an object implementation
fails. A pointer to the object to which the event is related is provided as a parameter.

Creating a Client Event Handler

To implement an event handler for your client application, you must derive your own event handler class
for the class you wish to monitor. You will need to implement only those event handler methods you wish
to override. If you do not override an event handler method, no special processing will occur and no per-
formance overhead will be added to the application.

Figure 7-3 shows how you would define an event handler for the library client, introduced in Chapter 2.
Only three of the possible five methods offered by ClientEventHandler have been overridden and Figure
7-4 shows simple implementations for these methods.

 class LibraryClientHandler : public PMC_EXT::ClientEventHandler
{

...
public:

void bind_succeeded(CORBA::Object_ptr, const ConnectionInfo&);
void bind_failed(CORBA::Object_ptr);
void server_aborted(CORBA::Object_ptr);

};

Figure 7-3 An example event handler for the library client.

CLIENT EVENT HANDLERS

vbpg.bk Page 5 Thursday, December 19, 1996 2:25 PM
 void LibraryClientHandler::bind_succeeded(CORBA::Object_ptr obj,
const ConnectionInfo&)

{
cout << “Event Handler bind_succeeded for: “

<< obj->_interface_name() << endl;
}

void LibraryClientHandler::bind_failed(CORBA::Object_ptr obj)
{

cout << “Event Handler bind_failed for: “
<< obj->_interface_name() << endl;

}

void LibraryClientHandler::server_aborted(CORBA::Object_ptr obj)
{

cout << “Event Handler server_aborted for: “
<< obj->_interface_name() << endl;

}

Figure 7-4 Implementation for the LibraryClientHandler method.

The Handler Registry

You can use the static method HandlerRegistry::instance to obtain a pointer to the registry
and then invoke the methods for registering and un-registering various types of event handlers.

 class HandlerRegistry{
...
public:
...

static HandlerRegistry_ptr instance();
void reg_obj_client_handler(CORBA::Object_ptr obj,

ClientEventHandler_ptr handler);
void reg_glob_client_handler(ClientEventHandler_ptr handler);
void unreg_obj_client_handler(CORBA::Object_ptr obj);
void unreg_glob_client_handler();
void reg_obj_impl_handler(CORBA::Object_ptr obj,

ImplEventHandler_ptr handler);
void reg_glob_impl_handler(ImplEventHandler_ptr handler);
void unreg_obj_impl_handler(CORBA::Object_ptr obj);
void unreg_glob_impl_handler();

...
};

Figure 7-5 The HandlerRegistry class.
7–5

HANDLING EVENTS

7–6

7

vbpg.bk Page 6 Thursday, December 19, 1996 2:25 PM
HandlerRegistry Methods for Clients Applications

The reg_obj_client_handler method can be called by your client application to register an
event handler for a specific object. The parameters passed to this method are a reference to the object and
a pointer to the object’s ClientEventHandler. If the object reference is not valid, an Invali-
dObject exception will be raised. If an event handler has already been registered for the specified
object, a HandlerExists exception will be raised. You can use the
unreg_obj_client_handler method to un-register a previously registered event handler.

The reg_glob_client_handler method can be called by your client application to register an
event handler for all object the client uses. The parameter passed to this method is a pointer to the object’s
ClientEventHandler. If a global handler has already been registered, a HandlerExists
exception will be raised. You can use the unreg_glob_client_handler method to un-register
a previously registered global event handler.

 NOTE If both an object event handler and a global event handler are registered, the object event handler will
take precedence for events that occur which are related to its object. All other events will be handled by
the global event handler.

The unreg_obj_client_handler method can called by your client application to un-register
an event handler for a specific object. A reference to the object whose event handler is to be removed is
passed as a parameter. If the object reference is not valid, an InvalidObject exception will be
raised. If no event handler has been registered for the specified object, a NoHandler exception will be
raised.

The unreg_glob_client_handler method can called by your client application to unregister
a global event handler. If no global event handler has been registered, a
NoHandler exception will be raised.

Registering Client Event Handlers

There are methods for registering both global and per-object event handlers. In either case, the client uses
the PCM_EXT::HandlerRegistry::instance method to obtain a pointer to the ORB’s
event handler registry. Figure 7-6 shows the registration process for a global event handler and shows
how to register a per-object event handler. Both examples assume that the LibraryClientHandler class has
been defined and implemented, as shown in Figure 7-3 and Figure 7-4 .

CLIENT EVENT HANDLERS

vbpg.bk Page 7 Thursday, December 19, 1996 2:25 PM
 #include <fstream.h>
#include <lib_client.hh>
main(int argc, char *const *argv)
{

CORBA::Boolean ret;
// Initialize the ORB
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

// Parse arguments
...

// Declare the library object
library_var *library_object;

// Declare the library event handler
LibraryClientHandler client_handler;

// Obtain a handle to the ORB’s registry
PCM_EXT::HandlerRegistery_ptr registry_handle =

PCM_EXT::HandlerRegistry::instance();
try {

// Register the global event handler
registry_handle->reg_glob_client_handler(&client_handler);

}
catch(const PMC_EXT::HandlerExists& excep) {

cout << “A global handler was already registered” << endl;
}

// Bind to the library object and invoke methods
...

try {
// Un-register the global event handler
registry_handle->unreg_glob_client_handler();

}
catch(const PMC_EXT::NoHandler& excep) {

cout << “No global handler was registered” << endl;
}

return(1);
}

Figure 7-6 Registering a global client event handler.
7–7

HANDLING EVENTS

7–8

7

vbpg.bk Page 8 Thursday, December 19, 1996 2:25 PM
 #include <fstream.h>
#include <lib_client.hh>
main(int argc, char *const *argv)
{

CORBA::Boolean ret;
// Initialize the ORB
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
// Parse arguments
...

// Declare the library object
library_var *library_object;
// Bind to the library object
...

// Declare the library event handler
LibraryClientHandler client_handler;

// Obtain a handle to the ORB’s registry
PCM_EXT::HandlerRegistery_ptr registry_handle =

PCM_EXT::HandlerRegistry:::instance();
try {

// Register the library event handler
registry_handle->reg_obj_client_handler(library_object,

&client_handler);
}
catch(const PMC_EXT::HandlerExists& excep) {

cout << “A handler was already registered” << endl;
}

// Invoke methods on library object
...

try {
// Un-register the library event handler
registry_handle->unreg_obj_client_handler(library_object);

}
catch(const PMC_EXT::NoHandler& excep) {

cout << “No handler was registered” << endl;
}
catch(const PMC_EXT::InvalidObject& excep) {

cout << “Invalid object reference” << endl;
}

return(1);
}

Figure 7-7 Registering a per-object client event handler.

IMPLEMENTATION EVENT HANDLERS

vbpg.bk Page 9 Thursday, December 19, 1996 2:25 PM
IMPLEMENTATION EVENT HANDLERS

Like client applications, object implementations can register an event handler with the ORB to handle
events for a particular ORB object. The implementation can also globally register an event handler to
handle events for all ORB objects implemented. Implementation-side event handling can be used for a
variety of purposes. For example, the implementation may refuse a client connection request, based on
the caller’s identity.

The ImplEventHandler Class

Figure 7-8 shows the ImplEventHandler class you will use to derive an implementation event handler.
All of the methods shown make use of the ConnectionInfo structure, discussed on page 7–3.

 class PCM_EXT
{

...
class ImplEventHandler
{

public:
virtual void bind(const ConnectionInfo&,

CORBA::Principal_ptr, CORBA::Object_ptr);
virtual void unbind(const ConnectionInfo&,

CORBA::Principal_ptr, CORBA::Object_ptr);
virtual void client_aborted(const ConnectionInfo&,

CORBA::Principal_ptr, CORBA::Object_ptr);
virtual void pre_method(const ConnectionInfo&,

CORBA::Principal_ptr, CORBA::Object_ptr,
const char *, CORBA::Object_ptr);

virtual void post_method(const ConnectionInfo&,
CORBA::Principal_ptr, CORBA::Object_ptr,
const char *, CORBA::Object_ptr);

};
...

};

Figure 7-8 The ImplEventHandler class.

In the preceding figure, CORBA::Principal_ptr allows clients to send information to the server
that can retrieve this data and, as the implementor, you can determine if the server allows the action (like
a bind) to be performed.
7–9

HANDLING EVENTS

7–10

7

vbpg.bk Page 10 Thursday, December 19, 1996 2:25 PM
ImplEventHandler Methods

The bind method will be called every time a client wishes to connect to this object. This method allow
your object implementation to do any special processing before the bind request is processed. Once this
method returns, the BOA will proceed with the normal binding process. The parameters passed to this
method are the connection information, the Principal value associated with the client and a pointer to the
ORB object requested. This method may choose to reject the bind, based on the requestor’s identity, by
raising a CORBA::NO_PERMISSION exception.

The unbind method will be called every time a client application calls the CORBA::release method for
a previously bound object. The BOA will pass control to this method before the un-bind occurs. The con-
nection information and the object reference are passed to this method.

The client_aborted method will be called if the connection to a client application is lost. The
connection information and the object reference are passed to this method.

The pre_method method will be called every time a client application invokes a method on the object
for which the handler is registered. After this method returns, the BOA will proceed with the method
invocation. The connection information, Principal of the client, method name and a pointer to the object
are all passed to this method.

The post_method method will be called after every invocation of a method by a client on the object
being traced. After this method returns, the results of the method invocation will be returned to the client.
The connection information, Principal of the client, method name and a pointer to the object are all
passed to this method.

 NOTE If the method invoked by the client raises an exception, post_method will not be called.

Creating Implementation Event Handlers

Figure 7-9 shows how you can create an implementation event handler for the Library object by
deriving your own class from the ImplEventHandler class. Figure 7-10 shows the implementa-
tion for the LibraryImplHandler methods defined. You only need to define and provide method
implementations for those events you wish to handle.

IMPLEMENTATION EVENT HANDLERS

vbpg.bk Page 11 Thursday, December 19, 1996 2:25 PM
 class LibraryImplHandler : public PMC_EXT::ImplEventHandler
{

public:
void bind(const ConnectionInfo&, CORBA::Principal_ptr,

CORBA::Object_ptr);
void unbind(const ConnectionInfo&, CORBA::Principal_ptr,

CORBA::Object_ptr);
};

Figure 7-9 Example event handler class for the Library object implementation.

 void LibraryImplHandler::bind(const ConnectionInfo&,
CORBA::Principal_ptr, CORBA::Object_ptr obj)

{
cout << “Bind request arrived for “ << obj->_interface_name << endl;
...

};

void LibraryImplHandler::unbind(const ConnectionInfo&,
CORBA::Principal_ptr, CORBA::Object_ptr obj)

{
cout << “Un-Bind request arrived for “ << obj->_interface_name << endl;

...
};

Figure 7-10 Method implementations for the LibraryImplHandler class methods.

Using the Handler Registry

As with client applications, the HandlerRegistry is used to register implementation event handlers. The
HandlerRegistry class is show in Figure 7-5 on page 7–5.

HandlerRegistry Methods for Object Implementations

The reg_obj_impl_handler method can be called by your object implementation to register an
event handler with the BOA for a specific object. The parameters passed to this method are a reference to
the object and a pointer to the object’s ImplEventHandler. If the object reference is not valid, an
InvalidObject exception will be raised. If an event handler has already been registered for the
specified object, a HandlerExists exception will be raised. You can use the
unreg_obj_impl_handler method to un-register a previously registered event handler.

The reg_glob_impl_handler method can be called by your object implementation to register
an event handler with the BOA for all objects contained in the implementation. The parameter passed to
this method is a pointer to the object’s ImplEventHandler. If a global handler has already been
7–11

HANDLING EVENTS

7–12

7

vbpg.bk Page 12 Thursday, December 19, 1996 2:25 PM
registered for this implementation, a HandlerExists exception will be raised. You can use the
unreg_glob_impl_handler method to un-register a previously registered global event handler.

 NOTE If both an object event handler and a global event handler are registered, the object event handler will
take precedence for events that occur which are related to its object. All other events will be handled by
the global event handler.

The unreg_obj_impl_handler method can be called by your object implementation to un-reg-
ister an event handler for a specific object. A reference to the object whose event handler is to be removed
is passed as a parameter. If the object reference is not valid, an InvalidObject exception will be
raised. If no event handler has been registered for the specified object, a NoHandler exception will
be raised.

The unreg_glob_impl_handler method can be called by your object implementation to un-
register a global event handler. If no global event handler has been registered, a NoHandler exception
will be raised.

Registering Implementation Event Handlers

Like client applications, your object implementations will use similar procedures for registering both
global and per-object event handler. In both cases, the client uses the PCM_EXT::HandlerRegis-
try::instance method to obtain a pointer to the BOA’s event handler registry. Figure 7-11 shows the reg-
istration process for a global event handler and Figure 7-12 shows how to register a per-object event
handler. Both examples assume that the LibraryImplHandler class has been defined and implemented, as
shown in Figure 7-10 .

IMPLEMENTATION EVENT HANDLERS

vbpg.bk Page 13 Thursday, December 19, 1996 2:25 PM
 #include <lib_server.hh>
int main(int argc, char **argv)
{

// Initialize ORB and Basic Object Adaptor (BOA)
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
CORBA::BOA_ptr boa = orb->BOA_init(argc, argv);

// Instantiate the Library object
Library *library_obj = new Library(“Harvard”);

// Define the impl_handler and registry instance
LibraryImplHandler impl_handler;
PMC_EXT::HandlerRegistry_ptr registry_handle;
registry_handle = PMC_EXT::HandlerRegistry::instance();
try {

// Register a global event handler
registry_handle->reg_glob_impl_handler(&impl_handler);

}
catch(const PMC_EXT::HandlerExists& excep) {

cout << “Global handler already defined” << endl;
}

// Instantiate Library Class, activate object and implementation
...
try {

registry_handle->unreg_glob_impl_handler();
}
catch(const PMC_EXT::NoHandler& excep) {

cout << “Removal of global event handler failed” << endl;
}
...

}

Figure 7-11 Registering a global event handler for an object implementation.
7–13

HANDLING EVENTS

7–14

7

vbpg.bk Page 14 Thursday, December 19, 1996 2:25 PM
 #include <lib_server.hh>
int main(int argc, char **argv)
{

// Initialize ORB and Basic Object Adaptor (BOA)
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
CORBA::BOA_ptr boa = orb->BOA_init(argc, argv);

// Instantiate the Library object
Library *library_obj = new Library(“Harvard”);

// Define the impl_handler and registry instance
LibraryImplHandler impl_handler;
PMC_EXT::HandlerRegistry_ptr registry_handle;
registry_handle = PMC_EXT::HandlerRegistry::instance();
try {

// Register a global event handler
registry_handle->reg_obj_impl_handler(library_obj, &impl_handler);

}
catch(const PMC_EXT::HandlerExists& excep) {

cout << “Handler already defined for ” <<
library_obj->_instance_name << endl;

}

// Instantiate Library Class, activate object and implementation
...
try {

registry_handle->unreg_obj_impl_handler(library_obj);
}
catch(const PMC_EXT::NoHandler& excep) {

cout << “Removal of event handler failed for ” <<
library_obj->_instance_name << endl;

}
...

}

Figure 7-12 Registering a per-object event handler for an object implementation.

C H A P T E R 8

vbpg.bk Page 1 Thursday, December 19, 1996 2:25 PM
8A D V A N C E D P R O G R A M M I N G
T O P I C S

This chapter discusses developing multi-threaded client applications and

object implementations with VisiBroker. This chapter also covers the

integration of an object implementation’s event loop with other event-driven

software. It includes the following major sections:

Using Threads with VisiBroker 8-2

Threads in an Object Implementation 8-2

Threads in a Client Application 8-3

Linking Multi-threaded Applications 8-5

Event Loop Integration 8-5

Integration with XWindows 8-11

Integration with the Windows/NT Event Loop 8-11

Integration with Microsoft Foundation Classes 8-13

Multithreaded Servers: Windows 95 and Windows NT 8-15

Integration with Other Environments 8-17

ADVANCED PROGRAMMING TOPICS

8–2

8

vbpg.bk Page 2 Thursday, December 19, 1996 2:25 PM
USING THREADS WITH VISIBROKER

For platforms that support threads, VisiBroker provides two sets of libraries; a single-threaded library and
another library that is thread-safe and re-entrant. In addition to providing thread-safe facilities for client
applications, the multi-threaded version of the library results in the internal use of threads by the VisiBro-
ker core.

For applications that never intend to use threads, the single-threaded library offers slightly better perfor-
mance. Both libraries provide identical interfaces, which allows your applications to take advantage of
multi-threaded support in the future without worrying about interface changes.

 NOTE The Dispatcher class is useful for single-threaded applications only.

THREADS IN AN OBJECT IMPLEMENTATION

In the multi-threaded version of VisiBroker, the main thread of an object implementation is responsible
for initializing the ORB and BOA. The main thread then waits for connection requests from client appli-
cations. Each time a client connection request is received, a new worker thread is spawned within the
object implementation to perform all processing for that client. When the client application destroys the
connection, the worker thread exits. If several clients access the object implementation at one time,
worker threads will be created for each client.

Figure 8-1 A multi-threaded object implementation.

Client
Application

Object

request

Implementation

main thread

worker
thread

worker
threadClient

Application

#1

#2

request

THREADS IN A CLIENT APPLICATION

vbpg.bk Page 3 Thursday, December 19, 1996 2:25 PM
THREADS IN A CLIENT APPLICATION

Client applications can use threads in two ways in relation to an object implementation. The client can
use the object reference returned from a single bind in all of the threads it creates. Alternatively, each
thread within the client can issue its own bind request.

One Bind with Multiple Client Threads

If your client application issues a single bind and then spawns several threads, it can pass the object refer-
ence received from the bind to each thread. A single connection to the object implementation is estab-
lished and all client worker threads utilize a single worker thread in the object implementation.

 NOTE If a particular client thread issues multiple bind requests to the same object implementation, VisiBroker
will not establish multiple connections. Instead, VisiBroker will detect that a connection already exists
and will re-use that connection.

Figure 8-2 One bind for multiple client application threads.

Client
Application Object

request

Implementation

main thread

worker
threadrequest

main thread

worker
thread

worker
thread
8–3

ADVANCED PROGRAMMING TOPICS

8–4

8

vbpg.bk Page 4 Thursday, December 19, 1996 2:25 PM
Multiple Binds with Multiple Client Threads

Your client application can spawn several threads and have each thread issue its own bind request to the
object implementation. In this case, VisiBroker will establish a separate connection to the object imple-
mentation for each client thread and the object implementation will create a worker thread for each client
worker thread. This arrangement allows for maximum efficiency because if one client thread issues a
blocking request it will not block other client threads that are accessing the same object implementation.

Figure 8-3 Multiple client threads, each making their own bind request.

Multiple Threads with Cloning

Cloning is another technique for achieving a separate object implementation worker thread for each client
worker thread. Using this approach, the main thread binds to the object and passes the object reference to
each client worker thread it creates. A client worker thread then invokes the _clone method on the
object reference, resulting in a new connection with the object implementation and the spawning of a new
worker thread. You should remember that the _duplicate method increases the reference count to the
object and that _clone makes a complete copy of the object reference and results in a new, separate con-
nection.

Client
Application

request

request

main thread

worker
thread

worker
thread

Object
Implementation

main thread

worker
thread

worker
thread

LINKING MULTI-THREADED APPLICATIONS

vbpg.bk Page 5 Thursday, December 19, 1996 2:25 PM
LINKING MULTI-THREADED APPLICATIONS

All the re-entrant versions of the VisiBroker libraries, regardless of platform, have a “_r” suffix.

For Unix systems, these libraries should be used:

For Windows and Windows/NT, this library should be used:

EVENT LOOP INTEGRATION

When your object implementation invokes the BOA::impl_is_ready method, an event loop is entered that
waits for the arrival of requests from client applications. Your object implementation may also need to
interact with another event-driven system. In a multi-threaded environment, you can solve this problem
by simply using two threads; one thread waits for VisiBroker events and the other thread services other
events. If your platform does not support threads, you may find it helpful to integrate all event driven pro-
cessing by using the Dispatcher and IOHandler classes.

The Dispatcher Class

This class is designed to detect events on several file descriptors and dispatch those events to the appro-
priate handler. The Dispatcher maintains three lists of file descriptors; one list for reading data, one
list for writing data and one for exceptions. You can use the link method to add a file descriptor to one
of the Dispatcher class’ lists and define the IOHandler object to be called to handle events on
that file descriptor. You can find the include file for the Dispatcher class in include/dis-
patcher/dispatch.h.

 NOTE The Dispatcher class is useful for single-threaded applications only.

FILE NAME DESCRIPTION

liborb_r.so Re-entrant version of the library liborb.so

liborb_r.a Re-entrant version of the library liborb.a

FILE NAME DESCRIPTION

ORB_R.DLL Re-entrant version of the library ORB.DLL

U

W

8–5

ADVANCED PROGRAMMING TOPICS

8–6

8

vbpg.bk Page 6 Thursday, December 19, 1996 2:25 PM
An application should have only one instance of the Dispatcher class and the static instance
method is provided to create the object, if necessary, and return a pointer to it.

 class Dispatcher {
public:

enum DispatcherMask {
ReadMask,
WriteMask,
ExceptMask

};

Dispatcher();
virtual ~Dispatcher();

virtual void link(int fd, DispatcherMask, IOHandler*);
virtual IOHandler handler(int fd, DispatcherMask) const;
virtual void unlink(int fd);

virtual void startTimer(long sec, long usec, IOHandler*);
virtual void stopTimer(IOHandler*);

virtual iv_boolean dispatch(long& sec, long& usec);
virtual iv_boolean dispatch(timeval *);
virtual iv_boolean dispatch();

static Dispatcher& instance();

...
};

Figure 8-4 The Dispatcher class.

ADDING FILE DESCRIPTORS

When using the link method to add a file descriptor to the Dispatcher, you specify the file
descriptor, the DispatcherMask and a pointer to an IOHandler object. The Dispatcher-
Mask value determines whether the file descriptor is added to the read, write or exception event list.

When an event occurs on the file descriptor, the Dispatcher will invoke the appropriate IOHandler
method to service the event. The IOHandler object provides methods for reading data from or writing
data to a file descriptor as well as for handling exceptions and expired timers. If an IOHandler
method returns a negative value indicating it encountered an error, the Dispatcher will automati-
cally unlink the IOHandler from its file descriptor.

 NOTE You must make multiple invocations of the link method if you want a particular file descriptor to be
placed in more than one of the dispatcher’s lists. DispatcherMask values cannot be ordered together
when calling link.

EVENT LOOP INTEGRATION

vbpg.bk Page 7 Thursday, December 19, 1996 2:25 PM
You can use the handler method to return the IOHandler object defined for a particular file descriptor and
DispatcherMask combination.

SETTING TIMERS

You can set an interval timer for a particular IOHandler object by invoking the startTimer
method. This method lets you specify a time interval in a combination of seconds and microseconds.
When the interval expires, the IOHandler object’s timerExpired method is invoked.The Dis-
patcher method stopTimer can be called to stop a timer.

 NOTE Timers are one shot, not periodic—you have to set them again if you want to time another interval.

The use of the timer methods can be especially useful in single-threaded environments. Multi-threaded
applications have the flexibility of starting timers in separate threads.

DISPATCHING

One form of the dispatch method accepts no arguments and blocks indefinitely or until an event
occurs on one of its file descriptors. If a file descriptor event occurs, the appropriate IOHandler
method is invoked before the dispatch method returns.

The other two forms of the dispatch method accept a time interval specification. If the time interval
specified is zero, the Dispatcher will return immediately after checking all the file descriptors and
timers. If the time interval is greater than zero, the Dispatcher will block until an event occurs on
one of the file descriptors or until the time interval expires. The dispatch method returns a one if an
event on a file descriptor caused the return. This method returns a zero if an expired timer caused the
dispatch method to return.

REMOVING FILE DESCRIPTORS

The unlink method removes the specified file descriptor from all lists maintained by the Dis-
patcher.
8–7

ADVANCED PROGRAMMING TOPICS

8–8

8

vbpg.bk Page 8 Thursday, December 19, 1996 2:25 PM
The IOHandler Class

You derive your own class from IOHandler class to handle events on a particular file descriptor. You
associate your IOHandler object with a file descriptor, using the Dispatcher object’s link
method.

You can find the include file for this IOHandler in the following location:
include/dispatch/iohandler.h

 class IOHandler {
protected:

IOHandler();
public:

virtual ~IOHandler();
virtual int inputReady(int fd);
virtual int outputReady(int fd);
virtual int exceptionRaised(int fd);
virtual void timerExpired(long sec, long usec);

};

Figure 8-5 The IOHandler class.

IMPLEMENTING THE IOHANDLER METHODS

You must provide implementations for the IOHandler methods that you want to handle for your file
descriptor. Table 8-6 describes each of the methods and Table 8-7 shows the return code conventions
that the Dispatcher class assumes your methods will follow.

METHOD NAME DESCRIPTION

inputReady Called when the Dispatcher detects that data is ready to be read
from the Þle descriptor associated with this handler.

outputReady Called when the Dispatcher detects that the Þle descriptor associ-
ated with this handler is ready to accept more data.

exceptionRaised Called when the Dispatcher detects that an I/O exception has
occurred on the Þle descriptor associated with this handler.

timer expired Called when the Dispatcher is notiÞed that an interval timer for this
handler has expired. The current time in seconds and microseconds
since January 1, 1970 is passed.

Table 8-6 The IOHandler class methods.

EVENT LOOP INTEGRATION

vbpg.bk Page 9 Thursday, December 19, 1996 2:25 PM

Using an IOHandler

To create your own IOHandler, simply derive your own class and implement those methods you
intend to use. Figure 8-8 shows an example IOHandler-derived class.

 #include <dispatch/iohandle.h>
...

class MyHandler : public IOHandler
{

public:
MyHandler();
virtual ~MyHandler();
virtual int inputReady(int fd) {

// read from file using fd
...
if(done) {

return(0);
} else if(more_left_to_read) {

return(1);
} else if(failure) {

return(-1);
}

}
...

};

Figure 8-8 An example IOHandler-derived class.

RETURN VALUE MEANING

-1 or negative
value

The method encountered an error and does not want to handle any
more events.

0 The method has completed successfully and currently has no more
work to do.

1 or a positive
value

The method has completed successfully, but has more data to read or
write. The dispatcher will keep calling this method, after checking all
other Þle descriptors, until this method returns 0 or a negative value.

Table 8-7 Return code conventions for IOHandler methods.
8–9

ADVANCED PROGRAMMING TOPICS

8–10

8

vbpg.bk Page 10 Thursday, December 19, 1996 2:25 PM
Figure 8-9 shows how you might instantiate your handler and link it to a file descriptor. In this example,
when an input event occurs on myfd the dispatcher will call my_handler::inputReady
method to handle the event.

 ...

MyHandler my_handler;
Dispatcher &disp = Dispatcher::instance();
disp.link(myfd, Dispatcher::ReadMask, my_handler);

...

Figure 8-9 Instantiating an linking a handler to a file descriptor.

INTEGRATION WITH XWINDOWS

vbpg.bk Page 11 Thursday, December 19, 1996 2:25 PM
INTEGRATION WITH XWINDOWS

 NOTE This implementation is for single-threaded servers only.

VisiBroker provides an XDispatcher class that you can use to integrate your application with the
XWindows XtMainLoop. The XDispatcher registers the file descriptors it uses for its connections
with the Xt event loop and installs the appropriate event handlers. The result is that the Xt event loop
receives and dispatches events for both XWindow and VisiBroker events. When an event occurs on one of
VisiBroker’s file descriptors, the Xt event loop will call the appropriate VisiBroker method to process the
data.

Figure 8-10 shows how you might use the XDispatcher class in you object implementation. Appli-
cations that use the XDispatcher class should link with the library libxdispatch.a in addition to all
the other appropriate VisiBroker libraries.

 #include <dispatch/xdisp.h>
int main(int argc, char * const *argv)
{

// Instantiate XDispatcher before invoking any VisiBroker methods.
XDispatcher xdisp;

// Initialize ORB and BOA.
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
CORBA::BOA_ptr boa = orb->BOA_init(argc, argv);

...

boa->impl_is_ready();
// You can call XtMainLoop() instead of impl_is_ready().

...
}

Figure 8-10 Using the XDispatcher class.

INTEGRATION WITH THE WINDOWS/NT EVENT LOOP

 NOTE This implementation is for single-threaded servers only.

VisiBroker provides a WDispatcher class that you can use to integrate VisiBroker events with
Windows message events. The WDispatcher must be instantiated before any ORB object implemen-
tations are instantiated and before ORB or BOA methods are invoked. When you instantiate the WDis-
patcher object, you must pass it the window handle.

U

W

8–11

ADVANCED PROGRAMMING TOPICS

8–12

8

vbpg.bk Page 12 Thursday, December 19, 1996 2:25 PM
 NOTE There are significant advantages to building a multithreaded server rather than integrating the orb with
the Windows event loop. For more information, see Multithreaded Servers and Windows 95/Windows NT
later in this chapter.

 #include <dispatch/wdisp.h>
...

// Windows main entry point
WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR,

int nCmdShow)
{

static char szAppName[] = “Library”;
HWND hwnd;
MSG msg;
WNDCLASS wndclass;

// Initialize wndclass
...

hwnd = CreateWindow(szAppName, “LibraryServer”, WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, CW_USEDEFAULT, 200, 200,
NULL, NULL, hInstance, NULL);

WDispatech *winDispatechr = new WDispatcher(hwnd);
CORBA::ORB_var orb = CORBA::ORB_init(__argc, __argv);
CORBA::BOA_var orb = orb->BOA_init(__argc, __argv);

Library server(“Harvard”);

boa->obj_is_ready(&server);

ShowWindow(hwnd, nCmdShow);
UpdateWindow(hwnd);

// Enter message loop
while(GetMessage(&msy, NULL, 0, 0)) {

TranslateMessage(&msg);
DispatchMessage(&msg);

}
return msg.wParam;

}

Figure 8-11 Using the WDispatcher class with the Windows event loop.

INTEGRATION WITH MICROSOFT FOUNDATION CLASSES

vbpg.bk Page 13 Thursday, December 19, 1996 2:25 PM
INTEGRATION WITH MICROSOFT FOUNDATION CLASSES

 NOTE This implementation is for single-threaded servers only.

You may also use the WDispatcher class when developing client applications with the Microsoft Founda-
tion Classes. When you derive your application class from the Microsoft CWinApp class, you need to
provide an InitInstance method. The WDispatcher object should be instantiated in the InitInstance
method.

 #include <afxwin.h>
#include <dispatch/wdisp.h>
...
// Application class
class LibraryClientApp : public CWinApp
{

public:
BOOL InitInstance();

};

BOOL LibraryClientApp::InitInstance()
{

m_pMainWnd = new MainWindow;
m_pMainWnd->showWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();

// WDispatcher instantiation goes here?
WDispatcher *winDispatcher = new WDispatcher(m_pMainWnd);
CORBA::ORB_var orb = CORBA::ORB_init(__argc, __argv);
return 1;

}

...

Figure 8-12 Using the WDispatcher with MFC-based applications.
8–13

ADVANCED PROGRAMMING TOPICS

8–14

8

vbpg.bk Page 14 Thursday, December 19, 1996 2:25 PM
MULTITHREADED SERVERS: WINDOWS 95 AND WINDOWS NT

It is straightforward to build multithreaded servers using VisiBroker for C++. There are significant advan-
tages to building a multithreaded server rather than integrating the orb with the Windows event loop. The
advantages are:

n Because VisiBroker for C++ automatically creates worker threads to handle incoming calls,
servers can handle multiple incoming requests. On multiprocessor systems running Windows NT,
servers automatically distribute work among processors. A server implemented with VisiBroker
functions integrated into the Windows event loop can process only a single request at a time.

n If a single worker thread should fail, the server can continue processing other requests. A server
implemented with VisiBroker functions integrated into the Windows event loop may fail if any
request should fail, because there is no way for the hung thread to process other requests.

You may build multithreaded servers either directly on the Win32 API, or using MFC. The following code
examples show how to initialize the orb in both cases.

MULTITHREADED SERVERS: WINDOWS 95 AND WINDOWS NT

vbpg.bk Page 15 Thursday, December 19, 1996 2:25 PM
The following code example shows how to initialize the orb for a multithreaded Win32 server without
using MFC.

 EXAMPLE // Windows main entry point
WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR,

int nCmdShow)
{

static char szAppName[] = "Library";
HWND hwnd;
MSG msg;
WNDCLASS wndclass;
// Initialize wndclass
...
hwnd = CreateWindow(szAppName, "LibraryServer",

WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, CW_USEDEFAULT, 200, 200,
NULL, NULL, hInstance, NULL);

CORBA::ORB_var orb = CORBA::ORB_init(__argc, __argv);
CORBA::BOA_var orb = orb->BOA_init(__argc, __argv);
Library server("Harvard");
boa->obj_is_ready(&server);

ShowWindow(hwnd, nCmdShow);
UpdateWindow(hwnd);
// Enter message loop
while(GetMessage(&msy, NULL, 0, 0)) {

TranslateMessage(&msg);
DispatchMessage(&msg);

}
return msg.wParam;

}

This example is identical to the preceding WDispatcher example, except it does not create a WDispatcher
object. The event loop handles normal Windows messages as usual. Orb requests, however, do not flow
through the event loop. Rather, the orb automatically creates worker threads when a request comes in.
These threads are completely independent of the Windows event loop.
8–15

ADVANCED PROGRAMMING TOPICS

8–16

8

vbpg.bk Page 16 Thursday, December 19, 1996 2:25 PM
Creating a multithreaded server using MFC is equally straightforward:

 EXAMPLE #include <stdafx.h>
...
// Application class
class LibraryClientApp : public CWinApp
{

public:
BOOL InitInstance();

};
BOOL LibraryClientApp::InitInstance()
{

m_pMainWnd = new MainWindow;
m_pMainWnd->showWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
CORBA::ORB_var orb = CORBA::ORB_init(__argc, __argv);
CORBA::BOA_var boa = orb->BOA_init(__argc, __argv);
Library server("Harvard");
boa->obj_is_ready(&server);
return 1;

}
...

The InitInstance() method provides all orb initialization. After initializing the orb and boa objects, the ini-
tialization code creates the Library object and declares the object is ready.

Whether the server is built directly on the Win32 API or using MFC, the multithreaded
VisiBroker library listens for incoming requests and creates worker threads to handle each request. The
application need do no other thread-specific coding.

Thread-safe Code

All code within the server that implements an ORB-visible object must be thread-safe. Incoming requests
execute within a VisiBroker-generated thread. Simultaneous incoming requests execute simultaneously in
separate threads.

Developers must take special care when accessing a system-wide resource within an object implementa-
tion. For example, many database access methods are not thread-safe. If an object implementation must
access such a database, it must lock access to the resource using a mutex or critical section.

INTEGRATION WITH OTHER ENVIRONMENTS

vbpg.bk Page 17 Thursday, December 19, 1996 2:25 PM
Multithreaded Servers and Windows User Interfaces

A multithreaded server can implement a complex Windows user interface either directly on the Win32
API or using MFC.

A key point in building a multithreaded server with an MFC-based Windows user interface is that only
certain threads may do user interface update. Within an MFC application, either the main application
thread or a CWinThread-derived class that the application created may do user interface updates. These
restrictions are because MFC threads contain thread-local storage important in doing user interface
updates. Performing a user interface update from a non-MFC thread causes errors because the system
does not have the required local storage within the thread.

Because VisiBroker for C++ creates a worker thread for each incoming connection, these threads are not
MFC threads. Such a worker thread cannot perform user interface updates directly.

It is straightforward to interface between VisiBroker threads and MFC threads. The
VisiBroker thread can post an invalidate message to the window to update. The message may contain
either the needed information for update or the two threads may use a common object or data structure to
pass information.

For example, a server needs to update the user interface when it handles a request. The object implemen-
tation that handles the request updates a shared data structure that contains the request count. It then posts
a WM_PAINT message to the window to paint. In an MFC-based server, the worker thread can call the
MFC function CWnd::Invalidate() to post the WM_PAINT message.

In either case, the window's painting code accesses the common data structure containing the needed
counter and repaints the window. Because the window updates in response to a message, the painting
occurs within the window's own thread.

The counter data structure is a global resource shared between threads. All code updating the counter
must synchronize accesses with a mutex or a critical section. Within an MFC-based server, the classes
derived from CSyncObject provide C++ wrappers for Win32 mutexes and critical sections.

INTEGRATION WITH OTHER ENVIRONMENTS

To integrate your application with another system’s event loop, you need to derive your own class from
the Dispatcher class. The methods of your new class need to be implemented using the methods and inter-
faces provided by the event handling mechanism with which you are integrating. The details of the imple-
8–17

ADVANCED PROGRAMMING TOPICS

8–18

8

vbpg.bk Page 18 Thursday, December 19, 1996 2:25 PM
mentation will depend on the event system with which VisiBroker is being integrated. Figure 8-13 shows
how you might create your own dispatcher class.

 class MyDispatcher : public Dispatcher
{

public:
MyDispatcher();
virtual ~MyDispatcher();
virtual void link(int fd, DispatcherMask, IOHandler*);
virtual IOHandler* handler(int fd, DispatcherMask) const;
virtual void ulink(int fd);
virtual void startTimer(long sec, long usec, IOHandler *);
virtual void stopTimer(IOHandler *);
virtual iv_boolean setReady(int, DispatcherMask)

{ return 0; } // No need to implement
virtual void dispatch();
virtual iv_boolean dispatch(long&, long&)

{ return 0; } // No need to implement
virtual iv_boolean dispatch(timeval *val);

private:
...

};

Figure 8-13 Deriving your own dispatcher class from Dispatcher.

C H A P T E R 9

vbpg.bk Page 1 Thursday, December 19, 1996 2:25 PM
9DYNAMIC INTERFACES

This chapter discusses how client applications can use the Interface Repository

to discover object interfaces and dynamically create requests for using those

interfaces. It includes the following major sections:

Dynamic Invocation Interface 9-2

The Interface Repository 9-2

The Request Class 9-5

Creating a DII request 9-6

Initializing a DII Request 9-7

Sending a DII Request 9-13

DYNAMIC INTERFACES

9–2

9

vbpg.bk Page 2 Thursday, December 19, 1996 2:25 PM
DYNAMIC INVOCATION INTERFACE

The Dynamic Invocation Interface lets your client applications use any registered object without having
to first link the client stubs created for that object by the IDL compiler. With the DII, your client applica-
tion can dynamically build requests for any object interface that has been stored in the Interface Reposi-
tory. Even recently registered object can be accessed by a client application using the DII. Your object
implementations are not required to provide any extra code to handle DII requests.

While client applications that use the DII are not as efficient as applications that use statically-linked
client stubs, they offer some important advantages. Clients are not restricted to using just those objects
that were defined at the time the client application was compiled. In addition, client applications do not
need to be re-compiled in order to access newly added object implementations.

Steps for Dynamic Invocation

There are five steps that a client follows for dynamic invocation.

1 Retrieve an objectÕs interface deÞnition from the interface repository.

2 Identify and retrieve the desired operation deÞnition from the objectÕs interface deÞnition.

3 Bind to the object and obtain an object reference.

4 Create the dynamic invocation request.

5 Invoke the request and receive the results.

THE INTERFACE REPOSITORY

The Interface Repository (IR) contains information on a variety of objects that the ORB or a client appli-
cation may need to access. The IR offers an object interface that provides your client applications with a
variety of methods for obtaining the interfaces offered by all currently active objects. Your client applica-
tion can bind to the Repository and then invoke the methods defined by the Repository class to
locate object implementations. Table 9-1 shows the various types of objects that can be contained in the
IR. A complete description of this class can be found in the VisiBroker for C++ Reference
Guide.

THE INTERFACE REPOSITORY

vbpg.bk Page 3 Thursday, December 19, 1996 2:25 PM
Table 9-1 Objects that can be stored in the IR.

 class CORBA {

class Repository : public Container {
Contained_ptr lookup_id(const char * search_id);
PrimitiveDef_ptr get_primitive(PrimitiveKind kind);
StringDef_ptr create_string(ULong bound);
SequenceDef_ptr create_sequence(CORBA::ULong bound,

IDLType_ptr element_type);
ArrayDef_ptr create_array(ULong length,

IDLType_ptr element_type);
};
...

};

Figure 9-2 The Repository Class.

Obtaining an ObjectÕs Interface

The library client application, introduced in Chapter 2, could be enhanced to dynamically obtain the
Library interface and obtain information about the add_book operation.

OBJECT TYPE DESCRIPTION

Repository Represents the top-level module that contains all other objects in this
repository.

ModuleDef Contains a grouping of interfaces. Can also contain constants, type-
defs and even other ModuleDef objects.

InterfaceDef Contains a list of operations, exceptions, typedefs, constants and
attributes that make up an interface.

AttributeDef DeÞnes an attribute associated with an interface.

OperationDef DeÞnes an operation on an interface. It includes a list of parameters
required for this operation and a list of exceptions that may be raised
by this operation.

TypedefDef DeÞnes a base interface for named types that are not interfaces.

ConstantDef DeÞnes a named constant.

ExceptionDef DeÞnes an exception that may be raised by an operation.
9–3

DYNAMIC INTERFACES

9–4

9

vbpg.bk Page 4 Thursday, December 19, 1996 2:25 PM
 #include <lib_client.hh>
main(int argc, char *const *argv)
{

CORBA::Boolean ret;
// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Declare the library object
library_var library_object;

// Declare an interface repository pointer
CORBA::Repository_var rep_object;

try {
// Attempt to bind to the interface repository
rep_object = CORBA::Repository::_bind();

}
// Check for errors
catch(const CORBA::Exception& excep) {

cout << “Error binding to interface repository” << endl;
return(0);

}

// Locate the add_book operation definition. Can the operation be
// located without first locating the interface?
CORBA::Contained_var add_req = rep_object

->lookup_id(“Library::add_book”);

try {
// Bind to the library object.
library_object = library::bind();

}
// Check for errors
catch(const CORBA::Exception& excep) {

cout << “Error binding to library object” << endl;
return(0);

}

// Create a request, initializing the operation name.
Request_var req = library_object->_request(add_req->name());
...

}

Figure 9-3 Dynamically obtaining the Library::add_book method.

THE REQUEST CLASS

vbpg.bk Page 5 Thursday, December 19, 1996 2:25 PM
THE REQUEST CLASS

When your client application invokes a method on an object, a Request must be created to represent
the method invocation. This Request is written to a buffer and sent to the object implementation.
When your client application uses client stubs, this processing occurs transparently. Client applications
that use the DII must create and send the Request themselves. Figure 9-4 shows the Request class.

 NOTE There is no constructor for this class. The Object::_request method or Object::_create_request
methods are used to create a Request object, given an object reference.

 class CORBA {
class Request {

public:
CORBA::Object_ptr target() const;
const char* operation() const;
CORBA::NVList_ptr arguments();
CORBA::NamedValue_ptr result();
CORBA::Environment_ptr env();

void ctx(CORBA::Context_ptr ctx);
CORBA::Context_ptr ctx() const;

CORBA::Status invoke();
CORBA::Status send_oneway();
CORBA::Status send_deferred();
CORBA::Status get_response();
CORBA::Status poll_response();
...

};
};

Figure 9-4 The Request class.

The target is set implicitly from the object reference used to create the Request. The name of the
operation must be specified when the Request is created. The initialization of the remaining proper-
ties is covered in “Initializing a DII Request” on page 9-7. A complete description of this class can be
found in the VisiBroker for C++ Reference Guide.
9–5

DYNAMIC INTERFACES

9–6

9

vbpg.bk Page 6 Thursday, December 19, 1996 2:25 PM
CREATING A DII REQUEST

Once you have obtained the interface to an object, issued a bind to that object and obtained an object ref-
erence, you can use one of two methods for creating a Request object. Figure 9-5 shows the methods
offered by the Object class.

 class CORBA {
class Object {

...
Status _create_request(Context_ptr ctx,

const char * operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_ptr request,
Flags req_flags);

Request_ptr _request(Identifier operation);
...

};
};

Figure 9-5 Two methods for creating a Request object.

You can use the _create_request method to create a Request object, initializing the Context, the
operation name, the argument list to be passed and the result. The request parameter points to the
Request object that was created for this operation. The req_flags must be set to
OUT_LIST_MEMORY if one or more of the arguments in the arg_list are output parameters.

You can also use the _request method to create a Request object, specifying only the operation
name. You must then perform the rest of the initialization manually.

INITIALIZING A DII REQUEST

vbpg.bk Page 7 Thursday, December 19, 1996 2:25 PM
INITIALIZING A DII REQUEST

Setting the Context

The Context object contains a list of properties, stored as NamedValue objects, that are passed to
the object implementation as part of the Request. These properties represent information that would
otherwise be difficult to communicate to the object implementation. A complete description of this class
can be found in the VisiBroker for C++ Reference Guide.

 class CORBA {
class Context {

public:
const char *context_name() const;
CORBA::Context_prt parent();
CORBA::Status create_child(const char *name,

CORBA::Context_ptr&);
CORBA::Status set_one_value(const char *name,

const CORBA::Any&);
CORBA::Status set_values(CORBA::NVList_ptr);
CORBA::Status delete_values(const char *name);
CORBA::Status get_values(const char *start_scope,

CORBA::Flags,
const char *name,
CORBA::NVList_ptr&) const;

};

Figure 9-6 The Context class.

Setting the Arguments

The arguments for a Request are represented with a NVList object, which stores name-value pairs
as NamedValue objects. You can use the arguments method to obtain a pointer to the arguments. This
pointer can then be used to set the names and values of each of the arguments.
9–7

DYNAMIC INTERFACES

9–8

9

vbpg.bk Page 8 Thursday, December 19, 1996 2:25 PM
THE NVLIST

This class implements a list of NamedValue objects that represent the arguments for a method invocation.
Methods are provided for adding, removing and querying the objects in the list. A complete description of
this class can be found in the VisiBroker for C++ Reference Guide.

 class NVList {
public:

Long count() const;
NamedValue_ptr add(Flags);
NamedValue_ptr add_item(const char *name, Flags);
NamedValue_ptr add_value(const char *name, const Any&, Flags);
NamedValue_ptr item(Long);
Status remove(Long);
Status free_out_memory();

};

THE NAMEDVALUE

This class implements a name-value pair that represents both input and output arguments for a method
invocation request.The NamedValue class is also used to represent the result of a request that is returned
to the client application. The name property is simply a character string and the value property is repre-
sented by an Any class. A complete description of this class can be found in the VisiBroker for C++ Ref-
erence Guide.

 class NamedValue {
public:

const char *name() const;
Any *value() const;
Flags flags() const;

};

Figure 9-7 The NamedValue class.

INITIALIZING A DII REQUEST

vbpg.bk Page 9 Thursday, December 19, 1996 2:25 PM
METHOD DESCRIPTION

name() Returns a pointer to the name of the item that you can then use
to initialize the name.

value() Returns a pointer to an Any object representing the itemÕs value
that you can then use to initialize the value. For more informa-
tion, see ÒThe Any ClassÓ on page 9-10.

ßags() Indicates if this item in an input argument, an output argument
or both an input and output argument. If the item is both an
input and output argument, you can specify a ßag indicating
that the ORB should make a copy of the argument and leave
the callerÕs memory intact. Flags are:

ARG_IN
ARG_OUT
ARG_INOUT
IN_COPY_VALUE

Table 9-8 The NamedValue class methods.
9–9

DYNAMIC INTERFACES

9–10

9

vbpg.bk Page 10 Thursday, December 19, 1996 2:25 PM
The Any Class

This class is used to represent any IDL type so that they may be passed in a type-safe manner. Objects of
this class have a pointer to a TypeCode that defines the object’s type and a pointer to the value associ-
ated with the object. Methods are provide to construct, copy and destroy an object as well as initialize and
query the object’s properties. In addition, streaming operators are provided to write the object to a stream.
A complete description of this class can be found in the VisiBroker for C++ Reference Guide.

 class Any
{

public:
Any();
Any(const Any&);
Any(TypeCode_ptr tc, void *value, Boolean release=0);
~Any();

Any& operator=(const Any&);
// Overloaded operators for all data types
void operator<<=(Short);
void operator<<=(UShort);
void operator<<=(Long);
void operator<<=(ULong);
...
TypeCode_ptr type();
const void *value() const;
static Any_ptr _nil();
static Any_ptr _duplicate(Any *ptr);
static void _release(Any *ptr);

// Streaming operators to write Anys to stdout, etc.
ostream& operator<<(ostream&, const Any&);
istream& operator>>(istream& strm, Any& any);
istream& operator>>(istream& strm, Any_ptr& any);
...

}

Figure 9-9 The Any class.

The TypeCode Class

This class is used by the Interface Repository and the IDL compiler to represent the type of arguments or
attributes.TypeCode objects are also used in the DII to specify an argument’s type in conjunction with the
Any class. TypeCode objects have a kind property and parameter list property. A complete description
of this class can be found in the VisiBroker for C++ Reference Guide.

INITIALIZING A DII REQUEST

vbpg.bk Page 11 Thursday, December 19, 1996 2:25 PM
TYPECODE CONST KIND PARAMETER LIST

TC_null tk_null None

TC_void tk_void None

TC_short tk_short None

TC_long tk_long None

TC_ushort tk_ushort None

TC_ulong tk_ulong None

TC_ßoat tk_ßoat None

TC_double tk_double None

TC_boolean tk_boolean None

TC_char tk_char None

TC_octet tk_octet None

TC_any tk_any None

TC_TypeCode tk_TypeCode None

TC_Principal tk_Principal None

TC_Object tk_objref interface_id

Structure
(const generated)

tk_struct struct-name, {member, TypeCode}

Union
(const generated)

tk_union union-name, switch TypeCode, {label-value, member-
name, TypeCode}

Enum
(const generator)

tk_enum {enum-name, enum-id}

TC_string tk_string maxlen

Sequence
(const generator)

tk_sequence TypeCode, maxlen

Array
(const generator)

tk_array TypeCode, length

Table 9-10 TypeCode kinds and their associated parameter lists.
9–11

DYNAMIC INTERFACES

9–12

9

vbpg.bk Page 12 Thursday, December 19, 1996 2:25 PM
TYPE NAME

TypeCode_ptr _tc_null

TypeCode_ptr _tc_void

TypeCode_ptr _tc_short

TypeCode_ptr _tc_long

TypeCode_ptr _tc_ushort

TypeCode_ptr _tc_ulong

TypeCode_ptr _tc_ßoat

TypeCode_ptr _tc_double

TypeCode_ptr _tc_boolean

TypeCode_ptr _tc_char

TypeCode_ptr _tc_octet

TypeCode_ptr _tc_Any

TypeCode_ptr _tc_TypeCode

TypeCode_ptr _tc_Principal

TypeCode_ptr _tc_Object

TypeCode_ptr _tc_string

TypeCode_ptr _tc_NamedValue

Table 9-11 TypeCode constants for IDL data types.

SENDING A DII REQUEST

vbpg.bk Page 13 Thursday, December 19, 1996 2:25 PM
SENDING A DII REQUEST

The Request class provides several methods for sending the request, once it has been properly initial-
ized. The simplest of these is the invoke method which sends the request and blocks waiting for a
response before returning to your client application. The non-blocking method send_deferred
allows your client to send the request and then use the poll_response method to determine when
the response is available. The get_response method blocks until a response is received.

The send_oneway method can be used to send a oneway request. Oneway requests do not involve a
response being sent from the object implementation.

The result method returns a pointer to a NamedValue object that represents the return value.

 EXAMPLE
...
// Assumes that req has been set to Request
// See page 9-4
// Create TypeCode for structure
CORBA::StructMemberSeq members;
members.length(2);
members[0].name = (const char *)"author";
members[0].type =

CORBA::TypeCode::_duplicate(CORBA::_tc_string);
members[1].name = (const char *)"title";
members[1].type =

CORBA::TypeCode::_duplicate(CORBA::_tc_string);

bookTypeCode = orb->create_struct_tc(
"book", "book", members);

// Write out author and title to a MarshalOutBuffer
CORBA::MarshalOutBuffer buf;
buf << argv[1];// Author
buf << argv[2];// Title
bookValue.replace(bookTypeCode, buf);
// Get Argument list from request.
CORBA::NVList_var arguments = req->arguments();
9–13

DYNAMIC INTERFACES

9–14

9

vbpg.bk Page 14 Thursday, December 19, 1996 2:25 PM
arguments->add_value("book", bookValue, CORBA::ARG_IN);

// Set result
// NOTE: All parameters types (IN, OUT, INOUT and

RETURN) need
// to be set so that DII knows the data types of all
// arguments.
CORBA::Boolean ret=0;
CORBA::NamedValue_var result(req->result());
CORBA::Any_var resultAny(result->value());
resultAny->replace(CORBA::_tc_boolean, &result);

// Execute the function
req->invoke();
CORBA::Environment_var env = req->env();
if (env->exception())

cout << "Exception occured" << endl;
else {

// Get the return value;
ret = *(CORBA::Boolean *)resultAny->value();

}
cout << "Return value from invoke: " << (int)ret <<

endl;
return(1);

}

Sending and Receiving Multiple Requests

A sequence of DII Request objects can be created using RequestSeq, defined in the
CORBA::ORB class and shown in Figure 9-12 . A sequence of requests can be sent using the ORB
methods send_multiple_requests_oneway or
send_multiple_requests_deferred. If the sequence of requests is sent as oneway
requests, no response is expected from the server to any of the requests.

If the requests in the sequence are sent using send_multiple_requests_deferred, the
poll_next_response and get_next_response methods are used to receive the response
the server sends for each request.

The ORB method poll_next_response can be used to determine if a response has been received
from the server. This method returns one if one or more responses are available. This method returns zero
if there are no responses available.

The ORB method get_next_response can be used to receive a response. If no response is avail-
able, this method will block until a response is received. If you do not wish your client application to
block, use the poll_next_response method to determine when a response is available.

vbpg.bk Page 15 Thursday, December 19, 1996 2:25 PM
 class CORBA {
class ORB {

...
typedef sequence<Request_ptr> RequestSeq;
Status send_multiple_requests_oneway(const RequestSeq &);
Status send_multiple_requests_deferred(const RequestSeq &);
Boolean poll_next_response();
Status get_next_response();
...

};
};

Figure 9-12 ORB methods for sending multiple requests and receiving the results.
9–15

DYNAMIC INTERFACES

9–16

9

vbpg.bk Page 16 Thursday, December 19, 1996 2:25 PM

C H A P T E R 1 0

vbpg.bk Page 1 Thursday, December 19, 1996 2:25 PM
10T H E I D L C O M P I L E R

This chapter discusses the VisiBroker IDL compiler and includes the following

major sections:

The IDL Compiler 10-2

Code Generated for Clients 10-3

Code Generated for Servers 10-6

Interface Attributes 10-8

Oneway Methods 10-10

Mapping Object References 10-11

Interface Inheritance 10-11

THE IDL COMPILER

10–2

10

vbpg.bk Page 2 Thursday, December 19, 1996 2:25 PM
THE IDL COMPILER

You use the Interface Definition Language, IDL, to define the object interfaces that client applications
may use. The IDL compiler uses your interface definition to generate C++ code. Figure 10-1 shows how
the compiler generates code for the client application and for the object implementation, or server. The
file names used for discussion in this chapter apply to systems that support long file names.

Figure 10-1 C++ files generated by the IDL compiler.

The Interface DeÞnition

Your interface definition defines the name of the object as well as all of the methods the object offers.
Each method specifies the parameters that will be passed to the method, their type and whether they are
for input or output. Figure 10-2 shows an IDL specification for an object named example. The
example object has only one method, op1.

Example
Object

Definition

ex.idl

Client
Stubs

Object
Skeletons

IDL to C++

Client
Stubs

Object
Skeletons

ex_client.hh

ex_client.cc ex_server.cc

ex_server.hh

Compiler

CODE GENERATED FOR CLIENTS

vbpg.bk Page 3 Thursday, December 19, 1996 2:25 PM
 // IDL specification for the example object
interface example
{

long op1(in char x, out short y);
};

Figure 10-2 The example IDL specification.

CODE GENERATED FOR CLIENTS

Figure 10-1 shows how the IDL compiler generates two client files; ex_client.hh and ex_client.cc. These
two files provide an example class in C++ that the client will use. Files generated by the IDL compiler
always have either a “.cc” or “.hh” suffix to make them easy to distinguish from file you create yourself.

You should not modify the contents of the files generated by the IDL compiler.

 class example : public virtual CORBA::Object
{

private:
// Methods used internally by VisiBroker to store type information
...

public:
// More methods used internally by VisiBroker to create object
// references and manage type information

protected:
example(const char *obj_name = NULL) : CORBA::Object(obj_name, 1);
example(NCistream& strm) :CORBA::Object(strm);
virtual ~example();

public:
static example_ptr _bind(const char *object_name = NULL,

const char *host_name = NULL,
const CORBA::BindOptions* opt = NULL);

static example_ptr _duplicate(example_ptr obj);
static example_ptr _nil();
static example_ptr _narrow(CORBA::Object *obj)
virtual CORBA::Long op1(CORBA::Char x, CORBA::Short& y);

};

Figure 10-3 The example class generated in ex_client.hh.
10–3

THE IDL COMPILER

10–4

10

vbpg.bk Page 4 Thursday, December 19, 1996 2:25 PM
Methods Generated

Figure 10-3 shows the op1 method generated by the IDL complier, along with several other methods.
The op1 method is called a stub because when your client application invokes it, it actually packages the
interface request and arguments into a message, sends the message to the object implementation, waits
for a response, decodes the response, and reflects the results to your application.

Since the example class is derived from the CORBA::Object class, several inherited methods are avail-
able for your use. The CORBA::Object class methods are described in the VisiBroker for C++ Reference
Guide.

The _ptr DeÞnition

The IDL compiler always provides a pointer type definition. Figure 10-4 shows the type definition for the
example class.

 typedef example *example_ptr;

Figure 10-4 The _ptr type definition.

The _var Class

The IDL compiler also generates a class named example_var, which you can use instead of the
example class. The example_var class will automatically manage the memory associated with
the object reference.When the an example_var object is deleted, the object associated with
example_ptr is released. When an example_var object is assigned, the old object reference
pointed to by example_ptr is released after the assignment takes place. A casting operator is also
provided to allow you to assign an example_var to a type example_ptr.

CODE GENERATED FOR CLIENTS

vbpg.bk Page 5 Thursday, December 19, 1996 2:25 PM
 class example_var
{

public:
example_var();
example_var(example_ptr ptr);
example_var(const example_var& var);
~example_var();
example_var& operator=(example_ptr p);
example operator=(const example_ptr p);
example_ptr operator->();
...

protected:
example_ptr _ptr;

private:
...

};

Figure 10-5 The example_var class.

METHOD DESCRIPTION

example_var() Constructor that initializes the _ptr to NULL.

example_var(example_ptr ptr) Constructor that creates an object with the _ptr initial-
ized to the argument passed. When the object is
destroyed, the object to which _ptr points will
destroyed.

example_var(const example_var& var) Constructor that makes a copy of the object passed as
a parameter var and points _ptr to the newly
copied object. When this object is destroyed, the object
to which _ptr points will be destroyed.

~example() Destructor that frees any memory associated with
_ptr before destroying this object.

operator=(example_ptr p) Assignment operator that frees any memory associated
with _ptr before performing the assignment.

operator=(const example_ptr p) Assignment that frees any memory associated with _ptr
before making a complete copy of the speciÞed object
and assigning _ptr to point to the newly created object.

operator->() Returns the _ptr stored in this class. This operator
should not be called until this class has been properly
initialized.

Table 10-6 The _var class method descriptions.
10–5

THE IDL COMPILER

10–6

10

vbpg.bk Page 6 Thursday, December 19, 1996 2:25 PM
CODE GENERATED FOR SERVERS

Figure 10-1 shows how the IDL compiler generates two server files: ex_server.hh and
ex_server.cc. These two files provide an _sk_example class in C++ that the server will use to
derive an implementation class. The _sk_example class is derived from the client’s example
class.

 CAUTION You should not modify the contents of the files generated by the IDL compiler.

 class _sk_example : public example
{

protected:
_sk_example(const char *object_name = (const char *)NULL);
virtual ~_sk_example();

public:
static const CORBA::TypeInfo _skel_info;
virtual CORBA::Long op1(CORBA::Char x, CORBA::Short& y) = 0;
static void _op1(void *obj), CORBA::MarshalStream &strm,

CORBA::Principal_ptr principal,
const char *oper);

};

Figure 10-7 The _sk_example class generated in ex_server.hh.

Generated Methods

Notice that the op1 method defined in the IDL specification in Figure 10-2 is generated, along with an
_op1 method. The op1 method is a pure virtual method and must be implemented by the class you
derive from _sk_example.

The _op1 method is called a skeleton and is invoked by the BOA when a client request is received. This
method will marshal all the parameters from the request, invoke the op1 method and then marshal the
return parameters or exceptions into a response message. The ORB will then send the response to the
client application. Skeleton methods should not be explicitly invoked by the server or object implementa-
tion.

The constructor and destructor are both protected. The constructor accepts an object name so that multi-
ple objects can be instantiated by a server.

CODE GENERATED FOR SERVERS

vbpg.bk Page 7 Thursday, December 19, 1996 2:25 PM
The Class Template

In addition to the _sk_example class, the IDL compiler generates a class template named
_tie_example. This template can be used if you wish to avoid the overhead associated with deriv-
ing a class from _sk_example. Templates can also be useful for providing a wrapper class for exist-
ing applications that cannot be modified to inherit from a new class. Figure 10-8 shows the template
class generated by the IDL compiler for the example class.

 template <class T>
class _tie_example : public example
{

public:
_tie_example(T& t, const char *obj_name=(char *)NULL);
~_tie_example();
CORBA::Long op1(CORBA::Char x, CORBA::Short& y);

private:
T& _ref;

};

Figure 10-8 A template class generated for the example class.

USING THE TEMPLATE

To use the _tie_example template class you must first create your own Example class. Figure
10-9 shows what your Example class might look like. Notice that, unlike most object implementation
classes, this Example class does not inherit from the client’s example class or any class supplied by
VisiBroker.

 class Example
{

public:
Example();
CORBA::Long op1(CORBA::Char x, CORBA::Short& y);

};

Figure 10-9 A class to be used with the _tie_example template.
10–7

THE IDL COMPILER

10–8

10

vbpg.bk Page 8 Thursday, December 19, 1996 2:25 PM
Given the _tie_example template generated by the IDL compiler and the Example class you defined,
Figure 10-10 shows the server’s main routine.

 void main(int argc, char * const *argv)
{

// Initialize ORB and BOA
CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
CORBA::BOA_ptr boa = orb->BOA_init(argc, argv);

// Instantiate the Example class
Example myExample;

// Instantiate the template, passing a reference to the
// example object instantiated above and an ORB object instance
// name.
_tie_example<Example> tieExample(myExample, “test”);
boa->impl_is_ready();
return(1);

};

Figure 10-10 Using the _tie_example template class.

INTERFACE ATTRIBUTES

In addition to operations, an interface specification can also define attributes as part of the interface. By
default, all attributes are read-write and the IDL compiler will generate two methods; one to set the
attribute’s value and one to get the attribute’s value. You can also specify read-only attributes.

Figure 10-11 shows an IDL specification that defines two attributes; one read-write and one read-only.
Figure 10-12 shows the resulting class definition generated by the IDL compiler for the client applica-
tion. Figure 10-13 shows the class definition generated for the object implementation.

 // IDL
interface test
{

attribute long count;
readonly attribute string name;

};

INTERFACE ATTRIBUTES

vbpg.bk Page 9 Thursday, December 19, 1996 2:25 PM
Figure 10-11 IDL specification with two attributes; one read-write and one read-only.

 class test : public virtual CORBA::Object
{

...
// Methods for read-write attribute
virtual CORBA::Long count();
virtual void count(CORBA::Long val);

// Method for read-only attribute.
virtual char * name();
...

};

Figure 10-12 The class generated for the client application.

 class _sk_test : public test
{

virtual CORBA::Long count() = 0;
virtual void count(CORBA::Long val) = 0;
virtual char * name() = 0;

};

Figure 10-13 The class generated the server.
10–9

THE IDL COMPILER

10–10

10

vbpg.bk Page 10 Thursday, December 19, 1996 2:25 PM
ONEWAY METHODS

The IDL allows you to specify operations that have no return value, called oneway methods. These
operations may only have input parameters. When a oneway method is invoked, a request is sent to the
server but there is no confirmation from the object implementation that the request was actually received.
VisiBroker uses TCP/IP for connecting clients to servers. This provides guaranteed delivery of all data-
grams so the client can be sure the request will be delivered to the server—as long as the server remains
available. Still, the client has no way of knowing if the request was actually processed by the object
implementation itself.

 NOTE Oneway operations cannot throw exceptions.

 // IDL
interface oneway_example
{

oneway void set_value(in long val);
};

Figure 10-14 Defining a oneway operation.

 class oneway_example : public virtual CORBA::Object
{

virtual void set_value(CORBA::Long val);
...

};

Figure 10-15 Code generated for the client application.

 class _sk_oneway_example : public oneway_example
{

virtual void set_value(CORBA::Long val) = 0;
};

Figure 10-16 Base class generated for the implementation.

MAPPING OBJECT REFERENCES

vbpg.bk Page 11 Thursday, December 19, 1996 2:25 PM
MAPPING OBJECT REFERENCES

In addition to generating C++ classes from your interface specification, the IDL compiler will also create
object references for your classes. Figure 10-17 shows the object references generated by the IDL com-
piler when the example interface specification shown in
Figure 10-2 is compiled.

 typedef example *example_ptr;
typedef example_ptr exampleRef;

Figure 10-17 Object references generated by the IDL compiler.

INTERFACE INHERITANCE

IDL allows you to specify an interface that inherits from another interface. The C++ classes generated by
the IDL compiler will reflect the inheritance relationship. All methods, data type definitions, constants
and enumerations declared by the parent interface will be visible to the derived interface.

 // IDL
interface parent
{

void operation1();
}

interface child : parent
{

...
long operation2(in short s);

};

Figure 10-18 An example of inheritance in an interface specification.
10–11

THE IDL COMPILER

10–12

10

vbpg.bk Page 12 Thursday, December 19, 1996 2:25 PM
 ...
class parent : public virtual CORBA::Object
{

...
void operation1(CORBA::Environment& _env);
...

};

class child : public virtual parent
{

...
CORBA::Long operation2(CORBA::Short s, CORBA::Environment& _env);
...

};

Figure 10-19 The C++ code generated from Figure 10-19 .

C H A P T E R 1 1

vbpg.bk Page 1 Thursday, December 19, 1996 2:25 PM
11IDL TO C++ LANGUAGE MAPPING

This chapter discusses the IDL to C++ language mapping provided by the

VisiBroker IDL to C++ compiler, which complies strictly with the CORBA C++

language mapping specification. This chapter includes the following major

sections:

Primitive Data Types 11-2

Strings 11-2

Constants 11-4

Enumerations 11-6

Type DeÞnitions 11-6

Modules 11-8

Complex Data Types 11-9

IDL TO C++ LANGUAGE MAPPING

11–2

11

vbpg.bk Page 2 Thursday, December 19, 1996 2:25 PM
PRIMITIVE DATA TYPES

The basic data types provided by the Interface Definition Language are summarized in Table 11-1 . Due
to hardware differences between platform, some of the IDL primitive data types have a definition that is
marked “platform dependent.” On a platform that has 64-bit integral representations, for example, the
CORBA::Long type would still be only 32 bits. You should consult the include file orbtypes.h for an
exact mapping of these primitive data types for your particular platform.

 The IDL boolean type is defined by the CORBA specification to have only one of two values: 1 or
0. Using other values for a boolean will result in undefined behavior.

STRINGS

String types in IDL may specify a length or may be unbounded, but both are mapped to the C++ type
char *. You must use the functions shown in Figure 11-2 for dynamically allocating strings to ensure
that your applications and VisiBroker use the same memory management facilities. All CORBA string
types are null-terminated.

IDL TYPE VISIBROKER TYPE C++ DEFINITION

SHORT CORBA::SHORT SHORT

LONG CORBA::LONG PLATFORM DEPEN-
DENT

UNSIGNED
SHORT

CORBA::USHORT UNSIGNED SHORT

UNSIGNED
LONG

CORBA::ULONG UNSIGNED LONG

FLOAT CORBA::FLOAT FLOAT

DOUBLE CORBA::DOUBLE DOUBLE

CHAR CORBA::CHAR CHAR

BOOLEAN CORBA::BOOLEAN UNSIGNED CHAR

OCTET CORBA::OCTET UNSIGNED CHAR

LONGLONG CORBA::LONGLONG PLATFORM DEPEN-
DENT

ULONGLONG CORBA::ULONGLONG PLATFORM DEPEN-
DENT

Table 11-1 The mapping of primitive data types.

!

STRINGS

vbpg.bk Page 3 Thursday, December 19, 1996 2:25 PM
 class CORBA
{

...
static char *string_alloc(CORB::ULong len);
static void string_free(char *data);
...

};

Figure 11-2 Methods for allocating and freeing memory for strings.

String_var Class

In addition to mapping an IDL string to a char *, the VisiBroker IDL to C++ compiler generates
a String_var class that contains a pointer to the memory allocated to hold the string. When a
String_var object is destroyed or goes out of scope, the memory allocated to the string is automatically
freed. Figure 11-4 shows the String_var class and the methods it supports. For detailed informa-
tion on the _var classes, see “The _var Class” on page 10-4.

METHOD DESCRIPTION

CORBA::string_alloc Dynamically allocates a string and returns a pointer to the string. A
NULL pointer is returned if the allocation fails. The length specified
by the len parameter does not need to include the NULL termina-
tor.

CORBA::string_free Releases the memory associated with a string that was allocated
with CORBA::string_alloc.

Table 11-3 CORBA string allocation and release methods.
11–3

IDL TO C++ LANGUAGE MAPPING

11–4

11

vbpg.bk Page 4 Thursday, December 19, 1996 2:25 PM
 class CORBA {
class String_var {

protected:
char *_p;
...

public:
String_var();
String_var(char *p);
~String_var();
String_var& operator=(const char *p);
String_var& operator=(char *p);
String_var& operator=(const String_var& s);
operator const char *() const;
operator char *();
char &operator[](CORBA::ULong index);
char operator[](CORBA::ULong index) const;
friend ostream& operator<<(ostream&, const String_var&);
inline friend Boolean operator==(const String_var& s1,

const String_var& s2);
...

};
...

};

Figure 11-4 The String_var class.

CONSTANTS

Figure 11-6 shows how IDL constants defined outside of any interface specification will be mapped
directly to a C++ constant declaration. Figure 11-6 shows how constants defined within an interface
specification are declared in the include file and assigned a value in the source file.

 // These top-level definitions in IDL
const string str_example = “this is an example”;
const long long_example = 100;
const boolean bool_example = TRUE;
...

// Result in the generation of this C++ code
const char * str_example = “this is an example”;
const CORBA::Long long_example = 100;
const CORBA::Boolean bool_example = 1;

Figure 11-5 Top-lever constant definitions in IDL and the resulting C++ code.

CONSTANTS

vbpg.bk Page 5 Thursday, December 19, 1996 2:25 PM
 // These definitions are in the IDL file example.idl
interface example {

const string str_example = “this is an example”;
const long long_example = 100;
const boolean bool_example = TRUE;

};
...

// Result in the generation of this C++ code in example_client.hh
class example :: public virtual CORBA::Object
{

...
static const char * str_example; /* “this is an example” */
static const CORBA::Long long_example; /* 100 */
static const CORBA::Boolean bool_example; /* 1 */
...

};

...

// And the generation of this C++ code in example_client.cc
const char * example::str_example = “this is an example”;
const CORBA::Long example::long_example = 100;
const CORBA::Boolean example::bool_example = 1;

Figure 11-6 Constant definitions within an interface specification and the resulting C++ code.

Under some circumstances, the IDL compiler must generate C++ code containing the value of an IDL
constant rather than the name of the constant. Figure 11-7 shows how the value of the constant len must
be generated for the typedef V to allow the C++ code to compile properly.

 // IDL
interface foo {

const long length = 10;
typedef long V[length];

};
...

// Results in this C++ code being generated by the IDL compiler
class foo : public virtual CORBA::Object
{

const CORBA::Long length;
typedef CORBA::Long V[10];

};

Figure 11-7 Sometimes the value of an IDL constant must be generated in C++.
11–5

IDL TO C++ LANGUAGE MAPPING

11–6

11

vbpg.bk Page 6 Thursday, December 19, 1996 2:25 PM
ENUMERATIONS

Figure 11-8 shows how enumerations in IDL map directly to C++ enumerations.

 // IDL
enum enum_type {

first,
second,
third

};

// Results in this C++ code
enum enum_type {

first,
second,
third

};

Figure 11-8 Enumerations in IDL map directly to C++.

TYPE DEFINITIONS

Figure 11-9 shows how type definitions in IDL are mapped directly to C++ type definitions. If the origi-
nal IDL type definition maps to several C++ types, the IDL compiler generates the corresponding aliases
for each type in C++. Figure 11-10 and Figure 11-11 show other type definition mapping examples.

TYPE DEFINITIONS

vbpg.bk Page 7 Thursday, December 19, 1996 2:25 PM
 // IDL
typedef octet example_octet;
typedef enum enum_values {

first,
second,
third

} enum_example;

// Results in the generation of this C++ code
typedef octet example_octet;
enum enum_values {

first,
second,
third

};
typedef enum_values enum_example;

Figure 11-9 The mapping of simple type definitions from IDL to C++

 // IDL
interface A1;
typedef A1 A2;
...

// Results in the generation of this C++ code
class A1;
typedef A1 *A1_ptr;
typedef A1_ptr A1Ref;
class A1_var;

typedef A1 A2;
typedef A1_ptr A2_ptr;
typedef A1Ref A2Ref;
typedef A1_var A2_var;

Figure 11-10 Mapping an IDL interface type definition to C++.
11–7

IDL TO C++ LANGUAGE MAPPING

11–8

11

vbpg.bk Page 8 Thursday, December 19, 1996 2:25 PM
 // IDL
typedef sequence<long> S1;
typedef S1 S2;
...

// Results in the generation of this C++ code
class S1;
typedef S1 *S1_ptr;
typedef S1_ptr S1Ref;
class S1_var;

typedef S1 S2;
typedef S1_ptr S2_ptr;
typedef S1Ref S2Ref;
typedef S1_var S2_var;

Figure 11-11 Mapping an IDL sequence type definition to C++.

For more information, see “The _var Class” on page 10-4.

MODULES

The OMG IDL to C++ language mapping specifies that an IDL module should be mapped to a C++
namespace with the same name. Since few compilers currently support the namespace,the C++
language mapping allows the use of class in its place. Figure 11-12 shows how VisiBroker’s IDL
compiler maps module to class.

 // IDL
module ABC
{

// Definitions
...

};

...

// Results in the generation of this C++ code
class ABC
{

// Definitions
...

};

Figure 11-12 Mapping an IDL module to a C++ class.

COMPLEX DATA TYPES

vbpg.bk Page 9 Thursday, December 19, 1996 2:25 PM
COMPLEX DATA TYPES

The C++ mappings for IDL structures, unions, sequences and arrays depend on whether or not the data
members they contain are of a fixed or variable length. These types are considered to have variable
lengths and, consequently, any complex data type that contains them will also have a variable length.

n The any type.

n The string type, bounded or unbounded.

n The sequence type, bounded or unbounded.

n An object reference.

n Other structures or unions that contain a variable-length member.

n An array with variable-length elements.

n A typedef with variable-length elements.

Table 11-13 shows a summary of the C++ mappings for complex data types.

IDL TYPE C++ MAPPING

STRUCT (FIXED
LENGTH)

STRUCT

STRUCT (VARIABLE
LENGTH)

STRUCT (_VAR TYPES FOR VARIABLE LENGTH MEMBERS)

UNION CLASS AND _VAR CLASS

SEQUENCE CLASS AND _VAR CLASS

ARRAY ARRAY

Table 11-13 Summary of the C++ mappings for complex data types.
11–9

IDL TO C++ LANGUAGE MAPPING

11–10

11

vbpg.bk Page 10 Thursday, December 19, 1996 2:25 PM
Fixed-length Structures

Figure 11-14 shows how fixed-length structures in IDL are mapped to C++ code. In addition to the struc-
ture, VisiBroker’s IDL compiler will also generate an example_var class for the structure. For more infor-
mation, see “The _var Class” on page 10-4. Figure 11-15 shows how you might use the struct and class.

 // IDL
struct example {

short a;
long b;

};
...

// Results in the generation of this C++ code.
struct example {

CORBA::Short a;
CORBA::Long b;

};

class example_var
{

...
private:

example *_ptr;
};

Figure 11-14 Mapping fixed-length a IDL structure to C++.

 // Declare an example struct and initialize its fields.
example ex1 = { 2, 5 };

// Declare a _var class and assign it to a newly created example structure.
// This results in the _ptr pointing to an allocated struct with
// uninitialized fields.
example_var ex2 = new example;

// Initialize the fields of ex2 from ex1
ex2->a = ex1.b;

Figure 11-15 Use of the example structure and the example_var class.

To access the fields of the _var class ex2, the -> operator must always be used. When ex2 goes out
of scope, the memory allocated to it will be freed automatically.

COMPLEX DATA TYPES

vbpg.bk Page 11 Thursday, December 19, 1996 2:25 PM
Variable Length Structures

Figure 11-16 shows how you could modify the example structure, replacing the long member with
a string and adding an object reference, to change to a variable-length structure.

 // IDL
interface ABC {

// Definitions ...
};
struct vexample {

short a;
ABC c;
string name;

};
...

// Results in the generation of this C++ code
struct vexample {

CORBA::Short a;
ABC_var c;
CORBA::String_var name;
vexample& operator=(const vexample& s);

};

class vexample_var {
...

};

Figure 11-16 Mapping a variable-length structure to C++.

Notice how the ABC object reference is mapped to an ABC_var class. In a similar fashion, the string
name is mapped to a CORBA::String_var class. In addition, an assignment operator is also gen-
erated for variable-length structures.
11–11

IDL TO C++ LANGUAGE MAPPING

11–12

11

vbpg.bk Page 12 Thursday, December 19, 1996 2:25 PM
MEMORY MANAGEMENT FOR STRUCTURES

The use of _var classes in variable-length structures ensures that memory allocated to the variable-length
members are managed transparently.

n If a structure goes out of scope, all memory associated with variable-length members is
automatically freed.

n If a structure is initialized or assigned and then re-initialized or re-assigned, the memory
associated with the original data is always freed.

n When a variable-length member is assigned to an object reference, a copy is always made of the
object reference. If a variable-length member is assigned to a pointer, no copying takes place.

Unions

Figure 11-18 shows how an IDL union is mapped to a C++ class with methods for setting and
retrieving the value of the data members. A data member named _d of the discriminant type is also
defined. The value of this discriminant is not set when the union is first created, so an application must set
it before using the union. Setting any data member using one of the provided methods automatically sets
the discriminant. Table 11-17 describes some of the methods in the un_ex class.

VisiBroker’s IDL compiler may also generate hash and compare methods for unions, which you can
control with compiler options. See the VisiBroker for C++ Reference Guide for more information on com-
piler options.

METHOD DESCRIPTION

un_ex() The default constructor sets the discriminant to zero but does
not initialize any of the other data members.

un_ex(const un_ex& obj) The copy constructor performs a deep copy of the source object.

~un_ex() The destructor frees all memory owned by the union.

operator=(const un_ex&
obj)

The assignment operator performs a deep copy, releasing old
storage, if necessary.

Table 11-17 The un_ex methods.

COMPLEX DATA TYPES

vbpg.bk Page 13 Thursday, December 19, 1996 2:25 PM
 // IDL
struct st_ex
{

long abc;
};
union un_ex switch(long)
{

case 1: long x; // a primitive data type
case 2: string y; // a simple data type
case 3: st_ex z; // a complex data type

};
...

// Results in the generation of this C++ code
struct st_ex
{

CORBA::Long abc;
};

class un_ex
{

private:
CORBA::Long _d;
CORBA::Long _x;
CORBA::String_var _y;
st_ex _z;

public:
un_ex();
~un_ex();
un_ex(const un_ex& obj);
un_ex& operator=(const un_ex& obj);
void _d(CORBA::Long val);
CORBA::Long _d() const;
void x(CORBA::Long val);
CORBA::Long x() const;
void y(char *val);
void y(const char *val);
void y(const CORBA::String_var& val);
const char *y() const;
const st_ex& z() const;
st_ex& z();

...
};

Figure 11-18 Mapping an IDL union to a C++ class.

MANAGED TYPES FOR UNIONS

In addition to the un_ex class shown in Figure 11-18 , a un_ex_var class would also be generated.
See “The _var Class” on page 10-4 for details on the _var classes.
11–13

IDL TO C++ LANGUAGE MAPPING

11–14

11

vbpg.bk Page 14 Thursday, December 19, 1996 2:25 PM
MEMORY MANAGEMENT FOR UNIONS

Here are some important points to remember about memory management of complex data types within a
union:

n When you use an accessor method to set the value of a data member, a deep copy is performed.
You should pass parameters to accessor methods by value, for smaller types, or by a constant
reference, for larger types.

n When you set a data member using an accessor method, any memory previously associated with
that member is freed. If the member being assigned is an object reference, the reference count of
that object will be incremented before the accesor method returns.

n A char * accessor method will free any storage before ownership of the passed pointer is
assumed.

n Both const char * and String_var accessor methods will free any old memory
before the new parameter’s storage is copied.

n Accessor methods for array data members will return a pointer to the array slice. For more
information, see “Array Slices” on page 11-18.

Sequences

IDL sequences, both bounded and unbounded, are mapped to a C++ class that has a current length and a
maximum length. The maximum length of a bounded sequence is defined by the sequence’s type.
Unbounded sequences can specify their maximum length when their C++ constructor is called. The
current length can be modified programmatically. Figure 11-19 shows how an IDL sequence is mapped
to a C++ class with accessor methods.

COMPLEX DATA TYPES

vbpg.bk Page 15 Thursday, December 19, 1996 2:25 PM
 NOTE When the length of an unbounded sequence exceeds the maximum length you specify, VisiBroker will
transparently allocate a larger buffer, copy the old buffer to the new buffer and free the memory allocated
to the old buffer. However, no attempt will be made to free any unused memory if the maximum length
decreases.

 // IDL
typedef sequence<long> LongSeq;
...

// Results in the generation of this C++ code
class LongSeq
{

public:
LongSeq(CORBA::ULong max=0);
LongSeq(CORBA::ULong max=0, CORBA::ULong length,

CORBA::Long *data, CORBA::Boolean release = 0);
LongSeq(const LongSeq&);
~LongSe q();
LongSeq& operator=(const LongSeq&);
CORBA::ULong maximum() const;
void length(CORBA::ULong len);
CORBA::ULong length() const;
const CORBA::ULong& operator[](CORBA::ULong index) const;
...
static LongSeq *_duplicate(LongSeq* ptr);
static void _release(LongSeq *ptr);
static CORBA::Long *allocbuf(CORBA::ULong nelems);
static void freebuf(CORBA::Long *data);

private:
CORBA::Long *_contents;
CORBA::ULong _count;
CORBA::ULong _num_allocated:
CORBA::Boolean _release_flag;
CORBA::Long _ref_count;

};

Figure 11-19 Mapping an IDL unbounded sequence to a C++ class.
11–15

IDL TO C++ LANGUAGE MAPPING

11–16

11

vbpg.bk Page 16 Thursday, December 19, 1996 2:25 PM
METHOD DESCRIPTION

LongSeq(CORBA::ULong max=0) The constructor for an unbounded sequence takes a maxi-
mum length as an argument. Bounded sequences have a
deÞned maximum length.

LongSeq(CORBA::ULong max=0,
 CORBA::ULong length,
 CORBA::Long *data,
 CORBA::Boolean release=0)

This constructor allows you to set the maximum length, the
current length, a pointer to the data buffer associated and
a release ßag. If release is not zero, VisiBroker will free
memory associated with the data buffer when increasing
the size of the sequence. If release is zero, the old data
bufferÕs memory is not freed. Bounded sequences have all
of these parameters except for max.

LongSeq(const LongSeq&) The copy constructor performs a deep copy of the source
object.

~LongSeq(); The destructor frees all memory owned by the sequence
only if the release ßag had a non-zero value when con-
structed.

operator=(const LongSeq&j) The assignment operator performs a deep copy, releasing
old storage, if necessary.

maximum() Returns the size of the sequence

length() Two methods are deÞned for setting and returning the
length of the sequence.

operator[]() Two indexing operators are provided for accessing an ele-
ment within a sequence. One operator allows the element
to be modiÞed and one allows only read access to the ele-
ment.

_release() Releases the sequence. If the constructorÕs release ßag
was non-zero when the object was created and the
sequence element type is a string or object reference,
each element will be released before the buffer is
released.

allocbuf()
freebuf()

You should use these two static methods to allocate or
free any memory used by a sequence.

Table 11-20 The LongSeq methods.

COMPLEX DATA TYPES

vbpg.bk Page 17 Thursday, December 19, 1996 2:25 PM
MANAGED TYPES FOR SEQUENCES

In addition to the LongSeq class shown in Figure 11-19 , a LongSeq_var class would also be gen-
erated. See “The _var Class” on page 10-4 for details on the _var classes. In addition to the usual _var
methods, there are two indexing methods defined for sequences.

 CORBA::Long& operator[](CORBA::ULong index);
const CORBA::Long& operator[](CORBA::ULong idex) const ;

Figure 11-21 The two indexing methods added for _var classes representing sequences.

MEMORY MANAGEMENT FOR SEQUENCES

You should carefully consider the memory management issues listed below. Figure 11-22 contains
sample C++ code that illustrates these points.

n If the release flag was set to a non-zero value when the sequence was created, the sequence will
assume management of the user’s memory. When an element is assigned, the old memory is freed
before ownership of the memory on the right hand side of the expression is assumed.

n If the release flag was set to a non-zero value when the sequence was created and the sequence
elements are strings or object references, each element will be released before the sequence’s
contents buffer is released and the object is destroyed.

n Avoid assigning a sequence element using the [] operator unless the release flag was set to one,
or memory management errors may occur.

n Sequences created with the release flag set to zero should not be used as input/output parameters
because memory management errors in the object server may result.

n Always use allocbuf and freebuf to create and free storage used with sequences.

 // Given this IDL specification for a bounded sequence
typedef sequence<string, 3> String_seq;
...

// Consider this C++ code
char *static_array[] = (“1”, “2”, “3”};
char *dynamic_array = StringSeq::allocbuf(3);

// Create a sequence, release flag is set to FALSE by default
StringSeq static_seq(3, static_array);
// Create another sequence, release flag set to TRUE
StringSeq dynamic_seq(3, dynamic_array, 1);

static_seq[1] = “1”; // old memory not freed, no copying occurs

char *str = string_alloc(2);
dynamic_seq[1] = str; // old memory is freed, no copying occurs
11–17

IDL TO C++ LANGUAGE MAPPING

11–18

11

vbpg.bk Page 18 Thursday, December 19, 1996 2:25 PM
Figure 11-22 An example of memory management with two bounded sequences.

Arrays

IDL arrays are mapped to C++ arrays, which can be statically initialized. If the array elements are strings
or object references, the elements of the C++ array will be of the type _var. Figure 11-23 shows three
arrays with different element types.

 // IDL
interface Intf
{

// definitions...
};
typedef long L[10];
typedef string S[10];
typedef Intf A[10];
...

// Results in the generation of this C++ code
typedef CORBA::Long L[10];
typedef CORBA::String_var S[10];
typedef Intf_var A[10];

Figure 11-23 Mapping IDL arrays to C++ arrays.

The use of the managed type, _var, for strings and object references, allows memory to be managed trans-
parently when array elements are assigned.

ARRAY SLICES

The array_slice type is used when passing parameters for multi-dimensional arrays. VisiBroker’s IDL
compiler also generates a _slice type for arrays that contains all but the first dimension of the array.
The array _slice type provides a convenient way to pass and return parameters. Figure 11-24 shows
two examples of the _slice type.

 // IDL
typedef long L[10];
typedef string str[1][2][3];
...

// Results in the generation of these slices
typedef CORBA::Long L_slice[10];
typedef CORBA::String_var str_slice[2][3];
typedef str_slice *str_slice_ptr;

Figure 11-24 The _slice type.

COMPLEX DATA TYPES

vbpg.bk Page 19 Thursday, December 19, 1996 2:25 PM
MANAGED TYPES FOR ARRAYS

In addition to generating a C++ array for IDL arrays, VisiBroker’s IDL compiler will also generate a
_var class. This class offers some additional features for array.

n The operator[] is overloaded to provide intuitive access to array elements.

n A constructor and assignment operator are provided that take a pointer to an array _slice
object as an argument.

 // IDL
typedef long L[10];
...

// Results in the generation of this C++ code
class L_var
{

public:
L_var();
L_var(L_slice *slice);
L_var(const L_var& var);
~L_var();
L_var& operator=(L_slice *slice);
L_var& operator=(const L_var& var);
CORBA::Long& operator[](CORBA::ULong index);
operator L_slice *();
operator L &() const;
...

private:
L_slice *_ptr;

};

Figure 11-25 The _var class generated for arrays.

TYPE-SAFE ARRAYS

A special _forany class is generated to handle arrays with elements mapped to the type any. As with
the _var class, the _forany class allows you to access the underlying array type. The _forany
class does not release any memory upon destruction because the any type maintains ownership of the
memory. The _forany class is not implemented as a typedef because it must be distinguishable
from other types for overloading to functions properly.
11–19

IDL TO C++ LANGUAGE MAPPING

11–20

11

vbpg.bk Page 20 Thursday, December 19, 1996 2:25 PM
 // IDL
typedef long L[10];
...

// Results in the generation of this C++ code
class L_forany
{

public:
L_forany();
L_forany(L_slice *slice);
~L_forany();
CORBA::Long& operator[](CORBA::ULong index);
const CORBA::Long&operator[](CORBA::ULong index) const;
operator L_slice *();
operator L &() const;
operator const L & () const;
operator const L& () const;
L_forany& operator=(const L_forany obj);
...

private:
L_slice *_ptr;

};

Figure 11-26 The _forany class generated for an IDL array.

MEMORY MANAGEMENT FOR ARRAYS

VisiBroker’s IDL compiler generates two functions for allocating and releasing the memory associated
with arrays. These functions allow the ORB to manage memory without having to override the new and
delete operators.

 // IDL
typedef long L[10];
...

// Results in the generation of this C++ code
inline L_slice *L_alloc(); // Dynamically allocates array. Returns

// NULL on failure.

inline void L_free(L_slice *data); // Releases array memory allocated with
// L_alloc.

Figure 11-27 Methods generated for allocating and releasing array memory.

COMPLEX DATA TYPES

vbpg.bk Page 21 Thursday, December 19, 1996 2:25 PM
Principal

A Principal represents information about principals requesting operations. The IDL interface of Principal
does not define any operations. The Principal is implemented as a sequence of octets. The Principal is set
by the client application and checked by the ORB implementation. VisiBroker for C++ treats the Princi-
pal as an opaque type. To see an example of the Principal interface in use, see Figure 7-8 in this guide.
11–21

IDL TO C++ LANGUAGE MAPPING

11–22

11

vbpg.bk Page 22 Thursday, December 19, 1996 2:25 PM

C H A P T E R 1 2

vbpg.bk Page 1 Thursday, December 19, 1996 2:25 PM
12PARAMETER PASSING RULES

This chapter discusses the parameter passing rules followed by the VisiBroker

IDL to C++ compiler. It includes the following major sections:

Implicit Arguments 12-2

Explicit Arguments 12-2

Primitive Data Types 12-2

Complex Data Types 12-3

T_var Data Types 12-11

PARAMETER PASSING RULES

12–2

12

vbpg.bk Page 2 Thursday, December 19, 1996 2:25 PM
IMPLICIT ARGUMENTS

Arguments can be passed using contexts as defined in IDL. For more information, see The Common
Object Request Broker: Architecture and Specification - 96-03-04. This document is available from the
Object Management Group and describes the architectural details of CORBA.

EXPLICIT ARGUMENTS

When you specify an interface in IDL, arguments you pass to methods that are returned may be one of the
following:

PRIMITIVE DATA TYPES

Table 12-2 summarizes the parameter passing mode for primitive data types.

MODE DESCRIPTION

in Parameter used as input only.

out Parameter used to hold an output result.

inout Parameter used both as input and to hold an output
result.

return Result of an operation on an interface.

Table 12-1 Argument types.

DATA TYPE IN INOUT OUT RETURN

short Short Short& Short& Short

unsigned
short

UShort UShort& UShort& UShort

long Long Long& Long& Long

unsigned
long

ULong ULong& ULong& ULong

ßoat Float Float& Float& Float

double Double Double& Double& Double

boolean Boolean Boolean& Boolean& Boolean

char Char Char& Char& Char

octet Octet Octet& Octet& Octet

enum enum enum& enum& enum

Table 12-2 Parameter passing modes for primitive data types.

COMPLEX DATA TYPES

vbpg.bk Page 3 Thursday, December 19, 1996 2:25 PM
Memory Management

The following are the memory management rules for all primitive data types and parameter passing
modes.

COMPLEX DATA TYPES

Parameter and memory management rules for aggregate data types are more complex. The issue of when
memory is allocated and freed deserves special attention. Table 12-4 summarizes the parameter passing
rules for complex data types.

Memory Management

The memory management rules for complex data types vary, depending on the passing mode and the type
of the parameter. The following tables describe the rules for each parameter type.

MODE DESCRIPTION

in The caller allocates the necessary storage and initializes it. The callee uses the value.

out The caller allocates the necessary storage, but need not initialize it. The callee must
set the value.

inout The caller allocates the necessary storage and initializes it. The callee may change
the value.

return The callee initializes and returns the data by value. The caller receives the value.

Table 12-3 Memory management rules for primitive data types.

DATA TYPE IN INOUT OUT RETURN

object reference
pointer

objref_ptr objref_ptr & objref_ptr & objref_ptr

struct, Þxed length const struct & struct & struct & struct

struct, variable length const struct & struct & struct *& struct *

union, Þxed length const union & union & union & union

union, variable length const union & union & union *& union *

string const char * char *& char *& char *

sequence const sequence & sequence & sequence *& sequence *

array, Þxed length const array array array array slice *

array, variable length const array array array slice *& array slice *

any const any & any & any *& any *

Table 12-4 Parameter passing modes for complex data types.
12–3

PARAMETER PASSING RULES

12–4

12

vbpg.bk Page 4 Thursday, December 19, 1996 2:25 PM
Object Reference Pointers

MODE DESCRIPTION

in The caller allocates the necessary storage for the object reference and is responsible
for freeing it when Þnished.

The caller receives the parameter from the ORB and cannot modify it. The memory
associated with the parameter is freed by the ORB upon returning. The callee can
preserve the object reference by invoking the _duplicate method.

out The caller allocates the necessary storage, but need not initialize it. Once the method
returns, the storage will hold an object reference and the caller is responsible for
releasing it when Þnished.

On the server side, the ORB allocates the memory and the callee must provide the
object reference. Once the data has been sent to the client, the ORB invokes the
_release method on the reference to decrement its reference count.

inout The caller allocates the necessary storage and initializes it. If the callee modiÞes the
object reference, the ORB will release the old object and assign it a new value. If the
caller wants to continue to use the object reference, it must invoke the _duplicate
method prior to passing it to the callee.

On the server side, the ORB will allocate memory for the reference. If the callee
wishes to assign a new value to the object reference, it must Þrst invoke the _release
method.

return On the server side, the callee initializes and returns the object reference. The ORB
will invoke _release on the object reference once it has been returned to the caller.

The caller receives the object reference and is responsible for releasing it.

Table 12-5 Memory management rules for object reference pointers.

COMPLEX DATA TYPES

vbpg.bk Page 5 Thursday, December 19, 1996 2:25 PM
Fixed Structures and Unions

MODE DESCRIPTION

in The caller allocates the necessary storage for the structure and is responsible for
freeing it when Þnished.

The callee receives the parameter from the ORB and cannot modify it. The memory
associated with the parameter is freed by the ORB upon returning. The callee can
preserve the structure by copying it.

out The caller allocates the necessary storage, but need not initialize it. Once the method
returns, the storage will hold the structure and the caller is responsible for freeing the
memory when Þnished.

On the server side, the ORB allocates the memory and the callee must set the value.
Once the data has been sent to the client, the ORB releases the memory.

inout The caller allocates the necessary storage and initializes it. Upon return, the caller
must release the memory.

On the server side, the ORB will allocate memory for the structure. The callee may
assign a new value to the structure. Once the structure is returned to the client, the
ORB releases the memory.

return On the server side, the callee initializes and returns the data by value.

The caller receives the structure by value.

Table 12-6 Memory management rules for fixed-length structures and unions.
12–5

PARAMETER PASSING RULES

12–6

12

vbpg.bk Page 6 Thursday, December 19, 1996 2:25 PM
Variable Structures and Unions

MODE DESCRIPTION

in The caller allocates the necessary storage for the structure and is responsible for
freeing it when Þnished.

The callee receives the parameter from the ORB and cannot modify it. The memory
associated with the parameter is freed by the ORB upon returning. The callee can
preserve the structure by copying it.

out The caller allocates a pointer and passes it by reference to the ORB. Once the
method returns, the caller is responsible for freeing the memory when Þnished.

On the server side, the ORB allocates a pointer and passes it by reference to the
callee. The callee sets the pointer to a valid instance of the parameterÕs type. If the
callee wishes to keep the data buffer, it is must make a copy.

inout The caller allocates the necessary storage and initializes it. Upon return, the caller
must release the memory.

On the server side, the ORB will allocate memory for the structure. If the callee
wishes to change the value, it must Þrst release the old data prior to assigning it a
new value. Once the data is returned to the client, the ORB releases the memory.

return On the server side, the callee returns to the ORB a pointer to the data buffer. The
ORB will free the memory upon returning. The client cannot return a NULL pointer.

The caller receives a pointer to the structure or union. If the caller wishes to modify
any of the values, it must make a copy of the structure or union and modify the copy.
The caller is responsible for releasing the memory.

Table 12-7 Memory management rules for variable-length structures and unions.

COMPLEX DATA TYPES

vbpg.bk Page 7 Thursday, December 19, 1996 2:25 PM
Strings

MODE DESCRIPTION

in The caller allocates the necessary storage for the string and is responsible for freeing
it when Þnished.

The callee receives the parameter from the ORB and cannot modify it. The memory
associated with the parameter is freed by the ORB upon returning. The callee can
preserve the string by copying it.

out The caller allocates a pointer and passes it by reference to the ORB. Once the
method returns, the caller is responsible for freeing the memory when Þnished.

On the server side, the ORB allocates a pointer and passes it by reference to the
callee. The callee sets the pointer to a valid instance of the parameterÕs type. If the
callee wishes to keep the data buffer, it is must make a copy. The callee is not
allowed to return a NULL pointer.

inout The caller allocates the necessary storage for both input string the char * pointing to
it. Upon return, the caller must release the memory using the string_free method. The
ORB will delete the old buffer and allocate a new buffer for the out parameter. The
size of the output string may be larger that the input string.

On the server side, the ORB will allocate memory for the string. To return a new
string, the callee must free the old memory using string_free and allocate new storage
using the string_alloc method. Once the data is returned to the client, the ORB
releases the memory. The callee may not return a NULL pointer.

return On the server side, the callee returns to the ORB a pointer to the data buffer. The
buffer must have been allocated using string_alloc. The ORB will free the memory
upon returning. The client cannot return a NULL pointer.

The caller receives a char * pointer to the string. If the caller wishes to modify any of
the values, it must make a copy of the string and modify the copy. The caller is
responsible for releasing the memory using string_free.

Table 12-8 Memory management rules for strings.
12–7

PARAMETER PASSING RULES

12–8

12

vbpg.bk Page 8 Thursday, December 19, 1996 2:25 PM
Sequences and Type-safe Arrays

MODE DESCRIPTION

in The caller allocates the necessary storage for the structure and is responsible for
freeing it when Þnished.

The callee receives the parameter from the ORB and cannot modify it. The memory
associated with the parameter is freed by the ORB upon returning. The callee can
preserve the data buffer by copying it or increasing the objectÕs reference count.

out The caller allocates a pointer and passes it by reference to the ORB. Once the
method returns, the caller is responsible for freeing the memory when Þnished.

On the server side, the ORB allocates a pointer and passes it by reference to the
callee. The callee sets the pointer to a valid instance of the parameterÕs type. If the
callee wishes to keep the data buffer, it is must make a copy or increase the objectÕs
reference count.

inout The caller allocates the sequence or any and initializes it. The ORB may free the old
buffer and allocate a new buffer for the output parameter., depending on the state of
the boolean release parameter used to construct the object. Upon return, the caller
must release the memory.

On the server side, the ORB will allocate memory for the structure. The callee may
free the old buffer and allocate a new buffer, depending on the state of the boolean
release parameter used to construct the object. Once the data is returned to the cli-
ent, the ORB releases the memory.

return On the server side, the callee returns to the ORB a pointer to the sequence or any.
The ORB will free the memory upon returning. The client cannot return a NULL
pointer.

The caller receives a pointer to the sequence or any. If the caller wishes to modify any
of the values, it must make a copy of the object and modify the copy. The caller is
responsible for releasing the returned objectÕs memory.

Table 12-9 Memory management rules for sequences and any arrays.

COMPLEX DATA TYPES

vbpg.bk Page 9 Thursday, December 19, 1996 2:25 PM
Fixed Arrays

MODE DESCRIPTION

in The caller allocates the necessary storage for the array and is responsible for freeing
it when Þnished.

The callee receives the array from the ORB and cannot modify it. The memory asso-
ciated with the array is freed by the ORB upon returning. The callee can preserve the
array by copying it.

out The caller allocates the necessary storage, but need not initialize it. Once the method
returns, the storage will hold the array and the caller is responsible for freeing the
memory when Þnished.

On the server side, the ORB allocates the memory and the callee initializes the array.
Once the array has been sent to the client, the ORB releases the memory.

inout The caller allocates the necessary storage and initializes it. Upon return, the caller
must release the memory.

On the server side, the ORB will allocate memory for the array. The callee may the
elements in the array. Once the array has been returned to the client, the ORB
releases the memory.

return On the server side, the callee returns a pointer to the array slice. The callee may not
return a NULL pointer.

The caller receives a pointer to the array slice, but may not modify it. If the caller
wishes to modify any of the elements, it must make a copy of the array slice and
modify the copy. The caller is responsible for releasing the returned array sliceÕs
memory.

Table 12-10 Memory management rules for fixed-length arrays.
12–9

PARAMETER PASSING RULES

12–10

12

vbpg.bk Page 10 Thursday, December 19, 1996 2:25 PM
Variable-Length Arrays

MODE DESCRIPTION

in The caller allocates the necessary storage for the array and initializes it. The caller is
responsible for freeing the memory when Þnished.

The callee receives the parameter from the ORB and cannot modify it. The memory
associated with the parameter is freed by the ORB upon returning. The callee can
preserve the array by copying it.

out The caller allocates a pointer to an array slice and passes it by reference to the ORB.
Once the method returns, the caller is responsible for freeing the memory when Þn-
ished.

On the server side, the ORB allocates a pointer to an array slice and passes it by ref-
erence to the callee. The callee sets the pointer to a valid instance of an array. Once
the data is returned, the ORB will free the storage. The callee is not allowed to return
a NULL pointer.

inout The caller allocates the array and initializes it. Upon return, the caller must release
the memory.

On the server side, the ORB will allocate memory for the array. The callee may
modify elements of the array. Once the data is returned to the client, the ORB
releases the memory.

return On the server side, the callee returns to the ORB a pointer to an array slice. The ORB
will free the memory upon returning. The client cannot return a NULL pointer.

The caller receives a pointer to the array slice. If the caller wishes to modify any of
the elements, it must make a copy of the array and modify the copy. The caller is
responsible for releasing the memory.

Table 12-11 Memory management rules for variable-length arrays.

T_VAR DATA TYPES

vbpg.bk Page 11 Thursday, December 19, 1996 2:25 PM
T_VAR DATA TYPES

Table 12-2 summarizes the parameter passing mode for T_var data types.

DATA TYPE IN INOUT OUT RETURN

object ref var const objref_var& objref_var& objref_var&Ô objref_var

struct_var const struct_var& struct_var& struct_var& struct_var

union_var const union_var& union_var& union_var& union_var

string_var const string_var& string_var& string_var& string_var

sequence_var const
sequence_var&

sequence_var& sequence_var& sequence_var

array_var const array_var& array_var& array_var& array_var

any_var const any_var& any_var& any_var& any_var

Table 12-12 Parameter passing modes for T_var types.
12–11

PARAMETER PASSING RULES

12–12

12

vbpg.bk Page 12 Thursday, December 19, 1996 2:25 PM
Memory Management for T_var Types

MODE DESCRIPTION

in The caller allocates the necessary storage for the object and is responsible for freeing
it when Þnished.

The callee receives the object from the ORB and cannot modify it. The memory asso-
ciated with the object is freed by the ORB upon returning. The callee can preserve the
object by copying it or increasing the objectÕs reference count.

out The caller allocates a pointer and passes it by reference to the ORB. Once the
method returns, the caller is responsible for freeing the memory when Þnished.

On the server side, the ORB allocates a pointer and passes it by reference to the
callee. The callee sets the pointer to a valid instance of the parameterÕs type. If the
callee wishes to preserve the object, it is must make a copy or increase the objectÕs
reference count.

inout The caller allocates the sequence or any and initializes it. Upon return, the caller must
release the memory.

On the server side, the ORB will allocate memory for the object. Once the data is
returned to the client, the ORB releases the memory. If the callee wishes to preserve
the object, it is must make a copy or increase the objectÕs reference count.

return On the server side, the callee returns to the ORB a pointer to the object. The ORB will
free the memory upon returning. The client cannot return a NULL pointer.

The caller receives a pointer to the object. The caller is responsible for releasing the
returned objectÕs memory.

Table 12-13 Memory management rules for T_var Types.

A P P E N D I X A

vbpg.bk Page 1 Thursday, December 19, 1996 2:25 PM
AP L A T F O R M S W I T H O U T C + +
E X C E P T I O N S U P P O R T

This appendix provides information about the Environment class. The
Environment class is used when your compiler does not support exceptions
through the try and catch statements.

For Platforms without C++ Exception Support A-2

The Exception Macros A-2

Using the Exception Macros A-3

Object Implementation Considerations A-3

PLATFORMS WITHOUT C++ EXCEPTION SUPPORT

A–2

A

vbpg.bk Page 2 Thursday, December 19, 1996 2:25 PM
FOR PLATFORMS WITHOUT C++ EXCEPTION SUPPORT

Not all C++ compilers support exceptions through the try and catch statements, so the CORBA spec-
ification defines an Environment class for reflecting exceptions. VisiBroker uses the Environment
class, along with a set of macros, to provide your applications with exception handling capabilities when
try and catch are not supported.

The Exception Macros

The Environment class is used internally by the ORB and is transparent to you as a programmer.
The only requirement is that you use these exception macros to throw, try and catch exceptions. These
macros will transparently manipulate the Environment class for you if your compiler does not
support exceptions.

Figure A-1 The PMC exception macros.

MACRO NAME PURPOSE

PMCTRY Use this as you would use the try statement.

PMCTHROW(type_name) Throws the speciÞed exception.

PMCTHROW_LAST Used to re-throw the speciÞed exception. Used
only in an event handler or in a method called by
an event handler.

PMCCATCH(type_name,
variable_name)

Use this to catch an exception of the speciÞed
type.

PMCAND_CATCH If several exceptions are to be speciÞed for a
PMCTRY block, use PMCCATCH for the Þrst catch
statement and PMCAND_CATCH for all subse-
quent catch statements.

PMCEND_CATCH Used to terminate a PMCTRY block.

USING THE EXCEPTION MACROS

vbpg.bk Page 3 Thursday, December 19, 1996 2:25 PM
Using the Exception Macros

You can modify the application client code shown in Figure 6-9 to use the compatibility macros. shows
the modifications in bold type.

library *library_object;
PMCTRY {
library_object = library::_bind();
}
// Check for errors
PMCCATCH(CORBA::SystemException excep) {
cout << “System Exception occurred:” << endl;
cout << “exception name: “ <<

excep._name() << endl;
cout << “minor code: “ <<

excep.minor() << endl;
cout << “completion code: “ <<

excep.completed() << endl;
}
PMCENDCATCH
...

Figure A-2 Using the compatibility macros to catch a system exception.

Object Implementation Considerations

The IDL compiler detects whether or not your C++ compiler supports exceptions and generates code
accordingly. The object implementation code shown in Figure 6-13 would appear as follows for a com-
piler without C++ support. Note that the throw statement is not generated.

 virtual CORBA::Boolean add_book(const book& book_info);

The object’s implementation of add_book would use PMCTHROW to raise the exception.

 CORBA::Boolean Library::add_book(const book& book_info)
{

CORBA::Boolean ret;
if((ret = bk_list.add_to_list(book_info)) == 0)

PMCTHROW (library::CapacityExceeded();)
return ret;

}

A–3

PLATFORMS WITHOUT C++ EXCEPTION SUPPORT

A–4

A

vbpg.bk Page 4 Thursday, December 19, 1996 2:25 PM

I N D E X

vbpg.bk Page 5 Thursday, December 19, 1996 2:25 PM
Symbols
... ellipsis ix
[] brackets ix
| vertical bar ix

A
accessing

distributed objects 1-2
activating

objects directly 4-15
objects with BOA 4-16

activation policies 4-5
persistent server policy 4-5
server-per-method policy 4-5
shared server policy 4-5
unshared server policy 4-5

Activator class
activating an ORB object 4-17
deactivating an ORB object 4-17

adding
fields to user exceptions 6-10
file descriptors 8-6

advanced networking options 5-9
agentaddr file

specifying IP addresses 5-6
agents

connecting on different local networks 5-5
agent-to-agent cooperation 5-2
Any

class 9-10
arguments

explicit 12-2
implicit 12-2

array slice
passing parameters for multi-dimensional

arrays 11-18
arrays 11-18

managed types 11-19
memory management 11-20

type-safe 11-19
attributes

interface 10-8

B
Basic Object Adaptor

(BOA) 2-11, 4-4
bind

method 2-6
multiple bind with multiple client threads 8-4
process 3-5
single bind with multiple client threads 8-3

bind options
bind-level 3-11
enabling re-binds 3-9
maximum bind attempts 3-9
object-level 3-11
obtaining the current 3-17
process-level 3-10
scope 3-10
specifying 3-8

binding
to objects 1-2, 3-5
to the server 2-12

bind-level
bind options 3-11

BOA
(Basic Object Adaptor) 2-11, 4-4
create 4-7

BOA_init
method 5-9
options 5-10

bound objects
determining the location and state 3-17

C
casting

object references 3-15
to a system exception 6-4

catching

INDEX

IX-6

vbpg.bk Page 6 Thursday, December 19, 1996 2:25 PM
system exceptions 6-8
user exceptions 6-10

changing
an object’s implementation dynamically 4-10

checking
for nil references 3-12
for persistent objects 4-3
the parameters 2-12

class
Activator 4-17
Any 9-10
dispatcher 8-5
Environment A-2
HandlerRegistry 7-5
HandlerRegistry methods for client applications 7-

6
ImplEventHandler 7-9
IOHandler 8-8
NamedValue 9-8
Request 9-5
string_var 11-3
TypeCode 9-10
un_ex 11-12
WDispatcher 8-11, 8-13
XDispatcher 8-11

class template 10-7
client

files 2-5
client and server

compiling 2-15
on different hosts 3-5
on same host 3-6
running 2-16

client application
multi-threads 8-3

client event handlers 7-2
connection information 7-3
creating 7-4
methods 7-3
registering 7-6

cloning
object references 3-14
using multi-threads 8-4

Common Object Request Broker Architecture
(CORBA) 1-2

communications
agent 5-2
point-to-point 5-6

compiling
the client and server 2-15

completion status 6-3
complex

data types 12-3
connecting

client applications with objects 1-2
to agents on different local networks 5-5
using point-to-point communications 5-6

connection time-outs 3-10
considerations

object implementation A-3
constants 11-4
conventions

platform icons ix
syntax x
typographic ix

converting
a reference to a string 3-14

CORBA
(Common Object Request Broker Architecture) 1-2
C++ language mapping specifications 11-1

creating
a client event handler 7-4
a DII request 9-6
an ORB object for registration with OAD 4-10
implementation event handlers 7-10
software components 1-2
the server class 2-9

creation definition
CreationImplDef class 4-8

D
data types

basic 11-2
complex 11-9, 12-3
primitives 12-2
T_var 12-11

deactivating implementations 4-20

INDEX

vbpg.bk Page 7 Thursday, December 19, 1996 2:25 PM
manually started implementations 4-20
started by OAD 4-20

deactivating objects 4-20
deactivating C++ instantiated objects 4-20

defining
the name of the object 10-2
the objects 2-4
user exceptions 6-8

determing
location of bound objects 3-17
state of bound objects 3-17

DII
(Dynamic Invocation Interface) 9-2
creating a DII request 9-6
initializing a DII request 9-7
sending a request 9-13
sending and receiving multiple requests 9-14

DII request
setting the arguments 9-7

dispatcher
class 8-5

dispatching 8-7
DLL request

setting the context 9-7
DriverSet

sources of information xi
duplicating

a reference 3-12
Dynamic Invocation Interface

(DII) 9-2
creating a DII request 9-6
initializing a DLL request 9-7
sending a request 9-13
sending and receiving multiple requests 9-14

E
enabling re-binds 3-9
enumerations

mapping IDL enumerations to C++ 11-6
Environment

class A-2
environment

methods 6-12

registering exceptions in the environment class 6-
12

equivalence
object references 3-15

error handling 6-1
event handler

client 7-2
client connection information 7-3
client methods 7-3
concepts 7-2
creating a client event handler 7-4
implementations 7-9
objects 7-2

event loop integration 8-5
exception support A-2

portability considerations 6-11
exceptions

adding fields to user exceptions 6-10
casting to a system exception 6-4
catching system exceptions 6-8
catching user exceptions 6-10
class 6-2
completion status for system exceptions 6-3
CORBA-defined system exceptions 6-5
defining user exceptions 6-8
handling system exceptions 6-6
macros A-2
modifying the object implementation 6-10
narrowing to system exceptions 6-7
platforms with C++ exception support A-2
system 6-2, 6-3
user 6-2, 6-8

explicit
arguments 12-2

F
fault tolerance

object implementation 5-7
replicating instantiated objects 5-7
replicating objects registered with the OAD 5-7, 6-

12
files

client 2-5
server 2-7
IX-7

INDEX

IX-8

vbpg.bk Page 8 Thursday, December 19, 1996 2:25 PM
fixed-length
structures 11-10

fixed-length arrays
memory management rules 12-9

fixed-length structures and unions
memory management rules 12-5

G
generated files 2-4
generating

_var class 10-4
a class template 10-7
a String_var class 11-3
code for clients 10-3
code for servers 10-6
methods 10-6
the client files 2-5

H
handler registry

class 7-5
methods 7-11
methods for client applications 7-6
using 7-10, 7-11

handling
events 8-8
system exceptions 6-6

host name 3-8

I
identifying

the required object 2-4
IDL

arrays 11-18
compiler 2-4, 10-2, 10-3
complex data types 11-9
constants 11-4
methods generated 10-4
primitive data types 11-2
to C++ language mapping 11-1

implementation definition parameter 4-7
implementation event handlers

creating 7-10
registering 7-12

implementation repository

maintained by OAD 4-5
implementing

a list of NamedValue objects 9-8
IOHandler methods 8-8
the client 2-11
the main routine 2-11
the server 2-8

implementing the server
creating the server class 2-9
implementing the main routine 2-11

ImplEventHandler class 7-9
methods 7-10

implicit arguments 12-2
information, where to find xi
inheritance

interface 10-11
initializing

the ORB 2-11
input/output arguments

for method invocation requests 9-8
instantiating

a proxy object 3-5
integration

with Microsoft Foundation Classes 8-13
with other environments 8-17
with Windows/NT event loop 8-11
with XWindows 8-11

interface
attributes 10-8
inheritance 10-11
names 3-15

Interface Definition Language
(IDL) 10-2
compiler 10-2

Interface Repository 9-2
(IR) 9-2
objects stored within 9-3

IOHandler class 8-8
implementing IOHandler methods 8-8
using IOHandler 8-9

L
linking

adding a file descriptor 8-6

INDEX

vbpg.bk Page 9 Thursday, December 19, 1996 2:25 PM
dispatcher class 8-5
multi-threaded applications 8-5

listimpl command
contents of an implementation repository 4-13

listing
contents of an implementation repository 4-13

local host 3-6
locating

the osagent 5-2

M
maintaining

list of persistent object implementations 5-2
managed types

arrays 11-19
for sequences 11-17
for unions 11-13

mapping
IDL enumerations to C++ 11-6
IDL modules to C++ namespace 11-8
IDL type definitions to C++ definitions 11-6
object references 10-11

maximum bind attempts 3-9
memory management

arrays 11-20
for sequences 11-17
for structures 11-12
for T_var types 12-12
rules for complex data types 12-3
rules for fixed-length arrays 12-9
rules for fixed-length structures and unions 12-5
rules for object reference pointers 12-4
rules for primitive data types 12-3
rules for sequences and type-safe arrays 12-8
rules for variable-length structures and unions 12-6
rules strings 12-7
rules variable length arrays 12-10

methods
dispatching 8-7
handler registry 7-11
ImplEventHandler 7-10
IOHandler 8-8
unlink 8-7

Microsoft Foundation Classes

integration with 8-13
migrating

instantiated objects 5-8
objects 5-8
objects registered with the OAD 5-9
objects that maintain state 5-8

modifying
object implementation for user exceptions 6-10

modules
mapping IDL modules to C++ namespace 11-8

multi-thread 8-2
client applications 8-3
client with multiple binds 8-4
client with one bind 8-3
linking these applications 8-5
servers 8-17
servers with Windows User Interfaces 8-17
threads in an object implementation 8-2
with cloning 8-4

multi-threaded servers
Windows 95 8-14

multithreaded servers
Windows NT 8-14

N
NamedValue

class 9-8
objects 9-8
pair 9-8

narrowing object references 3-18
network resources

fine-tuning settings 5-9
NULL object name 3-2
NVList 9-8

O
OAD

(Object Activation Daemon) 4-5, 4-14
registration using BOA create 4-7
registration with regobj command 4-6

Object Activation Daemon
(OAD) 4-5, 4-14

object implementation 4-2
considerations A-3
IX-9

INDEX

IX-10

vbpg.bk Page 10 Thursday, December 19, 1996 2:25 PM
fault tolerance 5-7
implementations that maintain state 5-7

object migration
migrating instantiated objects 5-8
migrating objects registered with the OAD 5-9
migrating objects that maintain state 5-8
terminating objects on one host and starting on

another 5-8
object names 3-2, 3-15
object oriented approach

software component creation 1-2
object reference pointers

memory management rules 12-4
object references

checking for nil references 3-12
cloning 3-14
converting a reference to a string 3-14
determing the locations and state of bound

objects 3-17
duplicating a reference 3-12
equivalence and casting 3-15
narrowing 3-18
obtaining a nil reference 3-12
obtaining object and interface names 3-15
obtaining the reference count 3-13
operations on 3-12
releasing 3-13
widening 3-18

object registration 4-4
Object Request Broker

(ORB) 1-2, 5-4
object server

activation policies 4-5
object-level

bind options 3-11
objects

activating directly 4-15
activating with BOA 4-16
transient 4-2

obtaining
a nil reference 3-12
an object’s interface 9-3
current bindoptions 3-17
object and interface names 3-15

the reference count 3-13
oneway methods

no return values 10-10
ORB

(Object Broker Request) 1-2
(Object Request Broker) 5-4
domains 5-4
interface to the OAD 4-14

ORB_init
method 5-9
options 5-9

osagent 2-16, 5-2
cooperation with the OAD 5-2
fault tolerance 5-3
locating 5-2
multiple instances started by different hosts 5-2
running more than one instance of agent 5-3
specifying IP addresses as run-time parameters 5-6
starting 5-2, 5-3

P
parameter passing 12-1

explicit arguments 12-2
for multi-dimensional arrays 11-18
for primitive data types 12-2
for T_var types 12-11
implicit arguments 12-2

persistent objects 4-3
checking for 4-3

persistent server policy 4-5
platform designation with icons ix
platforms without C++ exception support A-2
pointer type definition

_ptr definition 10-4
portability considerations 6-11
primitive

data types 12-2
principal

IDL interface 11-21
process-level

bind options 3-10
proxy object 3-5

INDEX

vbpg.bk Page 11 Thursday, December 19, 1996 2:25 PM
R
receiving

multiple requests 9-14
time-outs 3-10

reducing
application development costs 1-2

reference data parameters
distinguishing between multiple instances 4-7

registering
an object implementation from the command

line 4-6
an object implementation from within a script 4-6
client event handlers 7-6
implementation event handlers 7-10, 7-11, 7-12
one or more objects with the activation daemon 4-7

regobj command 4-6
releasing

object references 3-13
remote host 3-5
removing

file descriptors 8-7
replicating

instantiated objects 5-7
objects registered with the OAD 5-7, 6-12

Request
class 9-5

running
the client 2-17
the client and server 2-16
the IDL compiler 2-4

S
scope

bind options 3-10
selecting

a Makefile 2-15
sending

a DII request 9-13
multiple requests 9-14
time-outs 3-9

sequences
managed types 11-17
memory management 11-17

sequences and type-safe arrays

memory management rules 12-8
server

files 2-7
server-per-method policy 4-5
setting

timers 8-7
shared server policy 4-5
single thread 8-2

dispatcher class 8-5
smart agent

features 5-2
specifying

bind options 3-8
IP addresses as run-time parameters 5-6
IP addresses with the agentaddr file 5-6
object names 3-2

starting
the osagent 2-16, 5-2, 5-3
the server 2-16

string 3-14
memory management rules 12-7
types 11-2

string_var
class 11-3

structures
fixed-length 11-10
memory management 11-12
variable length 11-11

syntax conventions x
system exceptions 6-2, 6-3

casting to a system exception 6-4
catching 6-8
completion status 6-3
CORBA-defined 6-5
handling 6-6
narrowing any exceptions 6-7

T
T_var data types 12-11
T_var types

memory management 12-12
terminating objects on one host and starting on

another 5-8
threads
IX-11

INDEX

IX-12

vbpg.bk Page 12 Thursday, December 19, 1996 2:25 PM
multi- 8-2
single 8-2

thread-safe code 8-16
time-outs

connection 3-10
receiving 3-10
sending 3-9

transient objects 4-2
type definitions

mapping IDL types to C++ type definitions 11-6
TypeCode

class 9-10
types

complex data types 11-9
IDL primitive data types 11-2
strings 11-2

type-safe
arrays 11-19

typographic conventions ix

U
un_ex

class 11-12
understanding

the Environment class 6-12
unions

managed types 11-13
unregistering implementations

with BOA dispose method 4-12
with the OAD 4-11
with unregobj 4-11

unshared server policy 4-5
user exceptions 6-2, 6-8

adding fields to 6-10
catching user exceptions 6-10
defining 6-8
modifying the object implementation 6-10

using
fully qualified names

object names 3-4

IOHandler 8-9
qualified object names with servers 3-2
registered objects from client applications 9-2

V
var class 2-6
variable length

arrays 12-10
structures 11-11

variable-length structures and unions
memory management rules 12-6

W
WDispatcher class 8-11, 8-13
what is COBRA 1-2
widening object references 3-18
Windows User Interfaces 8-17
Windows/NT event loop

integration with 8-11

X
XDispatcher class 8-11
XWindows

integration with 8-11

	Typographic Conventions
	Platform Conventions
	Syntax Conventions
	Where to Find Additional Information
	Contacting Visigenic Technical Support
	VisiBroker Basics
	Accessing Distributed Objects
	What is VisiBroker?
	Developing Applications with VisiBroker
	VisiBroker Features
	Fault Tolerance
	Optimized Binding
	Dynamic Invocation Interface
	Support for Threads
	Event Handling Facilities
	Event Loop Integration - For Single Threaded Appli...

	Getting Started
	Application Development
	The Library Object
	Defining the Library Objects

	Running the IDL Compiler
	Code Generation

	The Client Files
	The Library Class
	The library_var Class
	The Server Files

	Implementing the Server
	The library Class Hierarchy
	Creating the Library Class

	Implementing the Client
	Compiling the Client and Server
	Selecting a Makefile

	Running the Client and Server
	Setting the VisiBroker Environment Variables
	Starting the osagent
	Starting the Library Server
	Running the Client

	Conclusion

	Naming and Binding to Objects
	Interface Names
	Object Names
	Using Qualified Object Names with Servers
	Using Fully Qualified Names
	Binding to Objects
	The _bind Process
	Client and Server on Different Hosts
	Client and Server on the Same Host
	Client and Server in the Single Process

	Specifying Bind Options
	Host Name
	BindOptions
	Scope of BindOptions

	Operations on Object References
	Checking for Nil References
	Obtaining a Nil Reference
	Duplicating a Reference
	Releasing an Object Reference
	Obtaining the Reference Count
	Cloning Object References
	Converting a Reference to a String
	Obtaining Object and Interface Names
	Object Reference Equivalence and Casting
	Determining the Location and State of Bound Object...
	Obtaining the Current BindOptions

	Widening and Narrowing Object References

	Object and Implementation Activation
	Transient Objects
	Handling Transient Object References
	Persistent Objects
	Checking for Persistent Objects
	Object Registration
	The Basic Object Adaptor
	Object Server Activation Policies

	Object Activation Daemon
	The Implementation Repository
	OAD Registration with regobj
	OAD Registration using BOA::create
	Reference Data Parameter
	Implementation Definition Parameter
	Creation Definition
	BOA::create Example
	Changing an ORB Implementation

	Unregistering Implementations
	Unregistering with unregobj
	Unregistering with the BOA::dispose Method
	The listimpl Command

	ORB Interface to the OAD
	Activating Objects Directly
	Activating Objects with the BOA
	The Activator Class
	Putting it All Together

	Object and Implementation Deactivation
	Deactivating a Manually Started Implementation
	Deactivating C++ Instantiated Objects
	Deactivating Implementations Started by the OAD
	Deactivating Objects Activated by the BOA

	The ORB Smart Agent
	Agent Communication
	Agent-to-Agent Cooperation
	Cooperation with the OAD
	Starting the osagent
	Agent Fault Tolerance
	ORB Domains
	Connecting Agents on Different Local Networks
	Using Point-to-point Communications
	Specifying IP addresses with the agentaddr File
	Specifying IP addresses as Run-time Parameters

	Object Implementation Fault Tolerance
	Object Implementations that Maintain State
	Replicating Instantiated Objects
	Replicating Objects Registered with the OAD

	Object Migration
	Migrating Object that Maintain State
	Migrating Instantiated Objects
	Migrating Objects Registered with the OAD

	Advanced Networking Options
	ORB_init Options
	BOA_init Options

	Error Handling
	The Exception Class
	System Exceptions
	Completion Status
	Getting and Setting the Minor Code
	Casting to a SystemException
	Handling System Exceptions
	Narrowing to a System Exception
	Catching System Exceptions

	User Exceptions
	Defining User Exceptions
	Modifying the Object implementation
	Catching User Exceptions
	Adding Fields to User Exceptions
	Portability considerations
	Understanding the Environment Class
	Environment Methods

	Handling Events
	Client Event Handlers
	The ConnectionInfo Structure
	ClientEventHandler Methods
	Creating a Client Event Handler
	The Handler Registry
	HandlerRegistry Methods for Clients Applications
	Registering Client Event Handlers

	Implementation Event Handlers
	The ImplEventHandler Class
	ImplEventHandler Methods
	Creating Implementation Event Handlers
	Using the Handler Registry
	HandlerRegistry Methods for Object Implementations...
	Registering Implementation Event Handlers

	Advanced Programming Topics
	Threads in an Object Implementation
	Threads in a Client Application
	One Bind with Multiple Client Threads
	Multiple Binds with Multiple Client Threads
	Multiple Threads with Cloning

	Linking Multi-threaded Applications
	Event Loop Integration
	The Dispatcher Class
	The IOHandler Class
	Using an IOHandler

	Integration with XWindows
	Integration with the Windows/NT Event Loop
	Integration with Microsoft Foundation Classes
	Thread-safe Code
	Multithreaded Servers and Windows User Interfaces

	Integration with Other Environments

	Dynamic Interfaces
	Steps for Dynamic Invocation
	The Interface Repository
	Obtaining an Object’ s Interface

	The Request Class
	Creating a DII request
	Initializing a DII Request
	Setting the Context
	Setting the Arguments
	The Any Class
	The TypeCode Class

	Sending a DII Request
	Sending and Receiving Multiple Requests

	The IDL Compiler
	The Interface Definition
	Code Generated for Clients
	Methods Generated
	The _ptr Definition
	The _var Class

	Code Generated for Servers
	Generated Methods
	The Class Template

	Interface Attributes
	Oneway methods
	Mapping Object References
	Interface Inheritance

	IDL to C++ Language Mapping
	Strings
	String_var Class

	Constants
	Enumerations
	Type Definitions
	Modules
	Complex Data Types
	Fixed-length Structures
	Variable Length Structures
	Unions
	Sequences
	Arrays
	Principal

	Parameter Passing Rules
	Explicit Arguments
	Primitive Data Types
	Memory Management

	Complex Data Types
	Memory Management
	Object Reference Pointers
	Fixed Structures and Unions
	Variable Structures and Unions
	Strings
	Sequences and Type-safe Arrays
	Fixed Arrays
	Variable-Length Arrays

	T_var Data Types
	Memory Management for T_var Types

	Platforms without C++ Exception Support
	The Exception Macros
	Using the Exception Macros
	Object Implementation Considerations

