

White Paper
CORBA-EJB Interoperability

IONA Technologies PLC
July 2001

iPortal Application Server is a Trademark of IONA Technologies PLC.
IONA e-Business Platform is a Trademark of IONA Technologies PLC.
IONA Enterprise Integrator is a Trademark of IONA Technologies PLC.
IONA Mainframe Integrator is a Trademark of IONA Technologies PLC.
Adaptive Runtime Technology is a Trademark of IONA Technologies PLC.
Total Business Integration is a Trademark of IONA Technologies PLC.
IONA SureTrack is a Trademark of IONA Technologies PLC.
IONA XMLBus is a Registered Trademark of IONA Technologies PLC.
Orbix is a Registered Trademark of IONA Technologies PLC.
Orbix 2000 Notification is a Registered Trademark of IONA Technologies PLC.
Orbix/E is a Registered Trademark of IONA Technologies PLC

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no
warranty of any kind to this material including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form
or by any means, photocopying, recording or otherwise, without prior written consent of IONA
Technologies PLC. No third-party intellectual property right liability is assumed with respect to the use
of the information contained herein. IONA Technologies PLC assumes no responsibility for errors or
omissions contained in this white paper. This publication and features described herein are subject to
change without notice.
Copyright © 1999-2001 IONA Technologies PLC. All rights reserved.
All products or services mentioned in this white paper are covered by the trademarks, service marks, or
product names as designated by the companies that market those products.

M2632

Summary
The adoption rate of server-side Java has accelerated dramatically in the last year.
According to some surveys, as many as a third of development organizations have
deployed or soon will deploy systems built upon Enterprise JavaBeans. As
enterprise Java use grows, organizations inevitably will find it necessary to connect
Java systems to existing applications. Many organizations have made significant
investments in CORBA technology, and now are seeking to make CORBA and EJB
applications work together.

This paper explores the issues surrounding CORBA-EJB interoperability, with a
particular focus on non-Java CORBA clients calling EJB servers.

There is a standard for direct CORBA-EJB interoperability, but it is difficult to use
and may be unworkable in many situations. This paper explains why this is the
case, and shows how to avoid some of the worst pitfalls.

An alternative approach is to implement CORBA wrappers that encapsulate EJB
objects behind a CORBA interface. This paper shows how the use of code
generation can constrain EJB interfaces to be "CORBA-friendly" and can automate
the task of building a wrapper for a CORBA-friendly EJB.

Finally, this paper outlines an efficient framework for implementing wrappers using
stateless POA servants. There may be a large number of EJB entities in a system,
and EJB sessions may be created and destroyed rapidly, so it is important to avoid
maintaining state such that wrappers are forced to track the lifecycle of EJB
objects.

This White Paper is a technical discussion intended for designers and
implementers of integrated CORBA-EJB systems and CORBA-EJB bridging
technology. You should have some development experience with CORBA or EJB
and a basic understanding of both. The CORBA-EJB quick comparison at the end
of this paper will help you if you are only familiar with one of these technologies.

 iii

Table of Contents
Summary... iii

1 Introduction... 1

2 The Java to IDL Mapping .. 2

2.1 Using the Java to IDL Mapping ... 3

2.2 Problems with the Mapping — Example .. 4

2.2.1 A Custom Mapping ... 5

2.2.2 What is a Valuetype? .. 6

2.2.3 The Collections Problem .. 6

2.2.4 The Private Data Problem.. 7

2.2.5 The "Spaghetti Effect" .. 7

2.3 Summary of Problems with the Mapping.. 8

3 The CORBA-Friendly EJB .. 9

3.1 Using IDL to Define EJB Data Types.. 9

3.2 Check List of CORBA-Friendly Techniques...................................... 10

3.3 Generating a CORBA-Friendly EJB from EJB-Friendly IDL 11

4 Building and Generating Wrappers ... 13

5 Pre-existing EJBs and Interoperability Borders 14

6 A Wrapper Framework.. 15

6.1 The Wrapper Container Server .. 15

6.2 Inside the Container Server... 16

6.3 Performance Issues ... 18

7 Conclusions... 18

 iv

Appendix: EJB/CORBA Quick Comparison ... 20

Basic Terms.. 20

Lifecycle... 21

Home Behavior ... 22

References ... 23

Further Reading.. 24

Contact Details ... 25

 v

1 Introduction
EJB-to-CORBA communication is straightforward. Any Java code (EJB or
otherwise) can call CORBA objects via a Java ORB. CORBA IDL is designed to
map to many languages; the mapping to Java [1] is easy to understand, simple to
use and well supported by numerous Java ORBs including Orbix 2000 and the
built-in ORB in the JDK.

The EJB specification includes a section on CORBA interoperability [2]. It details
transparent interoperation of naming services, transaction services and security
services as well as on-the-wire interoperability. If the application server supports
CORBA interoperability, CORBA clients can directly call any EJB via the IDL
interface implied by the standard OMG Java to IDL mapping [3].

Unfortunately the Java to IDL mapping produces IDL that is difficult for a CORBA
client to use. You can avoid some of the worst pitfalls by avoiding certain Java
constructs when designing your EJB, but you cannot avoid them all. In most
applications you will need to build CORBA wrappers for your EJBs. A wrapper is
just a normal CORBA object that delegates to an EJB.

This paper is structured as follows:

• The Java to IDL mapping: The standard interoperability mechanism and what
is wrong with it. This section is long; therefore as soon as you are convinced
that a problem exists, you can skip ahead to later sections that discuss the
solutions.

• CORBA-friendly EJB: If you are working with a clean slate and are willing to
live within some reasonable restrictions, you can design EJBs that are easy to
map to CORBA. In particular, if you are willing to use IDL to define CORBA-
friendly interfaces in the first place, you can enforce the CORBA-friendly rules
automatically.

• Building and generating wrappers: If your client software cannot handle the
IDL produced by the standard Java to IDL mapping, you need to build
wrappers. You can automate this process if you use IDL that makes your EJBs
CORBA-friendly in the first place.

• Pre-existing EJBs and Interoperability borders: In some systems you may need
to mix CORBA-friendly and CORBA-unfriendly EJBs inside and outside the
"interoperability border."

• A wrapper framework: Once you have built (or generated) wrappers, you need
to give them a place to live. This paper shows you how to implement wrappers
as stateless servants with efficient lifecycle management, and discusses the
deployment options.

• Conclusions: A review of the pros and cons of the various options available.

Before diving into this discussion, you may ask whether you really need to solve
this problem at all. A common assumption is that in a mixed CORBA-EJB system,
the EJB components will call CORBA services, but CORBA clients will not need to
call on EJB services.

However even if the majority of communication is initiated by an EJB mid-tier to a
CORBA back end, the system may need alarms, notifications or other “call-backs”
from the CORBA services to the EJB mid-tier.

The assumption may not even hold for the majority of communication. For
example if two independently developed EJB and CORBA systems are later
integrated, then key services in the EJB system will need to be available to CORBA
clients.

2 The Java to IDL Mapping1
The CORBA-EJB interoperability specification consists of four mappings:

• Distribution: mapping EJB interfaces to CORBA interfaces

• Naming: Mapping JNDI names to CosNaming names

• Transactions: Propagating transactions between CORBA and EJB worlds

• Security: Securely propagating security information between CORBA and EJB
worlds

The last three are important. It would be difficult to implement seamless security
or transactional behavior without an application server that implements these parts
of the specification. However, these functions are well catered for by the
interoperability standard, and are practically invisible from the developer point of
view. The most interesting one is the distribution mapping, which consists of the
Java to IDL mapping [3].

1 The OMG is currently defining the CORBA Component Model [4]. The model
includes a mapping between EJBs and CORBA components. However this
mapping is based on the same Java to IDL mapping discussed here, so
everything said here still applies.

 2

2.1 Using the Java to IDL Mapping

In an application server that fully supports the EJB to CORBA mapping [2], EJB
objects are automatically CORBA objects as well. The IDL interfaces are normally
implicit but they can be generated from the EJB remote Java interfaces. The Java
naming service (JNDI) is mapped to the CORBA naming service so EJB Home
objects appear in the CORBA naming service.

Figure 1: EJB Lookup

As Figure 1 shows, CORBA clients can look up EJB Home objects directly in the
CORBA naming service and start using EJB objects as CORBA objects without any
additional work.

The steps in Figure 1 are:

1. Use the RMI compiler (rmic -idl -noValueMethods) to generate IDL for
the EJB remote Java interfaces.

2. Use a CORBA IDL compiler to generate stubs in the client implementation
language, and compile these into the client.

3. Configure your EJB server to use the CORBA CosNaming service as its JNDI
provider.

4. CORBA client finds the EJB objects in the CORBA naming service.

5. CORBA client makes CORBA calls to the EJB objects.

Note: The rmic compiler provided with JDK 1.3 and earlier releases requires the
classes being compiled and all the classes they depend on to be in the current
directory (not located via the class-path.) In particular you will need to extract the

 3

classes in the javax.ejb package to the current directory with a command such
as:

jar -xf iPAS_lib_directory/ipas.jar javax/ejb

2.2 Problems with the Mapping — Example

Although the direct mapping works in principal, there are a number of problems
with the generated IDL that make it difficult to use in practice. The mapping has
two conflicting goals:

1. Support Java RMI/IIOP: Allow Java Remote Method Invocations over the
CORBA Internet Inter-ORB Protocol.

2. Support CORBA clients: Make Java remote objects available to CORBA clients
as if they were CORBA objects.

Goal 1 absolutely requires that no information be lost in the translation from Java
to IDL, so that Java-to-Java communication via IIOP is possible. To meet goal 2
you need a mapping that is easy to use, but this takes second place to the
absolute requirement of goal 1. In order to avoid losing information, the mapping
exposes in the IDL Java details that are of no benefit to a non-Java client, and in
many cases are a serious or even fatal hindrance.

Below is a simple example to illustrate some of these problems. This is one of the
simplest "getting started" examples from Sun Microsystems' Java™ 2 Enterprise
Edition Developer's Guide (v. 1.2.1):

/*
*
* Copyright 2000 Sun Microsystems, Inc. All Rights Reserved.
*
* This software is the proprietary information of Sun
Microsystems, Inc.
* Use is subject to license terms.
*
*/
import java.util.*;
import javax.ejb.EJBObject;
import java.rmi.RemoteException;
public interface Cart extends EJBObject
{
public void addBook(String title) throws RemoteException;
public void removeBook(String title) throws BookException,
RemoteException;
public Vector getContents() throws RemoteException;
}

The idea here is that you can add and remove books (by title) from your shopping
cart, and get the contents of the cart as a vector of title strings.

 4

2.2.1 A Custom Mapping

Below is shown a fairly obvious custom mapping for this interface as a baseline,
which can be compared to the standard mapping. Suppose you asked someone to
design an IDL interface to provide access to the functionality of the EJB above.
They would probably come up with something like this.

//
// Custom IDL interface for Cart EJB
//
// Use wstring to support international strings.
typedef wstring TitleType; typedef sequence<TitleType> TitleSeq;
exception BookException { string message; };
interface Cart
{
void addBook(in TitleType title);
void removeBook(in TitleType title) raises BookException;
readonly attribute TitleSeq contents;
};

This IDL interface is just as simple for a Java client to use as the EJB, with the
added benefit that a non-Java client can also use it:

//
// C++ CORBA client
//
Cart_var my_cart = // find cart object somehow
my_cart->addBook("Moby Dick");
TitleSeq_var contents = my_cart->contents();
for (int i = 0; i < contents->length(); ++i)
{
cout << "Cart contains: " << contents[i] << endl;
}
//
// Java CORBA client
//
Cart myCart = // find cart object somehow
myCart.addBook("Moby Dick");
String[] contents = myCart.contents();
for (int i = 0; i < contents.length; ++i)
{
System.out.println("Cart contains: "+contents[i]);
}

Now compare the standard mapping for this simple interface:

//
// Standard Java to IDL mapping of Cart
//
interface Cart: ::javax::ejb::EJBObject
{
void addBook(

 5

in ::CORBA::WStringValue arg0);
void removeBook(
in ::CORBA::WStringValue arg0) raises (
BookEx);
readonly attribute ::java::util::Vector contents;
};

2.2.2 What is a Valuetype?

The first thing to note is the pervasive use of valuetype. Anything more
complicated than a simple numeric maps to a valuetype. Even a simple Java
string maps to a value-box containing a CORBA wide string. If your client ORB
does not fully support valuetype (CORBA 2.2 or earlier) then the standard Java to
IDL mapping is of no use at all.

CORBA 2.3 introduced valuetype to IDL to allow passing of "objects by value." A
valuetype has public and private data members, operations, initializers, and
inheritance much like a class in C++ or Java. Unlike an IDL interface, a
valuetype does not represent a remote object. Instances of a valuetype are
passed by value, meaning the data members are transmitted and copy is created
at the other end.

It is easy to see how data members are passed but what about operations? If a
valuetype has operations, the receiver must provide an implementation for
each. For example: in C++ the receiver needs a class to implement the operations
and a factory class to create instances of the implementation. (Aside: In an all-
Java world operation implementations can be downloaded, but we are looking at
non-Java interoperability here.)

If a valuetype has only data members then the IDL compiler automatically
generates an implementation with accessors and modifiers. A value-box is a
special case with exactly one public data member. The Java to IDL mapping often
uses value-boxes because they can have null values (as can most Java types),
whereas non-valuetype IDL data types cannot.

2.2.3 The Collections Problem

Assuming your ORB supports valuetype, the interface above looks simple
enough. But what is a ::java::util::Vector to a non-Java client? The
mapping gives you two choices: data-only, or data plus methods.

If you take the data-only mapping (that is what the –noValueMethods option to
the rmic compiler was for) you get the following:

//IDL
valuetype Vector: ::java::util::AbstractList, ::java::util::List
supports ::java::lang::Cloneable {
private long capacityIncrement;
private long elementCount;

 6

private ::org::omg::boxedRMI::java::lang::seq1_Object
elementData;
};

There are several things wrong with this as a language-independent way of
representing a collection of strings:

• No type safety: elementData (after following a trail of typedefs) is a sequence
of the IDL any type. This means each element could be of any IDL type
whatsoever. The client can discover at run time that they are all in fact strings,
but it is a lot of extra client effort given that this was known at interface design
time.

• Performance penalty: Type description information is sent for each element
individually because, although we know in practice they are all strings, as far
as the ORB is concerned each element could be a different type.

• What do capacityIncrement and elementCount mean? These are
private members of Java's vector class; in other words, implementation details.
To find out what they mean, look at the implementation notes for
java.util.Vector. It turns out that elementCount indicates how many
elements of the sequence are relevant, something that a CORBA programmer
does not expect (since a sequence is already a vector.) This is too much Java-
specific detail for a non-Java client; in fact, it is even too much for a Java
client.

• What does all the inheritance mean? Nothing. AbstractList, List and
Cloneable are empty interfaces that exist purely to preserve a Java
inheritance hierarchy. This is of no interest to a non-Java client.

2.2.4 The Private Data Problem

The next problem for the client is the fact that all these data members are private
and there are no public accessors. In order to get access you need some public
methods. There are three options, none terribly appealing:

1. Hand-modify the data-only mapping above to make the members public. You
need to automate this in a large system.

2. Cheat using some language-specific trick. For example in C++ you can write
a valuetype implementation with public C++ methods that are not part of
the valuetype interface, and use dynamic casting to get at those methods.

3. Use the data-plus-methods mapping described below.

2.2.5 The "Spaghetti Effect"

Since the data-only mapping creates a problem with private data members,
consider the data-plus-methods mapping. This produces a similar set of

 7

valuetypes, but instead of just data they also contain all the methods of the
Java classes they were mapped from.

The first problem with this is that the client has to implement those methods, and
there can be a lot of them. The second, and more serious, problem is that
mapping the methods involves mapping all the classes used as parameter types to
those methods. These additional classes have their own methods that must be
mapped, and those methods introduce further parameter types, and so on
recursively. The Java to IDL mapping document refers to this as the "spaghetti
effect." As a result, a surprisingly large amount of the Java language is dragged
into IDL through recursive dependencies. The client-side problem of implementing
all these valuetypes is made drastically worse, to the point where it is simply not
feasible to use the value-plus-methods mapping.

The example illustrates the impact of this effect. A total of 27 IDL files (each
containing a single valuetype declaration) are produced from this simple
example. The client (who only wants a few strings) must implement the 22
methods declared by the Vector type and the eleven inherited from
AbstractList, List and Cloneable. Most can be empty implementations,
but they must be implemented. The client probably does not need to implement
the ten other non-abstract valuetypes that are dragged in from java.lang,
java.io and javax.ejb by the spaghetti effect, but they will have to link in all
the relevant stub code from the IDL compiler.

2.3 Summary of Problems with the Mapping

To summarize the general problems exposed in the example above:

• Valuetypes are everywhere: valuetypes were added in CORBA 2.3 and there
are still many ORBs in use that do not support them. Some OMG language
bindings (for example COBOL) may never support them. They are a complex
addition to IDL (some would say overly complex), and developers concerned
with interoperability across a wide range of platforms may wish to avoid them.

• Collections: Java programmers typically use collections of Object because Java
lacks features (like C++ templates or Ada generics) to define strongly typed
collections. Mapping such collections creates weakly typed interfaces that
make life difficult for clients, and impose a performance penalty.

• Implementing valuetypes: The client is stuck with providing lots of valuetype
implementations. Using the data-only mapping, the IDL compiler can do most
of the work, but then the client has the problem of accessing private data
members in valuetypes that have no operations.

• Too Much Java: Mapping the utility classes that Java programmers normally
use exposes too much Java in IDL, including private data members of Java

 8

classes and parts of the Java class hierarchy that are completely irrelevant to a
non-Java client.

Some other problems that were not discussed in the example:

• Files and build management: The mapping produces large numbers of files in
a deeply nested directory structure. This is natural for Java build
environments, but not for other languages.

• Split modules: Java packages map to multiple IDL modules that are deeply
nested and re-opened in multiple files. CORBA IDL normally has a fairly flat
module space with one file per module. Although technically allowed, re-
opening a module in multiple files causes mapping problems for some
languages, for example C++ compilers without namespace support.

• Name mangling: The mapping sometimes mangles EJB method names in
their IDL counterpart. Java features that lead to mangled names include
overloaded methods, method names that match field or bean property names,
names that differ only by case (IDL is not case-sensitive, whereas Java is),
classes with the same name as the containing package, and names using non
ISO-Latin 1 characters. The mangling is not programmer friendly for a client.

• Exception mismatch: Java allows exception inheritance, IDL does not. To
preserve the inheritance Java exceptions are mapped to a value type inside a
CORBA exception. This is a very abnormal paradigm for CORBA programmers,
and it is not even useful for those languages that allow exception inheritance
because in the mapped IDL it is not the exceptions but their contents that
follow the Java hierarchy.

3 The CORBA-Friendly EJB
There are some steps you can take to minimize the problems introduced by the
standard mapping if you are willing to design your EJB to be CORBA-friendly.

3.1 Using IDL to Define EJB Data Types

One technique for making an EJB easier for a CORBA client to use is to use
CORBA IDL to define the data types used by the EJB!

Remember you can map in both directions between IDL and Java. So far we have
discussed the pitfalls of the Java to IDL mapping used by the standard CORBA to
EJB interoperability mechanism. However, there is also the long-standing IDL to
Java mapping, which is the proven foundation for developing Java-based CORBA
systems. The IDL to Java mapping is easy to use because IDL was explicitly
designed to be mapped to programming languages like Java (the reverse is not true
unfortunately.)

 9

This means that for any IDL type, there is a corresponding derived Java type under
the IDL to Java mapping. The Java to IDL mapping makes a special case for these
derived types. EJB parameters that are IDL-derived Java classes map to a value
box containing the original IDL type from which they derived. This means that if
you start from an IDL type, you almost come back to where you started. For
example:

// IDL: Data type definition

struct Customer {
 string name;
 string address;
}

// EJB: Interface using IDL-derived Customer class
interface Mailer extends EJBObject {
 void sendMail(Customer customer);
}

// IDL: Java to IDL mapping of EJB above
interface Mailer: ::javax::ejb::EJBObject {
 void sendMail(
 in ::org::omg::boxedIDL::Customer customer
);
}

The ::org::omg::boxedIDL::Customer type is a value-box: a simple
wrapper that holds an instance of the original IDL Customer type. For client
code, this is almost as easy to use as the original IDL type; provided the client
ORB supports valuetype. The value-box is introduced by the Java to IDL
mapping to deal with null values. All Java class types allow null value, as do IDL
valuebox types. Other IDL types, such as struct, do not.

3.2 Check List of CORBA-Friendly Techniques

• Use IDL to define data types. As explained above, you can use IDL to define
data types, then use the IDL-derived Java classes in your EJB. When you map
the EJB back to IDL it will use value-boxes containing the original IDL types.
These are easier for the client to use than native Java types mapped to IDL.

• Use IDL to define exceptions. This is similar to using IDL to define data types
as per the previous point. An IDL-derived exception in an EJB throws clause
is mapped back to its original definition when in IDL under the Java to IDL
mapping. This is the only way to avoid the valuetype-in-an-exception problem
produced by the mapping.

 10

• Use arrays, not collection classes. A Java array maps to a value-box
containing an IDL sequence of the corresponding type. This is preferable to a
weakly typed sequence <any> locked away in the private data of a Java value
type.

• Expose public data. If you use non-IDL Java classes as data types, make the
important members public so that the no-method mapping will be easy to use.

• Using java.lang.Object is good from the mapping point of view; it maps
to the IDL any type, which is a piece of self-describing data that your CORBA
client can interpret at run-time. In terms of general design principles, you
should be careful about using generic types like this because they can mask
type consistency errors in your application until run-time, which could have
been caught during development.

• Avoid spaghetti. Use the no-value-methods mapping to avoid dragging useless
Java classes into the IDL generated by the Java to IDL mapping. We do not
recommend using the with-methods mapping. Even in simple test cases it
produces IDL that is too complicated; in a realistic application there is little or
no hope of getting it working.

These techniques will make things a little better for your CORBA clients, but it still
does not eliminate value types. Any type other than the simple numeric types will
be mapped to a valuetype in IDL, even one that was originally derived from an
IDL data type.

3.3 Generating a CORBA-Friendly EJB from EJB-Friendly
IDL

The list of restrictions suggested above would be difficult to follow manually for a
large number of EJB interfaces. An alternative approach is to start by defining the
remote interfaces for your EJB system entirely in IDL, and then derive the EJB
interfaces from the Java mapping of those IDL interfaces. This will produce EJB
interfaces that naturally follow the IDL-friendly rules.

The derived EJB interface will be almost identical to the "Operations" interface
created by the IDL-to-Java mapping, with the following differences:

• Have the interface extend javax.ejb.EJBObject

• Add throws java.rmi.RemoteException to each operation signature.

A code generation script (for example using the Orbix Code Generation Toolkit) can
automate the creation of EJB remote interfaces from the IDL file, so that you can
define your IDL interfaces first and have your EJB interfaces generated
automatically.

 11

Unfortunately, because the Java-to-IDL and IDL-to-Java mappings are not
symmetrical, the reverse mapping of an interface created in this way will not be
the IDL interface you started with:

• All complex data types and strings will be wrapped with value boxes.

• Boxes for IDL types have deeply nested package names, for example
omg::org::boxedIDL::MyDataType

• All string types become value boxes containing a wstring.

• The EJBObject inheritance is exposed in IDL.

• IDL out or inout parameters cause problems.

The last point is the most severe. Java only supports the "in" style of parameter
passing. In order to support IDL out and inout parameters, the IDL-to-Java
mapping introduces Holder objects in Java. A Java ORB uses Holders to
communicate the return value in out or inout parameters to the caller.
Unfortunately Holders do not implement the Java Serializable interface, which
means that the Java to IDL mapping does not treat them as data types. Instead it
treats them as completely opaque abstract valuetypes, which means the client
has no way to get access to the contained values.

The solution is to write "EJB-friendly IDL" using only in parameters. This
straightforward restriction brings the IDL design model closer to the EJB model,
which also allows only a single result to be returned from a call. Of course that
result can be a struct containing multiple data fields, so no expressive power
has been lost here.

To summarize the steps in this approach:

1. Define your interfaces initially in IDL, using only the in parameter passing
mode and avoiding valuetype.

2. Derive EJB interfaces from the IDL by making minor modifications to the
results of the IDL normally generated by the IDL to Java mapping. Code
generation tools can automate this step.

3. Code your EJB to the EJB interface created in step 2.

4. Code your clients to the reverse-mapped IDL derived from the EJB interface of
step 2.

5. Deploy the EJB, and deploy clients that communicate directly with the EJB via
RMI/IIOP.

Step 4 is a little awkward. It is better if you can code clients to the original IDL
defined in step 2 rather than the reverse-mapped version, which introduces a

 12

variety of unpleasant side-effects. This can be done by building wrappers as
described in the next section.

4 Building and Generating Wrappers
A wrapper is a CORBA object (implemented in Java) that delegates to an EJB. The
advantage of a wrapper is that it is a normal CORBA object with a clean IDL
interface that does not suffer the problems of the Java-to-IDL mapping.

In general you can handcraft wrappers that delegate to EJBs in any way you like.
But there is an important special case when you derive EJB interfaces from IDL
interfaces as described above. In that case, the wrapper can implement the
original IDL interface and delegate to the derived EJB. CORBA clients
communicate with the original clean interface, and avoid the complexities
introduced by the reverse mapping.

Because the wrapper and EJB interfaces are so closely aligned, the wrapper does
not need to perform any manipulation of parameters or return values — it simply
passes all parameters directly to the EJB, and returns the results directly to the
client. There are only two situations where the wrapper needs to intervene:

• EJB returns a null value: This should be considered an error — a CORBA-
friendly EJB should not return null values. The wrapper can raise a system
exception such as BAD_PARAM.

• EJB throws RemoteException: The wrapper must catch this exception and
convert it to an appropriate CORBA system exception. Most of the
RemoteExceptions defined by the JDK have obvious CORBA counterparts,
and the UNKNOWN exception provides a fallback for unknown extensions to
RemoteException.

Each wrapper operation will look something like this:

ReturnType some_op(ParameterType p1, ...) {
try {
ReturnType result = m_ejbTarget.some_op(p1, ...);
if (result == null) throw new BAD_PARAM();
} catch (RemoteException ex) {
throw_corba_system_exception_for(ex);
}
}
Since the wrappers are so predictable and simple, you can use another code
generation script to create them from the IDL automatically. Now the procedure for
interoperability looks like this:

 13

1. Define your interfaces initially in IDL, using only the in parameter passing
mode and avoiding valuetype.

2. Generate EJB interfaces from the IDL, and code your EJB to these interfaces.

3. Generate wrappers from the IDL.

4. Code your clients to the original IDL from step 1.

5. Deploy the EJB and wrappers, and deploy clients that talk to the wrappers
using IIOP while the wrappers talk to the EJB using RMI or RMI/IIOP.

5 Pre-existing EJBs and Interoperability
Borders

What do you do with pre-existing EJB interfaces that are not CORBA-friendly?
Obviously they will not have been derived from IDL, and will probably use at least
some of the CORBA-unfriendly Java constructs. There are two options:

• Handcraft a special CORBA wrapper to implement the IDL interface to hide
the unfriendly EJB interfaces.

• Build an EJB according to the CORBA-friendly plan that wraps the unfriendly
EJB interfaces.

In some ways the approaches are equivalent; the main difference is whether you
give the job to an EJB programmer or a CORBA programmer. However, it may be a
more natural fit to build a CORBA-friendly EJB that aggregates the services of one
or more CORBA-unfriendly EJBs behind a clean IDL interface.

This raises the more general question: "Do I have to apply CORBA-friendly rules to
all my EJBs?" In the case of a system with pre-existing EJB interfaces, clearly you
cannot do this without re-implementing those parts of the system. Even in a
system where you are working from scratch, you may have some EJBs that only
need to provide service to other EJBs and will never have CORBA clients. You can
think of the EJB part of a system as having an "interior" where you can do anything
you like, and a "border" where EJBs must be CORBA-friendly to allow
interoperability with the wider world.

Whether you want to go for this approach or not depends on the development
philosophy in your organization — the degree to which you have embraced CORBA
or EJB already, the code you have in place and the expertise of your developers.

 14

6 A Wrapper Framework
CORBA wrappers for an EJB will need a CORBA server to live in, regardless of
whether they are generated automatically or coded by hand. For a given EJB you
need:

• Object wrapper interface: IDL interface representing the EJB's remote
interface. As discussed above, the EJB could actually be derived from the IDL.

• Home wrapper interface: IDL interface representing the EJB's home interface.
This corresponds to a CORBA "factory". You can derive the EJBHome interface
from IDL as was discussed for the object interfaces.

There will be a single instance of the home wrapper, and potentially many
instances of the object wrapper, reflecting the situation with the corresponding EJB
interfaces. You must design a CORBA server that can efficiently implement these
wrapper objects with predictable memory requirements and as little overhead as
possible. You also need to consider how wrappers for multiple types of EJB are
deployed into such a server.

6.1 The Wrapper Container Server

All wrappers require the same kind of server environment in which to run, so you
can build a generic "wrapper container" server to host wrappers. This can be
implemented as a normal Java/CORBA server using any CORBA 2.3 compliant
Java ORB. In this case the set of wrappers that is available will be determined at
start-up, either by being hard-coded into the server mainline or read from some
server configuration file.

A more interesting approach is to allow dynamic deployment of wrappers into a
running container server. You can implement an IDL container interface that
provides a deploy operation to allow new wrapper code to be deployed at runtime.
Since the code is always Java, deploy() can accept Java byte-code archives
containing the necessary wrapper code. If the wrapper code is always available
locally it could also take file system pointers or even just class names available on
the local class path. This is much closer to the EJB model, and allows greater
flexibility around deployment.

The most interesting approach is to embed the wrapper server inside the
application server to reduce the remote communication between wrappers and
their targets. This approach depends on use of non-standard application server
hooks, so it may not be possible with all application servers. The IONA iPortal
Application Server is built on top of a pluggable CORBA ORB, so a wrapper
container can be loaded dynamically as an ORB plug-in and thus become part of
the application server.

 15

Regardless of where the container server runs, it needs to know the following
information about each wrapper being deployed. This information forms a kind of
"deployment descriptor":

• Java servant classes to implement the IDL home and object wrapper interfaces

• The IDL interface type of the wrappers

• The JNDI name of the EJB Home object

• The CosNaming name to use for the IDL Home wrapper object

• Whether the wrapped EJB is an Entity or Session Bean

Using this information, the container server can set up object adapters, create
wrapper servants, and advertise both the CORBA home wrapper and the naming
service. A wrapper developer need only implement the wrappers themselves and
deploy them into the container.

From the client perspective, CORBA clients use the CORBA naming service to
locate the IDL Home wrapper. They use the home wrapper to create or look-up
object wrappers just like EJB clients use an EJB home to locate EJB objects.

6.2 Inside the Container Server

Having outlined what the container server does, we next look at how you can
implement it efficiently using the Portable Object Adapter (POA) [5]. From a client
perspective, wrappers have a one-to-one relationship with the EJB objects they
wrap. You must implement this relationship with limited memory, even though
there may be an unlimited number of EJB objects.

Home wrappers are straightforward. For each EJB type there is a single EJB home
instance and therefore a single home wrapper instance. You can implement the
home object as follows:

1. At deployment, locate the target EJB Home via JNDI and create a home
wrapper servant that delegates to that EJB home.

2. Activate the servant in the Home POA. The POA can be multi-threaded since
the wrapper simply delegates to a thread-safe EJB Home object.

3. Publish the home wrapper reference in the CORBA naming service using the
name provided at deployment.

 16

Figure 2: EJB Wrapper

EJB object wrappers are more interesting, as Figure 2 illustrates. There may be a
very large number of EJB objects representing entities in a huge database. There
may be a rapidly changing collection of EJB objects representing client sessions
that are created and destroyed. EJB handles this by using a small pool of Beans to
implement a large number of EJB objects, swapping beans between instances as
needed. The POA offers an even better solution: you can implement all the CORBA
wrapper objects using one stateless, multi-threaded, multiple-identity CORBA
object.

Here's how it works: you need cooperation between the Home wrapper, a servant
locator (one of the standard POA tools) and the EJB Object wrapper as follows:

1. At deployment time create a single instance of the object wrapper servant and
record the fact that it implements a particular IDL interface.

2. When requested to find or create an object, the home wrapper creates a
CORBA object reference. Part of every CORBA reference is an ObjectId that
can be chosen by the application. Encode the identity of the EJB Object (a
serialized Handle) and the corresponding IDL interface (a Repository ID) in the
ObjectId.

3. A servant locator lets you control which servant receives each CORBA request.
The wrapper servant locator has a map of deployed wrapper interfaces and
their corresponding servants. For each incoming request, it extracts the
wrapper interface from the ObjectId and chooses the appropriate servant.

4. The servant itself finds out what ObjectId was used to make the call (using
PortableServer::Current) and extracts the EJB Handle to find the target
EJB Object.

5. The servant delegates the call to the target. Note, it must deal with the
possibility that the target does not exist by catching
java.rmi.NoSuchObjectException and throwing CORBA::NON_EXISTENT.

 17

Register the servant locator with a multi-threaded POA to avoid a bottleneck on
access to EJB objects. You do not need any synchronization because the servants
do nothing but delegate to a thread-safe EJB object. You need two separate POAs,
one with the TRANSIENT policy for Sessions and one with PERSISTENT policy for
Entities.

The implementation proposed above has the following desirable properties:

• A small, fixed number of POAs (Home, Session and Entity) can handle an
arbitrary number of EJB types.

• Memory consumption is proportional to the number of types of EJB, and
independent of the number of instances.

• Servant locator and POA configuration code is generic; only the mapping code
in the servants depends on the interfaces.

6.3 Performance Issues

This section briefly reviews some possible performance concerns in this design.
The exact impact depends on implementation details of the application server, but
none are expected to be significant relative to the other overheads in a CORBA or
EJB call.

Size of object references: The CORBA object reference contains an EJB handle
and a CORBA repository ID as well as the CORBA protocol information, and this
information is transmitted on each call. This may raise a concern about "fat" object
references. This is a typical trade-off. To keep the wrapper server stateless, you
need to transfer extra information to the client (hidden in CORBA object
references). It may be possible to devise a more compact encoding for the same
information, but making the server stateful is certainly not a good idea.

Cost of serializing/de-serializing handles: This happens per-operation, so if the
application server takes a long time to do it, it may cause problems.

Cost of extra hop: The wrappers introduce an extra "hop" from client to wrapper to
EJB. This cost can be minimized by running wrappers and the application server
on the same host, or by embedding the wrapper server directly into the application
server, if possible.

7 Conclusions
Java code calling CORBA objects is straightforward since CORBA is designed to be
accessible from many languages including Java. Non-Java code calling EJB objects
is more difficult since EJB is designed on the all-Java assumption. There are
basically two approaches:

 18

Direct access using the Java to IDL mapping

Advantages

• Direct access with no intermediary and no additional work.

Disadvantages

• Requires an application server that supports CORBA interoperability.

• Mapped IDL is difficult to use and includes features such as wstring and
valuetype that are not supported by all ORBs. This can be improved with
CORBA-friendly techniques, but some key problems are unresolved.

Indirect access via wrappers

Advantages

• Provides clean, well-designed IDL to clients and avoids any problematic
constructs.

• Can wrap any application server, and does not require built-in support for
CORBA interoperability.

Disadvantages

• Additional effort to create the wrappers. This can be automated using CORBA-
friendly techniques.

• Additional wrapper components to deploy and manage.

• Transaction and security integration will be more complex if the application
server does not support CORBA interoperability.

 19

Appendix: EJB/CORBA Quick Comparison
This is a quick comparison of the terminology and technology of EJB and CORBA
2.3. The main differences are:

• EJB is Java only. CORBA supports many implementation languages.

• EJB provides a container and a descriptive language for specifying
transactional and security properties of objects. CORBA requires the developer
to write some code to implement container, transaction, and security behavior.

• EJB provides a small fixed set of implementation models (lifecycle, threading
etc.) already implemented by the container. CORBA provides the tools to
implement a much wider variety of models, but requires some developer effort
to do so.

In short: EJB provides greater ease-of-use at the cost of flexibility (and possibly
performance).

Apart from these differences there are a large number of structural similarities, but
with different terminology on each side. Here is how the terms map under the
following headings:

• Basics: The fundamental parts that make each system work.

• Lifecycles: Lifecycle terms and a bit of discussion on lifecycle differences.

• Homes and Factories: The behavior of Home interfaces is the most confusing
for a CORBA programmer.

Basic Terms

EJB CORBA

EJB Object: Abstract entity with an
interface (defined in Java) that can be
remotely invoked.

CORBA Object: Abstract entity with an
interface (defined in IDL) that can be remotely
invoked.

Bean Remote Interface: The Java
interface that clients use to invoke on
an EJB object. Defined in Java.
Explicitly inherits
javax.ejb.EJBObject.

IDL interface: Language-independent interface
that can be mapped to many programming
languages. Clients use this to invoke on a
CORBA object. Defined in IDL. Implicitly
inherits CORBA::Object.

Bean Home Interface: Java interface
that allows clients to find, create and

Factory interface: CORBA does not distinguish
special home or factory interfaces for creation

 20

destroy EJB Objects. All EJB Object
types have an associated Home
object, located via the JNDI. The EJB
application server implements the
Home interface.

or look-up, but they are standard design
practice. Factory interfaces are normally
located via the CORBA naming service. The
developer implements a Factory interface just
like any other IDL interface.

Bean Class: Concrete Java class that
implements the Bean interfaces and
special EJB life-cycle operations called
by the server.

Servant Class: Concrete programming
language class that implements an IDL
interface.

Handle: Address of an EJB Object in a
form that can be serialized, and later
re-constructed to give a reference to
the same EJB Object.

Object Reference: Used to call on a CORBA
object. Can be serialized (or "stringified") and
later re-constructed to invoke the CORBA
object.

Lifecycle

EJB provides a small set of well-defined bean lifecycle models, which are
implemented by the EJB server. In each case the EJB server maintains a pool of
bean objects, and assigns them to handle EJB object requests such that each bean
can only handle one request at a time.

The CORBA Portable Object Adapter provides a virtually unlimited range of
lifecycle possibilities, including fully multi-threaded servants. However, it is left to
the programmer to choose and implement the appropriate one (or to the vendor to
supply some extra tools to help). Here are the EJB models and a suggestion as to
how a similar requirement would be implemented using the POA. For more on the
various POA strategies mentioned see the Orbix 2000 course notes (C++ or Java
versions).

EJB CORBA

Entity Beans: Model data-store entities
that exist over many server runs. Must
have a primary key; container can
optionally manage persistence
automatically.
The server maintains a pool of beans.
When a request arrives, one of the pooled
beans is activated (populated with data)
and responds to the request. The active
beans act as a cache. When the cache
overflows, an active bean is written back
to storage and returned to the pool.

Persistent Objects: POA PERSISTENT life-
span policy. Exist over many server runs.
Typically have a persistence key, but it need
not be exposed. It is usually encoded in the
ObjectId that is hidden in the object
reference.
A ServantLocator can implement an
EJB-style pool, but this may not be the most
efficient solution. A single multi-threaded
default servant can implement all the
objects if they are simply serving data.

 21

Stateful Session Beans: Models user
interaction, keeping conversational state.
Sessions are destroyed after a timeout.
EJB server maintains a pool of beans.
Beans are assigned to represent a session
when it is created and returned to the
pool when destroyed. For memory
management purposes the server may
passivate a bean by saving its state and
destroying the bean object, re-creating it
if needed later.

Stateful Transient Objects: POA
TRANSIENT life-span policy.
ServantLocator can implement EJB-
style pooling and timeouts, although the
developer must supply the persistence code.

Stateless Session Beans: Model a
stateless service.
EJB maintains a pool and assigns beans
to requests as they arrive; any bean can
serve any request.

Singleton Objects: Typically modeled by a
single persistent CORBA object in the
CORBA world.
Usually these kinds of objects can simply be
created when servers start up and destroyed
when they shut down. Factory objects (the
CORBA equivalent of Home interfaces) are a
good example.

Home Behavior

The behavior of Home interfaces is the most counter-intuitive thing about EJB for a
CORBA programmer. In CORBA, a Home or Factory is a regular object. It typically
implements create or find operations by accessing data-store and creating new
CORBA object references (possibly without corresponding servants, for auto-
activation by a servant manager.)

In EJB, the Home interface provides create, remove and findByPrimaryKey
operations. The home interface is actually implemented by the container in
cooperation with the beans. The bean class implements lifecycle operations such
as ejbCreate.

When a client calls a create operation on the home class, an existing bean is
selected from the pool and it's ejbCreate operation is called with matching
parameters. This gives the bean a chance to initialize itself appropriately — in the
case of container-managed persistence, the container does most or all of the work
by reading state from the database automatically. Similar hooks are provided for
removing, activating and de-activating beans in the pool.

 22

References
[1] Mapping of OMG IDL to Java

(http://www.omg.org/cgi-bin/doc?formal/99-07-53)

[2] Enterprise JavaBeans to CORBA mapping
(http://java.sun.com/products/ejb/docs.html)

[3] Java Language to IDL Mapping
(http://www.omg.org/cgi-bin/doc?formal/99-07-59)

[4] CORBA Components, Volume 1
(http://www.omg.org/cgi-bin/doc?orbos/99-07-01)

[5] Common Object Request Broker: Architecture and Specification
(http://www.omg.org/cgi-bin/doc?formal/99-10-07)

 23

http://www.omg.org/cgi-bin/doc?formal/99-07-53
http://java.sun.com/products/ejb/docs.html
http://www.omg.org/cgi-bin/doc?formal/99-07-59
http://www.omg.org/cgi-bin/doc?orbos/99-07-01
http://www.omg.org/cgi-bin/doc?formal/99-10-07

Further Reading
IONA Technologies. iPortal Application Server Introduction White Paper. May
2001.

IONA Technologies. iPortal Application Server Clustering for Load Balancing and
Fault Tolerance White Paper. May 2001.

IONA Technologies. iPortal Administrator White Paper. June 2001.

IONA Technologies. Web Services Technical Overview White Paper. June 2001.

IONA Technologies. iPortal Application Server and JMS Integration White Paper.
April 2001.

IONA Technologies. Orbix 2000 White Paper. August 2001.

All IONA White Papers are available for download at
www.iona.com/forms/wprequest.htm

 24

http://www.iona.com/forms/wprequest.htm

Contact Details

IONA Technologies PLC
The IONA Building
Shelbourne Road
Dublin 4
Ireland
Phone: ...+353 1 637 2000
Fax: ...+353 1 637 2888

IONA Technologies Inc.
200 West St
Waltham, MA 02451
USA
Phone: ...+1 781 902 8000
Fax: ...+1 781 902 8001

IONA Technologies Japan Ltd.
Akasaka Sanchome Bldg 7/F
3-21-16 Akasaka
Minato-ku, Tokyo
Japan 107-0052
Phone: ...+813 3560 5611
Fax: ...+813 3560 5612

Support: ..support@iona.com
Training: ..training@iona.com
Sales: ..sales@iona.com
FTP Site: ..ftp.iona.com

World Wide Web: www.iona.com

 25

www.iona.com

	Summary
	Introduction
	The Java to IDL Mapping
	Using the Java to IDL Mapping
	Problems with the Mapping — Example
	A Custom Mapping
	What is a Valuetype?
	The Collections Problem
	The Private Data Problem
	The "Spaghetti Effect"

	Summary of Problems with the Mapping

	The CORBA-Friendly EJB
	Using IDL to Define EJB Data Types
	Check List of CORBA-Friendly Techniques
	Generating a CORBA-Friendly EJB from EJB-Friendly IDL

	Building and Generating Wrappers
	Pre-existing EJBs and Interoperability Borders
	A Wrapper Framework
	The Wrapper Container Server
	Inside the Container Server
	Performance Issues

	Conclusions
	
	
	Direct access using the Java to IDL mapping
	Indirect access via wrappers

	Appendix: EJB/CORBA Quick Comparison
	Basic Terms
	Lifecycle
	Home Behavior

	References
	Further Reading
	Contact Details

