O’REILLY"Online Catalog S8 ThE DlaN 08

Jivanrand Enterprise JavaBeans, 2nd Edition

By Richard Monson-Haefel
2nd Edition March 2000

. - 1-56592-869-5, Order Number: 8695
== ol 350 pages, $34.95

CYRERLT" Eirlard Mo Waofsl

Chapter 4
Developing Your First Enterprise Beans

In thischapter:

Choosing and Setting Up an EJB Server
Developing an Entity Bean

Developing a Session Bean

Choosing and Setting Up an EJB Server

One of the most important features of EJB is that beans should work with containers from
different vendors. That doesn’'t mean that selecting a server and installing your beans on t
server are trivial processes. We'll start this chapter with a general discussion of how you
select and set up a server.

The EJB server you choose should be compliant with the EJB 1.0 or EJB 1.1 specification
However, in the EJB 1.0 version of the specification, support for entity beans and
container-managed persistence is optional. In EJB 1.1, support for entity beans is requirec
The first example in this chapter--and most of the examples in this book--assume that you
EJB server supports entity beans and container-managed perdi$ierfoe EJB server you
choose should also provide a utility for deploying an enterprise bean. It doesn’t matter
whether the utility is command-line oriented or graphical, as long as it does the job. The
deployment utility should allow you to work with prepackaged enterprise beans, i.e., beans
that have already been developed and archived in a JAR file. Finally, the EJB server shou
support an SQL-standard relational database that is accessible using JDBC. For the datak
you should have privileges sufficient for creating and modifying a few simple tables in
addition to normal read, update, and delete capabilities. If you have chosen an EJB servel
that does not support an SQL standard relational database, you may need to modify the
examples to work with the product you are using.

Setting Up Your Java |DE

To get the most from this chapter, it helps to have an IDE that has a debugger and allows
to add Java files to its environment. Several Java IDEs, like Symantec’s Visual Cafe, IBM’
VisualAge, Inprise’s JBuilder, and Sun’s Forte, fulfill this simple requirement. The debugge
is especially important because it allows you to walk slowly through your client code and
observe how the EJB client API is used.

Once you have an IDE set up, you need to include the Enterprise JavaBeans packages. T
packages includeavax. ej b and for EJB 1.Qavax. ej b. depl oynent . You also need the

JNDI packages, includinigavax. nani ng, j avax. nani ng. di rect ory, and

j avax. nani ng. spi . In addition, you will need thieavax. rmi package for EJB 1.1. All

these packages can be downloaded from Sun’s Javat§ité/yww.javasoft.cojnn the

form of ZIP or JAR files. They may also be accessible in the subdirectories of your EJB
server, normally under tHid directory.

Developing an Entity Bean

There seems to be no better place to start than the Cabin bean, which we have been
examining throughout the previous chapters. The Cabin bean is an entity bean that
encapsulates the data and behavior associated with a real-world cruise ship cabin in Titan
business domain.

Cabin: The Remote Interface

When developing an entity bean, we first want to define the bean’s remote interface. The
remote interface defines the bean’s business purpose; the methods of this interface must
capture the concept of the entity. We defined the remote interface for the Cabin bean in
Chapter 2; here, we add two new methods for setting and getting the ship ID and the bed
count. The ship ID identifies the ship that the cabin belongs to, and the bed count tells hov
many people the cabin can accommodate.

package comtitan. cabin;
i mport java.rm . Renot eException;

public interface Cabin extends javax.ejb. EJBOhject {
public String getNanme() throws RenoteException;
public void setNane(String str) throws RenoteException;
public int getDeckLevel () throws RenoteException;
public void setDeckLevel (int |evel) throws RenoteException;
public int getShip() throws RenoteException;
public void setShip(int sp) throws RenoteException;
public int getBedCount() throws RenoteException;
public void setBedCount(int bc) throws RenoteException;

}

Thecabi n interface defines four properties: there, deckLevel , shi p, andbedCount .
Propertiesare attributes of a bean that can be accessed by public set and get methods. Th
methods that access these properties are not explicitly definedasbtheinterface, but the
interface clearly specifies that these attributes are readable and changeable by a client.

Notice that we have made thebi n interface a part of a new package named

com titan. cabi n. In this book, we place all the classes and interfaces associated with eac
type of bean in a package specific to the bean. Because our beans are for the use of the 1
cruise line, we place these packages irctmet i t an package hierarchy. We also create
directory structures that match package structures. If you are using an IDE that works
directly with Java files, create a new directory somewhere adde(for development) and
create the directory structure showrigure 4-1 Copy theCabi n interface into your IDE

and save its definition to treabindirectory. Compile theabi n interface to ensure that its
definition is correct. Th€abin.clasdile, generated by the IDE’s compiler, should be

written to thecabindirectory, the same directory as babin.javafile.

Figure 4-1. Directory structurefor the Cabin bean

dev

om

titan

cabin

CabinHome: The Home I nterface

Once we have defined the remote interface of the Cabin bean, we have defined the world’
view of this simple entity bean. Next, we need to define the Cabin bean’s home interface,

which specifies how the bean can be created, located, and destroyed; in other words, the

Cabin bean'’s life-cycle behavior. Here is a complete definition afdhienHome home

interface:

package comtitan. cabin;

i mport java.rm . Renot eExcepti on;
i mport javax.ejb. Creat eExcepti on;
i mport javax.ejb. Fi nder Excepti on;

public interface Cabi nHome extends javax.ejb. EJBHome {

public Cabin create(int id)
throws CreateException, RenoteException;

public Cabin findByPrimaryKey(Cabi nPK pk)
t hrows Fi nder Excepti on, RenoteExcepti on;

}

Thecabi nHorre interface extends thevax. ej b. EJBHome and defines two life- cycle
methodscr eat e() andfi ndByPri mar yKey() . These methods create and locate Cabin

beans. Remove methods (for deleting beans) are defined;jiaviide ej b. EJBHone

interface, so theabi nHone interface inherits them. This interface is packaged in

com titan. cabin, just like thecabi n interface. It should be copied to your IDE and saved
asCabinHome.javan the same directory as tlabin.javafile. If you attempt to compile

the Cabi nHone interface, you will get an error stating that ta@i nPK class could not be
found. Next, we will create theabi nPK class to correct this problem.

CabinPK: ThePrimary Key

Thecabi nPK is the primary key class of the Cabin bean. All entity beans must have a
serializable primary key that can be used to uniquely identify an entity bean in the databas
Here is the class definition of tleabi nPK primary key:

package comtitan. cabin;

public class Cabi nPK i npl enments java.io. Serializable {
public int id;

public int hashCode() {
return id,

}
publ i c bool ean equal s(Obj ect obj) {
if (obj instanceof CabinPK) {
return (id == ((Cabi nPK)obj).id);

return fal se;

}

The primary key belongs to them ti t an. cabi n package and implements the

java.io. Serializabl e interface. Thecabi nPK defines one public attributed. Thisid

field is used to locate speciftabi n entities or records in the database at runtime. EJB 1.1
requires that we override thkabj ect . hashCode() andbj ect . equal s() methods; EJB 1.0
doesn’t require this, but it's a good practice regardless of the version of EJB you are using
These methods ensure that the primary key evaluates properly when used with hash table
and in other situatiori2] Later, we will learn that the primary key must encapsulate
attributes that match one or more container-managed fields in the bean class. In this case
i d field will have to match a field in theabi nBean class. Copy theabi nPK definition into

your IDE, and save it to the cabin directoryGabinPK.javafile. Compile it. Now that

Cabi nPK has been compiled, you should be able to congpiienHome without errors.

CabinBean: The Bean Class

You have now defined the complete client-side API for creating, locating, removing, and
using the Cabin bean. Now we need to defute nBean, the class that provides the
implementation on the server for the Cabin bean.CehenBean class is an entity bean that
uses container-managed persistence, so its definition will be fairly simple. In addition to thi
callback methods discussed in Chapters and , we must also define EJB implementations f
most of the methods defined in th&bi n andCabi nHore interfaces. Here is the complete
definition of theCabi nBean class in EJB 1.1:

/1 EJB 1.1 Cabi nBean
package comtitan. cabin;

i mport javax.ejb. EntityContext;
public class Cabi nBean i npl enents javax.ejb. EntityBean {

public int id;

public String nane;
public int deckLevel;
public int ship;
public int bedCount;

public Cabi nPK ejbCreate(int id) {
this.id =id;
return null;

}
public void ejbPostCreate(int id) {
/1 Do nothing. Required.

}
public String getName() {
return name;

}
public void setName(String str) {
name = str;

}
public int getShip() {
return ship;

}
public void setShip(int sp) {
ship = sp;

}
public int getBedCount() {
return bedCount;

}
public void setBedCount (int bc) {
bedCount = bc;

}
public int getDeckLevel () {
return decklLevel

}

public void setDeckLevel (int level) {
deckLevel = |evel

}

public void setEntityContext(EntityContext ctx) {
/1 Not inplenented.

public void unsetEntityContext() {
/1 Not inplenented.

public void ejbActivate() {
/1 Not inplenented.

public void ejbPassivate() {
/1 Not i nplemented.

}
public void ejbLoad() {
/1 Not inplenented.

}
public void ejbStore() {

/1 Not inplenented.

public void ej bRenove() {
/1 Not inplemented.
}

}

And here’s thecabi nBean class for EJB 1.0. It differs only in the return value of
ej bCreate():

/1 EJB 1.0 Cabi nBean
i mport javax.ejb. EntityContext;

public class Cabi nBean i npl enents javax.ejb. EntityBean {

public int id;

public String nane;
public int deckLevel;
public int ship;
public int bedCount;

public void ejbCreate(int id) {
this.id =id;

}

public void ejbPostCreate(int id) {
/1 Do nothing. Required.

}
public String getNane() {
return nanme;

}
public void setNanme(String str) {
nanme = str;

}
public int getsShip() {
return ship;

}
public void setShip(int sp) {
ship = sp;

}
public int getBedCount() {
return bedCount;

}
public void setBedCount (int bc) {
bedCount = bc;

}
public int getDeckLevel () {
return decklLevel ;

}

public void setDeckLevel (int level) {
deckLevel = level;

}

public void setEntityContext(EntityContext ctx) {
/1 Not inplenented.

public void unsetEntityContext() {
/1 Not inplenented.

}
public void ejbActivate(){
/1 Not inplemented.

public void ejbPassivate()(
/1 Not inplenmented.

}
public void ejbLoad(){
/1 Not inplenented.

}
public void ejbStore(){
/1 Not inplenented.

public void ejbRenove(){
/1 Not i nplemented.

}

Thecabi nBean class belongs to thwm ti t an. cabi n package, just like the interfaces and
primary key class. Theabi nBean class can be divided into four sections for discussion:
declarations for the container-managed fieldsetier eat e() methods, the callback
methods, and the remote interface implementations.

Declared fields in a bean class can be persistent fields and property fields. These categori
are not mutually exclusive. The persistent field declarations describe the fields that will be
mapped to the database. A persistent field is often a property (in the JavaBeans sense): a
attribute that is available using public set and get methods. Of course, a bean can have ar
fields that it needs; they need not all be persistent, or properties. Fields that aren’t persiste
won't be saved in the databasechi nBean, all the fields are persistent.

Thei d field is persistent, but it is not a property. In other wardss mapped to the
database but cannot be accessed through the remote interface. The primaatyi ke,

also contains an integer field called] just like theCabi nBean. This means that the primary
key for theCabi nBean is itsi d field because the signatures match.

Thenane, deckLevel , shi p, andbedCount fields are persistent fields. They will be mapped
to the database at deployment time. These fields are also properties because they are pul
available through the remote interface.

In the case of the Cabin bean, there was onlycoea e() method, so there is only one
correspondingj bCr eat e() method and on€g bPost Cr eat e() method, which is shown in
both the EJB 1.1 and EJB 1.0 listings. When a client invokes a method on the home
interface, it is delegated to a match#gCr eat e() method on the bean instance. The

ej bCreat e() method initializes the fields; in the case of thei nBean, it sets the d field

to equal the passed integer.

In the case of EJB 1.0, tlke¢bCr eat e() method returngoi d for container-managed
persistence; this method returns the bean’s primary key in bean-managed persistence. In
1.1, theej bCr eat e() method always returns the primary key type; with container-managed
persistence, this method returnsithel value. It's the container’s responsibility to create

the primary key. Why the change? Simply put, the change makes it easier for a
bean-managed bean to extend a container-managed bean. In EJB 1.0, this is not possible
because Java won't allow you to overload methods with different return values.
Container-managed and bean-managed persistence was touched on in Chapter 3 and is

discussed in detail in Chapter 6.

Once theej bCr eat e() method has executed, téiebPost Cr eat e() method is called to
perform any follow-up operations. ThgbCr eat e() andej bPost Cr eat e() methods must
have signatures that match the parameters and (optionally) the exceptions of the home
interface’scr eat e() method. Howevegj bCr eat e() andej bPost Creat e() aren’t

required to throw theenot eExcept i on Or Cr eat eExcept i on. The EJB container throws
these exceptions automatically at runtime if there is a problem with communications or sot
other system-level problem.

Thefi ndByPri mar yKey() method is not defined in container-managed bean classes. With
container-managed beans you do not explicitly declare find methods in the bean class.
Instead, find methods are generated at deployment and implemented by the container. Wi
bean-managed beans (beans that explicitly manage their own persistence), find methods
must be defined in the bean class. Our Cabin bean is a container-managed bean, so we w
not need to define its find method. In Chapter 6, when you develop bean-managed entity
beans, you will define the find methods in the bean classes you develop.

The business methods in the&bi nBean match the signatures of the business methods
defined in the remote interface. These inclgeleName() , set Nane() , get DeckLevel (),

set DeckLevel (), get Shi p(), set Shi p(), get BedCount (), andset BedCount (). When a

client invokes one of these methods on the remote interface, the method is delegated to tt
matching method on the bean class. Again, the business methods do not throw the

Renot eExcept i on like the matching methods in the remote interface. In both the

ej bCreat e() and remote interface methods, it is possible to define application or custom
exceptions. If a custom exception is defined, both the interface method and its matching
method in the bean class must throw it. We will learn more about custom exceptions in
Chapter 6.

The entity context methods are responsible for setting and unsettibg thg Cont ext .

TheEnti t yCont ext is an interface implemented by the EJB container that provides the bee
with information about the container, the identity of the client, transactional control, and
other environmental information if the bean needs it. Because the Cabin bean is a very
simple container-managed bean, this example does not use thgCont ext . Subsequent
examples in Chapter 6 will make good use ofifié t yCont ext .

ThecCabi nBean class implementsavax. ej b. Ent i t yBean, which defines five callback
methodsej bActi vat e() , ej bPassi vat e(), ej bLoad() , ej bSt ore(), andej bRenove() .

The container uses these callback methods to notifgathienBean of certain events in its

life cycle. Although the callback methods are implemented, the implementations are empt)
Thecabi nBean is simple enough that it doesn’'t need to do any special processing during it
life cycle. When we study entity beans in more detail in Chapter 6, we will take advantage
these callback methods.

That's enough talk about tlgabi nBean definition. Now that you are familiar with it, copy it
to your IDE, save it to the cabin directory@abinBean.javaand compile it.

You are now ready to create a deployment descriptor fazatsien bean. The deployment

descriptor performs a function similar to a properties file. It describes which classes make
a bean and how the bean should be managed at runtime. During deployment, the deployn
descriptor is read and its properties are displayed for editing. The deployer can then modit
and add settings as appropriate for the application’s operational environment. Once the
deployer is satisfied with the deployment information, he or she uses it to generate the ent
supporting infrastructure needed to deploy the bean in the EJB server. This may include
adding the bean to the naming system and generating the bean’s EJB object and EJB hor
persistence infrastructure, transactional support, resolving bean references, and so forth.

Although most EJB server products provide a wizard for creating and editing deployment
descriptors, we will create ours directly so that the bean is defined in a vendor-independer
manner. This requires some manual labor, but it gives you a much better understanding o
how deployment descriptors are created. Once the deployment descriptor is finished, the
bean can be placed in a JAR file and deployed on any EJB-compliant server of the
appropriate version.

EJB 1.1: The Deployment Descriptor

An XML deployment descriptor for every example in this book has already been created a
is available from the download site. If you haven’t downloaded the examples, do so now.
The examples are packaged in a ZIP file and organized by chapter and bean, so you will
need to put thejb-jar.xmlifile from the directorychapter4/EJB11/com/titan/cabin the ZIP

file. When you create the JAR file to deploy the Cabin beanejiigar.xmlfile mustbe in

the JAR asVIETA-INF/ejb-jar.xmiin order for it to be found. If it has any other name or any
other location, this deployment descriptor will not be used.

Here’s a quick peek at the deployment descriptor for the Cabin bean, so you can get a fee
for how an XML deployment descriptor is structured and the type of information it contains

<?xm version="1.0"7?>

<! DOCTYPE ej b-jar PUBLIC "-//Sun M crosystens, |Inc.//DID Enterprise
JavaBeans 1.1//EN' "http://java.sun.conlj2ee/dtds/ejb-jar_1 1.dtd">

<ej b-jar>
<ent erpri se- beans>
<entity>
<descri pti on>
This Cabin enterprise bean entity represents a cabin on
a cruise ship.
</ description>
<ej b- nane>Cabi nBean</ ej b- nane>
<home>com tit an. cabi n. Cabi nHome</ honme>
<renote>comtitan. cabi n. Cabi n</renot e>
<ej b-class>com titan. cabi n. Cabi nBean</ ej b-cl ass>
<per si st ence-type>Cont ai ner </ per si st ence-type>
<pri mkey-class>comtitan. cabin. Cabi nPK</ pri m key-cl ass>
<reentrant >Fal se</reentrant >

<cnp-fiel d><fiel d-name>i d</fi el d- nane></cnp-fiel d>
<cnp-fiel d><fi el d- nane>nane</fi el d- name></cnp-fi el d>
<cnp-fiel d><fi el d- nane>deckLevel </ fi el d- nane></cnp-fi el d>
<cnp-fiel d><fiel d- name>shi p</fi el d- name></cnp-fi el d>

<cnp-fiel d><fi el d- nane>bedCount </ fi el d- nane></cnp-fi el d>
</entity>
</ enterprise-beans>

<assenbl y- descri pt or >
<security-rol e>
<descri pti on>
This role represents everyone who is allowed full access
to the cabin bean.
</ description>
<r ol e- name>ever yone</ r ol e- nane>
</security-role>

<met hod- per i ssi on>
<r ol e- name>ever yone</ r ol e- nane>
<net hod>
<ej b- nane>Cabi nBean</ ej b- nane>
<met hod- name>* </ net hod- nanme>
</ met hod>
</ met hod- per m ssi on>

<cont ai ner-transacti on>
<met hod>
<ej b- nane>Cabi nBean</ ej b- name>
<met hod- name>* </ net hod- nanme>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
</ assenbl y-descri pt or >
</ejb-jar>

The<! DOCTYPE> element describes the purpose of the XML file, its root element, and the
location of its DTD. The DTD is used to verify that the document is structured correctly.
This element is discussed in detail in Chapter 10 and is not important to understanding thi:
example.

The rest of the elements are nested one within the other and are delimited by a beginning
and ending tag. The structure is really not very complicated. If you have done any HTML
coding you should already understand the format. An element always startsantle of

tag > tag and ends with kAme of tag >tag. Everything in between--even other elements--is
part of the enclosing element.

The first major element is thej b- j ar > element, which is the root of the document. All the
other elements must lie within this element. Next is<the er pri se- beans> element.

Every bean declared in an XML file must be included in this section. This file only describe
the Cabin bean, but we could define several beans in one deployment descriptor.

The<entity> element shows that the beans defined within this tag are entity beans.
Similarly, a<sessi on> element describes session beans; since the Cabin bean is an entity
bean, we don’'t need<aessi on> element. In addition to a description, teatity>

element provides the fully qualified class names of the remote interface, home interface,
bean class, and primary key. Tdwmp-fi el d> elements list all the container-managed fields
in the entity bean class. These are the fields that will be persisted in the database and are
managed by the container at runtime. ¥bet i t y> element also includes<aeent r ant >
element that can be setmasie orFal se depending on whether the bean allows reentrant

loopbacks or not.

The next section of the XML file, after tkent er pri se- bean> element, is enclosed by the
<assenbl y- descri pt or > element, which describes the security roles and transactional
attributes of the bean. It may seem odd to separate this information from the

<ent er pri se- beans> element, since it clearly applies to the Cabin bean, but in the scheme
of things it's perfectly natural. An XML deployment descriptor can describe several beans,
which might all rely on the same security roles and transactional attributes. To make it eas
to deploy several beans together, all this common information is separated into the
<assenbl y- descri pt or > element.

There is another reason (perhaps a more important reason) for separating information abc
the bean itself from the security roles and transactional attributes. The EJB 1.1 specificatic
clearly defines the responsibilities of different participants in the development and
deployment of beans. We don’t address these development roles in this book because the
are not critical to learning the fundamentals of EJB. For now, it's enough to know that the
person who develops the bean and the person who assembles the beans into an applicati
have separate responsibilities and therefore separate parts of the XML deployment
descriptor. The bean developer is responsible for everything within the

<ent er pri se- beans> element; the bean assembler is responsible for everything within the
<assenbl y-descri pt or >. In our example, we’re playing both roles, developing the beans
and assembling them. But in real life, you might buy a set of beans developed by a
third-party vendor, who would have no idea how you intend to use the beans, what your
security requirements are, etc.

The<assenbl y-descri pt or > contains th&securi ty-rol e> elements and their
correspondingnet hod- per ni ssi on> elements, which were described in Chapter 3 under
"Security." In this example there is one security reley yone, which is mapped to all the
methods in the Cabin bean using #énet hod- per ni ssi on> element. (The in the

<net hod- nane> element means "all methods").

The container-transaction element declares that all the methods of the Cabin bean have a
Requi r ed transactional attribute. Transactional attributes are explained in more detail in
Chapter 8, but for now it means that all the methods must be executed within a transactior
The deployment descriptor ends with the enclosing tab cfejhte j ar > element.

Copy the Cabin bean’s deployment descriptor into the same directory as the class files for
the Cabin bean fileC@abin.classCabinHome.classCabinBean.classandCabinPK.clasy

and save it agjb-jar.xml You have now created all the files you need to package your EJB
1.1 Cabin bearfigure 4-2shows all the files that should be in tebindirectory.

Figure 4-2. The Cabin bean files (EJB 1.1)

7 ol

| Cabinclss
CabinBean.closs
| CobinBome.:loss
CabinPK_closs
| CGainjove

| CabinHome java

— | (abinPjava

EJB 1.0: The Deployment Descriptor

Here is a Java application that instantiates, populates, and serializes a
Depl oyment Descri pt or for the EJB 1.0 Cabin bean:

package comtitan. cabin;

i mport javax.ejb. depl oynent. EntityDescri ptor;
i mport javax.ejb. depl oynent. Contr ol Descri ptor;
i mport javax. nam ng. ConpoundNane;

import comtitan. cabi n. Cabi nBean;

inmport java.util.Properties;

i mport java.io.FileQutputStream

i mport java.io.Object Qutput Stream

import java.lang.reflect.Field;

public class MakeDD {

public static void main(String [] args) {

try {
if (args.length <1){
Systemout. println("mnmust specify target directory");
return;

}
EntityDescriptor cabinDD = new EntityDescriptor();

cabi nDD. set Ent er pri seBeanCl assNane("com titan. cabi n. Cabi nBean");

cabi nDD. set Horrel nt er f aced assNane("com titan. cabi n. Cabi nHone") ;
cabi nDD. set Renot el nt erfaced assNane("comtitan. cabin. Cabin");
cabi nDD. set Pri mar yKeyC assName("com titan. cabi n. Cabi nPK");

Cl ass beanCd ass = Cabi nBean. cl ass;

Field [] persistentFields = new Field[5];

persi stent Fi el ds[0] beand ass. get Decl aredFi el d("id");

persi stent Fi el ds[1] beand ass. get Decl ar edFi el d(" nane");
persi stent Fi el ds[2] beand ass. get Decl ar edFi el d("deckLevel ");
persi stent Fi el ds[3] beand ass. get Decl ar edFi el d("shi p");
persi stent Fi el ds[4] beand ass. get Decl ar edFi el d("bedCount ") ;

cabi nDD. set Cont ai ner ManagedFi el ds(per si stent Fi el ds) ;
cabi nDD. set Reentrant (fal se);

ConpoundNane | ndi Nane = new ConpoundNane(" Cabi nHone",
new Properties());
cabi nDD. set BeanHoneNane(j ndi Nane) ;

Control Descriptor cd = new Control Descriptor();

cd. setlsol ati onLevel (Control Descri ptor. TRANSACTI ON_READ COWM TTED) ;
cd. set Transacti onAttri but e(Control Descri ptor. TX REQU RED);

cd. set RunAsMbde(Contr ol Descri pt or. CLI ENT_I DENTI TY) ;

cd. set Met hod(nul 1) ;
Control Descriptor [] cdArray = {cd};
cabi nDD. set Contr ol Descri ptors(cdArray);

String fil eSeparator =

System get Properties().getProperty("file.separator");
if (! args[0].endsWth(fileSeparator))

args[0] += fil eSeparator;

Fil eCut put Stream fos = new Fi |l eQut put Strean(ar gs[0] +" Cabi nDD. ser") ;
oj ect Qut put St ream oos = new (bj ect Qut put St rean(fos);

00s. writeCbj ect (cabi nDD) ;

oos. flush();

00s. cl ose();

fos.close();

} catch (Throwable t) { t.printStackTrace();}
}

Copy this definition into your IDE, save it in thabindirectory, and compile it. When you
run the applicationyakeDD, use the path to threbindirectory, where all the other Cabin
bean files are stored, as a command-line parameter:

\dev % java comtitan.cabin. MakeDD conititan/cabin

F:\..\dev>java comtitan. cabi n. MakeDD comtitan\cabin

If you run this application, you should end up with a file caladhinDD.serin the
com/titan/cabindirectory. This is your serializempl oyment Descri pt or for the Cabin

bean. Now that you know that the application works properly, let’s look at it in more detail.
We begin with the creation of ti&at i t yDescri ptor:

EntityDescriptor cabinDD = new EntityDescriptor();

An entity descriptor is Bepl oynent Descri pt or that has been extended to support entity
beans. If we were creatingoapl oynent Descri pt or for a session bean, we would use the
Sessi onDescri pt or subclass. Notice that we are not extendiing t yDescri pt or to

create a special cabiepl oynment Descri pt or . We are using thent i t yDescri pt or class
provided by the EJB packagevax. ej b. depl oynent .

TheEntityDescri pt or describes the classes and interfaces used by the Cabin bean. The
next section of code sets the names of the bean class, the home interface, the remote
interface, and the primary key. All of these set methods are defined in the
EntityDescriptor’s superclasfepl oynent Descri pt or, except for

set Pri mar yKeyd assNane() ; this method is defined in thEat i t yDescri pt or class.

cabi nDD. set Ent er pri seBeanCl assNane("com titan. cabi n. Cabi nBean");
cabi nDD. set Horrel nt er f aced assNanme("com titan. cabi n. Cabi nHone");
cabi nDD. set Renpt el nt erfaceC assNane("comtitan. cabin. Cabin");
cabi nDD. set Pri mar yKeyC assNanme("com titan. cabi n. Cabi nPK");

When the bean is deployed, the deployment tools will read these properties so that the toc
can locate the bean interfaces and primary key class and generate all the supporting code
such as the EJB object and EJB home.

The next section is a little more complicated. Our Cabin bean is going to be a
container-managed entity bean, which means that the container will automatically handle
persistence. To handle persistence, the container must know whichcabitheean’s fields

it is responsible for. Earlier, it was decided thatithhenane, deckLevel , shi p, and

bedCount fields were all persistent fields in taebi nBean. The following code tells the
EntityDescri pt or that these fields are container managed by using the Reflection API to
pass an array &f el d objects taset Cont ai ner ManagedFi el ds() :

Cl ass beanC ass = Cabi nBean. cl ass;

Field [] persistentFields = new Field[5];

persi stent Fi el ds[0] beand ass. get Decl aredFi el d("id");

persi stent Fi el ds[1] beand ass. get Decl ar edFi el d(" nane");

persi stent Fi el ds[2] beand ass. get Decl ar edFi el d("deckLevel ");
persi stent Fi el ds[3] beand ass. get Decl ar edFi el d("shi p");
persi stent Fi el ds[4] beand ass. get Decl ar edFi el d("bedCount");

cabi nDD. set Cont ai ner ManagedFi el ds(persi stent Fi el ds) ;

Although the code tells thent i t yDescri pt or which fields are container- managed, it
doesn’t describe how these fields will map to the database. The actual mapping of the fielc
to the database depends on the type of database and on the EJB server used. The mappi
vendor- and database-dependent, so we won't worry about it just now. When the bean is
actually deployed in some EJB server, the deployer will map the container-managed fields
whatever database is used.

The next line tells thent i t yDescri pt or that the Cabin bean is nonreentrant. We discussed
the problems associated with reentrant beans in Chapter 3. Entity beans are not reentrant
default, but it never hurts to make this explicit.

cabi nDD. set Reentrant (f al se);

The following code uses the JNDI API to set the lookup name of the bean in the EJB
server’s directory structure. In Chapter 3, we saw that Enterprise JavaBeans requires serv
to support the use of JNDI for organizing beans in a directory structure. Later, when we
create a client application, the name we assign to the Cabin bean will be used to locate ar
obtain a remote reference to the bean’s EJB home.

ConpoundNane j ndi Name = new ConpoundNane(" Cabi nHone", new Properties());
cabi nDD. set BeanHoneNane(j ndi Nane) ;

We have created a directory entry that places the bean under th€ahimdome

Although it makes sense to assign names that reflect the organization of your beans, you
give the EJB home any lookup name you like. We could have used other names assigned
the Cabin bean, likelomeCabiror justcabin

Next, we create @ont r ol Descri pt or to set the bean’s transactional and security attributes:

Control Descriptor cd = new Control Descriptor();

cd. setlsol ati onLevel (Control Descri pt or. TRANSACTI ON_ READ COW TTED) ;
cd. set Transacti onAttri bute(Control Descri ptor. TX REQU RED);

cd. set RunAsMbde(Contr ol Descri pt or. CLI ENT_I DENTI TY) ;

cd. set Met hod(nul 1) ;
Control Descriptor [] cdArray = {cd};
cabi nDD. set Contr ol Descri ptors(cdArray);

After creating thecont r ol Descri pt or, we set its transactional attributes. This includes
setting the transactional context and isolation level. Transactions are fairly complicated an
are discussed in detail in Chapter 8. Essentially, we are saying that the bean must be
executed in a transaction and that the bean is not accessible by any other client while
executing a transaction. Next, we set the runAs mode of the bean. The runAs mode
determines how the bean’s methods will execute at runtime. In this case, the methods will
executed under the identity that invoked the bean. This means that any other beans or
resources accessed by the method will be validated based on the client’s identity. Then wi
set the methods that tleent r ol Descri pt or represents and add thent r ol Descri pt or to
theEnti tyDescri pt or. Here we set the methodrtal | , which means that the

Control Descri pt or is the default for all methods of the Cabin bean. Any method that
doesn’t have its owgont r ol Descri pt or uses the defautlont r ol Descri pt or for the

bean. In this case, we only specify a default descriptor. Once all the properties on the

Cont rol Descri pt or have been set, it is added to Hhei t yDescri pt or .

Finally, we serialize thent i t yDescri pt or with all its Cabin bean properties to a file called
CabinDD.ser This serializednt i t yDescri pt or should be saved to the same directory that
holds all the other files for the Cabin bean, die&/com/titan/cabimlirectory.

String fileSeparator = System getProperties().getProperty("file.separator");
if (! args[0].endsWth(fileSeparator))
args[0] += fil eSeparator;

Fil eCut put Stream fos = new Fi |l eQut put Strean(ar gs[0] +" Cabi nDD. ser") ;
oj ect Qut put St ream oos = new (bj ect Qut put St rean(fos);

00s. writeCbj ect (cabi nDD);

oos. flush();

00s. cl ose();

fos.close();

The first part of the serialization section simply determines whether the path ends with a fil
separator for that operating system. If it doesn’t, the code adds one. The second part
serializes the deployment descriptor to a file callathinDD.serin the directory passed in at
the command line.

You have now created everything you need to package your EJB 1.0 Cabin bean for
deploymentFigure 4-3shows all the files that should be in tebindirectory.

Figure 4-3. The Cabin bean files (EJB 1.0)

) obindDser
Cadbin. clerss

") obinbeon s
: CobinHome.closs

| GhinPHdoss
] Moked0.doss

\ Codin.jova

") Cokioonjve
| CobinHome.jova

| CobinP.jmva

| MakeDD java

cabin.jar: The JAR File

The JAR file is a platform-independent file format for compressing, packaging, and
delivering several files together. Based on ZIP file format and the ZLIB compression
standards, the JAR (Java archive) packages and tool were originally developed to make
downloads of Java applets more efficient. As a packaging mechanism, however, the JAR "

format is a very convenient way to "shrink-wrap" components and other software for
delivery to third parties. The original JavaBeans component architecture depends on JAR
files for packaging, as does Enterprise JavaBeans. The goal in using the JAR file format ir
EJB is to package all the classes and interfaces associated with a bean, including the
deployment descriptor into one file. The process of creating an EJB JAR file is slightly
different between EJB 1.1 and EJB 1.0.

EJB 1.1: Packaging the Cabin bean

Now that you have put all the necessary files in one directory, creating the JAR file is easy
Position yourself in thdevdirectory that is just above tlvem/titan/cabirdirectory tree, and
execute the command:

\dev %jar cf cabin.jar comtitan/cabin/*.class META-INF/ ejb-jar.xm

F:\..\dev>jar cf cabin.jar comtitan\cabin*.class META-I NF\ ej b-jar.xm

You might have to create the META-INF directory first and cejyjar.xmlinto that

directory. Thec option tells thgar utility to create a new JAR file that contains the files
indicated in subsequent parameters. It also tellgathatility to stream the resulting JAR

file to standard output. Theoption tellsjar to redirect the standard output to a new file
named in the second parametalin.jar) . It's important to get the order of the option
letters and the command-line parameters to match. You can learn more aljautithigy

and thg ava. uti | . zi p package idava? in a Nutshelby David Flanagan, drearning
Java?(formerly Exploring Jav®), by Pat Niemeyer and Jonathan Knudsen (both published
by O’Reilly).

The jar utility creates the fileabin.jar in thedevdirectory. If you're interested in looking at
the contents of the JAR file, you can use any standard ZIP application (WinZip, PKZIP,
etc.), or you can use the commgadtvf cabin.jar.

EJB 1.0: Packaging the Cabin bean

In addition to the bean’s classes and deployment descriptor, the JAR file comengest
generated by th@r utility. The manifest essentially serves as a README file, describing
the contents in a way that’s useful for any tools that work with the archive. We need to adc
an entry into the JAR file to specify which file contains our serialized deployment descriptc
To do this, we add two simple lines to the manifest by creating an ASCII text file named
manifest

Nanme: coniftitan/cabi n/ Cabi nDD. ser
Ent erpri se-Bean: True

That's it! When we run thgar utility, we will tell it to use our manifest information when it
build the JAR. The manifest for this bean is now complete. A manifest is always organized
as a set of name-value pairs that describe the files in the JAR file. In this case, we need tc
point to the location of the serialized deployment descriptor and define the JAR as an EJB
JAR. The first line points to the serializeat i t yDescri pt or, CabinDD.ser for the Cabin
bean. Notice that forward slashes (/") must be used as path separators; this could be
confusing if you are used to the Windows environment. The next line of the manifest

identifies the JAR as an EJB JAR. Most EJB server deployment tools check for this
name-value pair before trying to read the JAR file’s contents. Save the manifestabithe
directory where all the other Cabin bean files are located. It should be saved as the file na
manifestwith no extension.

Now that you have put all the necessary files in one directory, creating the JAR file is easy
Position yourself in thdevdirectory that is just above tlsem/titan/cabindirectory tree, and
execute the following command:

\dev %jar cnf conftitan/cabin/mnifest cabin.jar comtitan/cabin/*.class \
comtitan/cabin/*.ser

F:\..\dev>jar cnf comtitan\cabin\manifest cabin.jar comtitan\cabin*.class
comtitan\cabin*.ser

If you want, you may remove tidakeDD.clasdile from the JAR archive, since it's not a
standard EJB class and the EJB deployment tools do not use it. Leaving it there will not
impact deployment of the Cabin bean.

Creating a CABIN Tablein the Database

One of the primary jobs of a deployment tool is mapping entity beans to databases. In the
case of the Cabin bean, we must mapdiane, deckLevel , shi p, andbedCount (the

bean’s container-managed fields) to some data source. Before proceeding with deploymel
you need to set up a database and creasBial table. You can use the following standard
SQL statement to createcasl N table that will be consistent with the examples provided in
this chapter:

create table CABIN

IDint primry key,
SH P_ID int,
BED_COUNT i nt,

NAME char (30),
DECK_LEVEL i nt

)

This statement createscaBl N table that has five columns corresponding to the
container-managed fields in tkebi nBean class. Once the table is created and connectivity
to the database is confirmed, you can proceed with the deployment process.

Deploying the Cabin Bean

Deployment is the process of reading the bean’s JAR file, changing or adding properties t
the deployment descriptor, mapping the bean to the database, defining access control in t|
security domain, and generating vendor-specific classes needed to support the bean in th
EJB environment. Every EJB server product has its own deployment tools, which may
provide a graphical user interface, a set of command-line programs, or both. Graphical
deployment "wizards" are the easiest deployment tools to work with.

EJB 1.1 deployment tools

A deployment tool reads the JAR file and looks forefiejar.xmlfile. In a graphical
deployment wizard, the deployment descriptor elements will be presented in a set of prope
sheets similar to those used to customize visual components in environments like Visual
Basic, PowerBuilder, JBuilder, and Symantec Cligure 4-4shows the deployment wizard
used in the J2EE Reference Implementation.

Figure 4-4. J2EE Reference I mplementation’s deployment wizard

[=} Application Deployment Toot Chapbe?

File Ei Server Tools Help

PEEO Ral@ a0 €0 B

F 4 ChaplerT Geteral Bty Ereanonmiend | B Fefarences Fasoece FECs Securly | Transactions
& B Tialigent
@ TravalagantBaan
& (B Rasarvaion
& (B FrocessFwmant
& & Customes
& & Cruise
[@u Cabin

2 CahinBean

CabnBean

(TFies: (500N SNBSrpIi S8 Dear nlity represents &
vabin on & Eruse SFep.

B wzalhost <2 Chapler? —

The J2EE Reference Implementation’s deployment wizard has fields and panels that matc
the XML deployment descriptor. You can map security roles to users groups, set the JNDI
look up name, map the container-managed fields to the database, etc.

EJB 1.0 deployment tools

A deployment tool reads the JAR file and uses the manifest to locate the bean’s serialized
deployment descriptor. Once the deployment descriptor file has been located, it is
deserialized into an object and its properties are read by invoking its get methods. In a
graphical deployment wizard, these properties will be presented to the deployer in a set of
property sheets, similar to those used to customize visual components in environments lik
Visual Basic, PowerBuilder, JBuilder, and Symantec Gatgire 4-5shows the deployment
wizard used in BEA’s WebLogic EJB server.

Figure 4-5. WebL ogic deployment wizard

Emtily bean cum titan calin CalsnB gan [T cabin ja)

Configure the antity bean deployment descrigtor

haodify ihe siribees of the ExtfyDescnpior LEing the [3bs, 221 he BB and inlerface dasies, e s2ounly Scosss sonfrol, the
trangaction conirol ossonniars, e entity besn emrdranmeny, condainer-menaged fisids Bnd peraisfencs.

Shinbean |*.l:l::ss control | Ceniml descriptors | Emaronment | Sontsiner-managed feids | Persisience | |

il easn
Joo i Sl o b Gt B

DT nfa s caks
Jooi v Sl cia bl g

Reniata imientaca &g
kam e caten Cabin

E-J8 baiimia Beaimia

fam San CakbinHoms

Reenirani iransactions

Primiary bey elass
jcom Stan caben CabinPk

| aniel |

k3

The WebLogic deployment wizard has fields and panels that match properties and
deployment classes specified in th@ax. ej b. depl oynent package. The "CabinBean" tab,
for example, contains text fields for each of the interfaces and classes that we described it
the Cabin bean’snti t yDescri pt or, theCabinDD.ser There is also an "Access control"

tab that corresponds to thecessCont rol Ent ry class, and a "Control descriptors" tab that
corresponds to theont r ol Descri pt or class. In addition, there is a "Container-managed
fields" tab that shows the container-managed fields we defined when creating the
CabinDD.ser Graphical deployment wizards provided by other EJB products will look
different but provide the same kinds of features.

At this point, you can choose to change deployment information, such as the transactional
isolation level, to change the Cabin bean’s JNDI name, or to deselect one of the
container-managed fields. You can also add properties to the deployment descriptor, for
example, by setting thecessCont r ol Ent rys for the methods and adding environment
properties. Th€abinDD.serthat we created should have specified the minimum
information that most EJB servers need to deploy the bean without changes. It is likely tha
all you will need to do is specify the persistence mapping from the container-managed fiels
to thecaBl Ntable in the relational database.

Different EJB deployment tools will provide varying degrees of support for mapping
container-managed fields to a data source. Some provide very robust and sophisticated
graphical user interfaces, while others are simpler and less flexible. Fortunately, mapping
Cabi nBean’s container-managed fields to thesl N table is a fairly straightforward process.
Read the documentation for the deployment tool provided by your EJB vendor to determin
how to do this mapping. Once you have finished the mapping, you can complete the
deployment of the bean and prepare to access it from the EJB server.

Creating a Client Application

Now that the Cabin bean has been deployed in the EJB server, we want to access it from

remote client. When we say remote, we are not necessarily talking about a client applicati
that is located on a different computer, just one that is not part of the EJB server. In this
section, we will create a remote client that will connect to the EJB server, locate the EJB
home for the Cabin bean, and create and interact with several Cabin beans. The following
code shows a Java application that is designed to create a new Cabin beamgragt its
deckLevel , shi p, andoedCount properties, and then locate it again using its primary key:

package comtitan. cabin;

i nport comtitan. cabi n. Cabi nHone;
import comtitan. cabin. Cabi n;
import comtitan. cabi n. Cabi nPK;

i mport javax.nam ng. | nitial Context;
i mport j avax. nani ng. Cont ext ;

i mport | avax.nam ng. Nam ngExcepti on;
i mport java.rm . RenoteException;
import java.util.Properties;

public class Cient_ 1 {
public static void main(String [] args) {

try {
Cont ext jndi Context = getlnitial Context();
oj ect ref =

j ndi Cont ext . | ookup(" Cabi nHore") ;

Cabi nHone hone = (Cabi nHone)

/1 EBEJB 1.0: Use Java cast instead of narrow)

Por t abl eRenot ehj ect . narr ow(r ef , Cabi nHon®e. cl ass);
Cabin cabin_1 = hone.create(l);
cabin_1.setNanme("Master Suite");
cabin_1. set DeckLevel (1);
cabin_1.set Ship(1);
cabin_1. set BedCount (3);

Cabi nPK pk = new Cabi nPK();
pk.id = 1,

Cabin cabin_2 = homre. findByPri maryKey(pk);
System out . printl n(cabin_2. get Nanme());
System out . println(cabin_2. get DeckLevel ());
System out. println(cabin_2.getShip());
System out . println(cabin_2. get BedCount());

} catch (java.rm . RenoteException re){re.printStackTrace();}
catch (javax. nam ng. Nam ngExcepti on ne){ne.printStackTrace();}
catch (javax.ejb. CreateException ce){ce.printStackTrace();}
catch (javax. ejb. Fi nder Exception fe){fe.printStackTrace();}

}

public static Context getlnitial Context()
t hrows javax. nam ng. Nanmi ngException {

Properties p = new Properties();

/1 ... Specify the JNDI properties specific to the vendor.
return new javax. nam ng. | nitial Context(p);

}

To access an enterprise bean, a client starts by using the JNDI package to obtain a directt

connection to a bean’s container. JNDI is an implementation-independent API for directory
and naming systems. Every EJB vendor must provide directory services that are
JNDI-compliant. This means that they must provide a JNDI service provider, which is a
piece of software analogous to a driver in JDBC. Different service providers connect to
different directory services--not unlike JDBC, where different drivers connect to different
relational databases. The methyed! ni ti al Cont ext () contains logic that uses JNDI to
obtain a network connection to the EJB server.

The code used to obtain the JN@ht ext will be different depending on which EJB vendor
you are using. You will need to research your EJB vendor’s requirements for obtaining a
JNDI Cont ext appropriate to that product.

The code used to obtain a JN@ht ext in Gemstone/J, for example, might look something
like the following:

public static Context getlnitial Context() throws javax.nani ng. Nam ngException {
Properties p = new Properties();
p. put (com genst one. nam ng. Def aul t s. NAME_SERVI CE_HGCST, " | ocal host ") ;
String port = System get Property("com genst one. nani ng. NameSer vi cePort",

"10200");

p. put (com genst one. nam ng. Def aul t s. NAME_SERVI CE_PORT, port);
p. put (Context. | Nl TI AL_CONTEXT_ FACTORY, "com genst one. nani ng. GsCt xFactory");
return new Initial Context(p);

}

The same method developed for BEA’'s WebLogic Server would be different:

public static Context getlnitial Context()
t hrows javax. nani ng. Nam ngException {
Properties p = new Properties();
p. put (Cont ext. | NI TI AL_CONTEXT_FACTORY,
"webl ogi c. j ndi . Tengahl ni ti al Cont ext Factory");
p. put (Cont ext . PROVI DER_URL, "t 3://I| ocal host: 7001");
return new javax. nam ng. | nitial Context(p);

}

Once a JNDI connection is established and a context is obtained from the
get I nti al Cont ext () method, the context can be used to look up the EJB home of the
Cabin bean:

EJB 1.1: Obtaining aremotereferenceto the home interface

The previous example uses the t abl eRenot eCbj ect . narrow() method as prescribed in
EJB 1.1:

oj ect ref = jndi Context.|ookup("Cabi nHore") ;
Cabi nHone hone = (Cabi nHone)
/1 EJB 1.0: Use Java cast instead of narrow)
Por t abl eRenot ehj ect . narr ow(r ef , Cabi nHon®e. cl ass);

ThePor t abl eRenot ebj ect . narrow() method is new to EJB 1.1. It is needed to support
the requirements of RMI over IIOP. Because CORBA supports many different languages,
casting is not native to CORBA (some languages don’t have casting). Therefore, to get a

remote reference tabi nHone, we must explicitly narrow the object returned from
I ookup() . This has the same effect as casting and is explained in more detail in Chapter 5

The name used to find the Cabin bean’s EJB home is set by the deployer using a deployn
wizard like the one pictured earlier. The JNDI name is entirely up to the person deploying
the bean; it can be the same as the bean name set in the XML deployment descriptor or
something completely different.

EJB 1.0: Obtaining aremotereferenceto the homeinterface

In EJB 1.0, you do not need to use thet abl eRenot eCbj ect . narrow() method to cast
objects to the correct type. EJB 1.0 allows the use of Java native casting to narrow the typ
returned by the JNDI API to the home interface type. When you see the

Por t abl eRenot ebj ect being used, replace it with Java native casting as follows:

Cabi nHone home = (Cabi nHone) j ndi Cont ext .| ookup(" Cabi nHone") ;

To locate the EJB home, we specify the name that we set using the

Depl oyment Descri pt or . set BeanHomeNane(St ri ng nane) method in thevakeDD

application earlier. If this lookup succeeds, lihee variable will contain a remote reference
to the Cabin bean’s EJB home.

Creating a new Cabin bean

Once we have a remote reference to the EJB home, we can use it to creatalsd new
entity:

Cabin cabin_1 = hone.create(1);

We create a ne@abi n entity using ther eat e(i nt i d) method defined in the home

interface of the Cabin bean. When this method is invoked, the EJB home works with the E
server to create a Cabin bean, adding its data to the database. The EJB server then creat:
EJB object to wrap the Cabin bean instance and returns a remote reference to the EJB ob
to the client. Theabi n_1 variable then contains a remote reference to the Cabin bean we
just created.

NOTE: In EJB 1.1, we don’t need to use tHuet abl eRenot eCbj ect . narr ow()
method to get the EJB object from the home reference, because it was declared
as returning theabi n type; no casting was required. We don’t need to explicitly
narrow remote references returned bydByPri mar yKey() for the same reason.

With the remote reference to the EJB object, we can updatarthedeckLevel , shi p, and
bedCount of theCabi n entity:

Cabin cabin_1 = hone.create(l);
cabin_1.setNanme("Master Suite");
cabin_1. set DeckLevel (1);
cabin_1. set Ship(1);

cabin_1. set BedCount (3);

Figure 4-6shows how the relational database table that we created should look after
executing this code. It should contain one record.

Figure 4-6. CABIN table with one cabin record

CABIN TABLE
10 NAME | SHIP_ID | BED COUNT | DECK_LEVEL
I' | Masfer Suite ! 3]

After an entity bean has been created, a client can locate it usingtiByPr i mar yKey()
method in the home interface. First, we create a primary key of the correct type, in this cas
Cabi nPK, and set its fieldd to equal the d of the cabin we want. (So far, we only have one
cabin available to us.) When we invoke this method on the home interface, we get back a
remote reference to the EJB object. We can now interrogate the remote reference returne
findByPri maryKey() to get thecabi n entity’sname, deckLevel , shi p, andbedCount :

Cabi nPK pk = new Cabi nPK();
pk.id = 1,

Cabin cabin_2 = hone. findByPri maryKey(pk);
System out . printl n(cabin_2. getName());
System out . println(cabin_2. get DeckLevel ());
System out. println(cabin_2.getShip());
System out . println(cabin_2. get BedCount());

Copy and save th& i ent _1 application to any directory, and compile it. If you haven’t
started your EJB server and deployed the Cabin bean, do so now. When you're finished,
you're ready to run thel i ent _1 in your IDE’s debugger so that you can watch each step of
the program. Your output should look something like the following:

Master Suite
1
1
3

You just created and used your first entity bean! Of course, the client application doesn’'td
much. Before going on to create session beans, create another client that adds some test
to the database. Here we’ll create ent _2 as a modification ofl i ent _1 that populates

the database with a large number of cabins for three different ships:

package comtitan. cabin;

i nport comtitan. cabi n. Cabi nHone;
import comtitan. cabin. Cabi n;
import comtitan. cabi n. Cabi nPK;

i mport javax.naning.|nitial Context;
i nport javax. nam ng. Cont ext;

i mport j avax.nam ng. Nam ngExcepti on;
i mport javax.ejb. Creat eExcepti on;

i mport java.rm . Renot eExcepti on;
import java.util.Properties;

public class Cient_2 {

public static void main(String [] args) {

try {
Context jndi Context = getlnitial Context();

oj ect ref =

j ndi Cont ext . | ookup(" Cabi nHorre") ;
Cabi nHone hone = (Cabi nHone)
/1 EIJB 1.0: Use Java native cast

Por t abl eRenot ehj ect . narr ow(r ef , Cabi nHon®. cl ass);
/1 Add 9 cabins to deck 1 of ship 1.
makeCabi ns(home, 2, 10, 1, 1);
/1 Add 10 cabins to deck 2 of ship 1.
makeCabi ns(home, 11, 20, 2, 1);
/1 Add 10 cabins to deck 3 of ship 1.
makeCabi ns(home, 21, 30, 3, 1);

N

/1 Add 10 cabins to deck 1 of ship
makeCabi ns(home, 31, 40, 1, 2);
/1 Add 10 cabins to deck 2 of ship
makeCabi ns(home, 41, 50, 2, 2);
/1 Add 10 cabins to deck 3 of ship
makeCabi ns(home, 51, 60, 3, 2);

NN

/1 Add 10 cabins to deck 1 of ship
makeCabi ns(home, 61, 70, 1, 3);
/1 Add 10 cabins to deck 2 of ship
makeCabi ns(home, 71, 80, 2, 3);
/1 Add 10 cabins to deck 3 of ship
makeCabi ns(home, 81, 90, 3, 3);
/1 Add 10 cabins to deck 4 of ship
makeCabi ns(home, 91, 100, 4, 3);

wWow W W

for (int i =1; i <= 100; i++){
Cabi nPK pk = new Cabi nPK();
pk.id =1i;

Cabi n cabin = hone. findByPri mar yKey(pk) ;
Systemout.println("PK = "+i +", Ship = "+cabi n. get Shi p()
+ ", Deck = "+cabin. get DeckLevel ()
+ ", BedCount = "+cabi n. get BedCount ()
+ ", Nane = "+cabin. get Nane());
}

} catch (java.rm . RenoteException re) {re.printStackTrace();}
catch (javax. nam ng. Nami ngException ne) {ne.printStackTrace();}
catch (javax. ejb. CreateException ce) {ce.printStackTrace();}
catch (javax. ejb. Fi nder Exception fe) {fe.printStackTrace();}

}

public static javax.nam ng. Context getlnitial Context()
t hrows javax. nam ng. Nanm ngExcept i on{
Properties p = new Properties();

/1 ... Specify the JNDI properties specific to the vendor.
return new javax. nam ng. | nitial Context(p);

}

public static void makeCabi ns(Cabi nHone hone, int fromd, int told,
i nt deckLevel, int shipNunber)
t hrows Renot eException, CreateException {

int bc = 3;

for (int i =fromd; i <=told; i++) {
Cabin cabin = hone.create(i);
int suiteNunber = deckLevel *100+(i-from d);
cabi n. set Nane("Suite "+suiteNunber);
cabi n. set DeckLevel (deckLevel) ;
bc = (bc==3) ?2: 3;
cabi n. set BedCount (bc) ;
cabi n. set Shi p(shi pNunber) ;

}

}
}

Copy this code into your IDE, save, and recompilecthent _2 application. When it
compiles successfully, run it. There’s lots of output--here are the first few lines:

PK = 1, Ship =1, Deck = 1, BedCount = 3, Nane = Master Suite
PK = 2, Ship =1, Deck = 1, BedCount = 2, Nane = Suite 100
PK = 3, Ship =1, Deck = 1, BedCount = 3, Nane = Suite 101
PK = 4, Ship =1, Deck = 1, BedCount = 2, Nane = Suite 102
PK = 5, Ship =1, Deck = 1, BedCount = 3, Nane = Suite 103
PK = 6, Ship =1, Deck = 1, BedCount = 2, Nane = Suite 104
=7, Ship =1, Deck =1, BedCount = 3, Nane = Suite 105

You now have 100 cabin records in yaasl N table, representing 100 cabin entities in your
EJB system. This provides a good set of test data for the session bean we will create in th
next section, and for subsequent examples throughout the book.

Developing a Session Bean

Session beans act as agents to the client, controlling workflow (the business process) and
filling the gaps between the representation of data by entity beans and the business logic
interacts with that data. Session beans are often used to manage interactions between en
beans and can perform complex manipulations of beans to accomplish some task. Since \
have only defined one entity bean so far, we will focus on a complex manipulation of the
Cabin bean rather than the interactions of the Cabin bean with other entity beans. In Chag
7, after we have had the opportunity to develop other entity beans, interactions of entity
beans within session beans will be explored in greater detail.

Client applications and other beans use the Cabin bean in a variety of ways. Some of thes
uses were predictable when the Cabin bean was defined, but most were not. After all, an

entity bean represents data--in this case, data describing a cabin. The uses to which we p
that data will change over time--hence the importance of separating the data itself from the
workflow. In Titan’s business system, for example, we will need to list and report on cabin:
in ways that were not predictable when the Cabin bean was defined. Rather than change f

Cabin bean every time we need to look at it differently, we will obtain the information we
need using a session bean. Changing the definition of an entity bean should only be done
within the context of a larger process--for example, a major redesign of the business syste

In Chapters and , we talked hypothetically about a TravelAgent bean that was responsible
the workflow of booking a passage on a cruise. This session bean will be used in client
applications accessed by travel agents throughout the world. In addition to booking tickets
the TravelAgent bean also provides information about which cabins are available on the
cruise. In this chapter, we will develop the first implementation of this listing behavior in the
TravelAgent bean. The listing method we develop in this example is admittedly very crude
and far from optimal. However, this example is useful for demonstrating how to develop a
very simple stateless session bean and how these session beans can manage other bean
Chapter 7, we will rewrite the listing method. This "list cabins" behavior is used by travel
agents to provide customers with a list of cabins that can accommodate the customer’s
needs. The Cabin bean does not directly support the kind of list, nor should it. The list we
need is specific to the TravelAgent bean, so it's the Travel- Agent bean’s responsibility to
guery the Cabin beans and produce the list.

Before we get started, we will need to create a development directory for the TravelAgent
bean, as we did for the Cabin bean. We name this dirdcémglagentand nest it below the
com/titandirectory, which also contains tleabindirectory (sed-igure 4-7.

Figure4-7. Directory structurefor the TravelAgent bean

i]
— travelagent |

TravelAgent: The Remote Interface

As before, we start by defining the remote interface so that our focus is on the business
purpose of the bean, rather than its implementation. Starting small, we know that the
TravelAgent will need to provide a method for listing all the cabins available with a
specified bed count for a specific ship. We’ll call that methad Cabi ns() . Since we only
need a list of cabin names and deck levels, we’ll defisecCabi ns() to return an array of

St ri ngs. Here’s the remote interface foravel Agent :

package comtitan.travel agent;

i mport java.rm . RenoteExcepti on;

i mport javax. ejb. Fi nder Excepti on;
public interface Travel Agent extends javax.ejb. EJBObject ({

/1 String elenents followthe format "id, nane, deck |evel"
public String [] listCabins(int shiplD, int bedCount)
t hrows Renpt eExcepti on;

}

Copy theTr avel Agent interface definition into your IDE, and save it to trevel- agent
directory. Compile the class to ensure that it is correct.

TravelAgentHome: The Home I nterface

The second step in the development of any bean is to create the home interface. The horr
interface for a session bean defines the create methods that initialize a new session bean
use by a client.

Find methods are not used in session beans; they are used with entity beans to locate
persistent entities for use on a client. Unlike entity beans, session beans are not persisten
and do not represent data in the database, so a find method would not be meaningful; the
no specific session to locate. A session bean is dedicated to a client for the life of that cliel
(or less). For the same reason, we don’t need to worry about primary keys; since session
beans don’t represent persistent data, we don’t need a key to access that data.

package comtitan.travel agent;

i mport java.rm . Renot eExcepti on;
i mport javax.ejb. Creat eExcepti on;

public interface Travel Agent Hone extends javax.ejb. EJBHorme {
public Travel Agent create()
t hrows Renpt eException, CreateException;

}

In the case of the TravelAgent bean, we only need a simpée e() method to get a
reference to the bean. Invoking thisat e() method returns @r avel - Agent remote
reference that the client can use for the reservation process. CapytheAgent Hone
definition into your IDE and save it to timvelagentdirectory. Compile the class to ensure
that it is correct.

TravelAgentBean: The Bean Class

Using the remote interface as a guide, we can define ttvel Agent Bean class that
implements thei st Cabi ns() method. The following code contains the complete definition
of Tr avel Agent Bean for this example. Copy the avel Agent Bean definition into your IDE

and save it to thavelagentdirectory. Compile the class to ensure that it is correct. EJB 1.1
and EJB 1.0 differ significantly in how one bean locates another, so | have provided separ
TravelAgentBean listings for each version.

EJB 1.1: TravelAgentBean

Here’s the code for the EJB 1.1 version ofthevel Agent Bean:

package comtitan.travel agent;

import comtitan. cabin. Cabi n;
import comtitan. cabi n. Cabi nHore;
import comtitan. cabi n. Cabi nPK;

i mport java.rm . Renot eExcepti on;

i mport javax.nanmi ng.|Initial Context;
i mport j avax. nami ng. Cont ext ;

import java.util.Properties;

import java.util.Vector;

public class Travel Agent Bean i npl ements javax. ejb. Sessi onBean ({

public void ejbCreate() {
/1 Do not hi ng.

}
public String [] listCabins(int shiplD, int bedCount) {

try {
j avax. nam ng. Cont ext jndi Context = new Initial Context();

oj ect obj = jndi Context.|ookup("java: conp/ env/ ej b/ Cabi nHone") ;

Cabi nHone hone = (Cabi nHone)
j avax. rm . Port abl eRenpot ebj ect . narr ow(obj, Cabi nHome. cl ass);

Vector vect = new Vector();
Cabi nPK pk = new Cabi nPK();
Cabi n cabi n;
for (int i =1; ; i++) {

pk.id =i;

try {

cabin = home. fi ndByPri mar yKey(pk) ;
} catch(javax. ej b. Fi nder Exception fe) {
br eak;

}
/1 Check to see if the bed count and ship I D match.
i f (cabin.getShip() == shiplD &&
cabi n. get BedCount () == bedCount) {
String details =
i +", " +cabi n. get Nane() +", " +cabi n. get DeckLevel ();
vect . addEl enent (detail s);
}
}

String [] list = new String[vect.size()];
vect. copylnto(list);
return |ist;

} catch(Exception e) {throw new EJBException(e);}

private javax.nam ng. Context getlnitial Context()

t hrows j avax. nam ng. Nam ngException {
Properties p = new Properties();
/1 ... Specify the JNDI properties specific to the vendor.
return new javax. nam ng. | nitial Context(p);

}
public void ej bRemove() {}

public void ejbActivate(){}
public void ejbPassivate(){}
public void set Sessi onCont ext (j avax. ej b. Sessi onCont ext cntx){}

}

Examining the i st Cabi ns() method in detail, we can address the implementation in
pieces, starting with the use of JNDI to locatedig nHome:

j avax. nam ng. Cont ext jndi Context = new Initial Context();
oj ect obj = jndi Context.|ookup("java: conp/ env/ ej b/ Cabi nHorre") ;

Cabi nHone hone = (Cabi nHone)
j avax. rm . Port abl eRenpt eQoj ect . narrow(obj, Cabi nHone. cl ass);

Beans are clients to other beans, just like client applications. This means that they must
interact with other beans in the same way that client applications interact with beans. In
order for one bean to locate and use another bean, it must first locate and obtain a referer
to the bean’s EJB home. This is accomplished using JNDI, in exactly the same way we us
JNDI to obtain a reference to tbebi nHone in the client application we developed earlier.

In EJB 1.1, all beans have a default INDI context called the environment context, which w
discussed a little in Chapter 3. The default context exists in the name space (directory) cal
"java: conp/ env" and its subdirectories. When the bean is deployed, any beans it uses are
mapped into the subdirectoryava: conp/ env/ ej b", so that bean references can be
obtained at runtime through a simple and consistent use of the JNDI default context. We'll
come back to this when we take a look at the deployment descriptor for the TravelAgent
bean below.

Once the EJB home of the Cabin bean is obtained, we can use it to produce a list of cabin
that match the parameters passed. The following code loops through all the Cabin beans
produces a list that includes only those cabins with the ship and bed count specified:

Vector vect = new Vector();
Cabi nPK pk = new Cabi nPK();
Cabi n cabi n;
for (int i =1; ; i++) {
pk.id =i
try {
cabin = hone. findByPri mar yKey(pk) ;
} catch(javax. ej b. Fi nder Exception fe){
br eak;

}

/1 Check to see if the bed count and ship I D natch.

i f (cabin.getShip() == shiplD & cabin. get BedCount () == bedCount) {
String details = i+","+cabi n. get Name() +", " +cabi n. get DeckLevel ();
vect . addEl enent (detai l s);

}
}

This method simply iterates through all the primary keys, obtaining a remote reference to
each Cabin bean in the system and checking wheths ilssandbedCount match the
parameters passed in. Tie loop continues until & nder Except i on is thrown, which

would probably occur when a primary key is used that isn’t associated with a bean. (This
isn’t the most robust code possible, but it will do for now.) Following this block of code, we

simply copy thevect or’s contents into an array and return it to the client.

While this is a very crude approach to locating the right Cabin beans--we will define a bett:
method in Chapter 7--it is adequate for our current purposes. The purpose of this example
to illustrate that the workflow associated with this listing behavior is not included in the
Cabin bean nor is it embedded in a client application. Workflow logic, whether it's a proces
like booking a reservation or obtaining a list, is placed in a session bean.

EJB 1.0: TravelAgentBean

Here’s the code for the EJB 1.0 version ofthavel Agent Bean:

package comtitan.travel agent;

i mport comtitan. cabin. Cabin;

i mport comtitan. cabi n. Cabi nHone;

i mport comtitan. cabin. Cabi nPK;

i mport java.rm . RenoteException;

i mport javax.nam ng. | nitial Context;
i mport j avax. nani ng. Cont ext ;

import java.util.Properties;

import java.util.Vector;

public class Travel Agent Bean i npl enents javax. ejb. Sessi onBean {

public void ejbCreate() {
/1 Do not hi ng.
}
public String [] listCabins(int shiplD, int bedCount)
t hrows Renpt eException {
try {
Cont ext jndi Context = getlnitial Context();
Cabi nHone hone = (Cabi nHone) j ndi Cont ext . | ookup(" Cabi nHore") ;

Vector vect = new Vector();
Cabi nPK pk = new Cabi nPK();
Cabi n cabi n;
for (int i =1; ; i++) {
pk.id =i;
try {
cabin = home. fi ndByPri maryKey(pk) ;
} catch(javax. ej b. Fi nder Exception fe) {
br eak;

/1 Check to see if the bed count and ship I D match.
i f (cabin.getShip() == shiplD &&
cabi n. get BedCount () == bedCount) {
String details =
i +", " +cabi n. get Nane() +", " +cabi n. get DeckLevel ();
vect . addEl enent (detail s);

}
}

String [] list = new String[vect.size()];
vect. copylnto(list);
return |ist;

} catch (javax. nam ng. Nam ngException ne) {

t hrow new Renpot eException("Unable to | ocate Cabi nHone", ne);

}

private javax.nam ng. Context getlnitial Context()

t hrows javax. nam ng. Nam ngException {
Properties p = new Properties();
/1 ... Specify the JNDI properties specific to the vendor.
return new javax. nam ng. I nitial Context(p);

}

public void ej bRenove(){}

public void ejbActivate(){}

public void ejbPassivate(){}

public void set Sessi onCont ext (j avax. ej b. Sessi onCont ext cntx){}

}

The most significant difference between this code and the EJB 1.1 code is the use of JIND
locate thecabi nHome:

Context jndi Context = getlnitial Context();
Cabi nHone cabi nHone = (Cabi nHon®) j ndi Cont ext . | ookup(" Cabi nHome") ;

Beans interact with other beans in the same way that clients interact with beans. In order {
one bean to locate and use another bean, it must first locate and obtain a reference to the
bean’s EJB home. This is accomplished using JNDI, in exactly the same way we used JNI
to obtain a reference to tkeabi nHone in the client application we developed earlier. If you
take a close look at the methget | ni ti al Cont ext (), you will discover that it is exactly

the same as theet I ni ti al Cont ext () method in the client classes defined earlier. The only
difference is that the method is not static. You will need to change this code to match the
correct settings for your EJB server. Once the EJB home of the Cabin bean is obtained, w
can use it to produce our list of cabins that match the parameters passed.

The logic for finding beans with cabins that match the desired parameters is the same in E
1.1 and EJB 1.0. Again, it's a crude approach: we will define a better method in Chapter 7
Our purpose here is to demonstrate that the workflow associated with this listing behavior
not included in the Cabin bean nor is it embedded in a client application. Workflow logic,
whether it's a process like booking a reservation or obtaining a list, is placed in a session
bean.

EJB 1.1: TravelAgent Bean's Deployment Descriptor

The TravelAgent bean uses an XML deployment descriptor similar to the one used for the
Cabin entity bean. Here is tkegh-jar.xmlfile used to deploy the TravelAgent. In Chapter 10,
you will learn how to deploy several beans in one deployment descriptor, but for now the
TravelAgent and Cabin beans are deployed separately.

<?xm version="1.0""?>

<! DOCTYPE ej b-jar PUBLIC "-//Sun M crosystens, Inc.//DID Enterprise
JavaBeans 1.1//EN' "http://java.sun.conlj2ee/dtds/ejb-jar_1 1.dtd">
<ej b-jar>

<ent erpri se- beans>

<sessi on>

<ej b- nane>Tr avel Agent Bean</ ej b- nane>
<honme>comtitan.travel agent. Tr avel Agent Hone</ hone>
<renote>comtitan.travel agent. Travel Agent </ r enot e>

<ej b-cl ass>comtitan.travel agent. Travel Agent Bean</ ej b- cl ass>
<sessi on-type>St at el ess</ sessi on-type>

<transacti on-type>Cont ai ner</transacti on-type>

<ej b-ref>
<ej b-r ef - name>ej b/ Cabi nHone</ ej b-r ef - nane>
<ej b-ref-type>Entity</ejb-ref-type>
<home>com tit an. cabi n. Cabi nHorme</ honme>
<renot e>com titan. cabi n. Cabi n</ r enot e>
</ejb-ref>
</ sessi on>
</ enterprise-beans>

<assenbl y- descri pt or >
<security-rol e>
<descri pti on>
This role represents everyone who is allowed full access
to the cabin bean.
</ description>
<r ol e- name>ever yone</ r ol e- nane>
</security-role>

<met hod- per ni ssi on>
<r ol e- name>ever yone</ r ol e- nane>
<net hod>
<ej b- nane>Tr avel Agent Bean</ ej b- nane>
<met hod- name>* </ net hod- nanme>
</ met hod>
</ met hod- per m ssi on>

<cont ai ner-transacti on>
<met hod>
<ej b- nane>Tr avel Agent Bean</ ej b- nanme>
<met hod- name>* </ net hod- nanme>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ cont ai ner-transacti on>
</ assenbl y-descri pt or >
</ejb-jar>

Other than thesessi on-t ype> and<ej b- r ef > elements, this XML deployment descriptor
should make sense since it uses many of the same elements as the Cabin bean’s. The
<sessi on-t ype> element can bgt at ef ul or St at el ess to indicate which type of session
bean is used.

The<ej b-ref > element is used at deployment time to map the bean references used withi
the TravelAgent bean. In this case, #eeb- r ef > element describes the Cabin bean, which
we already deployed. Thej b-r ef - nane> element specifies the name that must be used by
the TravelAgent bean to obtain a reference to the Cabin bean’s homej Dheef - t ype>

tells the container what kind of bean itést ity or Sessi on. The<home> and<r enot e>
elements specify the fully qualified interface names of the Cabin’s home and remote bean
interfaces.

When the bean is deployed, ## b- r ef > will be mapped to the Cabin bean in the EJB

server. This is a vendor-specific process, but the outcome should always be the same. Wt
the TravelAgent does a JNDI lookup using the context name

"j ava: conp/ env/ ej b/ Cabi nHone" it will obtain a remote reference to the Cabin bean’s
home. The purpose of thej b- r ef > element is to eliminate network specific and
implementation specific use of JNDI to obtain bean references. This makes a bean more
portable because the network location and JNDI service provider can change without
impacting the bean code or even the XML deployment descriptor.

EJB 1.0: The TravelAgent Beans Deployment Descriptor

Deploying the TravelAgent bean is essentially the same as deploying the Cabin bean, exc
we use aessi onDescri pt or instead of alEnt i t yDescri pt or. Here is the definition of the
MakeDD for creating and serializingSgssi onDescr i pt or for theTr avel Agent Bean:

package comtitan.travel agent;

i mport javax.ejb. depl oynent. *;

i mport javax. nam ng. ConpoundNane;
import java.util.?*;

import java.io.*;

public class MakeDD {

public static void main(String [] args) {
try {

if (args.length <1) {
Systemout. println("nust specify target directory");
return,

}

Sessi onDescri ptor sd = new Sessi onDescriptor();

sd. set Ent er pri seBeanC assName(
"comtitan.travel agent. Tr avel Agent Bean");

sd. set Horrel nt er f aced assNang(
"comtitan.travel agent. Travel Agent Honme") ;

sd. set Renpot el nt er f aceC assName(
"comtitan.travel agent. Travel Agent");

sd. set Sessi onTi meout (300) ;
sd. set St at eManagenent Type(Sessi onDescri pt or. STATELESS SESSI ON) ;

Control Descriptor cd = new Control Descriptor();

cd. setlsol ati onLevel (Control Descri ptor. TRANSACTI ON_READ COWM TTED) ;
cd. set Met hod(nul 1) ;

cd. set RunAsMbde(Contr ol Descri pt or. CLI ENT_I DENTI TY) ;

cd. set Transacti onAttri but e(Control Descri ptor. TX REQU RED) ;

Control Descriptor [] cdArray = {cd};

sd. set Cont r ol Descri ptors(cdArray);

ConpoundNanme j ndi Nanme =
new ConpoundNane(" Tr avel Agent Honme", new Properties());
sd. set BeanHonmeNane(j ndi Nane) ;

String fileSeparator =
System get Properties().getProperty("file.separator");

if(! args[0].endsWth(fileSeparator))
args[0] += fil eSeparator;

FileQutputStreamfis =
new Fi | eQut put St rean(args[0] +" Tr avel Agent DD. ser") ;
oj ect Qut put Stream oos = new bj ect Qut put Strean(fis);
00s. writeQbject(sd);
oos. flush();
00s. cl ose();
fis.close();
} catch(Throwable t) { t.printStackTrace(); }

}

ThevakeDD definition for the TravelAgent bean is essentially the same as the one for the
Cabin bean. The difference is that we are usiggsai onDescri pt or instead of an
EntityDescri pt or and the bean class names and JNDI name are different. We do not
specify any container-managed fields because session beans are not persistent.

After instantiating th¢ avax. ej b. Sessi onDescr i pt or , themMakeDD application sets the
remote interface and bean class names:

sd. set Enter pri seBeanCl assNane("comtitan.travel agent. Travel Agent Bean");
sd. set Horrel nt er f aced assNane("comtitan. travel agent. Travel Agent Hone") ;
sd. set Renot el nt erfaceC assNane("comtitan.travel agent. Travel Agent");

Next, we set two properties that control session timeouts (what happens if the bean is idle
and state management:

sd. set Sessi onTi meout (300) ;
sd. set St at eManagenent Type(Sessi onDescri pt or. STATELESS SESSI ON) ;

set Sessi onTi neout () specifies how many seconds the session should remain alive if it is
not being used. InakeDD we specify 300 seconds. This means that if no method is invoked
on the session for over five minutes, it will be removed and will no longer be available for
use[3] If a method is invoked on a bean that has timed out, a

j avax. ej b. Qbj ect Not FoundExcept i on will be thrown. Once a stateful session bean has
timed out, all of its accumulated state is lost. When a session bean times out, the client mi
create a new TravelAgent bean by invokingtha&vel Agent Hone. creat e() method. The

set St at eManagenent () method determines whether the bean is stateful or stateless. At thi:
point in it its development, the avel Agent Bean doesn’t have any conversational state that
needs to be maintained from one method to the next, so we make it a stateless session b
which is more efficient. Both of these methods are unique to session descriptors; there are
corresponding methods theEnt i t yDescri pt or class.

The next section specifies the defamslbt r ol Descri pt or for theTr avel Agent Bean. These
settings are the same as those used in the Cabin bean. The isolation level determines the
visibility of the data being accessed. Chapter 8 explores isolation levels in more detail. The
transactional attributaX_REQUI RED, tells the EJB server that this bean must be included in
the transactional scope of the client invoking it; if the client is not in a transaction, a new
transaction must be created for the method invocation, as follows:

Control Descriptor cd = new Control Descriptor();

cd. setlsol ati onLevel (Control Descri pt or. TRANSACTI ON_READ COW TTED) ;
cd. set Met hod(nul ') ;

cd. set RunAsMobde(Cont r ol Descri pt or. CLI ENT_I DENTI TY) ;

cd. set Transacti onAttri but e(Control Descri ptor. TX REQU RED);

Control Descriptor [] cdArray = {cd};

sd. set Control Descri ptors(cdArray);

The next section creates a JNDI nameTtfaivel Agent 's EJB home. When we use JNDI to
look up theTr avel Agent Hone, this will be the name we specify:

ConpoundNane j ndi Name = new ConpoundNane(" Tr avel Agent Honme", new Properties());

Finally, themakeDD serializes theessi onDescri pt or to a file namedravelAgentDDser
and saves it to thieavelagentdirectory.

You will need to compile and run thvekeDD class before continuing:

\dev % java comtitan.travel agent. MakeDD comtitan/travel agent

F:\..\dev>java comtitan.travel agent. MakeDD comtitan\travel agent
EJB 1.1: The JAR File

To place the TravelAgent bean in a JAR file, we use the same process we used for the Ce
bean. We shrink-wrap the TravelAgent bean class and its deployment descriptor into a JA
file and save to theom/titan/travelagendlirectory:

\dev %jar cf cabin.jar comtitan/travel agent/*.class META-I NF/ ejb-jar.xmn

F:\..\dev>jar cf cabin.jar comtitan\travel agent*.class META-INF\ ej b-jar.xm

You might have to create the META-INF directory first, and cejyjar.xmlinto that
directory. The TravelAgent bean is now complete and ready to be deployed.

EJB 1.0: TheJAR File

To place the TravelAgent bean in a JAR file, we use the same process we used for the Ce
bean. First, we have to create a manifest file, which we save cotiétan/travelagent
directory:

Nane: conititan/travel agent/ Travel Agent DD. ser
Ent erpri se- Bean: True

Now that the manifest is ready, we can shrink-wrap the TravelAgent bean so that it's read
for deployment:

\dev %jar cnf conititan/travel agent/manifest \
Travel Agent.jar comtitan/travel agent/*.class conititan/travel agent/*. ser

F:\..\dev>jar cnf comtitan\travel agent\mani fest Travel Agent.j ar
comtitan\travel agent*.class comtitan\travel agent*. ser

The TravelAgent bean is now complete and ready to be deployed.

Deploying the Travel Agent Bean

To make your TravelAgent bean available to a client application, you need to use the
deployment utility or wizard of your EJB server. The deployment utility reads the JAR file t
add the TravelAgent bean to the EJB server environment. Unless your EJB server has spe¢
requirements, it is unlikely that you will need to change or add any new attributes to the

bean. You will not need to create a database table for this example, since the TravelAgent
bean is using only the Cabin bean and is not itself persistent. Deploy the TravelAgent bea

and proceed to the next section.

Creating a Client Application

To show that our session bean works, we’ll create a simple client application that uses it.
This client simply produces a list of cabins assigned to ship 1 with a bed count of 3. Its log
is similar to the client we created earlier to test the Cabin bean: it creates a context for
looking upTr avel Agent Horre, creates a TravelAgent bean, and invakes Cabi ns() to

generate a list of the cabins available. Here’s the code:

package comtitan.travel agent;

i mport
i mport
i mport

i mport
i mport
i mport
i mport
i mport
i mport

public

com titan. cabi n. Cabi nHone;
comtitan. cabi n. Cabi n;
comtitan. cabi n. Cabi nPK;

j avax. nam ng. I nitial Context;
j avax. nam ng. Cont ext ;

j avax. nam ng. Nam ngExcepti on;
j avax. ej b. Creat eExcepti on;
java.rm . Renot eExcepti on;
java.util.Properties;

class dient_1 {
public static int SHHP_ID = 1,
public static int BED COUNT =

3;

public static void main(String [] args) {

try {
Context jndi Context = getlnitial Context();

oj ect ref = (Travel Agent Horre)
j ndi Cont ext . | ookup(" Tr avel Agent Hone") ;
Travel Agent Horre hone = (Travel Agent Hone)
/1 EJB 1.0: Use Java cast instead of narrow)

Por t abl eRenot ehj ect . narrow(r ef , Travel Agent Hore. cl ass) ;

Travel Agent reserve = hone.create();

/1l Get alist of all cabins on ship 1 with a bed count of
String list [] = reserve.listCabins(SH P_I D, BED COUNT) ;

for(int i =0; i < list.lengt
Systemout.printin(list[i]
}

} catch(java.rm . RenoteException re){re.printStackTrace();}
catch(Throwabl e t){t.printStackTrace();}

h; i++){
).

’

}

static public Context getlnitial Context() throws Exception {
Properties p = new Properties();
/1 ... Specify the JNDI properties specific to the vendor.
return new Initial Context(p);

}
}

The output should look like this:

1, Mbster Suite
3,Suite 101
5,Suite 103
7,Suite 105
9,Suite 107
12, Suite 201
14, Suite 203
16, Suite 205
18, Suite 207
20, Suite 209
22, Suite 301
24, Suite 303
26, Suite 305
28, Suite 307
30, Suite 309

o RRRRR

WWWWWNNNNN

You have now successfully created the first piece of the TravelAgent session bean: a metl
that obtains a list of cabins by manipulating the Cabin bean entity.

1. Chapter 9 discusses how to work with servers that don’t support entity beans. Chapter ¢
includes a discussion of bean-managed persistence, which you can use if your server doe
support container-managed persistence.

2. In Chapters and , we discuss implementinghéis@Code() andequal s() methods in more
detail.

3. Whether a session timeout is measured from creation time (the time the session bean it
created) or from the time of last activity (when the last business method is invoked) is not
clearly described in EJB 1.0. As a result, some vendors set the timeout relative to one of
these two events (creation or last activity). Consult your vendor’'s documentation to
determine your EJB server’s timeout policy.

Back to: Enterprise JavaBeans, 2nd Edition

O’'Reilly Home | O’ Reilly Bookstores | How to Order | O’ Reilly Contacts
International | About O’Rellly | Affiliated Companies

© 2000, O'Reilly & Associates, Inc.
webmaster@oreilly.com

