An Open Source CORBA 2.3 Implementation

Version 2.3.3



Acknowledgements

Many people have worked on MICO to make it what it is today. The CORBA core has
been implemented by Kay Romer, Arno Puder and Frank Pilhofer.

The following people have made contributions to Mico: Kai-Uwe Sattler, Lars Doelle,
Owen Taylor, Elliot Lee, Christian Becker, Ben Eng, Andrew Metcalfe, Christoph Best,
Andreas Schultz, Martin Sander, Rudolf Janz, Marcus Miller, Karel Gardas, Leif Jakob-
smeier, Torben Weis, Jacques Tremblay, Wil Evers, Massimo Di Giorgio, Carsten Zerbst.



Contents

List of Figures

1 What is MICO?

2 Installation

2.1 Getting MICO . . . . . ..
2.2 Prerequisits . . . . . . . e
221 UnixX . . o oo e
2.2.2  Windows 95/NT using Cygnus CDK . . . ... ... ... .....
2.3 Installing MICO under Unix . . . . . . .. .. .o oo
2.4 Installing MICO using Visual-C++ . . . . . . . ... ... . ...
2.4.1 Prerequisits . . . . .. ...
2.4.2  Compiling the MICO sources . . . . . .. .. .. ... .. .....
2.4.3  Writing MICO applications using the IDE . . . . . ... ... ...
2.5 Supported Platforms . . . . . .. ..o
3 Guided tour through MICO
3.1 Objects in distributed systems . . . . . . .. ..o
3.2 State of development . . . . . ...
3.3 Sample Program . . . . . ...
3.3.1 Standalone program . . . . ... ... oo
3.3.2 MICO application . . . . . . . .. ...

3.3.3 Separating client and server

4 Implementation Overview

4.1

4.2
4.3

ORB . ... ... ... ... ...
4.1.1 ORB Initialization . . . . .
4.1.2  Obtaining Initial References
Interface Repository . . . . . . ..
BOA . . .. ...
4.3.1 BOA Initialization . . .. .
4.3.2 BOA Daemon . .. .. ...
4.3.3 Implementation Repository

4.3.4 Activation Modes . . . . . .
4.3.5 Making Objects Persistent .
4.3.6 Migrating Objects . . . . .

11

v

12
12
13
14
14
15
21



4.4.1 Architecture . . . . ..o 49

4.4.2 Policies . . . .. 51

443 Example . . . . .. 52

4.4.4 Using a Servant Manager . . . . . . . . . ... oL oL o4

4.4.5 Persistent Objects . . . . . . ... Lo 56

4.4.6 Reference Counting . . . . . . . . ... ... 59

4.5 IDL Compiler . . . . . . . . 60
4.6 Compiler and Linker Wrappers . . . . . . . . .. .. ... ... ... ... 64
4.6.1 Examples . . . . . .. 64

5 C++4 mapping 66
5.1 Using strings . . . . . . . . L 66
5.2 Untyped values . . . . . . . 67
5.2.1  Unknown Constructed Types . . . . . . ... ... ... ... ... 70

5.2.2 Subtyping . . . ... 71

5.3 Arrays ... .. e 73
5.4 Unions . . . . .. Lo e 75
5.5 Imterface inheritance . . . . . . . .. o L 78
5.6 Modules . . . . . 80
5.7 Exceptions . . . . . . . L 83
5.7.1 CORBA Compliant Exception Handling . . . ... ... ... ... 84

5.7.2 MICO Specific Exception Handling . . . . .. .. ... ... .... 85

5.7.3 No Exception handling . . . . .. ... ... ... ... 87

6 Time Service 89
6.1 Types . . o 89
6.2 Interface TimeService . . . . . . . . . . . L 90
6.3 Interface UTO . . . . . . . . 91
6.4 TIO . . . . . e 92

7 Java Interface 93
7.1 Conceptual Graphs . . . . . . . . . .. 93
7.2 Dynamic Invocation Interface . . . . . . . .. .. ..o 94
7.3 Anatomy of an operation declaration . . . . . . ... ... .00 95
7.4 A generic DIl interface . . . . . . . . . ... 95
7.5 Running the example . . . . . . . ... o 96
7.6 Using the CG—editor . . . . . . . . . ... ... 98

8 LICENSE 99
8.1 GNU Library General Public License . . . . . .. .. .. ... ... .... 99
8.2 GNU General Public License . . . . . . . . .. .. ... .. ... 105

A Frequently Asked Questions About MICO 110
Bibliography 113

111



List of Figures

3.1
3.2
3.3

5.1
5.2
3.3

6.1

7.1
7.2
7.3

Middleware support for objects in distributed systems. . . . . .. ... .. 12
Creation process of a MICO application. . . . .. .. ... .. ... .... 16
Inheritance relationship between stub— and skeleton classes. . . . .. . .. 18
Subtype relations between basic CORBA types. . . . . . ... .. .. ... 72
C++ class hierarchy for interface inheritance. . . . . .. ... .. .. ... 81
Dependency graph. . . . . . . ... 82
Results comparing two intervalls . . . . . ... ..o oo 90
A simple conceptual graph with two concepts and one relation. . . . . . . . 93
Syntax of an operation declaration. . . . . .. .. ... oL 95

Conceptual graph representing the specification of the operation deposit(). 96

v



Chapter 1

What 1s MICQO?

The acronym Mico expands to MICO Is CORBA. The intention of this project is to
provide a freely available and fully compliant implementation of the CORBA standard
(see [5]). MIco has become quite popular as an OpenSource project and is widely used
for different purposes. As a major milestone, MicO has been branded as ja CORBA
compliant by the OpenGroup, thus demonstrating that OpenSource can indeed produce
industrial strength software. Our goal is to keep MicO compliant to the latest CORBA
standard. The sources of MICO are placed under the GNU—-copyright notice (see chapter
8). The following design principles guided the implementation of MIico:

1. start from scratch: only use what standard UNIX APT has to
offer; don’t rely on proprietary or specialized libraries.

2. use C++ for the implementation.

3. only make use of widely available, non—proprietary tools.

4. omit “bells and whistles”: only implement what is required

for a CORBA compliant implementation. &

5. clear design even for implementation internals to ensure ex- ™
tensibility. CORBA

You should visit our homepage frequently for updates. We will continue to develop Mico,
providing bug fixes as well as new features. Information about the MICO project is
available at http://www.mico.org.

Further informations about M1cO can be found in the book MICO: An Open Source
CORBA Implementation published by dpunkt.verlag (http://www.dpunkt.de/mico) in
Europe and Morgan Kaufmann Publishers, Inc. (http://www.mkp.com/mico) in North
America. The book includes a CD with the complete source code of MicO as well as
binaries for various platforms as ready to run executables. It explains how to install
and use Mico. A little tutorial gets you going with a sample CORBA application. All
features of M1CO are well documented both in the manual and in online man—pages. Mico
is fully interoperable with other CORBA implementations, such as Orbix from Iona or



VisiBroker from Inprise. The manual contains a step-by—step procedure showing how to
connect Mico with other CORBA implementations. It even includes sample programs
from various CORBA textbooks to show you all aspects of CORBA.



How to support MICO

The authors have worked very hard to make Mi1coO a usable and free CORBA 2.3 compliant
implementation. If you find M1coO useful and would like to support it, there is an easy
way to do so: contribute to the development of MicO by implementing those parts of
the CORBA standard, which are still missing in Mi1co. Although Mico is fully CORBA
2.3 compliant, there are some parts of the standard (like the CORBAservices) which are
not mandatory and which we did not implement. We hope that our decision to place the
complete sources of MIcO under the GNU public license will encourage other people to
contribute their code (see section 8 for details).



Chapter 2

Installation

This chapter explains from where MICO can be obtained, the prerequisites for compiling
Mico, how to compile and install MicO, and on which platforms MIcO has been tested.

2.1 Getting MICO

The latest MICO release is always available at

http://www.vsb.cs.uni-frankfurt.de/ "mico/
http://www.icsi.berkeley.edu/ " mico/
ftp://diamant.vsb.cs.uni-frankfurt.de/pub/projects/mico/mico-2.3.3.tar.gz

New releases are announced over the MiCcO mailing list. If you want to subscribe send a
message containing

subscribe mico-devel

to majordomo@vsb.cs.uni-frankfurt.de.

2.2 Prerequisits

2.2.1 Unix

Before trying to compile MicO make sure you have installed the following software pack-
ages:

e gnu make version 3.7 or newer (required)
e C++ compiler and library (required):

— g++ 2.7.2.x and libg++ 2.7.2, or
— g++ 2.8.x and libg++ 2.8.x, or

— eges 1.x



e flex 2.5.2 or newer (optional)
e bison 1.22 or newer (optional)

e JDK 1.1.5 (SUN’s Java developers kit) (optional)

e JavaCUP 0.10g (parser generator for Java) (optional)

flex and bison are only necessary if you change their input files (files having the suffix
.1 and .y) or if you want to compile the graphical user unterface. The last two items
(JDK and JavaCUP) are only needed for the graphical interface repository browser, not
for Mico itself. So you can get along without installing the Java stuff.

It is important that you use one of the above listed C++ compilers and a C++ library
that matches the version of the compiler. Your best bet is using either eges or g++ 2.8.
In contrast to gce 2.7.2 both of them have proper support for exceptions. egcs is a bit
easier to install than g4+, because it includes a matching C++ library.

2.2.2 Windows 95/NT using Cygnus CDK

In order to run Mico on Windows 95 or NT you have to use the Cygnus CDK beta 19,
a port of the GNU tools to Win32 or Microsoft’s Visual-C++ compiler. For instructions
on how to compile Mi1cO using the Visual-C++ compiler, refer to Section 2.4.

Install the CDK by running its setup program. Note that you have to install it in the
directory the setup program suggests (c:\Cygnus\CDK\B19); otherwise bison won'’t be
able to find its skeleton files. Then create c:\bin and put an sh.exe into it. Likewise
create c:\1ib and put a cpp.exe into it:

mkdir c:\bin

copy c:\Cygnus\CDK\B19\H-1386-cygwin32\bin\bash.exe c:\bin\sh.exe

mkdir c:\1ib

copy c:\Cygnus\CDK\B19\H-1386-cygwin32\1ib\gcc-1ib\2.7-B19\cpp.exe c:\1ib

Now you are ready to unpack and compile MicO as described in section 2.3.
There are some problems with the current release of the CDK:

e On standalone machines which are not connected to a name server resolving IP
addresses other than 127.0.0.1 into host names will hang forever. This is either a
problem with the CDK or with Windows in general. On standalone machines you
therefore have to make all servers bind to 127.0.0.1 by specifying ~-ORBII0PAddr
inet:127.0.0.1:<port> on the command line.

o The gcc 2.7 that comes with the CDK has broken exception handling. Furthermore
it seems to be unable to use virtual memory, at least I get out of virtual memory
errors although there is a lot of free swap space. I know there are ports of egcs and
gce 2.8 (which might do better), but didn’t give them a try.



e There seems to be a problem with automatic TCP port number selection. Usually
one binds to port number 0 and the system automatically picks an unused port for
you. This basically works with CDK, but sometimes causes hanging connections.
The solution is to always explicitely specify port numbers, 1.e. give all servers—even
ones that are started by micod—the option ~-ORBII0OPAddr inet:<host>:<port>,
where <port> is nonzero.

2.3 Installing MICO under Unix

The MICO source release is shipped as a tar’ed and gzip’ed archive called
mico-2.3.3.tar.gz

Unpack the archive using the following command:
gzip -dc mico-2.3.3.tar.gz | tar xf -

You are left with a new directory mico containing the MICO sources. To save you the
hassle of manually editing Makefile’s and such, MICO comes with a configuration script
that checks your system for required programs and other configuration issues. The script,
called configure, supports several important command line options:

--help
Gives an overview of all supported command line options.

--prefix=<install-directory>
With this options you tell configure where the MICcO programs and libraries should
be installed after compilation. This defaults to /usr/local.

--enable-corba2-1
This option makes MicO compliant to the version 2.1 of the CORBA standard due
to some backward incompatibilities with later releases of the standard.

--disable-optimize
Do not use the -0 option when compiling C/C++ files. It is now safe to use this
option because only files that do not use exceptions are compiled using -0, which is
why optimization is now turned on by default.

--enable-debug
Use the -g option when compiling C/C++ files.

--enable-repo
Use the -frepo flag when compiling C4++ files. This works only with a patched
g++ 2.7.2 and will greatly reduce the size of the binaries, at the cost of much slower
compilation (this option instructs g++ to do some sort of template repository). You
must use this option on HP-UX, otherwise you will get lots of error during linking.



--disable-shared

Build the Mico library as a static library instead as a shared one. Shared libraries
currently only work on ELF based systems (e.g., Linux, Solaris, Digital Unix, AIX,
and HP-UX). If you do not use the --disable-shared option you have to make
sure the directory where the MIcoO library resides is either by default searched for
shared libraries by the dynamic linker (/usr/1ib and /1ib on most systems) or
you have to include the directory in the environment variable that tells the dynamic
linker where to search for additional shared libraries. This variable is called LIBPATH
on AIX, SHLIB_PATH on HP-UX and LD_LIBRARY_PATH on all the other systems.
To run the generated binaries before doing a make install you have to set this
environment variable like this:

# AIX

export LIBPATH=<mico-path>/mico/orb:$LIBPATH

# HP-UX

export SHLIB_PATH=<mico-path>/mico/orb:$SHLIB_PATH

# others

export LD_LIBRARY_PATH=<mico—path>/mico/orb:$LD_LIBRARY_PATH
s

where <mico-path> is the absolute path of the directory the MICO sources were
unpacked in.

--disable-dynamic
This option disables dynamic loading of CORBA objects into a running executable.
For dynamic loading to work your system must either support dlopen() and friends
or shl load() and friends. See section 4.3.4 for details.

--enable-final
Build a size optimized version of the Mico library. This will need lots of memory
during compilation but will reduce the size of the resulting library a lot. Works with
and without --enable-shared. Does not work on HP-UX.

--disable-mini-stl

As mentioned before, MICO makes use of the Standard Template Library (STL). For
environments that do not provide an STL implementation, MI1CO comes with its own
slim STL (called MiniSTL), which is simply a subset of the standard STL sufficient
to compile Mico. By default Mico will use MiniSTL. If you want to use the system
supplied STL for some reason you have to use the option --disable-mini-stl.
MiniSTL works well with g+4 and greatly reduces compilation time and size of the
binaries. Using MiniSTL one could try to compile Mic0O using a C+4 compiler other
than g++. But this still has not been tested and may therefore lead to problems.

--disable-except
Disable exception handling. On some platforms (e.g., DEC alpha) g++ has very



buggy exception handling support that inhibit the compilation of MicO with ex-
ception handling enabled. If this happens try turning off exception handling using
this option.

--with-qt=<qt-path>
Enable support for QT. <qt-path> is the directory where QT has been installed in.

--with-gtk=<gtk-path>
Enable support for GTK. <gtk-path> is the directory where GTK has been installed
in.

--with-tcl=<tcl-path>
Enable support for TCL. <tcl-path> is the directory where TCL has been installed
in.

--with-ssl1=<SSLeay-path>
Enable support for SSL. <SSLeay-path> is the directory where SSLeay has been
installed in.

Now you should run configure with the proper command line options you need, e.g.:

cd mico
./configure --with-qt=/usr/local/qt

Use gmake to start compilation and install the programs and libraries, possibly becoming
root before installation:

gmake
gmake install

On some systems you have to take special actions after installing a shared library in order
to tell the dynamic linker about the new library. For instance on Linux you have to run
ldconfig as root:

/sbin/ldconfig -v

2.4 Installing MICO using Visual-C++

Installing Mico under Windows using the Visual-C++4 compiler is sufficiently different to
dedicate it its own section. Beware that this compiler is not among the technically most
solid pieces of engineering and you should make sure that you have applied all Service
Packs there are (Microsoft terminology for bug fixes). It is also advisable to check the
latest release notes for MicO on the Windows platform which are contained in the file
README-WIN32.



2.4.1 Prerequisits

You will need Visual-C++ 5.0 Service Pack 3 or (preferred) Visual-C++ 6.0 Service Pack
2 to compile Mico for Windows. Note that without Service Pack 3 for Visual-C++, you
will not be able to compile the sources or write MICO applications. Windows version of
flex and bison are not required. The Mico distribution already contains the files generated
by these tools. VC++ 5.0 SP3 is available from:

http://www.microsoft.com/msdownload/vs97sp/full.asp
VC++ 6.0 service packs are available at:
http://msdn.microsoft.com/vstudio/sp/default.asp

The Windows 95 implementation of the TCP/IP protocol stack cause problems with
Mico applications. You need to download and install the WinSock2 library which fixes
these problems. You can download WinSock2 from the Microsoft web server for free:

http://www.microsoft.com/windows95/downloads/contents/wuadmintools/\
s_wunetworkingtools/w95sockets2/default.asp?site=95

IMPORTANT: You also need to make sure that the environment variables are set
properly for Visual-C++. There is a batch file called VCVARS32.bat specifically for this
purpose. Be sure to run this batch file — which is part of VC++4 — before you try to
compile Mico.

Once you have made sure that your Windows platform meets all the above mentioned
prerequisits, you can unpack the MICO sources. The sources are shipped as a zipped

archive on the CD called
mico-<version>.zip

Where <version> is the version number of the MICO release contained on the CD. Unpack
the archive at the desired location.

2.4.2 Compiling the MICO sources

Change to the directory where you have unzipped the MIcO sources and edit the file
MakeVars.win32. Set the SRCDIR variable to the location of the Mico directory (no
trailing backslash). There is no need to run a configure script. MICO is pre-configured
for Windows.

VC++4 comes with its own Makefile tool called nmake. Unfortunately this tool is
sufficiently incompatible with other make tools. For this reason the Mico distribution
contains a second set of Makefiles. These Makefiles have the suffix .win32 and are tailored
to work with nmake. To compile MICO on your system, type the following in the Mico
top level directory:

nmake /f Makefile.win32



If you are running Windows 95/98, the command line shell suffers from some serious
deficiencies. On those platforms you need to invoke the compilation process using the
following command instead:

nmake /f Makefile.win32 w95-all

The make process will build all the necessary DLLs and executables in a subdirectory
called win32-bin, which will be created during compilation. The content of this directory
is the only thing you need for building Mico applications. You can move it to your
preferred location. The build will require around 150MB (the demo directory another
90MB).

You should modify the PATH environment variable to include this directory. If, for
example, the MICO sources were unzipped in C:\mico, then type the following:

PATH C:\mico\win32-bin;%PATHY,

2.4.3 Writing MICO applications using the IDE

All the examples that come with MicO depend on Makefiles for the building process.
The advantage of a tool like Visual-C++ is that it offers an Integrated Development
Environment (IDE), which combines editor, compiler and debugger in one tool. The IDE
also manages all the files which belong to a project. This section gives you an indication
on how to use the IDE together with Mico. First you have to tell Visual-C++, where
MICO is located. You do this in the Tools/Options dialog, in the Directories tab, you
have to set the Include path to the following directories:

C:\mico\win32-bin\include\windows
C:\mico\win32-bin\include

These lines have to be first in the list (use the move buttons to move them to the first
position). Next, set the Library path to (order does not matter):

C:\mico\win32-bin\1ib
and the Ezecutables path accordingly to:
C:\mico\win32-bin
In the project settings you have to make the following changes:

Compiler: You have to define WINDOWS in the Preprocessor options. In the Code Gen-
eration options you have to use the Multi-Threaded DLL version of the runtime
library, because that is the way MICO was compiled.

Linker: You have to add micoXXX.1lib and wsock32.1ib (where XXX is the three digit
version number of MIcO without the dots) to the Object/Library modules input
field (Hint: Before you do this select All configurations in the upper left combo box
named Settings for)

10



Additionally, you can integrate your IDL files in the build process. First you have to
add the IDL file to your project, then goto Project/Settings and select this file, or right
click on the IDL file and choose Settings, select the Custom Build tab and enter:

idl --c++-suffix=cpp [other options] $(InputPath)
into the Build Command listbox. In the Output files list box enter:

$ (InputName) .h
$ (InputName) . cpp

For inserting $(..) you can also use the popup buttons at the bottom of the dialog, or
you can use the real filename instead. The output files of the IDL compiler are created in
the current directory; normally the root of the project. If the output filename is foo.cpp,
then you have to add foo.cpp to the project. This can be done even before the file exists,
by entering it into the file dialog.

2.5 Supported Platforms

Mico has been tested on the following operating systems:

o Solaris 2.5, 2.6, and 7 on Sun SPARC

o ATX 4.2 on IBM RS/6000

o Linux 2.x on Intel x86 and DEC Alpha

o Digital Unix 4.x on DEC Alpha

o HP-UX 10.20 on PA-RISC

o Ultrix 4.2 on DEC Mips (no shared libs, no dynamic loading)

e Windows 95/NT (Visual C4++ and Cygnus CDK)
Addionally some users reported MICO runs on the following platforms:

e FreeBSD 3.x on Intel x86

e SGI-Irix on DEC Mips

e OS/2 on Intel x86 using emx 0.9
e DG/UX on Intel x86

e LynxOS

Please let us know if you fail/succeed in running MICO on any unsupported platform.

11



Chapter 3
Guided tour through MICO

3.1 Objects in distributed systems

Modern programming languages employ the object paradigm to structure computation
within a single operating system process. The next logical step is to distribute a compu-
tation over multiple processes on one single or even on different machines. Because object
orientation has proven to be an adequate means for developing and maintaining large scale
applications, it seems reasonable to apply the object paradigm to distributed computation
as well: objects are distributed over the machines within a networked environment and
communicate with each other.

As a fact of life the computers within a networked environment differ in hardware
architecture, operating system software, and the programming languages used to imple-
ment the objects. That is what we call a heterogenous distributed environment. To allow
communication between objects in such an environment one needs a rather complex piece
of software called a middleware platform. Figure 3.1 illustrates the role of a middleware
platform within a heterogenous distributed environment.

The Common Object Request Broker Architecture (CORBA) is a specification of such a
middleware platform by the Object Management Group (OMG) (see [5]). MICO provides

e
A

4

/_E_\ o

Object Request Broker

o3 0os, 0s$

o L] [ ]

Nodle Node Nade

_________________________________ Network <]

Figure 3.1: Middleware support for objects in distributed systems.

12



a full CORBA 2.3 compliant implementation. CORBA addresses the following issues:

object orientation
objects are the basic building blocks of CORBA applications.

distribution transparency
a caller uses the same mechanisms to invoke an object whether it is located in the
same address space, the same machine or on a remote machine.

hardware—, operating system—, and language independence
CORBA components can be implemented using different programming languages
on different hardware architectures running different operating systems.

vendor independence
CORBA compliant implementations from different vendors interoperate.

CORBA is an open standard in the sense that anybody can obtain the specification and
implement it like we did. Besides its technical features this is considered one of CORBA’s
main advantages over other proprietary solutions.

3.2 State of development

Mico is a fully compliant CORBA 2.3 implementation. Everything that is implemented
is CORBA 2.3 compliant, including but not limited to the following features:

e Dynamic Invocation Interface (DII)
e Dynamic Skeleton Interface (DSI)
e IDL to C4++ mapping

e Interface Repository (IR)

e graphical Interface Repository browser that allows you to invoke arbitrary methods
on arbitrary interfaces

e IIOP as native protocol
e ITOP over SSL

e modular ORB design: new transport protocols and object adapters can easily be
attached to the ORB — even at runtime using loadable modules

e support for nested method invocations
e interceptors
e Any offers an interface for inserting and extracting contructed types that were not

known at compile time

13



e Any and TypeCode support recursive subtyping as defined by the RM—ODP
e support of recursive data types

e full BOA implementation, including all activation modes, support for object migra-
tion, object persistence and the implementation repository

e BOA canload object implementations into clients at runtime using loadable modules
e Portable Object Adapter (POA)

e support for using M1co from within X11 applications (Xt and Qt)

o Interoperable Naming Service

e event service

e relationship service

e property service

e trading service

e DynAny support

Our goal 1s to keep the core of Mico fully compliant to the latest version of the
CORBA specification, while integrating new CORBA services. Be sure to check the
MicoO homepage frequently for updates.

3.3 Sample Program

To get you started with MicoO, this section presents an example of how to turn a single—
process object oriented program into a MI1CO application.

3.3.1 Standalone program

Imagine a bank which maintains accounts of its customers. An object which implements
such a bank account offers three operations': deposit a certain amount of money, withdraw
a certain amount of money, and an operation called balance that returns the current
account balance. The state of an account object consists of the current balance. The
following C++ code fragment shows the class declaration for such an account object:

class Account {
long _current_balance;

public:
Account ();
void deposit (unsigned long amount);
void withdraw (unsigned long amount);
long balance ();

¥

IThis is a somewhat idealistic assumption but sufficient for the scope of this example.

14



The above class declaration describes the interface and the state of an account object,
the actual implementation which reflects the behavior of an account, is shown below:

Account: :Account ()

{
_current_balance = 0;
b
void Account::deposit (unsigned long amount)
{
_current_balance += amount;
X
void Account::withdraw (unsigned long amount)
{
_current_balance -= amount;
X
long Account::balance ()
{
return _current_balance;
b

Here is a piece of code that makes use of a bank account:
#include <iostream.h>

int main (int argc, char *argv[])

{
Account acc;
acc.deposit (700);
acc.withdraw (250);
cout << "balance is " << acc.balance() << endl;
return O;
}

Since a new account has the initial balance of 0, the above code will print out “balance s

1507,

3.3.2 MICO application

Now we want to turn the standalone implementation from the previous section into a
Mico application. Because CORBA objects can be implemented in different program-
ming languages? the specification of an object’s interface and implementation have to be
separated. The implementation is done using the selected programming language, the
interface is specified using the so called Interface Definition Language (IDL). Basically
the CORBA IDL looks like C++ reduced to class and type declarations (i.e., you can-
not write down the implementation of a class method using IDL). Here is the interface
declaration for our account object in CORBA IDL:

2The CORBA specification currently defines language mappings for a variety of high level languages
like C, C++, Smalltalk, Cobol and Java.

15



----- = Dependency

client.cc ) account.idl server.cc Sources

account.cc account.rﬁ Generated Code

Application

Figure 3.2: Creation process of a MIcO application.

interface Account {
void deposit (in unsigned long amount);
void withdraw (in unsigned long amount);
long balance ();

+;

As you can see it looks quite similar to the class declaration in section 3.3.1. The in
declarator declares amount as an input parameter to the deposit() and withdraw()
methods. Usually one would save the above declaration to a file called account .idl.

The next step is to run this interface declaration through the IDL compiler that
will generate code in the selected implementation programming language (C++ in our
example). The Mico IDL compiler is called id1l and is used like this:

idl account.idl

The IDL compiler will generate two files: account.hand account.cc (see figure 3.2). The
former contains class declarations for the base class of the account object implementation
and the stub class a client will use to invoke methods on remote account objects. The latter
contains implementations of those classes and some supporting code. For each interface
declared in an IDL-file, the Mico IDL compiler will produce three C++ classes®.

The three classes are depicted in figure 3.3 between the two dashed lines. The class
Account serves as a base class. It contains all definitions which belong to the interface
Account, like local declarations of user defined data structures. This class also defines a
pure virtual function for each operation contained in the interface. The following shows
a bit of the code contained in class Account:

// Code excerpt from account.h
class Account : virtual public CORBA::0bject {

public:

3Note that C++ is currently the only language which is supported by Mico.

16



virtual void deposit (CORBA::ULong amount) = O0;
virtual void withdraw (CORBA::ULong amount) = 0;
virtual CORBA::Long balance () = 0;

The class Account_skel is derived from Account. It adds a dispatcher for the operations
defined in class Account. But it does not define the pure virtual functions of class Account.
The classes Account and Account_skel are therefore abstract base classes in C+4 termi-
nology. To implement the account object you have to subclass Account_skel providing
implementations for the pure virtual methods deposit (), withdraw() and balance().

The class Account_stub is derived from class Account as well. In contrast to class
Account_skel it defines the pure virtual functions. The implementation of these functions
which i1s automatically generated by the IDL—compiler is responsible for the parameter
marshalling. The code for Account_stub looks like this:

// Code excerpt from account.h and account.cc
class Account;

typedef Account *Account_ptr;

class Account_stub : virtual public Account {
public:

void deposit (CORBA::ULong amount)

{

// Marshalling code for deposit
X
void withdraw (CORBA::ULong amount)
{

// Marshalling code for withdraw
}
CORBA: :Long balance ()
{

// Marshalling code for balance
}

This makes Account_stub a concrete C++ class which can be instantiated. The pro-
grammer never uses the class Account_stub directly. Access is only provided through
class Account as will be explained later.

It 1s worthwile to see where the classes Account and Account _skel are derived from.
Account inherits from Object, the base class for all CORBA objects. This class is lo-
cated in the MIcoO library. The more interesting inheritance path is for Account_skel.
Account_skel inherits from StaticMethodDispatcher, a class located again in the Mico
library. This class is responsible for dispatching a method invocation. It maintains a list of

method dispatchers®. The class StaticMethodDispatcher inherits from StaticImplementation.

4In this example the list contains only one dispatcher, namely for the Account—object. Later when we
discuss interface inheritance this list will contain a dispatcher for each class in the inheritance hierarchy.

17



Object ﬁ inherits from
~—

~
Staticlmplementation

MICO-library
StaticMethodDispatcher
Account
Classes generated
by IDL-compiler
Account_stub Account_skel
Account_impl Implementation

provided by user

Figure 3.3: Inheritance relationship between stub— and skeleton classes.

This class mirrors the behaviour of the dynamic skeleton interface (DSI), but is more ef-

ficiently designed.

Up until now we have written the interface of an account object using CORBA IDL,

saved 1t as account.idl, ran it through the IDL compiler which left us with two files

called account.cc and account.h that contain the class declarations for the account
implementation base class (Account_skel) and the client stub (Account_stub). Figure
3.2 illustrates this. What is left to do is to subclass Account_skel (implementing the
pure virtual methods) and write a program that uses the bank account. Here we go:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

1
2
3:
4: {
5:
6
7
8
9

: #include "account.h"

class Account_impl : virtual public Account_skel

private:
CORBA: :Long _current_balance;

: public:

Account_impl ()
{
_current_balance = 0;
};
void deposit( CORBA::ULong amount )
{
_current_balance += amount;
};
void withdraw( CORBA::ULong amount )
{
_current_balance —= amount;
};
CORBA: :Long balance()
{

return _current_balance;

18



24: 3}

25: };

26:

27:

28: int main( int argc, char *argv[] )
29: {

30: // ORB initialization

31: CORBA: :0ORB_var orb = CORBA::0RB_init( argc, argv, "mico-local-orb" );
32: CORBA: :BOA_var boa = orb->BOA_init( argc, argv, '"mico-local-boa" );
33:

34: // server side

35: Account_impl* server = new Account_impl;

36: CORBA: :String_var ref = orb->object_to_string( server );

37: cout << "Server reference: " << ref << endl;

38:

39: //mmmmmm
40:

41: // client side

42:  CORBA::0Object_var obj = orb->string_to_object( ref );
43: Account_var client = Account::_narrow( obj );

44:

45: client->deposit( 700 );

46: client->withdraw( 250 );

47: cout << "Balance is " << client->balance() << endl;

48:

49: // We don’t need the server object any more. This code belongs
50: // to the server implementation

51: CORBA: :release( server );

52: return O;

53: }

Lines 3-25 contain the implementation of the account object, which is quite similar to
the implementation in section 3.3.1. Note that the class Account_impl inherits the from
class Account_skel, which contains the dispatcher for this interface, via a virtual public
derivation. Although the keyword virtual is not required in this case, it is a good practise
to write it anyway. This will become important when interface inheritance is discussed in
section 5.5.

The main() function falls into two parts which are seperated by the horizontal line
(line 39): Above the separator is the server part that provides an account object, below
the line is the client code which invokes methods on the account object provided by the
server part. Theoretically the two parts could be moved to two seperate programs and
run on two distinct machines and almost nothing had to be changed in the code. This
will be shown in the next section.

In line 32 the MIcO initialization function is used to obtain a pointer to the Object
Request Broker (ORB) object—a central part of each CORBA implementation. Among
others the ORB provides methods to convert object references into a string representation
and vice versa. In line 35 an account object called server is instantiated. Note that it
is not permitted to allocate CORBA objects on the run—time stack. This is because the
CORBA standard prescribes that every object has to be deleted with a special function
called CORBA: :release(). Automatic allocation of an object would invoke its destructor

19



when the program moves out of scope which is not permissible. In our little sample
program the server object is deleted explicitly in line 51.

In line 36 the ORB is used to convert the object reference into a string that somehow
has to be transmitted to the client (e.g., using Email, a name service or a trader). In
our example client and server run in the same address space (i.e. the same process) so
we can turn the string into an object reference back again in line 42. Line 43 uses the
Account: : narrow() method to downcast the object reference to an Account _var. The
rest of main() just uses the account object which was instantiated in line 35.

Account_var is a smart pointer to Account instances. That is an Account _var behaves
like an Account _ptr except that the storage of the referenced object is automatically freed
via the aforementioned release() function when the Account _var is destroyed. If you
use Account ptr instead you would have to use CORBA: :release() explicitly to free the
object when you are done with it (never use delete instead of CORBA: :release()).

Assuming the above code is saved to a file called account_impl.cc you can compile
the code like this®:

mico-c++ -I. -c account_impl.cc -o account_impl.o
mico-c++ -I. -c account.cc -o account.o
mico-1d -I. -o account account_impl.o account.o -lmico2.3.3

This will generate an executable called account. Running it produces the following out-
put:

Server reference: IDR:010000001000000049444c3a4163636f756e743a312e3\
0000200000000000000300000000101000013000000752d6d61792e7468696e6b6T\
6e652e636f6d400007H0900000c000000424f410a20b0530000055£0301000000240\
0000001000000010000000100000014000000010000000100010000000000090101\
0000000000

Balance is 450

You can find the source code for this example in the demo/boa/account directory within
the Mico source tree. Note that the IOR may look different on different systems. This is
because it contains information which depend on the hostname, port number and object
ID for the server object among other things. There is a tool called iordump (see directory
mico/tools/iordump) which shows the content of the IOR. Feeding the IOR above into
tordump yields the following output:

Repo Id: 1IDL:Account:1.0

II0OP Profile
Version: 1.0
Address: inet:u-may.thinkone.com:2427
Location: iioploc://u-may.thinkone.com:2427/B0A%0a%20%b0S%00%00%05%5£%03
Key: 42 4f 41 0a 20 b0 53 00 00 05 5f 03 BOA. .S...

Smico-c++ and mico-1d are wrapper scripts for the C++4 compiler and the linker, see section 4.6 for

details

20



Multiple Components Profile
Components: Native Codesets:
normal: ISO 8859-1:1987; Latin Alphabet No. 1
wide: ISO/IEC 10646-1:1993; UTF-16, UCS Transformation Format\
16-bit form
Key: 00

3.3.3 Separating client and server

CORBA would be pretty useless if you always had to run the object implementation
(server) and the client that uses the server in the same process. Here is how to separate
the client and server parts of the example in the previous section into two processes
running on the same or on different machines®.

One problem you have to cope with when moving object implementation and client
into separate address spaces is how the client gets to know the server. The solution to
this problem is called a naming service.

Stringified Object References

The example in section 3.3.2 already used the ORB methods object_to_string() and
string_to_object() to make a stringified representation of an object reference and to
turn back this string into an object, respectively.

When separating client and server you have to find a way to transmit the stringified
object reference from the server to the client. If client and server run on machines that
share a single file system you can make the server write the string into a file which is read
by the client. Here is how to do it:

1: // file account_server.cc

2:

3: #include <iostream.h>

4: #include <fstream.h>

5: #include "account.h"

6:

7: class Account_impl : virtual public Account_skel

8: {

9: // unchanged, see section "MICO Application"

10:  // ...

11: };

12:

13:

14: int main( int argc, char *argv[] )

15: {

16: // ORB initialization

17: CORBA::0RB_var orb = CORBA::0RB_init( argc, argv, '"mico-local-orb" );
18: CORBA::BOA_var boa = orb->BOA_init( argc, argv, '"mico-local-boa'" );
19:
20: Account_impl* server = new Account_impl;

50f course you can have some of the object implementations in the same process and some in other
processes. The ORB hides the actual locations of the object implementations from the user

21



21: CORBA::String_var ref = orb->object_to_string( server );
22: ofstream out ("/tmp/account.objid");

23: out << ref << endl;
24: out.close ();
25:

26: boa->impl_is_ready( CORBA::ImplementationDef::_nil() );
27: orb—>run ();

28: CORBA: :release( server );

29: return O;

30: }

Account_impl, the implementation of the account object in lines 7-11 is the same as in
section 3.3.2. The main() function performs ORB and BOAT initialization in lines 16-18,
which will evaluate and remove CORBA specific command line options from argv, see
section 4.1.1 for details. In line 20 an account object is created, lines 21-24 obtain a
stringified object reference for this object and write it to a file called account.objid.

In line 26 the impl_is_ready() method of the BOA is called to activate the ob-
jects implemented by the server. The ORB method run(), which is invoked in line 27
will enter a loop to process incoming invocations®. Just before returning from main(),
CORBA: :release() is used in line 28 to destroy the account server object.

1: // file account_client.cc

2:

3: #include <iostream.h>

4: #include <fstream.h>

5: #include "account.h"

6:

7: int main( int argc, char *argv[] )

8: {

9: // ORB initialization

10: CORBA::0RB_var orb = CORBA::0RB_init( argc, argv, '"mico-local-orb" );
11: CORBA::BOA_var boa = orb->BOA_init( argc, argv, '"mico-local-boa'" );
12:

13: ifstream in ("/tmp/account.objid");

14: char ref[1000];

15: in >> ref;

16: in.close ();

17:

18:  CORBA::0bject_var obj = orb->string_to_object (ref);
19: Account_var client = Account::_narrow( obj );
20:
21: client->deposit( 700 );
22: client->withdraw( 250 );
23: cout << "Balance is " << client->balance() << endl;
24 :
25: return O;
26: }

After ORB and BOA initialization the client’s main () function reads the stringified object
reference in lines 13-16 and turns it back into an account object stub in lines 18-19. After

“The Basic Object Adapter
8You can make run() exit by calling the ORB method shutdown(), see section 4.3.4 for details.

22



making some method invocations in lines 21-23 client will be destroyed automatically
because we used and Account_var smart pointer.
Compile the client and server programs like this:

mico-c++ -I. —-c account_server.cc -o account_server.o
mico-c++ -I. -c account_client.cc -o account_client.o
mico-c++ -I. -c account.cc -o account.o

mico-1d -o server account_server.o account.o -1mico2.3.3
mico-1d -o client account_client.o account.o -1mico2.3.3

First run server and then client in a different shell. The output from client will look

like this:
Balance is 450

Note that running the client several times without restarting the server inbetween will
increase the balance the client prints out by 450 each time! You should also note that
client and server do not necessarily have to run on the same machine. The stringified
object reference, which is written to a file called /tmp/account.objid, contains the IP
address and port number of the server’s address. This way the client can locate the server
over the network. The same example would also work in a heterogeneous environment.
In that case you would have to compile two versions of account. o, one for each hardware
architecture. But the conversion of the parameters due to different data representations
is taken care of by Mico.

Naming Service

What we have actually done in the last section is to implement some very simple kind of
naming service on top of the file system. A naming service is a mapping between names
and addresses which allows you to look up the address for a given name. For example a
phone directory is a naming service: it maps people’s names to phone numbers.

In the CORBA context a naming service maps names to object references. The simple
naming service we implemented in the previous section maps file names to stringified
object references. The OMG has defined a more elaborate naming service as a set of
CORBA objects, an implementation of which is now shipped with Mico. To use the
name service you have to

e run the name service daemon nsd

e tell server and client the address of nsd using the -ORBNamingAddr option (see
section 4.1.1 for details)

e make the server register its offered objects with the name service
e make the client query the name server for the server

There is a program called nsadmin that can be used to browse and change the contents
of the naming service. The demo/services/naming directory contains an example how
to use the name service.

23



The MICO Binder (CORBA Extension)

There is still one problem left: How do you get an object reference for the naming service
itself? Especially if the naming service and the client reside on machines that do not
share a file system that could be used to pass around stringified object references as in
the previous section”. Because the CORBA standard does not offer a solution to this
problem MIcO has to invent its own. Because it might be useful for other purposes as
well we decided to make the solution available to you, dear user. Note that using this
feature makes your programs incompatible with other CORBA implementations.

The Mico Binder is a very simple naming service that maps (Address, Repositoryld)
pairs to object references. A Repositoryld is a string that identifies a CORBA IDL-object
and consists of the absolute name of the IDL—object and a version number. Repositoryld’s
are generated by the IDL compiler. The Repositoryld for the Account interface looks like
this:

IDL:Account:1.0

See section [6.6] of [5] for details on Repositoryld’s. An Address identifies one process on
one computer. MICO currently defines three kinds of addresses: internet addresses, uniz
addresses, and local addresses. An internet address is a string with the format

inet:<host name>:<port number>

which refers to the process on machine <host name> that owns the TCP port <port number>.
Uniz addresses look like

unix:<socket file name>

and refer to the process on the current machine that owns the unix-domain socket!® bound
to <socket file name>. Local addresses look like

local:

and refer to the process they are used in (i.e., this process). Here is an adaption of the
account example which uses the Mico binder:

: // file account_server2.cc
: #include "account.h"

1

2

3

4

5: class Account_impl : virtual public Account_skel
6: {

7: // unchanged, see section "MICO Application"
8: // ...
9: };

10:

9The CORBA standard offers the ORB method resolve_initial_references() to obtain an object
reference for the naming service. But that only moves the problem to the ORB instead of solving it.
10Unix—domain sockets are named, bidirectional pipes.

24



11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24 :

int main( int argc, char *argv[] )

{

// ORB initialization
CORBA: :0ORB_var orb = CORBA::0RB_init( argc, argv, "mico-local-orb" );
CORBA::BOA_var boa = orb->BOA_init( argc, argv, '"mico-local-boa'" );

Account_impl* server = new Account_impl;

boa->impl_is_ready( CORBA::ImplementationDef::_nil() );
orb->run ();

CORBA: :release( server );

return O;

The server is essentially the same as in 3.3.3 except that it does not write a stringified

object reference to a file. Here is the client:

NN NNNRFE B B B BB
B W NE, O OO ~NO”OMP WwNDEL O

O 00 N O 0 & WN -

// file account_client2.cc

#include "account.h"

int main( int argc, char *argv[] )

{

// ORB initialization
CORBA::0RB_var orb = CORBA::0RB_init( argc, argv, 'mico-local-orb" );
CORBA::BOA_var boa = orb->BOA_init( argc, argv, '"mico-local-boa'" );

CORBA: :0Object_var obj

= orb->bind ("IDL:Account:1.0", "inet:localhost:8888");
if (CORBA::is_nil (obj)) {

// no such object found ...
}

Account_var client = Account::_narrow( obj );
client->deposit( 700 );
client->withdraw( 250 );

cout << "Balance is " << client->balance() << endl;

return O;

After completing ORB and BOA initialization the client uses bind () to bind to an object
with repository id IDL:Account:1.0 that is running in the process that owns port 8888
on the same machine. Lines 14-16 check if the bind failed. Everything else is the same

as in section 3.3.3. Compile:

mico-c++ -I. -c account.cc -o account.o

mico-c++ -I. -c account_server2.cc -o account_server2.o
mico-c++ -I. -c account_client2.cc -o account_client2.0
mico-1d -o server2 account.o account_server2.o0 -1mico2.3.3
mico-1d -o client2 account.o account_client2.0 -1mico2.3.3

25



Start the server like this, telling it to run on port number 8888:
./server2 -ORBIIOPAddr inet:localhost:8888

Run the client in a different shell without any arguments. It should behave the same way
as the client from section 3.3.3.

If a server offers several objects (lets say A and B) of the same type (i.e., with the same
repository id) and a client wants to bind to A it needs a means to distinguish objects of
the same type. This is accomplished by assigning objects an identifier during creation
in the server and specifying this identifier as an extra argument to bind() in the client.
The identifier is of type BOA: :ReferenceData, which is a sequence of octets. You can
use ORB: :string_to_tag() and ORB::tag_to_string() to convert a string into such an
identifier and vice versa. Here are the changes to the server code:

: #include "account.h"

1
2
3: class Account_impl : virtual public Account_skel {

4: public:

5: Account_impl (const CORBA::BOA::ReferenceData &refdata)
6 : Account_skel (refdata)

7

8

9

{
_current_balance = 0;

}
10: // remaining parts unchanged
11: };
12:
13: int main( int argc, char *argv[] )
14: {
15: N
16: CORBA: :BOA: :ReferenceData_var id
17: = CORBA::0RB::string_to_tag ("foo");
18: Account_impl#* server = new Account_impl (id);
19:
20: }

Changes to the client:

1: #include "account.h"

2:

3: int main( int argc, char *argv[] )

4: {

5: R

6 CORBA: :BOA: :ReferenceData_var id

7 = CORBA::0RB::string_to_tag ("foo");
8 CORBA: :0Object_var obj

9: = orb->bind ("IDL:Account:1.0", id, "inet:localhost:8888");
10: R

11: }

To avoid hardcoding the address of the server into the client you can leave out the
second argument to bind () and specify a list of addresses to try using the ~-ORBBindAddr
command line option. For example

26



./client -ORBBindAddr local: -ORBBindAddr inet:localhost:8888

will make bind() try to bind to an account object in the same process and if that fails
it will try to bind to an account object running in the server than owns port 8888 on
the same machine. Note that addresses specified using ~-ORBBindAddr are only taken into
account if you to not specify an explicit address.

The demo/boa/account?2 directory contains an example that uses the MicoO binder.

27



Chapter 4

Implementation Overview

This chapter gives you an overview of how MicO implements the CORBA 2 specification,
the implementation components it consists of and how those components are being used.
A CORBA 2 implementation consists of the following logical components:

the Object Request Broker (ORB) provides for object location and method invoca-
tion.

the interface repository stores runtime type information.

one or more object adapters which form the interface between object implementa-
tions and the ORB; at least the Basic Object Adapter (BOA) has to be provided,
part of which is the implementation repository that stores information about how
to activate object implementations.

the IDL compiler generates client stubs, server skeletons and marshalling code from
a CORBA IDL according to the supported language mappings.

Each of these logical components has to be mapped to one or more implementation com-
ponents, which are described in the next sections.

4.1

ORB

The ORB is implemented as a library (1ibmico2.3.3.a) that is linked into each Mico
application.

4.1.1 ORB Initialization

Every Mico application has to call the ORB initialization function ORB_init () before
using MICO functionality.

int main (int argc, char *argvl[])

{

CORBA: :0RB_var orb = CORBA::0RB_init (argc, argv, "mico-local-orb");

28



That way the ORB has access to the applications command line arguments. After evalu-
ating them the ORB removes the command line options it understands so the application
doesn’t have to care about them. You can also put ORB command line arguments into
a file called .micorc in your home directory. Arguments given on the command line
override settings from .micorc. Here is a description of all ORB specific command line
arguments:

-0ORBNoIIOPServer
Do not activate the IIOP server. The IIOP server enables other processes to invoke
methods on objects in this process using the Internet Inter ORB Protocol (IIOP).
If for some reason you do not want other processes to be able to invoke objects in
this process you can use this option. Default is to activate the IIOP server.

-0ORBNoIIOPProxy
Do not activate the IIOP proxy. The IIOP proxy enables this process to invoke
methods on objects in other processes using IIOP. If you do not want or need this
you can use this option. Default is to activate the IIOP proxy.

-ORBIIOPAddr <address>
Set the address the ITIOP server should run on. See section 3.3.3 for details on
addresses. If you do not specify this option the ITOP server will choose an unused
address. This option can be used more than once to make the server listen on several
addresses (e.g., a unix: and an inet: address).

-ORBIIOPBlocking
Make ITOP use sockets in blocking mode. This gains some extra performance, but
nested method invocations do not work in this mode.

-0ORBId <0ORB identifier>
Specify the ORB identifier, mico-local-orb is currently the only supported ORB
identifier. This option is intended for programs that needed access to different
CORBA implementations in the same process. In this case the option -0RBId is
used to select one of the CORBA implementations.

-0ORBImplRepoIOR <impl repository IOR>
Specify a stringified object reference' for the implementation repository the ORB
should use.

-0ORBImplRepoAddr <impl repository address>
Specify the address of a process that runs an implementation repository. The ORB
will then try to bind to an implementation repository object using the given address.
See 3.3.3 for details on addresses and the binder. If the bind fails or if you did
neither specify ~-ORBImplRepoAddr nor -ORBImpRepoIOR the ORB will run a local
implementation repository.

-0ORBIfaceRepolOR <interface repository IOR>
The same as ~-ORBImplRepoIOR but for the interface repository.

'TOR means Interoperable Object Reference

29



-ORBIfaceRepoAddr <interface repository address>
The same as ~-ORBImplRepoAddr but for the interface repository.

-0ORBNamingIOR <naming service IOR>
The same as ~-ORBImplRepoIOR but for the naming service.

-ORBNamingAddr <naming address>
The same as ~-O0RBImplRepoAddr but for the naming service.

-0ORBInitRef <Identifier>=<IO0OR>
Sets the value for the initial reference by the name of identifer to the given object
reference. This mechanism can be used both for custom and for standard initial
references (see above).

-0ORBDefaultInitRef <IOR-base>
Defines a location for initial references. I0R-base is an iioploc-or iiopname-Style
object reference. When a previously unknown initial reference is searched for using
resolve_initial_references(), the searched-for identifier is concatenated to the
I0R-base string to produce the service’s location.

-0ORBNoResolve
Do not resolve given IP addresses into host names. Use dotted decimal notation
instead.

-0RBDebuglLevel <level>
Specify the debug level. <level> is a non—negative integer with greater values giving
more debug output on cerr.

-0ORBBindAddr <address>
Specify an address which bind(const char *repoid) should try to bind to. This
option can be used more than once to specify multiple addresses.

-0RBConfFile <rcfile>
Specifies the file from which to read additional command line options (defaults to
~/.micorc).

-0RBNoCodeSets
Do not add code set information to object references. Since code set conversion is
a CORBA 2.1 feature this option may be needed to talk to ORBs which are not
CORBA 2.1 compliant. Furthermore it may gain some extra speed.

-0ORBNativeCS <pattern>
Specifies the code set the application uses for characters and strings. <pattern>
is a shell-like pattern that must match the description field of a code set in the
OSF code set registry?. For example the pattern *8859-1%* will make the ORB use
the code set ISO-8859-1 (Latin 1) as the native char code set, which is the default

ZSee files admin/code set registry.txt and admin/mico_code set registry.txt in the Mico
source tree.

30



if you do not specify this option. The ORB uses this information to automatically
convert characters and strings when talking to an application that uses a different
code set.

-0ORBNativeWCS <pattern>
Similar to -~ORBNativeWCS, but specifies the code set the application uses to wide
characters and wide strings. Defaults to UTF-16, a 16 bit encoding of Unicode.

4.1.2 Obtaining Initial References

The ORB offers two functions for obtaining object references for the interface repository,
the implementation repository, and the naming service. Here is an example that shows how
to obtain a reference for the interface repository using resolve_initial_references():

int main (int argc, char *argvl[])

{
CORBA: :0RB_var orb = CORBA::0RB_init (argc, argv, "mico-local-orb");

CORBA::0bject_var obj =
orb->resolve_initial_references ("InterfaceRepository");
CORBA: :Repository_var repo = CORBA::Repository::_narrow (obj);

b

If you specify the interface repository by using the ORB command line option ~-ORBIfaceRepoAddr
or ~-ORBIfaceRepolOR, the reference returned from resolve_initial_references() will
be the one you specified. Otherwise the ORB will run a local interface repository and you
will get a reference to this one.
Obtaining a reference to the implementation repository (" ImplementationRepository")
and the naming service ("NameService") works the same way as for the interface reposi-
tory.
There is another method called 1ist_initial_services() that returns a list of names
which can be used as arguments for resolve_initial_references(). Here is how to

use 1it:

int main (int argc, char *argv[])

{
CORBA: :0RB_var orb = CORBA::0RB_init (argc, argv, "mico-local-orb");

CORBA: :0RB: :0bjectIdList_var ids = orb->list_initial_services ();

for (int i = 0; i < ids->length(); ++i)
cout << ids[i] << endl;

b

Initial references can also be specified using the ~-0RBInitRef and ~-0RBDefaultInitRef
command line options.

31



4.2 Interface Repository

The interface repository is implemented by a separate program (ird). The idea is to run
one instance of the program and make all M1CO applications use the same interface reposi-
tory. Ashas been mentioned in section 4.1.2 the command line option ~-ORBIfaceRepoAddr
can be used to tell a MicO application which interface repository to use. But where to
get the address of the ird program from? The solution is to tell ird an address it should
bind to by using the ~-ORBIIOPAddr. Here is an example of how to run ird:

ird -ORBIIOPAddr inet:<ird-host-name>:8888

where <ird-host-name> should be replaced by the name of the host ird is executed.
Afterwards you can run MIcO applications this way:

some_mico_application -ORBIfaceRepoAddr inet:<ird-host-name>:8888

To avoid typing in such long command lines you can put the option into the file .micorc
in your home directory:

echo -ORBIfaceRepoAddr inet:<ird-host-name>:8888 > ~/.micorc
Now you can just type:
some_mico_application

and some_mico_application will still use the ird’s interface repository.
ird can be controlled by the following command line arguments:

--help
Show a list of all supported command line arguments and exit.

--db <database file>
Specifies the file name where ird should save the contents of the interface repos-
itory when exiting®. When ird is restarted afterwards it will read the file given
by the --db option to restore the contents of the interface repository. Notice that
the contents of this database file is just plain ASCII representing a CORBA IDL

specification.

4.3 BOA

The Basic Object Adapter (BOA) is the only object adapter specified by CORBA 2. One
of its main features is the ability to activate object implementations? when their service
is requested by a client. Using the implementation repository the BOA decides how an
object implementation has to be activated®.

To fulfill these requirements of the CORBA 2 specification the BOA is implemented
partially by a library (1ibmico2.3.3.a) and partially by a separate program (micod)
called the BOA daemon.

3ird is terminated by pressing ctrl-c or by sending it the SIGTERM signal

*which basically means running a program that implements an object

5i.e. which program has to be run with which options and what activation policy has to be used for
the implementation

32



4.3.1 BOA Initialization

Similar to the ORB initialization described in section 4.1.1 the BOA has to be initialized
like this:

int main (int argc, char *argv[])

{
CORBA: :0RB_var orb = CORBA::0RB_init (argc, argv, "mico-local-orb");
CORBA: :BOA_var boa orb->B0OA_init (argc, argv, "mico-local-boa");

by

That way it has access to the applications command line arguments. After evaluating
them the BOA will remove the command line options it knows about from argv. As
for the ORB you can put BOA specific command line options into a file called .micorc
in your home directory. Arguments given on the command line override settings from
.micorc. Here is a list of command line options the BOA understands:

-0AId <BOA identifier>
Specify the BOA identifier, mico-local-boa is the only currently supported BOA
identifier.

-0AImplName <name of the object implementation>
Tell a server its implementation name. This option must be used when launching a
persistent server that should register with the BOA daemon.

-0ARestorelOR <IOR to restore>
This options is part of the interface between the BOA daemon and an object imple-
mentation. Do not use this option!

-0ARemoteIOR <remote BOA IOR>
This options is part of the interface between the BOA daemon and an object imple-
mentation. Do not use this option!

-0ARemoteAddr <remote BOA address>
This option tells an object implementation the address of the BOA daemon. You

should use this option only when starting persistent servers that should register with
the BOA daemon. See section 4.3.4 for details.

4.3.2 BOA Daemon

The BOA daemon (micod) is the part of the basic object adapter that activates object
implementations when their service is requested. Moreover micod contains the implemen-
tation repository. To make all M1CcO applications use a single implementation repository
you have to take similar actions as for the interface repository as described in section
4.2. That is you have to tell micod an address to bind to using the ~-ORBIIOPAddr option
and tell all Mico applications this address by using the ~-ORBImplRepoAddr option. For
example:

33



micod -ORBIIOPAddr inet:<micod-host-name>:9999
Now you can run all M1coO applications like this:
some_mico_application -ORBImplRepoAddr inet:<micod-host-name>:9999

or you can put the option into .micorc and run some_mico_application without argu-
ments.
micod understands the following command line arguments:

--help
Show a list of all supported command line arguments and exit.

--forward
This option instructs micod to make use of GIOP location forwarding, which results
in much better performance (there is nearly no overhead compared to not using
micod at all). Unfortunately this requires some client side GIOP features that some
ORBs do not support properly although prescribed in the CORBA specification.
Therefore you may encounter problems when using clients implemented using such
broken ORBs. That is why this feature is off by default.

--db <database file>
Specifies the file name where micod should save the contents of the implementation
repository when exiting®. When micod is restarted afterwards it will read the file
given by the --db option to restore the contents of the implementation repository.

4.3.3 Implementation Repository

The implementation repository is the place where information about an object implemen-
tation (also known as server) is stored. The CORBA 2 specification gives you only an
idea what the implementation repository is for, but does not specify the interface to it. So
the design of the implementation repository is Mi1coO specific. Here is the IDL for Mico’s
implementation repository:

1: module CORBA {

2: /*

3: * Implementation Repository Entry

4: x/

5: interface ImplementationDef {

6:

7: enum ActivationMode {

8: ActivateShared, ActivateUnshared,
9: ActivatePerMethod,
10: ActivatePersistent,
11: ActivatelLibrary
12: };
13:
14: typedef sequence<string> RepoldList;

Smicod is terminated by pressing ctrl-c or by sending it the SIGTERM signal

34



15:

16: attribute ActivationMode mode;

17: attribute RepoldList repoids;

18: readonly attribute string name;

19: attribute string command;

20: };

21:

22: /*

23: * Implementation Repository

24: */

25: interface ImplRepository {

26: typedef sequence<ImplementationDef> ImplDefSeq;
27:

28: ImplementationDef create (...);

29: void destroy (in ImplementationDef impl_def);
30: ImplDefSeq find_by_name (in string name);

31: ImplDefSeq find_by_repoid (in string repoid);
32: ImplDefSeq find_all ();

33: };

34: 3,

Interface ImplRepository defined in lines 25-33 is the implementation repository itself.
It contains methods for creating, destroying and finding entries. An implementation
repository entry is defined by interface ImplementationDef in lines 5-20. There is exactly
one entry for each server which contains

e name
e activation mode
e shell command or loadable module path

e list of repository ids

for the sever. The name uniquely identifies the server. The activation mode tells the BOA
whether the server should be activated once (shared server), once for each object instance
(unshared server), once for each method invocation (per method server), or not at all
(persistent server). See section 4.3.4 for details on activation modes. The shell command
is executed by the BOA whenever the server has to be (re)started. Activation mode library
is used for loading servers into the same process as the client during runtime. Instead of
a shell command you have to specify the path of the loadable server module for library
activation mode. Finally there is a repository id for each IDL interface implemented by
the server. See section 3.3.3 for details on repository ids.

If you have written a server that should be activated by the BOA daemon when its
service 1s requested you have to create an entry for that server. This can be accomplished
by using the program imr. imr can be used to list all entries in the implementation
repository, to show detailed information for one entry, to create a new entry, and to delete
an entry.

The implementation repository is selected by the ~-0RBImplRepoAddr or ~-ORBImplRepoIOR
options, which you usually put into your .micorc file.

35



Listing All Entries
Just issue the following command:
imr list

and you will get a listing of the names of all entries in the implementation repository.

Details For One Entry

imr info <name>

will show you detailed information for the entry named <name>.

Creating New Entries

imr create <name> <mode> <command> <repoidl> <repoid2> ...
will create a new entry with name <name>. <mode> is one of

e persistent
e shared

e unshared

e permethod
e library

® poa

<command> is the shell command that should be used to start the server. Note that
all paths have to be absolute since micod’s current directory is probably different from
your current directory. Furthermore you have to make sure that the server is located
on the same machine as micod, otherwise you have to use rsh; see below for examples.
<repoidi1>, <repoid2>and so on are the repository ids for the IDL interfaces implemented
by the server.

Deleting Entries

imr delete <name>

will delete the entry named <name>.

36



Forcing Activation of an Implementation

Registering an implementation in the implementation repository does not automatically
activate the implementation. Usually a non—persistent implementation is only activated
by the BOA daemon when its service is requested by a client. But sometimes you have to
force activation of an implementation, for instance to make the implementation register
itself with a naming service.

imr activate <name> [<micod-address>]

will activate the implementation named <name>. To do this imr needs to know the address
of the BOA daemon. Usually this is the same address as for the implementation repository
and you do not need to specify <micod-address>. Only if the BOA daemon is bound to
an address different from the implementation repository address and different from the
addresses specified using the ~-0RBBindAddr option you have to specify <micod-address>
as a command line option to imr.

Examples

Assume we want to register the account server account_server? from section 3.3.3 as a
shared server. Furthermore assume that neither micod nor ird have been started yet, so
we have to get them running first. Assuming the hostname is zirkon, you have to do the
following:

# create .micorc (only do that once)
echo -ORBIfaceRepoAddr inet:zirkon:9000 > ~/.micorc
echo -ORBImplRepoAddr inet:zirkon:9001 >> ~/.micorc

# run ird
ird -ORBIIOPAddr inet:zirkon:9000

# run micod in a different shell
micod -0ORBIIOPAddr inet:zirkon:9001

Now we are prepared to create the implementation repository entry for account_server?2.

Recall that this server implemented the interface Account whose repository id is IDL: Account:1.0.
Assuming account_server?2 has been copied to /usr/bin you can create the implemen-

tation repository entry using the following command:

imr create Account shared /usr/bin/account_server2 IDL:Account:1.0

If account_server?2 is located on host diamant (i.e., not on zirkon) you have to use
the rsh command. This requires of course that you have entries in your .rhosts file
that allow micod to execute programs on diamant. Here is the command to create the
implementation repository entry:

imr create Account shared "rsh diamant /usr/bin/account_server2" \
IDL:Account:1.0

37



Now you should change account_client2.cc to bind to the address of micod. Note
that you no longer need to know the address of the account server account_server2, you
only need to know the address of micod. Here is the part of account_client2.cc that
has to be changed:

// account_client2.cc

CORBA::0bject_var obj =
orb->bind ("IDL:Account:1.0", "inet:zirkon:9001");

Running the recompiled client will automatically activate account_server?2.
Creating an entry for a loadable module (library activation mode) looks like this if
/usr/local/lib/module.so is the path to the module:

imr create Account library /usr/local/lib/module.so IDL:Account:1.0

Note that you have to make sure that a loadable module and a client that wants to make
use of the module reside on the same machine.

4.3.4 Activation Modes

As mentioned in the previous section the BOA supports several activation modes. Using
them is not simply a matter of creating an implementation repository entry, instead an
object implementation has to use special BOA functionality according to the selected
activation mode. This section gives you some details on this topic.

Activation Mode Shared

Shared servers can serve any number of object instances, which is probably the most
widely used approach. The account server from section 3.3.3 is an example for a shared
server. Lets look at the code again:

1: // file account_server2.cc

2:

3: #include "account.h"

4:

5: class Account_impl : virtual public Account_skel
6: {

7: // unchanged, see section "MICO Application"
8: // ...

9: };

10:

11:

12: int main( int argc, char *argv[] )

13: {

14: // ORB initialization
15: CORBA: :0RB_var orb = CORBA::0RB_init( argc, argv, "mico-local-orb" );
16: CORBA: :BOA_var boa = orb->BOA_init( argc, argv, '"mico-local-boa" );

38



17:

18: Account_impl* server = new Account_impl;

19:

20:  boa->impl_is_ready( CORBA::ImplementationDef::_nil() );
21: orb—>run ();

22: CORBA: :release( server );
23: return O;
24: }

After creating the implementation repository entry for the account server using the
imr utility the account server stays inactive until the account client wants to bind to
an object with repository id IDL:Account:1.0. The BOA daemon recognizes that there
are no active account objects and consults the implementation repository for servers that
implement objects with repository id IDL:Account:1.0. It will find the account server
and run it. The account server in turn creates an account object in line 18, which will
be announced to the BOA daemon. The server uses impl_is_ready() to tell the BOA
daemon that it has completed initialization and is prepared to receive method invocations.
The BOA daemon in turn finds the newly created account object and answers the bind
request from the client with it. Finally run() is called on the ORB to start processing
events.

run () will wait for requests and serve them as they arrive until the deactivate_impl()
method is called, which deactivates the server. Calling the ORB method shutdown () will
make run() return and the account server will exit. If method invocations arrive after
the server has exited the BOA daemon will restart the server. See section 4.3.5 for details
on restaring servers.

There are many reasons for calling deactivate_impl (). For example we could aug-
ment the account objects interface by a management interface that offers a method exit ()
that will shut down the account server”:

// account.idl
interface Account {

void exit ();

};
The implementation of the exit () method would look like this:

// account.idl
class Account_impl : virtual public Account_skel {

public:

virtual void exit ()
{
CORBA: :BOA_var boa = _boa();
CORBA: :0RB_var orb = _orb();
boa->deactivate_impl (CORBA::ImplementationDef::_nil());

"Usually one would define a new interface ManagedObject that contains the management operations
and derive Account from ManagedObject. We don’t do this here for ease of exposition.

39



orb->shutdown (TRUE);
}
};

Note that we passed a NIL ImplementationDef to deactivate_impl() as well as to
impl_is_ready (). Usually the implementation repository has to be searched to find the
entry for the server and pass this one. When passing NIL the entry will be searched by
the BOA. shutdown() has a boolean wait parameter which controls whether the ORB
should immediately stop processing events (wait=FALSE) or wait until all pending requests
have completed (wait=TRUE).

Activation Mode Persistent

Persistent servers are just like shared servers, except that the BOA daemon does not
activate them. Instead they have to be started by means outside of the BOA, e.g. by a
system administrator or a shell script. The code of a persistent server looks exactly like
that of a a shared server. But note that once deactivate_impl() and shutdown() are
called the server will not be restarted by the BOA daemon.

That means persistent servers do not need a running BOA daemon. Instead clients can
connect directly to the object implementation, giving you better performance. See section
3.3.3 for an example. However, there is a reason to have even persistent servers register
with the BOA daemon: you can do a bind () using the address of the BOA daemon, that
is you do not need to know the address of the persistent server. Making a persistent server
register with the BOA daemon is done like this:

some_server -0OARemoteAddr <micod-address> -0RBImplRepoAddr <micod-address> \
-0AImplName <impl-name>

where <micod-address> is the address micod is bound to®. This is usually the same
address you used as an argument to ~-ORBII0PAddr when starting micod. See section 3.3.3
for details on addresses, sections 4.1.1 and 4.3.1 for details on command line arguments.
<impl-name> is the name of the entry in the implementation repository the corresponds
to the server.

Activation Mode Unshared

Unshared servers are similar to shared servers. The difference is that each instance of an
unshared server can only serve one object instance. That is for N objects you need N
running instances of an unshared server.

Furthermore you cannot use impl_is_ready() and deactivate_impl() but have to
use obj_is_ready() and deactivate_obj() instead. Here is the main() function of an
unshared account server:

1: // file account_server2.cc

8The ~ORBImplRepoAddr option is usually already in your .micorc file, so you do not have to specify
it.

40



3: #include "account.h"

4:

5: class Account_impl : virtual public Account_skel
6: {

7: // unchanged, see section "MICO Application"
8: // ...

9: };

10:

11:

12: int main( int argc, char *argv[] )

13: {

14: // ORB initialization

15: CORBA: :0ORB_var orb = CORBA::0RB_init( argc, argv, "mico-local-orb" );
16: CORBA: :BOA_var boa = orb->BOA_init( argc, argv, "mico-local-boa" );
17:

18: Account_impl* server = new Account_impl;

19:

20: boa->obj_is_ready (server, CORBA::ImplementationDef::_nil());

21:  orb->run ();

22: CORBA: :release( server );

23: return O;

24: }

The exit () method would look like this in an unshared server:

// account.idl
class Account_impl : virtual public Account_skel {

public:

virtual void exit ()

{
CORBA: :BOA_var boa = _boa();
CORBA: :0RB_var orb = _orb();
boa->deactivate_obj (this);
orb->shutdown (TRUE);

}

};

Although an unshared server instance can only serve one object instance it can create
more than one object instance. Imagine for instance a bank object

// bank.idl
interface Bank {
Account create ();
void destroy (in Account account);

};

that can create new account objects and destroy account objects that are no longer
needed®. The implementation of the create() method in an unshared server would look

like this:

9Such a design pattern is called a factory.

41



1: // bank_server.cc

2: class Bank_impl : virtual public Bank_skel {
3: N

4: public:

5: N

6: virtual Account_ptr create ()

7: {

8: Account_ptr account = new Account_impl;
9:

10: CORBA: :BOA_var boa = _boa();

11: boa->deactivate_obj (account);

12:

13: return Account::_duplicate (account);
14: }

15: };

Note that line 11 calls deactivate_obj () on the newly created object!®. This will tell the
BOA daemon that you are not going to serve this object, instead a new server instance
has to be activated for serving the newly created account object. For this to work you
must of course implement saving and restoring for your objects as described in section
4.3.5.

If you need access to the newly created account object from within the server where
it was first created you need to take special actions. The reason for this is that the
created account object is initially an account object implementation (Account_impl),
but in order to access the moved account object in the other server you need an account
stub (Account_stub). Here is how to create this stub:

1: // bank_server.cc

2: class Bank_impl : virtual public Bank_skel {

3: R

4: public:

5: R

6: virtual Account_ptr create ()

7: {

8: CORBA: :BOA_var boa = _boa();

9: CORBA: :0RB_var orb = _orb();

10:

11: Account_ptr account = new Account_impl;

12: boa->deactivate_obj (account);

13:

14: // turn ’account’ into a stub

15: CORBA: :String_var ref = orb->object_to_string (account);
16: CORBA: :release (account);

17: CORBA: :Object_var obj = orb->string_to_object (ref);
18: account = Account::_narrow (obj);

19:
20: // now you can invoke methods on (the remote) ’account’
21: account->deposit (100);
22:
23: return Account::_duplicate (account);
24: }

19Tf you delete lines 10 and 11 you will get the code for create() in a shared or persistent server.

42



25: 3};

The demo/boa/account3 directory contains a complete example for an unshared server
that creates more than one object.

Activation Mode Per Method

Per Method servers are similar to unshared servers, except that a new server instance is
launched for each method invocation. The code for a per method server looks the same as
for an unshared server. But note that run() will return after the first method invocation,
whereas in an unshared server run() will not return until you call shutdown().

Activation Mode Library

All activation modes discussed up until now assume client and server are different pro-
grams that run in separate processes. This approach has the advantage that client and
server can be bound to each other dynamically during runtime. The drawback is the
overhead for doing method invocations across process boundaries using some kind of IPC.
The activation mode library eliminates this drawback while still allowing runtime binding.
This is achieved by loading an object implementation (called a module from now on) into
the running client. Invoking methods on an object loaded this way is as fast as a C++
method invocation.

A client that wants to use this feature does not differ from other clients, only the
loadable module requires special code and you have to create a special entry in the im-
plementation repository. To give you an example we want to change the bank account
example from section 3.3.3 to make use of dynamic loading. The only change in the
client is the address specified in the call to bind(): we have to use "local:" instead
of "inet:localhost:8888", because we want to bind to the dynamically loaded object
running in the same process:

: // file account_client2.cc

: #include "account.h"

1
2
3
4:
5:
6: int main( int argc, char *argv[] )
7: {
8: // ORB initialization

9: CORBA::0RB_var orb = CORBA::0RB_init( argc, argv, '"mico-local-orb" );
10: CORBA: :BOA_var boa = orb->BOA_init( argc, argv, '"mico-local-boa'" );
11:

12: CORBA: :0Object_var obj

13: = orb->bind ("IDL:Account:1.0", "local:");
14: if (CORBA::is_nil (obj)) {

15: // no such object found ...

16:  }

17: Account_var client = Account::_narrow( obj );
18:

19: client->deposit( 700 );
20: client->withdraw( 250 );

43



21: cout << "Balance is " << client->balance() << endl;
22:

23: return O;

24: }

Here is the code for the loadable module:

0: // file module.cc

1:

2: #include "account.h"

3: #include <mico/template_impl.h>

4:

5: class Account_impl : virtual public Account_skel
6: {

7: // unchanged, see section "MICO Application"
8: // ...

9: };

10:

11: static Account_ptr server = Account::_nil();
12:

13: extern "C" CORBA::Boolean

14: mico_module_init (const char *versiomn)

15: {

16: if (strcmp (version, MICO_VERSION))

17: return FALSE;

18: server = new Account_impl;

19: return TRUE;
20: }
21:
22: extern "C" void
23: mico_module_exit ()
24: {
25: CORBA: :release (server);
26: }

Lines 13-20 define a function mico_module_init() that is called when the module is
loaded into the running client. Note that this function must be declared as extern "C"
to avoid C++ name mangling. The version argument to mico_module_init () is a string
specifying the MicO—version of the client the module is loaded into. Lines 16 and 17 check
if this version is the same as the M1CO-version the module was compiled with and make
module initialization fail by returning FALSE if they differ. Otherwise a new account object
is created and TRUE is returned indicating successful module initialization. Note that
mico_module_init () must not perform ORB and BOA initialization since the client the
module is loaded into did this already. The function mico_module_exit () is called just
before the module is unloaded from the client and should release all allocated resources: in
our example the account object created in mico_module_init (). mico_module_exit()
is only called if mico_module_init () returned TRUE. Modules have to be compiled as a
shared library, see section 4.6 for details and an example.

Although communication does not go through the BOA daemon when using load-
able modules you need a running micod because you have to create an implementation
repository entry for the module. See section 4.3.3 for details. The directory demo/shlib
contains a complete example.

44



There is currently one problem with loadable modules: throwing exceptions from a
loadable module into non-loadable module code results in a segmentation fault. This is
not a bug in Mico but in the GNU-C++ compiler and/or dynamic loader.

4.3.5 Making Objects Persistent

In the last section we saw two cases where an object had to be “moved” between two

different instances of a server'':

e if an unshared or per method server creates a second object it has to be moved to
a new server instance.

e if a server terminates and is restarted later all the objects of the terminated server
have to be moved to the restarted server.

In all these cases the state of the moved object has to be saved before and restored
after moving. Because the BOA has no information about the internal state of an object
the user has to provide code for saving and restoring. However, the BOA offers you some
support methods.

Saving is done in the _save_object() method of the object implementation. If you
do not provide this method for an object, _save_object () from the base class will be
used, which will cause the object to be treated as transient (i.e., it will not be restored
later). Let us again consider the account example. The internal state of an account object
consists of the current balance. Here is how to save the state:

1: // account_server3.cc

2:

3: #include "account.h"

4: #include <iostream.h>

5: #include <fstream.h>

6:

7: «class Account_impl : virtual public Account_skel {
8: CORBA::Long _current_balance;

9: public:

10: R

11: virtual CORBA::Boolean _save_object ()
12: {

13: ofstream out (_ident());

14: out << _current_balance;

15: return TRUE;

16: }

17: };

Pretty simple, eh? We just open a file and write the balance into it. The only noteworthy
thing is the file name, which is obtained by using the _ident () method. The returned
string is guaranteed to be unique among all objects managed by a single BOA daemon.

Note that the CORBA 2 specification only gives you some vague idea of object persistence but omits
any implementation details. That is why everything explained in this section is Mico-specific and will
not work with other CORBA implementations.

45



If you use multiple BOA daemons or use persistent servers that do not register with the
BOA you have to make sure no name clashes occur. One way to do this is to create
a new directory where all the files are created, in our example /tmp/account/ would
be appropriate. Another way to distinguish different instances (objects) of on interface
(class) is to use BOA: :ReferenceData. See demo/boa/account?2 for an example.
Restoring the state takes a bit more code. You need to subclass the abstract baseclass
CORBA: :BOAObjectRestorer providing an implementation for the restore() method:

1: // account_server3.cc

2:

3: class AccountlLoader : public CORBA::BOAObjectRestorer {
4: public:

5: CORBA: :Boolean restore (CORBA::0bject_ptr obj)

6: {

7: if (!strcmp (obj->_repoid(), "IDL:Account:1.0")) {
8: new Account_impl (obj);

9: return TRUE;

10: }

11: // dont know about such objects

12: return FALSE;

14: }

15: };

restore() receives an object reference for the object that has to be restored. We use
the _repoid() method to find out the repository id'? of the object to be restored. If it
is equal to the repository id of account objects ("IDL:Account:1.0") we can go on with
restoring, otherwise we just return FALSE indicating that we cannot restore the object.

Restoring the object is now just a matter of calling a special Account_impl constructor
which we still have to define:

1: // account_server3.cc

2:

3: class Account_impl : virtual public Account_skel {
4: CORBA::Long _current_balance;

5: public:

6: N

7: Account_impl (CORBA::0bject_ptr obj)
8: : Account_skel (obj)

9: {

10: ifstream in (obj->_ident());

11: in >> _current_balance;

12: }

13: };

The constructor is basically the counterpart to _save_object(). It uses _ident() to
obtain the identification string of the object to be restored, opens the associated file and
reads in the current balance. Note the invocation of the base class constructor in line §,
which is very important. If you forget this line the code will still compile but will give
you strange results, because the default Account_skel constructor will be used, which is
an error.

12Gee section 3.3.3 for details on repository ids.

46



Note that we have omitted error handling for the ease of exposition. Usually one would
check if the file exists and its contents are valid. If an error is detected you should make
AccountLoader: :restore() return FALSE'3.

Now what is left to do is to create an instance of the AccountLoader class. Note that
you have to create at least one such instance before you do ORB and BOA initialization,
because restoring can already occur during BOA initialization. Of course you can create
serveral different BOAObjectRestorer subclasses each of which handles special kinds of
objects. When an object has to be restored the restore () methods of the existing restorer
objects are called until eventually one returns TRUE. Note that you should not create new
objects if any objects are being restored, because otherwise you would get an infinitely
growing number of objects over time. The BOA method restoring() returns TRUE if
objects are being restored, FALSE otherwise. Here is the main() function:

1: // account_server3.cc

2:

3: int main (int argc, char *argv[])

4: {

5: // create loader *before* BOA initialization

6: AccountLoader loader;

7:

8: CORBA: :0RB_var orb = CORBA::0RB_init (argc, argv, "mico-local-orb");
9: CORBA: :BOA_var boa = orb->BOA_init (argc, argv, "mico-local-boa");
10:

11: if (!boa->restoring()) {

12: // create new objects only if not restoring

13: new Account_impl;

14: }

15: boa->impl_is_ready (CORBA::ImplementationDef::_nil());

16: orb->run ();

17: return O;

18: }

In an unshared or per method server you would call

boa->obj_is_ready (CORBA::0bject::_nil(),
CORBA: :ImplementationDef::_nil());

instead of impl_is_ready(). The sources for a complete example can be found in
demo/boa/account?2.

Sometimes it is handy to know when saving of objects can occur. But you cannot rely
on this being the only occurences of object saving:

1. Just before a server is exiting all the objects that have not been released are saved. If
you do not want an object to be saved you must make its _save_object () method
return FALSE or do not provide a _save_object () method at all. The object will
then be treated as transient (i.e., it will not outlive the process it was created in).

13For instance by throwing an exception that is caught in restore().

47



2. When you call deactivate_obj () on an object in an unshared or per method server
saving is done during the call to deactivate_obj (). Objects saved this way will
not be saved again at server exit according to 1.

3. When you call deactivate_impl() in a shared or persistent server saving of all
currently activate objects is done during the call to deactivate_impl(). Objects
saved this way will not be saved again at server exit according to 1.

4. When you migrate an object saving of it is done during the call to change_implementation(),
see section 4.3.6 for details. Objects saved this way will not be saved again at server
exit according to 1.

Note that it is quite likely that invocations on objects will occure after a call to
deactivate_obj(),deactivate_impl(),or change_implementation() because the server
has to execute all (buffered) invocations that arrived up until your call to one of the above
mentioned methods. So your code must be prepared to handle this.

Although the actual code for saving and restoring the state of an account object are
two—liners each real world applications often require complex code for making objects
persistent. Therefore the OMG has specified the Persistent Object Service (POS), an
implementation of which is not yet provided by Mico.

4.3.6 Migrating Objects

Up until now we described how objects are moved between different instances of the
same server. Here we explain how to move objects between two completely different
servers. This is for example useful if a server has to be replaced by a new version without
interrupting usual business.

Recall that we augmented the account object by a management interface in section
4.3.4. The management interface offered a method exit() that terminates the server
when invoked. Now let us add a method migrate() that migrates an account object to
a new server. The new server is specified through an implementation repository entry.

// account.idl
interface Account {

void migrate (in CORBA::ImplementationDef destination);

};
Here is the implementation of the migrate() method:
#include "account.h"
class Account_impl : virtual public Account_skel {
pugiic:

virtual void migrate (CORBA::ImplementationDef_ptr dest)
{

O 00 N O O W N =

CORBA: :BOA_var boa = _boa();

48



10: boa->change_implementation (this, dest);
11: }
12: };

The change_implementation() in line 10 does the whole job. It will save the object’s
state as described in section 4.3.4 and tell the BOA daemon to use the new implementation
from now on. See demo/boa/account4 for an example.

The current version of MICO can only perform the migration when the destination
implementation is not currently active, which means that:

e you cannot migrate an object to a persistent server

e you cannot migrate an object to a shared server that is already running

This limitation will be removed in a future version of MICO.

4.4 POA

The Basic Object Adapter provides a bare minimum of functionality to server applications.
As a consequence, many ORBs added custom extensions to the BOA to support more
complex demands upon an object adapter, making server implementations incompatible
among different ORB vendors. In CORBA 2.2, the new Portable Object Adapter was
introduced. It provides a much-extended interface that addresses many needs that were
wished for, but not available with the original BOA specification. POA features include:

e Support for transparent activation of objects. Servers can export object references
for not-yet-active servants that will be incarnated on demand.

o Allow a single servant to support many object identities.
o Allow many POAs in a single server, each governed by its own set of policies.

o Delegate requests for non-existent servants either to a default servant, or ask a
servant manager for an appropriate servant.

These features, make the POA much more powerful than the BOA and should fulfill most
server applications’ needs. As an example, object references for some million entries in a
database can be generated, which are all implemented by a single default servant.

4.4.1 Architecture

The general idea is to have each server contain a hierarchy of POAs. Only the Root
POA is created by default; a reference to the Root POA is obtained using the resolve -
initial references() operation on the ORB. New POAs can be created as the child of
an existing POA, each with its own set of policies.

Each POA maintains an Active Object Map that maps all objects that have been
activated in the POA to a servant. For each incoming request, the POA looks up the
object reference in the Active Object Map and tries to find the responsible servant. If

49



none is found, the request is either delegated to a default servant, or a servant manager
is invoked to activate or locate an appropriate servant.

Associated with each POA is a POA Manager object. A POA Manager can control
one or many POAs. For each incoming request to an object, the POA Manager’s state is
checked, which can be one of the following:

Active

Requests are performed immediately.

Holding
Incoming requests are queued. This is the initial state of a POA Manager; to perform
requests, the POA Manager must be explicitely set to the Active state.

Discarding
Requests are discarded. Clients receive a TRANSIENT exception.

Inactive
This is the “final” state of a POA Manager, which is entered prior to destruction of
the associated POAs. Clients receive an 0BJ_ADAPTER exception.

Before continuing, we should more precisely define a few terms that have already been
freely used.

Object Reference
On the client side, an object reference encapsulates the identity of a distinct abstract
object. On the server side, an object reference is composed of the POA identity in
which the object is realized, and a Object Id that uniquely identifies the object
within the POA.

Object Id
An Object Id is an opaque sequence of octets. Object Ids can be either system
generated (the POA assigns a unique Id upon object activation), or user generated
(the user must provide an Id upon object activation). The object’s Object Id cannot
be changed through the object’s lifetime.

In many cases, object references and Object Id can be used synonymously, since an
object reference is just an Object Id with opaque POA-added “internal” information.

Servant
A servant provides the implementation for one or more object references. In the
C++ language mapping, a servant is an instance of a C++ class that inherits from
PortableServer: :ServantBase. This is true for dynamic skeleton implementations
(DSI), or for classes that inherit from IDL-generated skeletons.

The process of associating a servant with an Object Id is called activation and is
performed using POA methods. A servant can be activated more than once (to serve
many different Object Ids) and can be activated in many POAs. After activation,
object references can be obtained using other POA methods.

30



Servants are not objects and do not inherit from CORBA::0bject. It is illegal to
perform operations directly upon a servant — all invocations must be routed through
the ORB. Also, memory management of servants is entirely left to the user. POAs
keep only a pointer to a servant, so they must not be deleted while being activated.

Server
“Server” refers to a complete process in which servants exist. A server can contain
one or more POAs, each of which can provide zero, one or more active servants.
Each active servant can then serve one or more object references.

4.4.2 Policies

We have already mentioned the policies that control various aspects of POA behaviour.
POA policies do not change over the POA’s lifetime. When creating a new POA as a child
of an existing POA, policies are not inherited from the parent, but instead each POA is
assigned a set of default policies if not explicitely defined.

Thread Policy

ORB_CTRL_MODEL (default)
Invocations are performed as scheduled by the ORB. Potentially, many upcalls
are perfomed simultaneously.

SINGLE_THREAD MODEL

Invocations are serialized. At most a single upcall is performed at any time.
Non-reentrant servants should only be activated in POAs with the SINGLE THREAD -
MODEL policy.

As the current version of MICO is not multithreaded, this policy is not yet evaluated.
Lifespan Policy

TRANSIENT (default)
Objects activated in this POA cannot outlive the server process.

PERSISTENT
Objects can outlive the server process
Id Uniqueness Policy
UNIQUE_ID (default)
Servants can be activated at most once in this POA.

MULTIPLE_ID
Servants can be activated more than once in this POA and can therefore serve
more than one object reference.

Id Assignment Policy

SYSTEM_ID (default)
Object Ids are assigned by the POA upon object activation.

ol



USER_ID
Upon activation, each servant must be provided with a unique Id by the user.

Servant Retention Policy

RETAIN (default)
The POA maintains a map of active servants (the Active Object Map).

NON_RETAIN
The POA does not maintain an Active Object Map.

Request Processing Policy

USE_ACTIVE OBJECT MAP ONLY (default)
To process an incoming request, the object reference is looked up in the Active
Object Map only. If no active servant serving the reference is found, the request
is rejected, and an OBJECT NOT_EXIST exception is returned.

USE DEFAULT SERVANT
The object reference is looked up in the Active Object Map first. If no active
servant is found to serve the reference, the request is delegated to a default
servant.

USE_SERVANT MANAGER
The object reference is looked up in the Active Object Map first. If no active
servant is found to serve the reference, a servant manager is invoked to locate
or incarnate an appropriate servant.

Implicit Activation Policy

IMPLICIT ACTIVATION
If an inactive servant is used in a context that requires the servant to be active,
the servant is implicitly activated.

NO_TMPLICIT ACTIVATION (default)
It is an error to use an inactive servant in a context that requires an active
servant.

The Root POA has the ORB_CTRL _MODEL, TRANSIENT, UNIQUE_ID, SYSTEM_ID, RETAIN,
USE_ACTIVE OBJECT MAP ONLY and IMPLICIT_ACTIVATION policies.

4.4.3 Example

As an example, let’s write a simple POA-based server. You can find the full code in the
demo/poa/hello-1 directory in the Mico distribution. Imagine a simple IDL description
in the file “hello.id1”:

interface HelloWorld {

void hello ();
};

52



The first step is to invoke the IDL to C+4 compiler in a way to produce skeleton
classes that use the POA:

idl --poa —--no-boa hello.idl

The first option, --poa, turns on code generation for POA-based skeletons. The second
option, --no-boa optionally turns off code generation for the old BOA-based skeletons.
Next, we rewrite the server.

1: // file server.cc

2:

3: #include "hello.h"

4:

5: class HelloWorld_impl : virtual public POA_HelloWorld

6: {

7: public:

8: void hello() { printf ("Hello World'\n"); };

9: };

10:

11:

12: int main( int argc, char *argv[] )

13: {

14: CORBA: :0ORB_var orb = CORBA::0RB_init (argc, argv, "mico-local-orb'");
15: CORBA: :Object_var poaobj = orb->resolve_initial_references ("RootPOA");
16: PortableServer::POA_var poa = PortableServer::POA::_narrow (poaobj);
17: PortableServer: :POAManager_var mgr = poa->the_POAManager();

18:

19: HelloWorld_impl * servant = new HelloWorld_impl;
20:
21: PortableServer: :0bjectId_var oid = poa->activate_object (servant);
22:
23: mgr->activate ();
24: orb—>run();
25:
26: poa->destroy (TRUE, TRUE);
27: delete servant;
28: return O;
29: }

The object implementation does not change much with respect to a BOA-based one,
the only difference is that HelloWorld_impl does not inherit from the BOA-based skeleton
HelloWorld skel any more, but from the POA-based skeleton POA HelloWorld.

In main(), we first initialize the ORB, then we obtain a reference to the Root POA
(lines 15-16) and to its POA Manager (line 17).

Then, we create an instance of our server object. In line 21, the servant is activated.
Since the Root POA has the SYSTEM_ID policy, a unique Object Id is generated automat-
ically and returned. At this point, clients can use the MIcO binder to connect to the
HelloWorld object.

However, client invocations upon the HelloWorld object are not yet processed. The
Root POA’s POA Manager is created in the holding state, so in line 23, we transition

33



the POA Manager, and therefore the Root POA, to the active state. We then enter the
ORB’s event loop in 24.

In this example, run() never returns, because we don’t provide a means to shut down
the ORB. If that ever happened, lines 2627 would first destroy the Root POA. Since that
deactivates our active HelloWorld object, we can then safely delete the servant.

Since the Root POA has the IMPLICIT ACTIVATION policy, we can also use several
other methods to activate the servant instead of activate object (). We could, for ex-
ample, use servant_to_reference(), which first implicitly activates the inactive servant
and then returns an object reference pointing to the servant. Or, we could invoke the ser-
vant’s inherited _this() method, which also implicitly activates the servant and returns
an object reference.

4.4.4 Using a Servant Manager

While the previous example did introduce the POA, it did not demonstrate any of its
abilities — the example would have been just as simple using the BOA.

As a more complex example, we want to show a server that generates “virtual” object
references that point to non-existent objects. We then provide the POA with a servant
manager that incarnates the objects on demand.

We continue our series of “Account” examples. We provide the implementation for a
Bank object with a single “create” operation that opens a new account. However, the
Account object is not put into existence at that point, we just return a reference that will
cause activation of an Account object when it is first accessed. This text will only show
some code fragments; find the full code in the demo/poa/account-2 directory.

The implementation of the Account object does not differ from before. More interest-
ing is the implementation of the Bank’s create operation:

Account_ptr
Bank_impl::create ()

{
CORBA: :0bject_var obj = mypoa->create_reference ("IDL:Account:1.0");
Account_ptr aref = Account::_narrow (obj);
assert (!CORBA::is_nil (aref));
return aref;
}

The create reference() operation on the POA does not cause an activation to take
place. It only creates a new object reference encapsulating information about the sup-
ported interface and a unique (system-generated) Object Id. This reference is then re-
turned to the client.

Now, when the client invokes an operation on the returned reference, the POA will first
search its Active Object Map, but will find no servant to serve the request. We therefore
implement a servant manager, which will be asked to find an appropriate implementation.

There are two types of servant managers: a Servant Activator activates a new
servant, which will be retained in the POA’s Active Object Map to serve further requests
on the same object. A Servant Locator is used to locate a servant for a single invocation

o4



only; the servant will not be retained for future use. The type of servant manager depends
on the POA’s Servant Retention policy.

In our case, we use a servant activator, which will incarnate and activate a new servant
whenever the account is used first. Further operations on the same object reference will
use the already active servant. Since the create reference() operation uses a unique
Object 1d each time it is called, one new servant will be incarnated for each Account —
this represents the BOA’s Unshared activation mode.

A servant activator provides two operations, incarnate and etherealize. The former
one is called when a new servant needs to be incarnated to serve a previously unknown
Object Id. etherealize is called when the servant is deactivated (for example in POA
shutdown) and allows the servant manager to clean up associated data.

class AccountManager : public virtual POA_PortableServer::ServantActivator
{ /* declarations */ };

PortableServer::Servant
AccountManager: :incarnate (/* params */)
{

return new Account_impl;

}

void
AccountManager: :etherealize (PortableServer::Servant serv,
/* many more params */)

{

delete serv;

}

Our servant activator implements the POA PortableServer: :ServantActivator in-
terface. Since servant managers are servants themselves, they must be activated like any
other servant (see below).

The incarnate operation has nothing to do but to create a new Account servant.
incarnate receives the current POA and the requested Object Id as parameters, so it
would be possible to perform special initialization based on the Object Id that is to be
served.

etherealize is just as simple, and deletes the servant. In “real life”, the servant
manager would have to make sure that the servant is not in use anywhere else before
deleting it. Here, this is guaranteed by our program logic.

The main() code is a little more extensive than before. Because the Root POA has
the USE_ACTIVE_OBJECT MAP QONLY policy and does not allow a servant manager, we must
create our own POA with the USE_SERVANT MANAGER policy.

CORBA::0RB_var orb = CORBA::0RB_init (argc, argv, "mico-local-orb");
CORBA: :0bject_var poaobj = orb->resolve_initial_references ("RootPOA");
PortableServer: :POA_var poa = PortableServer::POA::_narrow (poaobj);
PortableServer: :POAManager_var mgr = poa->the_POAManager() ;

39



CORBA::PolicylList pl;
pl.length(1);
pl[0] = poa->
create_request_processing_policy (PortableServer::USE_SERVANT_MANAGER);
PortableServer::POA_var mypoa = poa->create_POA ("MyPOA", mgr, pl);

Note that we use the Root POA’s POA Manager when creating the new POA. This
means that the POA Manager has now control over both POAs, and changing its state
affects both POAs. If we passed NULL as the second parameter to create POA(), a new
POA Manager would have been created, and we would have to change both POA’s states
separately.

We can now register the servant manager.

AccountManager * am = new AccountManager;
PortableServer::ServantManager_var amref = am->_this ();
mypoa->set_servant_manager (amref);

After creating an instance of our servant manager, we obtain an object reference using
the inherited _this() method. This also implicitly activates the servant manager in the

Root POA.

Bank_impl * micocash = new Bank_impl (mypoa);
PortableServer::0bjectId_var oid = poa->activate_object (micocash);
mgr->activate ();

orb=>run();

Now the only thing left to do is to activate a Bank object, to change both POAs to
the active state, and to enter the ORB’s event loop.

4.4.5 Persistent Objects

Our previous examples used “transient” objects which cannot outlive the server process
they were created in. If you write a server that activates a servant and export its object
reference, and then stop and re-start the server, clients will receive an exception that their
object reference has become invalid.

In many cases it is desirable to have persistent objects. A persistent object has an
infinite lifetime, not bound by the process that implements the object. You can kill and
restart the server process, for example to save resources while it is not needed, or to
update the implementation, and the client objects will not notice as long as the server is
running whenever an invocation is performed.

An object is persistent if the servant that implements them is activated in a POA that
has the PERSISTENT lifespan policy

As an example, we will expand our Bank to create persistent accounts. When the
server goes down, we want to write the account balances to a disk file, and when the
server is restarted, the balances are read back in. To accomplish this, we use a persistent
POA to create our accounts in. Using a servant manager provides us with the necessary
hooks to save and restore the state: when etherealizing an account, the balance is written

36



to disk, and when incarnating an account, we check if an appropriately named file with a
balance exists.

We also make the Bank itself persistent, but use a different POA to activate the Bank
in. Of course, we could use the Accounts’ POA for the Bank, too, but then, our servant
manager would have to discriminate whether it is etherealizing an Account or a Bank:
using a different POA comes more cheaply.

The implementation of the Account object is the same as in the previous examples.
The Bank is basically the same, too. One change is that the create operation has been
extended to activate accounts with a specific Object Id — we will use an Account’s Object
Id as the name for the balance file on disk.

We also add a shutdown operation to the Bank interface, which is supposed to ter-
minate the server process. This is accomplished simply by calling the ORB’s shutdown
method:

void
Bank_impl::shutdown (void)
{
orb->shutdown (TRUE);
}

Invoking shutdown() on the ORB first of all causes the destruction of all object
adapters. Destruction of the Account’s POA next causes all active objects — our accounts
— to be etherealized by invoking the servant manager. Consequently, the servant manager
is all we need to save and restore our state.

One problem is that the servant manager’s etherealize () method receives a Portable-
Server: :Servant value. However, we need access to the implementation’s type, Account _impl*,
to query the current balance. Since CORBA does not provide narrowing for servant types,
we have to find a solution on our own. Here, we use an STL map mapping the one to the
other:!*

class Account_impl;

typedef map<PortableServer::Servant,
Account_impl *,
less<PortableServer::Servant> > ServantMap;

ServantMap svmap;

When incarnating an account, we populate this map; when etherealizing the account,
we can retrieve the implementation’s pointer.

PortableServer::Servant

AccountManager: :incarnate (/* params */)

{
Account_impl * account = new Account_impl;
CORBA::Long amount = ... // retrieve balance from disk
account->deposit (amount);

4Tf supported by the C++4 compiler, the dynamic_cast<> operator could be used instead.

57



svmap [account] = account; // populate map
return account;

}

void
AccountManager: :etherealize (PortableServer::Servant serv,
/* many more params */)

{
ServantMap: :iterator it = svmap.find (serv);
Account_impl * impl = (*it).second;
... // save balance to disk
svmap.erase (it);
delete serv;

}

Please find the full source code in the demo/poa/account-3 directory.
One little bit of magic is left to do. Persistent POAs need a key, a unique “imple-
mentation name” to identify their objects with. This name must be given using the

-POAImplName command line option:!®

./server -POAImplName Bank

Now we have persistent objects, but still have to start up the server by hand. It would
be much more convenient if the server was started automatically. This can be achieved
using the MICO Daemon (micod) (see section 4.3.2).

For POA-based persistent servers, the implementation repository entry must use the
“poa” activation mode, for example

imr create Bank poa ./server IDL:Bank:1.0

The second parameter to imr, Bank, is the same implementation name as above; it
must be unique within the implementation repository. If a persistent POA is in contact
with the MICO Daemon, object references to a persistent object, when exported from the
server process, will not point directly to the server but to the MICO Daemon. Whenever
a request is received by micod, it checks if your server is running. If it is, the request is
simply forwarded, else a new server is started.

Usually, the first instance of your server must be started manually for bootstrapping,
so that you have a chance to export object references to your persistent objects. An
alternative i1s to use the MICO Binder: the IDL:Bank:1.0 in the command line above
tells micod that bind () requests for this repository id can be forwarded to this server —
after starting it.

With POA-based persistent objects, you can also take advantage of the “ioploc:”
addressing scheme that is introduced by the Interoperable Naming Service. Instead of
using a stringified object reference, you can use a much simpler, URL-like scheme. The
format for an iioploc address is

15Tf you omit this option, you will receive an “Invalid Policy” exception when trying to create a persistent

POA.

38



iioploc://<host>:<port>/<object-key>

host and port are as given with the ~-ORBII0PAddr command-line option, and the
object key is composed of the implementation name, the POA name and the Object 1d,
separated by slashes. So, if you start a server using

./server -ORBIIOPAddr inet:thishost:1234 -POAImplName MyService

create a persistent POA with the name “MyPOA”, and then activate an object using
the “MyObject” Object Id, you could refer to that object using the IOR

iioploc://thishost:1234/MyService/MyPOA/MyObject

These “iioploc” addresses are understood and translated by the string to_object ()
method and can therefore be used wherever a stringified object reference can be used.

For added convenience, if the implementation name, the POA name and the Object
Id are the same, they are collapsed into a single string. An example for this is the Name-
Service implementation, which uses the “NameService” implementation name. The root
naming context is then activated in the “NameService” POA using the “NameService”
Objectld. Consequently, the NameService can be addressed using

iioploc://<host>:<port>/NameService

Please see the Interoperable Naming Service specification for more details.

4.4.6 Reference Counting

With the POA, implementations do not inherit from CORBA::0bject. Consequently,
memory management for servants is the user’s responsibility. Eventually, a servant must
be deleted with C++’s delete operator, and a user must know when a servant is safe to
be deleted — deleting a servant that is still known to a POA leads to undesired results.

CORBA 2.3 addresses this problem and introduces reference counting for servants.
However, to maintain compatibility, this feature is optional and must be explicitly acti-
vated by the user. This is done by adding POA_PortableServer: :RefCountServantBase
as a base class of your implementation:

class HelloWorld_impl :
virtual public POA_HelloWorld
virtual public PortableServer::RefCountServantBase

{
}

This activates two new operations for your implementation, _add_ref () and _remove_ref ().
A newly constructed servant has a reference count of 1, and it is deleted automatically
once its reference count drops to zero. This way, you can, for example, forget about your
servant just after it has been created and activated:

39



HelloWorld_impl * hw = new HelloWorld_impl;
HelloWorld_var ref = hw->_this(); // implicit activation
hw->_remove_ref ();

During activation, the POA has increased the reference count for the servant, so you
can remove your reference immediately afterwards. The servant will be deleted automat-
ically once the object is deactivated or the POA is destroyed. Note, however, that once
you introduce reference counting, you must keep track of the references yourself: All POA
operations that return a servant (i.e. id_to_servant () will increase the servants’ ref-
erence count. The PortableServer: :ServantBase var class is provided for automated
reference counting, acting the same as CORBA: :0bject_var does for Objects.

4.5 IDL Compiler

Mico offers its own IDL—compiler called id1 which is briefly described in this section. The
tool i1s used for translating IDL—specifications to C++ as well as feeding ID L—specifications
into the interface repository. The id1 tool takes its input either from a file or an interface
repository and generates code for C++4+ or CORBA-IDL. If the input is taken from a
file, the 1d1 tool can additionally feed the specification into the interface repository. The
synopsis for id1 is as follows:

idl [--help] [--version] [--config] [-D<define>] [-I<path>] \
[--no-exceptions] [--codegen-c++] [--no-codegen-c++] \
[--codegen-c++] [--no-codegen-c++] [--codegen-idl] \
[--no-codegen-idl] [--codegen-midl] [--no-codegen-midl] \
[--—c++-suffix=<suffix>] [--c++-impl] \

[--c++-skel] [--absolute-paths] \

[--emit-repoids] [--do-not-query-server-for-narrow] [--feed-ir] \
[--feed-included-defs] [--repo-id=<id>] [--name=<prefix>] \
[--pseudo] [--any] [--typecode] \

[--poal] [--no-poa] [--boal] [--no-boa] [--no-poa-ties] \
[--gen-included-defs] [--gen-full-dispatcher] [<file>]

In the following a detailed description of all the options is given:

--help
Gives an overview of all supported command line options.

--version
Prints the version of MicoO.

--config
Prints some important configuration infos.

-D<define>
Defines a preprocessor macro. This option is equivalent to the -D switch of most
C—compilers.

60



-I<path>
Defines a search path for #include directives. This option is equivalent to the -I
switch of most C—compilers.

--no-exceptions
Tells 1id1 to disable exception handling in the generated code. Code for the ex-
ception classes is still generated but throwing exceptions will result in an error
message and abort the program. This option can only be used in conjunction with
--codegen-c++. This option is off by default.

--codegen-c++
Tells id1 to generate code for C++ as defined by the language mapping IDL to
C++. The idl tool will generate two files, one ending in .h and one in .cc with
the same basenames. This option is the default.

--no-codegen-c++
Turns off the code generation for C++.

--codegen-idl
Turns on the code generation for CORBA-IDL. The idl tool will generate a file
which contains the IDL specification which can again be fed into the 1d1 tool. The
basename of the file is specified with the --name option.

--no-codegen-idl

Turns off the code generation of CORBA-IDL. This option is the default.

--c++-suffix=<suffix>
If --codegen-c++ is selected, then this option determines the suffix for the C++
implementation file. The default is “cc”.

--c++-impl
This option will cause the generation of some default C+4 implementation classes
for all interfaces contained in the IDL specification. This option requires --~codegen-c++.

--c++-skel
Generate a separate file with suffix _skel.cc that contains code only needed by
servers (i.e., the skeletons). By default this code is emitted in the standard C++
implementation files. This option requires --codegen-c++.

--hh-suffix=<suffix>
If --codegen-c++ is selected, then this option determines the suffix for the C++
header file. The default is “h”.

--relative-paths
If selected, included files (via the #include directive) will be referenced in a relative
way (i.e. #include <...>).

61



--emit-repoids
This option will cause #pragma directives to be emitted, which associate the repos-
itory id of each IDL construct. This option can only be used in conjunction with
the option --codegen-idl.

--do-not-query-server-for-narrow
If this option is used, the IDL compiler will omit special code for all _narrow()
methods which inhibits the querying of remote servers at runtime. In certain cir-
cumstances this is permissible, resulting in more efficient runtime behaviour. See
test/i1d1/26/README for further comments.

--feed-ir
The CORBA-IDL which is specified as a command line option is fed into the inter-
face repository. This option requires the ird daemon to be running.

--feed-included-defs
This option can only be used in conjunction with --feed-ir. If this option is used,

IDL definitions located in included files are fed into the interface repository as well.
The default is to feed only the definitions of the main IDL file into the IR.

--repo-id=<id>
The code generation is done from the information contained in the interface repos-
itory instead from a file. This option requires the ird daemon to be running. The
parameter id is a repository identifier and must denote a CORBA module.

--name=<prefix>
This option controls the prefix of the file names if a code generation is selected. This
option is mandatory if the input is taken from the interface repository. If the input
is taken from a file, the prefix is derived from the basename of the file name.

--pseudo
Generates code for “pseudo interfaces”. No stubs, skeletons or code for marshalling
data to and from “any” variables is produced. Only supported for C++ code gen-
eration.

--any
Activates support for insertion and extraction operators of user defined IDL types
for Any. Can only be used in conjunction with --codegen-c++. This option implies
--typecode.

--typecode
Generates code for TypeCodes of user defined IDL types. Can only be used in
conjunction with --codegen-c++.

--poa
Turns on generation of skeleton classes based on the Portable Object Adapter

(POA).

62



--no-poa
Turns off generation of POA-based skeletons. This is the default.

--no-poa-ties
When using --poa, this option can be used to turn off generation of Tie classes if
not needed.

--boa
Turns on generation of skeleton classes using the Basic Object Adapter (BOA). This
is the default.

--no-boa
Turns off generation of BOA-based skeletons.

--gen-included-defs
Generate code that was included using the #include directive.

--gen-full-dispatcher
Usually the skeleton class generated for an interface contains only the dispatcher for
the operations and attributes defined in this interface. With this option, the dis-
patcher will also include operations and attributes inherited from all base interfaces.

Here are some examples on how to use the id1 tool:

idl account.idl
Translates the IDL—specification contained in account.idl according to the C++
language mapping. This will generate two files in the current directory.

idl --feed-ir account.idl
Same as above but the IDL—specification is also fed into the interface repository.

idl --feed-ir --no-codegen-c++ account.idl
Same as above but the generation of C++ stubs and skeletons is omitted.

idl --repo-id=IDL:Account:1.0 --no-codegen-c++ --codegen-idl --name=out
This command will generate IDL—code from the information contained in the inter-
face repository. This requires the ird daemon to be running. The output is written
to a file called out.idl.

idl --no-codegen-c++ --codegen-idl --name=out account.idl
This command will translate the IDL-specification contained in account.idl and
into a semantical equivalent IDL-specification in file out.idl. This could be useful
if you want to misuse the IDL-compiler as a pretty printer.

63



4.6 Compiler and Linker Wrappers

It can be quite complicated to compile and link M1co applications because you have to
specify system dependent compiler flags, linker flags and libraries. This is why Mico
provides you with four shells scripts:

mico-c++
should be used as the C++4 compiler when compiling the C++ source files of a
Mico-application.

mico-1d
should be used as the linker when linking together the . o files of a MicO-application.

mico-shc++
should be used as the C4++ compiler when compiling the C++ source files of a
Mico dynamically loadable module. mico-shc++ will not be available unless you
specified the --enable-dynamic option during configuration.

mico-shld
should be used as the linker when linking together the .o files of a MicO dynam-
ically loadable module. mico-shld will not be available unless you specified the
--enable-dynamic option during configuration.

The scripts can be used just like the normal compiler/linker, except that for mico-shld
you do not specify a file name suffix for the output file because mico-shld will append a
system dependent shared object suffix (.so on most systems) to the specified output file
name.

4.6.1 Examples

Let us consider building a simple MicO—aplication that consists of two files: account.idl
and main.cc. Here is how to build account:

idl account.idl

mico-c++ -I. -c account.cc -o account.o
mico-c++ -I. -c main.cc -o main.o

mico-1d account.o main.o -o account -lmico2.3.3

As a second example let us consider building a dynamically loadable module and a client
program that loads the module. We have three source files now: account.idl,client.cc,
and module.cc:

idl account.idl

mico-shc++ -I. -c account.cc -o account.o
mico-shc++ -I. -c module.cc -o module.o

mico-shld -o module module.o account.o -1mico2.3.3

mico-c++ -I. -c client.cc -o client.o
mico-1d account.o client.o -o client -1lmico2.3.3

64



Note that

e all files that go into the module must be compiled using mico-shc++ instead of
mico-c++.

e module was specified as the output file, but mico-shld will generate module.so
(the extension depends on your system).

e account.o must be linked both into the module and the client but is compiled only
once using mico-shc++. One would expect that account.cc had to be compiled
twice: once with mico-c++ for use in the client and once with mico-shc++ for use
in the module. The rule is that using mico-shc++ where mico-c++ should be used
does not harm, but not the other way around.

65



Chapter 5
C++ mapping

This chapter features some highlights of the IDL to C++ mapping. Sometimes we just
quote facts from the CORBA standard, sometimes we describe some details which are
specific to MIco.

5.1 Using strings

Strings have always been a source of confusion. The CORBA standard adopts a not
necessarily intuitive mapping for strings for the C++ language. The following description
is partially taken from chapter the CORBA specification.

As in the C mapping, the OMG IDL string type, whether bounded or unbounded,
is mapped to char* in C++. String data is null-terminated. In addition, the CORBA
module defines a class String var that contains a char* value and automatically frees
the pointer when a String var object is deallocated. When a String var is constructed
or assigned from a char*, the char* is consumed and thus the string data may no longer
be accessed through it by the caller. Assignment or construction from a const char* or
from another String var causes a copy. The String var class also provides operations to
convert to and from char* values, as well as subscripting operations to access characters
within the string. The full definition of the String var interface is given in appendix of
the CORBA specification.

For dynamic allocation of strings, compliant programs must use the following functions
from the CORBA namespace:

// C++

namespace CORBA {
char *string_alloc( ULong len );
char *string_dup( const charx );
void string_free( char * );

The string alloc function dynamically allocates a string, or returns a null pointer
if it cannot perform the allocation. It allocates len+1 characters so that the resulting
string has enough space to hold a trailing NULL character. The string dup function

66



dynamically allocates enough space to hold a copy of its string argument, including the
NULL character, copies its string argument into that memory, and returns a pointer to
the new string. If allocation fails, a null pointer is returned. The string free function
deallocates a string that was allocated with string alloc or string dup. Passing a null
pointer to string free is acceptable and results in no action being performed.

Note that a static array of char in C++ decays to a char*, so care must be taken
when assigning one to a String var, since the String var will assume the pointer points
to data allocated via string-alloc and thus will eventually attempt to string free it:

// C++

// The following is an error, since the char* should point to
// data allocated via string_alloc so it can be consumed
String_var s = "static string"; // error

// The following are OK, since const char* are copied,
// not consumed

const char* sp = "static string";

s = sp;

s = (const charx)"static string too";

See the directory mico/test/id1/5 for some examples on how to use strings in conjunction
with operations.

5.2 Untyped values

The handling of untyped values is one of CORBAs strengths. The pre—defined C++ class
Any in the namespace CORBA provides this support. An instance of class Any represents a
value of an arbitrary IDL—type. For each type, the class Any defines the overloaded opera-
tors >>= and <<=. These two operators are responsible for the insertion and extraction of
the data values. The following code fragment demonstrates the usage of these operators:

// C++
CORBA: :Any a;

// Insertion into any
a <<= (CORBA::ULong) 10;

// Extraction from any
CORBA: :ULong 1;
a >>=1;

At the end of this example the variable 1 should have the value 10. The library of
Mico provides overloaded definitions of these operators for all basic data types. Some of
these data types are ambiguous in the sense that they collide with other basic data types.
This is true for the IDL-types boolean, octet, char and string. For each of these IDL-
types, CORBA prescribes a pair of supporting functions which help to disambiguate the
type clashes. For the type boolean for example the usage of these supporting function is:

67



CORBA: :Any a;

// Insertion into any
a <<= CORBA::Any::from_boolean( TRUE );

// Extraction from any
CORBA: :Boolean b;
a >>= CORBA::Any::to_boolean( b );

The usage of the other supporting functions for octet, char and string is equivalent.
For bounded strings the supporting functions from_string and to_string accept an
additional long—parameter which reflects the bound.

For each type defined in an IDL specification, the IDL—compiler generates an over-
loaded version of the operators >>= and <<=. For example given the following IDL speci-
fication:

// IDL

struct S1 {
long x;
char c;

};

struct S2 {
string str;

+;

The Mico IDL—compiler will automatically generate appropriate definitions of >>=
and <<= for the IDL types S1 and S2. The following code fragment demonstrates the
usage of these operators:

1: void show_any( const CORBA::Any& a )
2: {

3: S1 s1;

4. S2 s82;

5:

6: if( a >=s1) {

7: cout << "Found struct S1" << endl;
8: cout << sl1.x << endl;

9: cout << sl.c << endl;
10: }
11: if( a >>=8s52 ) {
12: cout << "Found struct S2" << endl;
13: cout << s2.str << endl;
14: }
15: }
16:
17: int main( int argc, char *argv[] )
18: {

68



19: //...

20: CORBA: :Any a;
21:

22: S2 s82;

23: s2.str = (const char *) "Hello";
24 : a <<= s82;

25: show_any( a );
26:

27: S1 s1;

28: sl.x = 42;

29: sl.c = ’C’;
30: a <<= s1i;

31: show_any( a );
32: }

The main program first initializes an instance of a S2 (lines 22-24) and then calls the
function show_any. Function show_any tries to extract the value contained in the any
This example also demonstrates how to tell whether the extraction was successful or not.
The operator >>= returns true, iff the type of the value contained in the any matches with
the type of the variable of the right side of >>=. If the any should contain something else
than S1 or S2, then show_any will fall through both if-statements in lines 6 and 11. The
complete sources for the above example can be found in mico/test/id1/14.

For some IDL types two different >>= and <<= operators are provided: a copying and
a non—copying version. The copying version of the <<= operator takes a reference to the
IDL type and inserts a copy of it into the Any. The non—copying version takes a pointer to
the IDL type and moves it into the Any without making a copy. The user must not access
the inserted value afterwards. The copying version of the >>= operator takes a reference
to the IDL type and copies the value of the Any into it. The non—copying version takes
a reference to a pointer to the IDL type and points it to the value in the Any. The user
must not free the returned value. Here are some examples:

// IDL
struct foo {
long 1;
short s;

};

// C++
CORBA: :Any a;

// copying <<=
foo f;
a <<= f;

// non-copying <<=

foo *f = new foo;

a <<= f;

// do not touch ’f’ here ...

69



Table 5.1 gives an overview of the operators provided for each IDL type (nc.

// copying >>=
foo f;
a >>= f;

// non-copying >>=
foo *f;
a >>= f;
// do not free ’f’

// changing ’a’ invalidates ’f’

non—copying).

5.2.1 Unknown Constructed Types

IDL type

A
A
1]

nc. <<=

>>=

nc. >>=

base type
enum
any

fixed
string
wstring
sequence
array
struct
union
interface
pseudo objs
valuetype

+ 4+ + A+

+ 4+ +F A+

+ + + +

+ 4+ ++ A+

Table 5.1: Any insertion and extraction operators

means

MicO’s Any implementation offers an extended interface for typesafe insertion and ex-
traction of constructed types that were not known at compile time. This interface is also

used by the <<= and >>= operators generated by the IDL compiler for constructed types.
Lets look at the generated operators for a simple structure:

O 00 N O U1 W N -~

// IDL

struct foo {

long 1;
short s;

};

// C++

void operator<<= ( CORBA::Any &a, const foo &s )

{

70



10: a.type( _tc_foo );
11: a.struct_put_begin();
12: a <<= s.1;

13: a <<= s.s;

14: a.struct_put_end();
15: }

16:

17: CORBA::Boolean operator>>=( const CORBA::Any &a, foo &s )
18: {

19: return a.struct_get_begin() &&
20: (a >>= s.1) &&

21: (a >>= s.s5) &

22: a.struct_get_end();

23: }

The <<= operator tells the Any the TypeCode (_tc_foo) of the to be inserted structure in
line 10. Those _tc_x* constants are generated by the IDL compiler as well. If you want
to insert a constructed type that was not known at compile time you have to get the
TypeCode from somewhere else (e.g., from the interface repository) or you have to create
one using the create_*_tc() ORB methods.

After telling the Any the TypeCode the <<= operator opens a structure in line 11, shifts
in the elements of the struct in lines 12-13 and closes the struct in line 14. While doing
so the Any checks the correctness of the inserted items using the TypeCode. If it detects
an error (e.g., the TypeCode says the first element of the struct is a short and you insert
a float) the corresponding method or <<= operator will return FALSE. If the structure
contained another constructed type you had to make nested calls to struct_put_begin()
and struct_put_end() or the corresponding methods for unions, exceptions, arrays, or
sequences.

The >>= operator in lines 17-23 has the same structure as the <<= operator but uses >>=
operators to extract the struct elements and struct_get_begin() and struct_get_end()
to open and close the structure. There is no need to specify a TypeCode before extraction
because the Any knows it already.

5.2.2 Subtyping

Another feature of MICO’s Any implementation is its subtyping support. The extraction
operators of type Any implement the subtyping rules for recursive types as prescribed
by the Reference Model for Open Distributed Processing (RM—-ODP), see [1, 2, 3, 4] for
details. The idea behind subtyping is the following: Imagine you want to call a CORBA
method

void bar (in long x);

but want to pass a short as an argument instead of the required long. This should work
in theory since each possible short value is also a long value which means short is a
subtype of long. More generally speaking a type T} is a subtype of type T3 if you could
pass T} as an input parameter where a T is expected. This means for basic types such as

71



Double
N T subtype of
Long Float ULong
Short UShort

Figure 5.1: Subtype relations between basic CORBA types.

long: a basic type Ty is a subtype of a basic type T iff the set of possible values of T} is a
subset of the set of possible values of T,. Figure 5.1 shows the subtype relations between
CORBA'’s basic data types. In C++ the compiler can automatically convert types along
a chain of arrows, but in a distributed CORBA application this can’t be done by the
compiler alone because binding between client and server is performed at runtime using
a trader or a naming service. That is the subtype checking must be done at runtime as
well.

In Mico the Any type performs subtype checking at runtime. For example:

// C++
CORBA: :Any a;
a <<= (CORBA::Short) 42;

CORBA: :Double d;
a >>= d;

will work because short is a subtype of double according to figure 5.1 but:

// C++
CORBA: :Any a;
a <<= (CORBA::Long) 42;

CORBA: :ULong d;
a >>= d;

will fail because long is not a subtype of unsigned long. There is a special subtyping
rule for structured types: A struct type 77 is a subtype of a struct type T iff the elements
of Ty are supertypes of the first elements of T7. struct S1 is for example a subtype of
struct S2:

struct S1 {

short s;
long 1;

72



};

struct S2 {
long s;

};
That is you can put a struct S1 into an Any and unpack it as a struct S2 later:

// C++
CORBA: :Any a;
S1 s1 =4{ 10, 20 };

a <<= si;
S2 s2;
a >>= s2;

There are similar rules for the other constructed types.

5.3 Arrays

Arrays are handled somewhat awkwardly in CORBA. The C++ mapping for the decla-
ration of an array is straight forward. Things are getting a bit more complicated when
arrays are being passed around as parameters of operations. Arrays are mapped to the
corresponding C++ array definition, which allows the definition of statically—initialized
data using the array. If the array element is a string or an object reference, then the
mapping uses the same type as for structure members. That is, assignment to an array
element will release the storage associated with the old value.

// IDL
typedef string V[10];
typedef string M[1][2][3];

// C++
V vl; V_var v2;
M mil; M_var m2;

vi[1] = v2[1]; // free old storage, copy
m1[0] [11[2] = m2[0][1]1[2]; // free old storage, copy

In the above example, the two assignments result in the storage associated with the
old value of the left-hand side being automatically released before the value from the
right-hand side is copied.

Because arrays are mapped into regular C++ arrays, they present special problems
for the type-safe Any mapping described in [16.14]. To facilitate their use with the type
Any, Mico also provides for each array type a distinct C++ type whose name consists
of the array name followed by the suffix forany. Like Array var types, Array forany
types allow access to the underlying array type. The interface of the Array forany type
is identical to that of the Array var type.

73



// IDL
typedef string V[10];

// C++
V_forany vi, v2;
vi[0] = ...; // Initialize array

CORBA: :Any any;
any <<= vi;
any >>= v2; // vl and v2 now have identical contents

Besides the Array forany mapping the CORBA standard also describes a mapping
for an array slice. A slice of an array is an array with all the dimension of the original
but the first. Output parameters and results are handled via pointers to array slices
The array slice is named like the array itself plus appending the suffix _slice. For the
declaration of type M in the example above, the IDL compiler would generate the following
type definition:

// Generated by IDL compiler, C++
typedef M M_slice[2][3];

Let’s consider the following IDL specification (see also mico/test/id1/18):

// IDL
// Note: long_arr is an array of fixed length data type
typedef long long_arr[ 10 ];

// Note: SS is an array of variable data type
typedef string SS[ 5 ][ 4 1;

interface foo {
SS bar( in SS x, inout SS y, out SS z, out long_arr w );

};
The implementation of interface foo will look like this:

class foo_impl : virtual public foo_skel
{
/...
SS_slice* bar( const SS ss1, SS ss2, SS_slice*& ss3, long_arr arr )
{
/...
ss3 = SS_alloc();
SS_slice *res = SS_alloc();
return res;

74



Note that the result value of the operation bar is a pointer to an array slice. Output
parameters where the type is an array to a variable length data type, are handled via a
reference to a pointer of an array slice. In order to facilitate memory management with
array slices, the CORBA standard prescribes the usage of special functions defined at the
same scope as the array type. For the array SS, the following functions will be available
to a program:

// C++

SS_slice #SS_alloc();

SS_slice *SS_dup( const SS_slicex* );
void SS_free( SS_slice * );

The SS_alloc function dynamically allocates an array, or returns a null pointer if it
cannot perform the allocation. The SS_dup function dynamically allocates a new array
with the same size as its array argument, copies each element of the argument array into
the new array, and returns a pointer to the new array. If allocation fails, a null pointer
is returned. The SS_free function deallocates an array that was allocated with SS_alloc
or SS_dup. Passing a null pointer to SS_free is acceptable and results in no action being
performed.

5.4 Unions

Unions and structs in the CORBA-IDL allow the definition of constructed data types.
Each of them is defined through a set of members. Is a struct used as an input parameter
of an operation, all of its members will be transmitted, whereas for a union at most one of
its members will actually be transmitted. The purpose of an IDL—union is similar to that
of a C—union: reduction of memory usage. This is especially important in a middleware
platform where less memory space for a data type also means less data to transfer over
the network. One must carefully consider, when structs or unions should be used.

A special problem arises with unions when they are being used as parameters of op-
eration invocations: how does the receiving object know which of the different members
holds a valid value? In order to make a distinction for this case, the IDL—union is a
combination of a C—union and a C—switch statement. Each member is clearly tagged with
a value of a given discriminator type (see also mico/test/id1/21):

// IDL

typedef octet Bytes[64];
struct S { long len; };
interface A;

union U switch (long) {
case 1: long x;
case 2: Bytes y;
case 3: string z;
case 4:
case 5: S w;

75



default: A obj;
};

In the union U as shown above, long is the discriminator type. The values following
the case label must belong to this discriminator type. All integer types and enums are
valid discriminator types. Unions map to C++ classes with access functions for the union
members and discriminant. The default union constructor performs no application—visible
initialization of the union. It does not initialize the discriminator, nor does it initialize
any union members to a state useful to an application. It is therefore an error for an
application to access the union before setting it. The copy constructor and assignment
operator both perform a deep—copy of their parameters, with the assignment operator
releasing old storage if necessary. The destructor releases all storage owned by the union.
The following example helps illustrate the mapping for union types for the union U as
shown above:

// Generated C++ code

typedef CORBA::Octet Bytes[64];
typedef CORBA::0ctet Bytes_slice;
template<...> Bytes_forany;
struct S { CORBA::Long len; };
typedef ... A_ptr;

class U {

public:

/...
void _d( CORBA::Long );
CORBA::Long _d() const;

void x( CORBA::Long );
CORBA::Long x() const;

void y( Bytes );
Bytes_slice #y() const;

void z( char* ); // free old storage, no copy
void z( const char* ); // free old storage, copy
void z( const String_var& ); // free old storage, copy
const char *z() const;

void w( const S & ); // deep copy
const S &w() const; // read-only access
S &w(); // read-write access

void obj( A_ptr ); // release old objref, duplicate
A_ptr obj() const; // no duplicate

};

The union discriminant access functions have the name _d to both be brief and avoid
name conflicts with the members. The _d discriminator modifier function can only be

76



used to set the discriminant to a value within the same union member. In addition to
the _d accessors, a union with an implicit default member provides a _default () member
function that sets the discriminant to a legal default value. A union has an implicit
default member if it does not have a default case and not all permissible values of the
union discriminant are listed.

Setting the union value through an access function automatically sets the discriminant
and may release the storage associated with the previous value. Attempting to get a
value through an access function that does not match the current discriminant results
in undefined behavior. If an access function for a union member with multiple legal
discriminant values is used to set the value of the discriminant, the union implementation
will choose the value of the first case label in the union (e.g. value 4 for the member w of
union U), although it could be any other value for that member as well.

The restrictions for using the _d discriminator modifier function are shown by the
following examples, based on the definition of the union U shown above:

// C++

Ss=...;

A_ptr a= ...;

U u;

u.w( s ); // member w selected, discrimintator ==
u._d( 4 ); // OK, member w selected

u._d( 5 ); // OK, member w selected

u._d( 1 ); // error, different member selected
u.obj( a ); // member obj selected

u._d( 7 ); // OK, member obj selected

u._d( 1 ); // error, different member selected

As shown here, the _d modifier function cannot be used to implicitly switch between
different union members. The following shows an example of how the _default () member
function is used:

// IDL

union Z switch(boolean) {
case TRUE: short s;

};

// C++

Z z;

z._default(); // implicit default member selected
CORBA: :Boolean disc = z._d(); // disc == FALSE

U u; // union U from previous example
u._default(); // error, no _default() provided

For union Z, calling the default() member function causes the union’s value to be
composed solely of the discriminator value of FALSE, since there is no explicit default
member. For union U, calling default() causes a compilation error because U has an

77



explicitly declared default case and thus no _default () member function. A _default ()
member function is only generated for unions with implicit default members.

For an array union member, the accessor returns a pointer to the array slice, where
the slice is an array with all dimensions of the original except the first (see section 5.3 for
a discussion on array slices). The array slice return type allows for read—write access for
array members via regular subscript operators. For members of an anonymous array type,
supporting typedefs for the array are generated directly into the union. For example:

// IDL
union U switch (long) {

case 1: long array[ 3 ][ 4 1;
s

// Generated C++ code

class U {
public:
/...
typedef long _array_slicel[ 4 ];
void array( long argl 3 J[ 41 );
_array_slice* array();

};

The name of the supporting array slice typedef is created by prepending an underscore
and appending _slice to the union member name. In the example above, the array
member named _array results in an array slice typedef called _array slice nested in the
union class.

5.5 Interface inheritance

The CORBA standard prescribes that IDL-interfaces need to be mapped to C++ classes
for the C++ language binding. The question arises, how things are handled when interface
inheritance i1s used. MICO offers two alternatives for implementing the skeletons when
using interface inheritance. Consider the following IDL definitions:

interface Base {
void opl1();
};

interface Derived : Base {
void op2Q);
};

Base is an interface and serves as a base for interface Derived. This means that all
declarations in Base are inherited to Derived. As we have seen before, the idl tool
creates stub— and skeleton—classes for each interface. The operations map to pure virtual
functions which have to be implemented by the programmer. For the interface Base this
is straight forward:

78



class Base_impl : virtual public Base_skel

{

public:
Base_impl()
{
3
void op1()

{
cout << "Base::opl()" << endl;

};
};

The skeleton for Derived allows two different possible ways to implement the skeleton.
The difference between the two is, whether the implementation of Derived inherits the
implementation of Base or not. Let’s take a look on how this translates to lines of code.
Here is the first alternative:

class Derived_impl :
virtual public Base_impl,
virtual public Derived_skel

{

public:
Derived_impl()
{
};
void op2()

{
cout << "Derived::op2()" << endl;

};
};

In the code fragment above, the implementation of Derived inherits the implementa-
tion of Base. Note that Derived impl inherits from Base_impl and therefore needs only
to implement op2() since op1() is already implemented in Base_impl.

Important note: when implementing a class X_impl that inherits from multiple base
classes you have to ensure that the X_skel constructor is the last one that is called. This
can be accomplished by making X_skel the rightmost entry in the inheritance list:

class X_impl : ..., virtual public X_skel {

};

Now comes the second alternative (note that the skeleton classes are still the same;
there is no particular switch with the id1 tool where you have to decide between the two
alternatives):

class Derived_impl :
virtual public Base_skel,

79



virtual public Derived_skel

{
public:
Derived_impl()
{
};
void op1()
{
cout << "Derived::opl()" << endl;
};
void op2()
{
cout << "Derived::op2()" << endl;
};
3

You should notice two things: first of all Derived_impl is no longer derived from
Base_impl but rather from Base_skel. For this reason the class Derived_impl needs to
implement the operation op2() itself. Figure 5.2 shows the inheritance hierarchy for the
classes generated by the IDL—compiler and their relationship to the classes contained in
the Mico library. Compare this with figure 3.3 on page 18. This example can also be
found in the directory mico/test/id1/15.

5.6 Modules

In contrast to other middleware platforms, CORBA does not assign an universal unique
identifier (UUID) to an interface. To avoid name clashes, CORBA offers a structured
name space, similar to the directory structure of a UNIX file system. Within an IDL a
scope is defined by the keyword module. For example the following IDL-code excerpt
defines two modules called Mod1 and Mod2 on the same level:

module Modil {
//...

interface foo;

};

module Mod2
{

/...
+;

Module declarations can be nested which leads to the above mentioned hierarchical
namespace. The IDL to C++4 mapping offers different alternatives on how to map a
module to C++. Those C++ compilers which support the namespace feature of the
C++ language, IDL-modules are directly mapped to C++ namespaces. Unfortunately
the GNU compiler currently does not support namespaces. In this case the CORBA spec-
ification offers two alternatives: either do some name mangling such that a name reflects

80



Object ﬁ inherits from

Dynamiclmplementation MICO-library

MethodDispatcher
A

Base

/

Base_stub Base_skel

Classes generated
by IDL-compiler
Derived

Derived_stub Derived_skel

Base_impl
Implementation
provided by user

Derived_impl Derived_impl
(Variant 1) (Variant 2)

Figure 5.2: C++ class hierarchy for interface inheritance.

81



_top
l ¢ depends on
M1::A3

\

M2::A2

—

M1:Al
Figure 5.3: Dependency graph.

the absolute name of the IDL-identifier where the names are separated by undersores (e.g.
Mod1_foo). The second alternative is to map an IDL-module to a C++ struct.

The second alternative has two drawbacks: without a proper support for namespaces
all names have to be referenced by their absolute names, i.e. there is no C4++ keyword
using (note that this is also true for the first alternative). The second drawback has to
do with the possibility to re-open CORBA-modules which allows cyclic definitions:

module M1 {
typedef char A;
};

module M2

{

typedef M1::A B;
3

module M1 { // re-open module M1
{

typedef M2::B C;

s

The declaration of a C++4 struct has to occurin_onelocatknl(Le.ajstruct can not
be re—opened). Mapping IDL-modules to C++ structs therefore implies, that re-opening
of modules can not be translated to C++. However, if the C4++ compiler supports
namespaces, MICO’s IDL—compiler allows the re—opening of modules. The backend of
Mico’s IDL—compiler generates a dependency graph to compute the correct ordering of
IDL definitions. Figure 5.3 shows the dependency graph for the IDL specification shown
above. The correct ordering of IDL definitions is done by doing a left—to-right, depth—first,
post—order traversal of the dependency graph starting from _top, and omitting previously
visited nodes of the graph.

Sometimes it is necessary to have some control over the top-level modules. This for
example is used in CORBA.h where some definitions have to be read in one at a time. The
IDL-compiler inserts some #define in the generated .h file. Setting and unsetting these
defines allows to read the module definitions one at a time. Given the two modules Mod1
and Mod2 as above, the following C++ code fragment demonstrates how to do this:

82



1: // These #includes need to be done manually if
2: // MICO_NO_TOPLEVEL_MODULES is defined
3: #include <CORBA.h>

4: #include <mico/template_impl.h>

5:

6: #define MICO_NO_TOPLEVEL_MODULES

7:

8: // Get module Mod1

9: #define MICO_MODULE_Mod1

10: struct Modl {

11: #include "module.h"

11: 3},

12: #undef MICO_MODULE_Mod1

13:

14: // Get module Mod2
15: #define MICO_MODULE_Mod2
16: struct Mod2 {

17: #include "module.h"
18: };

19: #undef MICO_MODULE_Mod2
20:

21: // Get global definitions in module.h
22: #define MICO_MODULE__GLOBAL

23: #include "module.h"

24: #undef MICO_MODULE__GLOBAL

25: #undef MICO_NO_TOPLEVEL_MODULES

In this example we assume that the definitions are located in a file called module.h.
First of all you need to define MICO_NO_TOPLEVEL MODULES which simply means that you
wish to read in the definitions yourself (line 6). For each toplevel module XYZ in an
IDL-file there exists a define called MICO_MODULE XYZ. Setting this define will activate all
definitions which belong to module XYZ (see lines 9 and 15). Do not forget to undefine
these definitions after the definitions are read in (lines 12 and 19). There are some global
definitions which do not belong to any module. For these definitions there in a special
define called MICO_MODULE_GLOBAL (see line 22; the two underscores are no typo). The last
thing we need to do is to undefine MICO_MODULE__GLOBAL and MICO_NO_TOPLEVEL MODULE
(see lines 24 and 25). This example can also be found in the directory mico/test/id1/10

5.7 Exceptions

Due to the limited support for exceptions in earlier versions of the GNU C++ compiler
(namely gee 2.7.2) MIcO supports several kinds of exception handling:

e CORBA compliant exception handling
e MICO specific exception handling

e 1o exception handling

83



Two common problems with exception handling are “catching by base classes” and “ex-
ceptions in shared libraries”:

e catching by base classes: when throwing exception X it should be possible to catch
it by specifying a base class of X in the catch clause. Some compilers (noteably gcc
2.7) do not support this.

e exceptions in shared libraries: throwing an exception from a shared library into non
shared library code does not work with some compilers on some platforms (gec 2.7,
gee 2.8 and eges 1.x on some platforms).

Which kind of exception handling is used is determined by the capabilities of the C++
compiler and command line options passed to the configure script. By default CORBA
compliant exception handling will be selected if the C+4 compiler supports catching
by base classes, otherwise MICO specific exception handling is selected if the compiler
supports exception handling at all. If exceptions in shared libraries do not work then
no exception handling is selected for code in shared libraries. You can enforce MICO
specific exception handling by specifying --disable-std-eh as a command line option
to configure. You can disable exception handling by specifying --disable-except as a
command line option to configure.

You can find out about the exception handling support of your MicO binaries by
running the IDL-Compiler with the --config command line option:

$ idl --config

MICO version: 2.2.7

supported CORBA version: 2.2
exceptions: CORBA compliant
modules are mapped to: namespaces
STL is: miniSTL

SSL support: no

loadable modules: yes

The following sections go into detail about each of the exception handling modes supported
by Mico.

5.7.1 CORBA Compliant Exception Handling

As the name already indicates this exception handling mode is conformant to the CORBA
specification. You can use throw to throw exceptions. Exceptions are caught by specifying
the exact type or one of the base types of the exception. Here are some examples:

// throw CORBA::UNKNOWN exception
throw CORBA: :UNKNOWN();

// catch CORBA::UNKNOWN exception
try {

} catch (CORBA: :UNKNOWN &ex) {

84



}

// catch all system exceptions (including CORBA::UNKNOWN)
try {

} catch (CORBA::SystemException &ex) {
}

// catch all user exceptions (wont catch CORBA::UNKNOWN)
try {

} catch (CORBA::UserException &ex) {
}

// catch all exceptions (including CORBA: :UNKNOWN)
try {

} catch (CORBA::Exception &ex) {

}

If an exception is thrown but not caught Mico will print out a short description of the
exception and terminate the process.

5.7.2 MICO Specific Exception Handling

This kind of exception handling has been invented for C++ compilers that do not support
catching by base classes. For example it is quite common to catch all system exceptions.
Since catching CORBA: :SystemException & does not work one would have to write one
catch clause for each of the 30 system exceptions. To work around this problem the
function mico_throw() and special _var types have been introduced.

You must not use the throw operator directly to throw an exception, instead you
should use the function mico_throw() defined in mico/throw.h, which is automatically
included by IDL compiler generated code:

// ok
mico_throw (CORBA::UNKNOWN());

// wrong
throw CORBA::UNKNOWN();

will throw the CORBA system exception UNKNOWN. User defined exceptions are thrown
the same way.

Exceptions are always caught by reference using the _var types. System exceptions
must be caught by SystemException_var:

85



// ok
try {

mico_throw (CORBA::UNKNOWN());
} catch (CORBA::SystemException_var &ex) {
}

// wrong
try {

mico_throw (CORBA::UNKNOWN());
} catch (CORBA: :UNKNOWN_var &ex) {
}

// wrong
try {

mico_throw (CORBA::UNKNOWN());
} catch (CORBA::Exception_var &ex) {

}
Sometimes it is necessary to know exactly which system exception has been thrown:

// ok
try {

mico_throw (CORBA::UNKNOWN());

} catch (CORBA::SystemException_var &sys_ex) {
if (CORBA::UNKNOWN *ukn_ex = CORBA::UNKNOWN::_narrow (sys_ex)) {
// somethingl
} else {
// something?2
}
}

// wrong
try {

} catch (CORBA::UNKNOWN_var &ukn_ex) {
// somethingl

} catch (CORBA::SystemException_var &other_ex) {
// something?2

}

In contrast to system exceptions a user exception X must be caught by X_var (i.e., not by
UserException_var)

86



// ok
try {

mico_throw (SomeExcept());

} catch (SomeExcept_var &some_ex) {

.

// wrong
try {

mico_throw (SomeExcept());
} catch (CORBA::UserException_var &usr_ex) {

}

// wrong
try {

mico_throw (SomeExcept());
} catch (CORBA::Exception_var &ex) {

}

It 1s possible to write code that works both with CORBA compliant exception handling
and MICO specific exception handling. For this one should follow the instructions in
this section but replace _var by _catch. In MICO specific exception handling mode
X_catch is typedef’ed to X_var, in CORBA compliant exception handling mode X_catch
is typedef’ed to X. Furthermore each exception X provides an overloaded -> operator so
that you can use -> to access the exception members in the catch body independent of
the exception handling mode. Here is an example:

// throw
mico_throw (CORBA: :UNKNOWN());

// catch
try {

} catch (CORBA::SystemException_catch &ex) {
cout << ex->minor() << endl;

}

If an exception is thrown but not caught Mico will print out a short description of the
exception and terminate the process.

5.7.3 No Exception handling

Some C++ compilers do not properly support exceptions in shared libraries, others do
not support exceptions at all. In these cases exception handling is not available in shared
libraries or not available at all, respectively.

87



Exception handling related C++ keywords (try, throw, catch) cannot be used in this
mode. mico_throw() can be used but will only print out a short description of the passed
exception and terminate the process.

88



Chapter 6

Time Service

This is a short description off the OMG Time Service and its implementation. The Time
Service specification contains two parts, the basic Time Service and the Time Event
Service. The former is described here and already implemented. The later offers services
for a create an event a certain time and is not implemented so far.

There are three interfaces specified in the basic Time Service: TimeService, UTO and
TIO. The interface TimeService works as factory object to create the objects representa-

tion time (UTO) and intervals (TIO).

6.1 Types

Time is represented in an integer with steps of 100 nanosecond each. The time base is
not the *NIX epoch but the 15th. of October 1582 00:00:00 o’clock. This was choosen
because it was already in use with the X/Open DCE Time Service. Unlike the *NIX
epoch the approximate range is 30,000 years, so there will be no problem in 2038 A.D.

There is a convenience procedure timeT2epoch to create a *NIX time_t from a Time-
Base::TimeT variable.

The types used to transport time and intervall are declared in the namespace TimeBase,
they are described here:

o typedef unsigned long long TimeT
Time in steps off 100 nano seconds

o typedef TimeT InaccuracyT
estimated inaccuracy of time source

o typedef short Td4fT
timezone as displacement in minutes from Greenwich

e struct UtcT
contains time, inaccuracy and timezone. Due to historical reasons, inaccuracy is
storedin splitted over two unsigned long variables inacclo and inacchi storing
lower and higher bits of InaccurcyT.

89



AR

s e e (S5

0 j‘\‘\‘ \
 — — B
555 S o & o ]
o0—oO o0——O o0——O
OTContainer OTContained OTOverlap OTNoOverlap

Negative Differenz ###

Positve Differenz %™

Figure 6.1: Results comparing two intervalls

e struct IntervaT
contains lower bound and upper _bound as TimeT two represent an intervall

e enum TimeComparison
types to be used as result of a comparison, see figure 6.1

e enum ComparisonT
types to describe, wether a comparison should use the inaccuracy around a time
(IntervalC) or not (MidC)

6.2 Interface TimeService

The TimeService is the factory object for TIOs and UTOs. The actual time from the
system 1s used, so the accuracy of the service is based on your systems clock. Use a
precision source like a DCF77 receiver if you have high demand on precision. The actual
routines to get the time from the system are containe in TimeService help.cc, so you
may easily use a better way than depending on <time.h>.

e UTO universal time();
returns the actual time of the TimeServic in a UTO

o UTO secure_universal time();
same as above, additional restrictions, see Appendix A of the specs, currently dis-
abled on compile time

e UTO new. universal time(inTimeBase: :TimeT,
in TimeBase::InaccuracyT, in TimeBase::TdfT);
creates a new UTO filled with the arguments

e UTO utop from utc(in TimeBase::UtcT);
same as above, but with UtcT as argument

e TIO new. intervall(in TimeBase::TimeT,
in TimeBase::TimeT);
creates a new TIO with lower and upper set from arguments

90



If you provide a hint to a MICO naming service when starting the service, the time
service exports its reference. Otherwise you may use the stringified object reference.

6.3 Interface UTO

This is an object containing time, inaccuracy and timezone. you may query the variables
and compare with other objects. UTOs are created by the interface TimeService. I think
the OMG specification lacks the method to destroy an UTO, so this non standard feature
was added.

e readonly attribute TimeBase::TimeT time;
time value

e readonly attribute TimeBase::TimeT inaccuracy;
inaccuracy

e readonly attribute TimeBase::TdfT tdf;
time displacement factor.

e readonly attribute TimeBase::UtcT utc_time;
structure including absolute time, inaccuracy and the time displacement

e UTO absolute time ();
return the base time to the relative time in the object.

e TimeComparison compare time (
in ComparisonType comparison type, in UTO uto);
Compares the time contained in the object with the time in the supplied uto ac-
cording to the supplied comparison type

e TIO time to_interval (in UTO uto);
Returns a TIO representing the time interval between the time in the object and

the time in the UTO passed as a parameter. The interval returned is the interval
between the mid-points of the two UTOs.

e TIO interval ();
Returns a TIO object representing the error interval around the time value in the

UTO.

e void destroy ();
This is a non-standard extension of the official OMG specs, it destroys the object
to save memory

91



6.4 TIO

This objects represents an intervall with start and endpoint. You may query the values
and compare it with other objects. TIOs are created by the interface TimeService. I think
the OMG specification lacks the method to destroy an TIO, so this non standard feature
was added.

e readonly attribute
TimeBase::IntervalT time_interval;
Consists of a lower and an upper bound for the time interval.

e CosTime: :0verlapType spans (in UTO time,
out TIO overlap);
This operation compares the time in this interface with the time in the supplied
UTO and returns the overlap type as well as the interval of overlap in the form of

a TIO.

e CosTime: :0verlapType overlaps (in TIO interval,
out TIO overlap);
This operation compares the time in this interface with the time in the supplied
TIO and returns the overlap type as well as the interval of overlap in the form of a

TIO.

e UTO time ();
Converts the time interval in this interface into a UTO object by taking the midpoint
of the interval as the time and the interval as the error envelope around the time.

e void destroy ();
This is a non-standard extension of the official OMG specs, it destroys the object
to save memory

92



Chapter 7

Java Interface

We have implemented a generic user interface to MICO’s dynamic invocation interface.
The interface is written is Java and allows the invocation of arbitrary operations. The
specification of an operation invocation is done with the help of a knowledge representation
technique called conceptual graphs. This chapter gives an overview of this interface. The
outline of this chapter is as follows: in section 7.1 be provide a brief introduction to
the theory of conceptual graphs. In section 7.2 we describe CORBAs dynamic invocation
interface and the problems related to a generic user interface which allows run—time access
to this interface. In section 7.3 we present the anatomy of an operation declaration as
defined by the CORBA standard. In section 7.4 we finally present our solution for a
generic user interface to CORBAs dynamic invocation interface based on an interactive
conceptual graph editor. In section 7.5 we finally show how to run the Java applet using
standard JDK tools in conjunction with a graphical browsing tool for the contents of the
interface repository. The work in this chapter has been presented in [7].

7.1 Conceptual Graphs

The theory of conceptual graphs (CG) has been developed to model the semantics of nat-
ural language (see [8]). Specifications based on conceptual graphs are therefore intuitive
in the sense that there is a close relationship to the way human beings represent and
organize their knowledge. From a mathematical point of view a conceptual graph is a
finite, connected, directed, bipartite graph. The nodes of the graph are either concept or
relation nodes. Due to the bipartite nature of the graphs, two concept nodes may only be
connected via a relation node. A concept node represents either a concrete or an abstract
object in the world of discourse whereas a relation nodes defines a context between two
or more concepts.

PRINTER B5-A HARDWARE-DEYICE

Figure 7.1: A simple conceptual graph with two concepts and one relation.

93



A sample CG is depicted in figure 7.1. This CG consists of two concepts (white
nodes) and one relation (black node). This CG expresses the fact that a printer is a
hardware device. The two concepts — PRINTER and HARDWARE-DEVICE — are placed in
a semantical context via the binary relation IS-A. The theory of CGs defines a mapping
from conceptual graphs to first—order calculus. This mapping, which is described in [§],
would map the CG depicted in figure 7.1 to the first order formula 323y : PRINTER(z) A
HARDWARE-DEVICE(y) A IS-A(x,y). As can be seen, the variables z and y form the link
between the two concepts via the predicate IS-A.

Given a conceptual and relational catalogue, one can express arbitrary knowledge.
For this reason the theory of CG represents a knowledge representation technique. The
work done in [8] focuses on the representation of natural language. We have shown,
that with a suitable conceptual and relational catalogue one can translate operational
interface specifications to conceptual graphs (see [6]). We have written translators which
translate arbitrary DCE and CORBA-IDL specifications to CGs. Thus we have already
demonstrated that an implementation of an interface repository, which is based on such a
meta—notation, can be used in different middleware platforms. In the following we show
how a meta—notation can also be exploited for the construction of a generic user interface
to CORBAs dynamic invocation interface (DII).

7.2 Dynamic Invocation Interface

In this section we present a description for CORBAs DII. For the following discussions we
refer to the interface Account as specified in section 3.3.2. A client application written in
C++ might for example use this interface in the following way:

Account_ptr acc = ...; // Obtain a reference to an Account-object

acc->deposit( 100 );
acc—>withdraw( 20 );

cout << "Total balance is " << acc->balance() << endl;

If we assume that the current balance of the server object was 0 when the variable acc
was bound with a refence to this object, then this program fragment prints out “Total
balance is 807. It should be clear that this program fragment requires the definition of
the class Account ptr. This class, which allows a type safe access to a CORBA object
implementing the interface Account, is generated using an IDL compiler. Thus the type
of the operational interface of the server object is known at compile time. But what if
we did not know about the interface Account at compile-time? The only possible way
to access the object in this case is to use CORBA’s dynamic invocation interface (DII).
This interface to an ORB offers the possibility to invoke operation calls whose signature
was not known at compile time. The following code excerpt shows the usage of the DII:

CORBA: :0Object_ptr obj = ...;

CORBA: :Request_ptr req = obj->_request( 'deposit" );
req->add_in_arg( "amount" ) <<= (CORBA::ULong) 100;
req->invoke();

94



Operation

— Operation attribute
— Result

— Operation name
— List of Parameters

Directional attribute
Type specifier
Parameter name

— Exceptions
— Context

Figure 7.2: Syntax of an operation declaration.

Note that the variable obj is of type Object ptr and not Account ptr. The code
fragment demonstrates how to model the operation call acc->deposit( 100 ) from the
code fragment abovel'. It does not require the Account_ptr client stub as in the last
example. Despite the generic manner how the operation is invoked, the problem remains
how to write a generic user interface to access CORBAs DII. Such an interface would allow
a user to invoke arbitrary operations of a prior:i unknown interfaces. The next section

gives a brief overview of the specific details of an operation invocation.

7.3 Anatomy of an operation declaration

The CORBA specification describes the syntax of an operation declaration (see [5]). The
syntax is part of the Interface Definition Language (IDL). The grammar presented in that
section describes the syntax which induces a formal language. In figure 7.2 the anatomy of
an operation declaration is given, using a graphical representation of the grammar where
the arrows denote “consists of” relations. Thus, according to the CORBA standard, an
operation declaration consists of a result type, an ordered list of parameters and so on.
A parameter declaration itself consists of a directional attribute (in, out or inout), a
parameter type and an identifier.

Note that the “graph” depicted in figure 7.2 already has some resemblance to a con-
ceptual graph. We propose to model the information pertinent to an operation invocation
through a CG. The anatomy of an operation declaration as depicted in figure 7.2 provides
a hint on how to accomplish this task.

7.4 A generic DII interface

Just consider if we had an application which allowed the browsing of an interface reposi-
tory. A user would find a suitable interface at run—time and decide to invoke operations
without having to write a specific client object. What would be nice to have is a generic
client which could cope with a priori unknown operational interfaces. As we have seen in

'Note that the code generated by the IDL compiler makes use of the DII interface

95



OPEHF’.TION:dEpOSitH— IM_PaRAM

MaME:amaount

SIC ULOMG: a0

Figure 7.3: Conceptual graph representing the specification of the operation deposit ().

figure 7.2 and from the discussion of the previous section, an operation invocation consists
of the following elements:

e a name of the operation
e a return type

e an ordered list of actual parameters

With this “anatomy” of an operation invocation we can assemble a domain—specific
conceptual and relational catalogue. We have developed such a catalogue which provides
the “vocabulary” to express the information needed for the specification of an operation
invocation. The conceptual graph depicted in figure 7.3 shows how to translate the oper-
ation invocation for deposit( 100 ) using the DII (again concept nodes are denoted by
white rectangles and relation nodes by black rectangles). As can be seen, a meta—notation
based on CG provides an easy readable, formal specification of an operation invocation.
It should be clear that the CG template can be extended arbitrarily to cover the specifics
of the CORBA-IDL like complex type definitions or sequences of arbitrary types.

7.5 Running the example

The MIcO sources include an interactive conceptual graph editor written in Java. The
sources of the example are located in the directory mico/tools/ir-browser. Note that
you need the Java Developers Kit 1.1.5 as well as a parser generator for Java called
JavaCUP (see chapter 2 on where to obtain these tools). We assume that you have
succefully compiled the MICO sources contained in the aforementioned directory. Alter-
natively you can run the Java applet from your favorite WWW browser by visiting the
Mico-homepage.

Two files in the ir-browser directory are of importance to run the example:

e runproxy: this shell script starts diiproxy and the interface repository. The IR
server is then feed with some IDL’s so you have something to browse.

e dii.html: a HTML page which makes reference to the main Java—class DIT imple-
menting the interactive interface repository browser.

In order to run the demonstration, you first have to run the shell script runproxy.
You simply do this by starting it from an UNIX shell:

96



./runproxy

After this you can load the applet by either using a Java capable browser or the
appletviewer tool which is part of the JDK. You can run the applet be running the
following command from an UNIX shell:

appletviewer dii.html

Once the applet has been loaded, click on the button called Start IR browser. A new
window opens. The right side of this window shows all top—level objects contained in the
interface repository. For each object there is one icon. If you click on one of these icons
using the left mouse button, the IDL source code of that object is shown in the left side
of the window. You can “enter” an object using the right mouse button (this of course
works only on container objects like interfaces or modules). If you press the right mouse
button on an operation object, another window will open containing a conceptual graph
representing this operation. You can change the input parameters of that CG before
invoking it on an object.

Here is a short step—by-step tour:

1. click with the left mouse button on the Account icon
2. click with the right mouse button on the Account icon

3. click on the deposit icon with the right mouse button to invoke the deposit()
method

4. click on the ULONG:0 node while holding down the shift key, enter 100 into the
appearing entry box and press return

5. use Server/Invoke to do the actual invocation

6. click on the withdraw icon with the right mouse button in the browser window to
invoke the withdraw() method

7. click on the ULONG:0 node while holding down the shift key, enter 20 into the ap-
pearing entry box and press return

8. use Server/Invoke to do the actual invocation

9. click on the withdraw icon with the right mouse button in the browser window to
invoke the withdraw() method

10. use Server/Invoke to do the actual invocation

11. the rightmost node of the graph should change to LONG:80
HINT: If you move the pointer over a node of the graph the status line will show you

the actions possible on this node. For example Shift—Buttonl: edit means: To edit the
contents of the node press the left mouse button while holding down the SHIFT key.

97



7.6 Using the CG—editor

The CG-editor allows the insertion, editing and removal of nodes. The editor supports
the following actions on conceptual graph nodes:

left mouse button
If the working area was empty before this will insert a new root node, otherwise if
you click on a node you can drag it around.

shift + left mouse button
Edit the contents of conceptual graph node currently pointed at.

control + shift 4+ left mouse button
Remove the node (and all its descendents) currently pointed at.

right mouse button
Bring up a context sensitive popup menu. Selecting an entry from it will add a
corresponding subtree to the node currently pointed at.

Not all of the above functions work on all conceptual graph nodes. If you move the pointer
over a node, the status line will show you the actions which are possible for that node.

The order of the child nodes of a conceptual graph node is determined by their Y-
positions. The first child node is the one with the smallest Y—position (with Y-position
increasing from top to bottom). So if you want to swap nodes A and B, just move A
below B (if A was above B before).

The Edit menu offers you some functions which come in handy: New graph will delete
the current graph, Arrange graph will layout the nodes of the graph currently being edited
and Linear from... will show you the textual representation of the conceptual graph.

98



Chapter 8
LICENSE

This chapter contains the license conditions for Mico. All libraries are covered by the
GNU Library General Public License (LGPL) version 2 or later, code generated by the
IDL compiler is not copyrighted, everything else is covered by the GNU General Public
License (GPL) version 2 or later.

The idea behind this is that MICO can be used for developing commercial applications
without requiring the manufacturer of the commercial application to put the application
under (L)GPL. On the other hand it is not possible to derive commercial applications
from MICO without putting that application under (L)GPL.

Section 8.1 contains terms and conditions of the LGPL, section 8.2 contains terms and

conditions of the GPL.

8.1 GNU Library General Public License

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under
the terms of this Library General Public License (also called “this License”). Each
licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so as to
be conveniently linked with application programs (which use some of those functions
and data) to form executables.

The “Library”, below, refers to any such software library or work which has been
distributed under these terms. A “work based on the Library” means either the Li-
brary or any derivative work under copyright law: that is to say, a work containing
the Library or a portion of it, either verbatim or with modifications and/or trans-
lated straightforwardly into another language. (Hereinafter, translation is included
without limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifi-
cations to it. For a library, complete source code means all the source code for all

99



modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library
is not restricted, and output from such a program is covered only if its contents
constitute a work based on the Library (independent of the use of the Library in
a tool for writing it). Whether that is true depends on what the Library does and
what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as
you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you
changed the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third
parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to
be supplied by an application program that uses the facility, other than as an
argument passed when the facility is invoked, then you must make a good faith
effort to ensure that, in the event an application does not supply such function
or table, the facility still operates, and performs whatever part of its purpose
remains meaningful.

(For example, a function in a library to compute square roots has a purpose
that is entirely well-defined independent of the application. Therefore, Subsec-
tion 2d requires that any application—supplied function or table used by this
function must be optional: if the application does not supply it, the square
root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Library, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Library, the distribution of the whole must be on the terms of this License, whose

100



permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the
Library (or with a work based on the Library) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead
of this License to a given copy of the Library. To do this, you must alter all the
notices that refer to this License, so that they refer to the ordinary GNU General
Public License, version 2, instead of to this License. (If a newer version than version
2 of the ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the
ordinary GNU General Public License applies to all subsequent copies and derivative
works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a
program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under
Section 2) in object code or executable form under the terms of Sections 1 and 2
above provided that you accompany it with the complete corresponding machine—
readable source code, which must be distributed under the terms of Sections 1 and
2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place
satisfies the requirement to distribute the source code, even though third parties are
not compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed
to work with the Library by being compiled or linked with it is called a “work that
uses the Library”. Such a work, in isolation, is not a derivative work of the Library,
and therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an ex-
ecutable that is a derivative of the Library (because it contains portions of the
Library), rather than a “work that uses the library”. The executable is therefore
covered by this License. Section 6 states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part
of the Library, the object code for the work may be a derivative work of the Library
even though the source code is not. Whether this is true is especially significant if
the work can be linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

101



If such an object file uses only numerical parameters, data structure layouts and
accessors, and small macros and small inline functions (ten lines or less in length),
then the use of the object file is unrestricted, regardless of whether it is legally
a derivative work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object
code for the work under the terms of Section 6. Any executables containing that
work also fall under Section 6, whether or not they are linked directly with the
Library itself.

6. As an exception to the Sections above, you may also compile or link a “work that uses
the Library” with the Library to produce a work containing portions of the Library,
and distribute that work under terms of your choice, provided that the terms permit
modification of the work for the customer’s own use and reverse engineering for
debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used
in it and that the Library and its use are covered by this License. You must supply
a copy of this License. If the work during execution displays copyright notices, you
must include the copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which
must be distributed under Sections 1 and 2 above); and, if the work is an
executable linked with the Library, with the complete machine-readable “work
that uses the Library”, as object code and/or source code, so that the user can
modify the Library and then relink to produce a modified executable containing
the modified Library. (It is understood that the user who changes the contents
of definitions files in the Library will not necessarily be able to recompile the
application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give
the same user the materials specified in Subsection 6a, above, for a charge no
more than the cost of performing this distribution.

c¢) If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the
same place.

d) Verify that the user has already received a copy of these materials or that you
have already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must
include any data and utility programs needed for reproducing the executable from
it. However, as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which
the executable runs, unless that component itself accompanies the executable.

102



It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system. Such
a contradiction means you cannot use both them and the Library together in an
executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a
single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the
work based on the Library and of the other library facilities is otherwise permitted,
and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the
Library, uncombined with any other library facilities. This must be distributed
under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is
a work based on the Library, and explaining where to find the accompanying
uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify, sub-
license, link with, or distribute the Library is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its deriva-
tive works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Library (or any work based on the Li-
brary), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the re-
cipient automatically receives a license from the original licensor to copy, distribute,
link with or modify the Library subject to these terms and conditions. You may
not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this
License.

11. If. as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute
the Library at all. For example, if a patent license would not permit royalty-free

103



redistribution of the Library by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system which
is implemented by public license practices. Many people have made generous con-
tributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if
he or she is willing to distribute software through any other system and a licensee
cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a conse-
quence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Library under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among coun-
tries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Library
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Library does not specify
a license version number, you may choose any version ever published by the Free
Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose dis-
tribution conditions are incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation,
write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives
of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE

104



COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR

IMPLIED, INCLUDING,BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LI-

BRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU

ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-

RECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMIT-
TED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCU-
RATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POS-
SIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

8.2 GNU General Public License

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and
a “work based on the Program” means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.)
Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately pub-
lish on each copy an appropriate copyright notice and disclaimer of warranty; keep

105



intact all the notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License along with the
Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus form-
ing a work based on the Program, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as
a whole at no charge to all third parties under the terms of this License.

¢) If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most or-
dinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Ex-
ception: if the Program itself is interactive but does not normally print such
an announcement, your work based on the Program is not required to print an
announcement. )

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

106



a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source
distribution, a complete machine-readable copy of the corresponding source
code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

¢) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modi-
fications to it. For an executable work, complete source code means all the source
code for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are
not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain
in full compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its deriva-
tive works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and all its terms
and conditions for copying, distributing or modifying the Program or works based
on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

107



7. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit royalty—free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system,
which i1s implemented by public license practices. Many people have made gener-
ous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a conse-
quence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limita-
tion excluding those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates the limitation
as 1f written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
a version number of this License, you may choose any version ever published by the
Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be

108



guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM “ASIS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF
THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PER-
MITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUD-
ING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

109



Appendix A

Frequently Asked Questions About
MICO

Q: During compilation my gcc 2.7.2.x dies with an "internal compiler error”. What s
going wrong?

A: Some Linux distributions (noteably Suse Linux 5 and Red Hat) shipped broken gcc
binaries. You have to recompile gce 2.7.2.x, or better yet, install eges 1.x or gce

2.8.x.

Q: I have installed gece 2.8 or eges, and it still dies with an "internal compiler error”.

A: You are encouraged to submit a bug report to the appropriate compiler’s mailing
list. In the meantime, disabling optimization usually works.

./configure --disable-optimize

Q: During compilation gec dies with a "virtual memory exhausted” error. What can I
do?

A: Add more swap space. Under Linux you can simply create a swap file:

su
dd if=/dev/zero of=/tmp/swapfile bs=1024 count=64000
mkswap /tmp/swapfile
swapon /tmp/swapfile

There are similar ways for other unix flavors. Ask your sys admin. If for some
reason you cannot add more swap space, try turning off optimization by rerunning
configure: ./configure --disable-optimize.

Q: I use Cygnus CDK and gcc dies with a "virtual memory exhausted” error. How to
fiz this?

110



: There seems to be a bug Cygnus CDK betal9 that prevents gce from using swap
space. The only workaround is to disable optimization by rerunning configure:
./configure --disable-optimize.

: I configured for namspace support but MICO doesn’t compile?

: Earlier versions of gec and eges (up to gee 2.8 and eges 1.0) have very limited
namespace support. The tests configure does to check for working namespaces pass,
but MICO itself fails to compile. Rerun configure with --disable-namespace.

: Why do MICO programs fail with a COMM_FAILURE exception when running on
‘localhost’?

: Because MICO requires using your ‘real’ host name. Never use ‘localhost’ in an
address specification.

: MICO programs crash. Why?

: There is no easy answer (what did you expect?). But often this is caused by linking
in wrong library versions. For example people often install egcs as a second compiler
in their system and set PATH such that egcs will be picked. But that is not enough:
You have to make sure that eges’ C4+ libraries (esp. libstde++) will be linked in.
One way to make MICO use an egcs installed in /usr/local/egcs is:

export PATH=/usr/local/egcs/bin:$PATH

export CXXFLAGS=-L/usr/local/egcs/1lib

export LD_LIBRARY_PATH=/usr/local/egcs/1ib:$LD_LIBRARY_PATH
./configure

If that is not the cause you probably found a bug in MICO. Write a mail to
mico@vsb.cs.uni-frankfurt.de containing a description of the problem, along
with

the MICO version (make sure it is the latest by visiting http://www.mico.org/)
— the operating system you are running on
— the hardware you are running on

— the compiler type and version you are using

a stack trace

— To get a stack trace run the offending program in the debugger:
gdb <prog>

(gdb) run <args>

program got signal 777

(gdb) backtrace

111



and include the output in your mail.

: After creating Implementation Repository entries with imr create imr list does not
show the newly created entries. What is going wrong?

: You must tell imr where micod is running, otherwise imr will create its own imple-
mentation repository which is destroyed when imr exits. You tell imr the location
of the implementation repository by using the ~-ORBImplRepoAddr option, e.g.:

micod -ORBIIOPAddr inet:jade:4242 &

imr -ORBImplRepoAddr inet:jade:4242

. I'm using eges 1.x. When I turn off MiniSTL compliation aborts with
/usr/ccs/bin/as: error: can’t compute value of an expression
involving an external symbol

: This 1s a bug in the assember. One solution is to enable debugging:
./configure --enable-debug

The preferred solution is to install GNU as (in the binutils package). See also the
discussion on the eges FAQ (the -fsquangle option).

: Why don’t exceptions work on Linuz?

: They do. You are experiencing a bug in the assembler. Upgrade to binutils-2.8.1.0.15
or newer and recompile MICO.

112



Bibliography

[1] ITU.TS Recommendation X.901 — ISO/IEC 10746-1: Basic Reference Model of Open
Distributed Processing Part 1: Overview and Guide to the use of the Reference Model,
July 1994.

[2] ITU.TS Recommendation X.902 — ISO/IEC 10746-2: Basic Reference Model of Open
Distributed Processing Part 2: Descriptive Model, 1994.

[3] ITU.TS Recommendation X.903 — ISO/IEC 10746-3: Basic Reference Model of Open
Distributed Processing Part 3: Prescriptive Model, February 1994.

[4] ITU.TS Recommendation X.904 — ISO/IEC 10746-4: Basic Reference Model of Open
Distributed Processing Part 4: Architectural Semantics, 1994.

[5] Object Management Group (OMG), The Common Object Request Broker: Archite-
cure and Specification, Revision 2.2, February 1998.

[6] A. Puder. Introduction to the AI-Trader Project. http://www.vsb.informatik.uni-
frankfurt.de/projects/aitrader/, Computer Science Department, University of Frank-
furt, 1995.

[7] A. Puder and K. Romer. Using a Meta-Notation in a CORBA environment. In
CORBA: Implementation, Use and Evaluation, ECOOP, Jyvaskyla, Finland, June
1997.

8] J.F. Sowa.  Conceptual Structures, information processing mind and machine.

Addison—Wesley Publishing Company, 1984.

113



