
Chapter 2:
Middleware

Gustavo Alonso
Computer Science Department
Swiss Federal Institute of Technology (ETHZ)
alonso@inf.ethz.ch
http://www.iks.inf.ethz.ch/

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 2

Contents - Chapter 2
� Understanding middleware

� Middleware as a programming abstraction
� Middleware as infrastructure

� Overview of conventional middleware platforms
� RPC
� TP Monitors
� Object brokers

� Middleware convergence

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 3

Programming abstractions
� Programming languages and almost any form of software system evolve always

towards higher levels of abstraction
� hiding hardware and platform details
� more powerful primitives and interfaces
� leaving difficult task to intermediaries (compilers, optimizers, automatic

load balancing, automatic data partitioning and allocation, etc.)
� reducing the number of programming errors
� reducing the development and maintenance cost of the applications

developed by facilitating their portability
� Middleware is primarily a set of programming abstractions developed to

facilitate the development of complex distributed systems
� to understand a middleware platform one needs to understand its

programming model
� from the programming model the limitations, general performance, and

applicability of a given type of middleware can be determined in a first
approximation

� the underlying programming model also determines how the platform will
evolve and fare when new technologies evolve

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 4

����������	�
�������

��	����

��������

��������������	�������

����������	�
���������
��
���	������	�����
�����������

����	�
����	����
����������
���
����������������������
��	������
���������� �������!���������	��������
��
��� ����	������	����������	���

���������
����������������	�������������������

���	�����"���������������
�������������������������	��������
!��������	����	��
���!�� ����
��������

��������������	��������
��!�����	�������
�������������
��
���������

RPC as a programming abstraction

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 5

The genealogy of middleware

Remote Procedure Call

sockets

TCP, UDP

Internet Protocol (IP)

Remote Procedure Call: hides communication details
behind a procedure call and helps bridge heterogeneous
platforms

sockets:
operating system level interface to the underlying
communication protocols

TCP, UDP:
User Datagram Protocol (UDP) transports data
packets without guarantees
Transmission Control Protocol (TCP) verifies correct
delivery of data streams
Internet Protocol (IP):
moves a packet of data from one node to another

Transactional
RPC

Object oriented
RPC (RMI)

Asynchronous
RPC

TP-Monitors
Object
brokers

Message
brokers

Application
servers

Specialized forms of RPC, typically with additional
functionality or properties but almost always
running on RPC platforms

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 6

And the Internet? And Java?
� Programming abstractions are a key part of middleware but not the only one:

� a programming abstraction without good supporting infrastructure (i.e., a
good implementation and support system underneath) does not help

� Programming abstractions, in fact, appear I many cases in reaction to changes in
the underlying hardware or the nature of the systems being developed

� Java is a programming language that abstracts the underlying hardware:
programmers see only the Java Virtual Machine regardless of what computer
they use
� code portability (not the same as code mobility)
� the first step towards standardizing middleware abstractions (since now the

can be based on a virtual platform everybody agrees upon)

� The Internet is a different type of network that requires one more specialization
of existing abstractions:
� The Simple Object Access Protocol (SOAP) of Web services is RPC

wrapped in XML and mapped to HTML for easy transport through the
Internet

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 7

Middleware as infrastructure

DCE runtime environment

RPC
protocols

security
service

cell
service

distributed
file service

thread
service

IDL
sources

interface
headers

IDL compiler

IDLclient
code

client stub

RPC run time
service library

language specific
call interface

RPC API

server
code

server stub

RPC run time
service library

language specific
call interface

RPC API

client process server processDCE
development
environment

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 8

Infrastructure
� As the programming abstractions reach higher and higher levels, the underlying

infrastructure implementing the abstractions must grow accordingly
� Additional functionality is almost always implemented through additional

software layers
� The additional software layers increase the size and complexity of the

infrastructure necessary to use the new abstractions

� The infrastructure is also intended to support additional functionality that makes
development, maintenance, and monitoring easier and less costly
� RPC => transactional RPC => logging, recovery, advanced transaction

models, language primitives for transactional demarcation, transactional file
system, etc.

� The infrastructure is also there to take care of all the non-functional
properties typically ignored by data models, programming models, and
programming languages: performance, availability, recovery,
instrumentation, maintenance, resource management, etc.

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 9

Understanding middleware

PROGRAMMING ABSTRACTION

� Intended to hide low level details of
hardware, networks, and distribution

� Trend is towards increasingly more
powerful primitives that, without
changing the basic concept of RPC, have
additional properties or allow more
flexibility in the use of the concept

� Evolution and appearance to the
programmer is dictated by the trends in
programming languages (RPC and C,
CORBA and C++, RMI and Java, Web
services and SOAP-XML)

INFRASTRUCTURE

� Intended to provide a comprehensive
platform for developing and running
complex distributed systems

� Trend is towards service oriented
architectures at a global scale and
standardization of interfaces

� Another important trend is towards
single vendor software stacks to
minimize complexity and streamline
interaction

� Evolution is towards integration of
platforms and flexibility in the
configuration (plus autonomic behavior)

To understand middleware, one needs to understand its dual role as programming abstraction
and as infrastructure

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 10

Next topics
� RPC
� TP Monitors
� Object brokers

