
Chapter 2:
Transaction Processing Monitors (TP-monitors)

Gustavo Alonso
Computer Science Department
Swiss Federal Institute of Technology (ETHZ)
alonso@inf.ethz.ch
http://www.iks.inf.ethz.ch/

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 2

Outline
� Historical perspective:

� The problem: synchronization and atomic interaction
� The solution: transactional RPC and additional support

� TP Monitors
� Example and Functionality
� Architectures
� Structure
� Components

� TP Monitor functionality in CORBA

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 3

Client, server, and databases
� Processing, storing, accessing and

retrieving data has always been one
of the key aspects of enterprise
computing. Most of this data resides
in relational database management
systems, which have well defined
interfaces and provided very clear
guarantees to the operations
performed over the data.

� However:
� not all the data can reside in the

same database
� the application is built on top of

the database. The guarantees
provided by the database need to
be understood by the application
running on top

INVENTORY CONTROL
IF supplies_low
THEN

BOT
Place_order
Update_inventory

EOT

Products
databaseD

B
M

S

Inventory
and order
databaseD

B
M

S
New_product

Lookup_product
Delete_product
Update_product

Place_order
Cancel_order

Update_inventory
Check_inventory

Server 3 (inventory)Server 2 (products)

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 4

The nice thing about databases ...
� … is that they take care of all

aspects related to data management,
from physical storage to
concurrency control and recovery

� Using a database can reduce the
amount of code necessary in a large
application by about 40 %

� From a client/server perspective, the
databases help in:
� concurrency control: many

servers can be connected in
parallel to the same database
and the database will still have
correct data

� recovery: if a server fails in the
middle of an operation, the
database makes sure this does
not affect the data or other
servers

� Unfortunately, these properties are
provided only to operations
performed within the database. In
principle, they do not apply when:
� An operation spawns several

databases
� the operations access data not in

the database (e.g., in the server)
� To help with this problem, the

Distributed Transaction processing
Model was created by X/Open (a
standard’s body). The heart of this
model is the XA interface for 2
Phase Commit, which can be used to
ensure that an operation spawning
several databases enjoy the same
atomicity properties as if it were
executed in one database.

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 5

One at a time interaction
� Databases follow a single thread

execution model where a client can
only have one outstanding call to
one and only one server at any time.
The basic idea is one call per
process (thread).

� Databases provide no mechanism to
bundle together several requests into
a single work unit

� The XA interface solves this
problem for databases by providing
an interface that supports a 2 Phase
Commit protocol. However, without
any further support, the client
becomes the one responsible for
running the protocol which is highly
impractical

� An intermediate layer is needed to
run the 2PC protocol

Database CLIENT
BOT
...

EOT

database

D
B

M
S

DBMS enforces
transactional

brackets

Database CLIENT
BOT
...

EOT

database

DBMS

Additional layer
enforces

transactional
brackets

database

DBMS

2 Phase Commit
coordinator

XA XA

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 6

2 Phase Commit
BASIC 2PC

� Coordinator send PREPARE to all
participants.

� Upon receiving a PREPARE
message, a participant sends a
message with YES or NO (if the
vote is NO, the participant aborts the
transaction and stops).

� Coordinator collects all votes:
� All YES = Commit and send

COMMIT to all others.
� Some NO = Abort and send

ABORT to all which voted
YES.

� A participant receiving COMMIT or
ABORT messages from the
coordinator decides accordingly and
stops.

What is needed to run 2PC?
� Control of Participants: A

transaction may involve many
resource managers, somebody has to
keep track of which ones have
participated in the execution

� Preserving Transactional Context:
During a transaction, a participant
may be invoked several times on
behalf of the same transaction. The
resource manager must keep track of
calls and be able to identify which
ones belong to the same transaction
by using a transaction identifier in
all invocations

� Transactional Protocols: somebody
acting as the coordinator in the 2PC
protocol

� Make sure the participants
understand the protocol (this is what
the XA interface is for)

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 7

Interactions through RPC
� RPC has the same limitations as a

database: it was designed for one at
a time interactions between two end
points. In practice, this is not
enough:
a) the call is executed but the

response does not arrive or the
client fails. When the client
recovers, it has no way of
knowing what happened

b) c) it is not possible to join two
calls into a single unit (neither
the client nor the server can do
this)

database

D
B

M
S

cl
ie

nt

se
rv

er

(a)

database

D
B

M
S

cl
ie

nt

se
rv

er

(b)

database

D
B

M
S

database

D
B

M
S

cl
ie

nt

se
rv

er
(c)

database

D
B

M
S

se
rv

er

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 8

Transactional RPC
� The limitations of RPC can be resolved

by making RPC calls transactional. In
practice, this means that they are
controlled by a 2PC protocol

� As before, an intermediate entity is
needed to run 2PC (the client and server
could do this themselves but it is neither
practical nor generic enough)

� This intermediate entity is usually called
a transaction manager (TM) and acts as
intermediary in all interactions between
clients, servers, and resource managers

� When all the services needed to support
RPC, transactional RPC, and additional
features are added to the intermediate
layer, the result is a TP-Monitor

database

DBMS

client

server

database

DBMS

server

TM

TMTM
TP

monitor

XA XA

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 9

Basic TRPC (making calls)

Client
BOT
…

Service_call
…

Client stub
Get tid
from TM

Add tid to
call

Server

Service
procedure

Server stub
Get tid
register with

the TM
Invoke service
return

Transaction Manager (TM)
Generate tid
store context for tid

Associate server to tid

1 2

3

4

5

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 10

Basic TRPC (committing calls)

Client
...
Service_call
…
EOT

Client stub

Send to TM
commit(tid)

ServerServer stub
Participant
in 2PC

Transaction Manager (TM)
Look up tid

Run 2PC with all servers
associated with tid

Confirm commit

1

3

2

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 11

Additional
features

One step beyond ...
� The previous example assumes the

server is transactional and can run
2PC. This could be, for instance, a
stored procedure interface within a
database. However, this is not the
usual model

� Typically, the server invokes a
resource manager (e.g., a database)
that is the one actually running the
transaction

� This makes the interaction more
complicated as it adds more
participants but the basic concept is
the same:
� the server registers the resource

manager(s) it uses
� the TM runs 2PC with those

resources managers instead of
with the server (see OTS at the
end)

client stub

Transaction
manager

RPC
support

server stub server stub

client stub

database database

TP-Monitor

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 12

TP-Monitors = transactional RPC
� A TP-Monitor allows building a

common interface to several
applications while maintaining or adding
transactional properties. Examples:
CICS, Tuxedo, Encina.

� A TP-Monitor extends the transactional
capabilities of a database beyond the
database domain. It provides the
mechanisms and tools necessary to build
applications in which transactional
guarantees are provided.

� TP-Monitors are, perhaps, the best,
oldest, and most complex example of
middleware. Some even try to act as
distributed operating systems providing
file systems, communications, security
controls, etc.

� TP-Monitors have traditionally been
associated to the mainframe world.
Their functionality, however, has long
since migrated to other environments
and has been incorporated into most
middleware tools.

T
P

-M
on

ito
r

transactional
coordination

client

services

Application 1 Application 3Application 2

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 13

TP-Monitor functionality
� TP-Monitors appeared because

operating systems are not suited for
transactional processing. TP-Monitors
are built as operating systems on top of
operating systems.

� As a result, TP-Monitor functionality is
not well defined and very much system
dependent.

� A TP-Monitor tries to cover the
deficiencies of existing “all purpose”
systems. What it does is determined by
the systems it tries to ”improve”.

� A TP-Monitor is basically an integration
tool. It allows system designers to tie
together heterogeneous system
components using a number of utilities
that can be mixed and matched
depending on the particular
characteristics of each case.

� Using the tools provided by the TP-
Monitor, the integration effort becomes
more straightforward as most of the
needed functionality is directly
supported by the TP-Monitor.

� A TP-Monitor addresses the problems of
sharing data from heterogeneous,
distributed sources, providing clean
interfaces and ensuring ACID
properties.

� A TP-Monitor extrapolates the functions
of a transaction manager (locking,
scheduling, logging, recovery) and
controls the distributed execution. As
such, TP-Monitor functionality is at the
core of the integration efforts of many
software producers (databases,
workflow systems, CORBA providers,
…).

� A TP-Monitor also controls and
manages distributed computations. It
performs load balancing, monitoring of
components, starting and finishing
components as needed, routing of
requests, recovery of components,
logging of all operations, assignment of
priorities, scheduling, etc. In many cases
it has its own transactional file system,
becoming almost indistinguishable from
a distributed operating system.

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 14

Transactional properties
� The TP-monitor tries to encapsulate the

services provided within transactional
brackets. This implies RPC augmented
with:
� atomicity: a service that produces

modifications in several
components should be executed
entirely and correctly in each
component or should not be
executed at all (in any of the
components).

� isolation: if several clients request
the same service at the same time
and access the same data, the
overall result will be as if they were
alone in the system.

� consistency: a service is correct
when executed in its entirety (it
does not introduce false or incorrect
data into the component databases)

� durability: the system keeps track
of what has been done and is
capable of redoing and undoing
changes in case of failures.

T
P

-M
on

ito
r

transactional
coordination

client

services

Application 1 Application 3Application 2

us
er

pr

og
ra

m

client

server

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 15

TRAN-C (Encina)
include <tc/tc.h>
inModule(“helloWorld”);

void Main () {
int i;
inFunction(“main”);
initTC(); /* initializes transaction manager */

transaction { /* starts a transaction */
printf(“Hello World - transaction %d\n”, getTid());
if (I % 2) abort (“Odd transactions are aborted”);
}

onCommit
printf(“Transaction Comitted”);

onAbort
printf(“Abort in module: %s\n \t %s\n”, abortModuleNAme(), abortReason());

}

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 16

TP-Monitor, generic architecture

Branch 1 Branch 2 Finance Dept.

Yearly balance ? Monthly average revenue ?

ap
p

se
rv

er
 1

ap
p

se
rv

er
 1

’

wrappers

ap
p

se
rv

er
 2

app server 3

recoverable
queue

Front end

us
er

pr

og
ra

m

us
er

pr

og
ra

m

us
er

pr

og
ra

m

us
er

pr

og
ra

m

Control (load balancing,
cc and rec., replication,
distribution, scheduling,
priorities, monitoring …)

TP-Monitor
environment

Interfaces to user defined services

Programs implementing the services

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 17

Tasks of a TP Monitor
Core services

� Transactional RPC: Implements
RPC and enforces transactional
semantics, scheduling operations
accordingly

� Transaction manager: runs 2PC and
takes care of recovery operations

� Log manager: records all changes
done by transactions so that a
consistent version of the system can
be reconstructed in case of failures

� Lock manager: a generic mechanism
to regulate access to shared data
outside the resource managers

Additional services
� Server monitoring and

administration: starting, stopping
and monitoring servers; load
balancing

� Authentication and authorization:
checking that a user can invoke a
given service from a given terminal,
at a given time, on a given object
and with a given set of parameters
(the OS does not do this)

� Data storage: in the form of a
transactional file system

� Transactional queues: for
asynchronous interaction between
components

� Booting, system recovery, and other
administrative chores

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 18

Structure of TP-Monitors (I)
� TP-Monitors try in many aspects to

replace the operating system so as to
provide more efficient transactional
properties. Depending what type of
operating system they try to replace,
they have a different structure:
� Monolithic: all the functionality of

the TP-Monitor is implemented
within one single process. The
design is simpler (the process can
control everything) but restrictive
(bottleneck, single point of failure,
must support all possible protocols
in one single place).

� Layered: the functionality is divided
in two layers. One for terminal
handling and several processes for
interaction with the resource
managers. The design is still simple
but provides better performance and
resilience.

� Multiprocessor: the functionality is
divided among many independent,
distributed processes.

Monitor process

Terminal handling (multithreaded)

Application handling (multithreaded)

db db dbdbdb

Monolithic structure

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 19

Structure of TP-Monitors (II)

Terminal handling (multithreaded)

db dbdb

Layered structure

App 1 App 1App 1

db dbdb

Multiprocessor structure

App 1 App 1App 1

Term.
interf.

Term.
interf.

Term.
interf.

M
on

it
or

pr
oc

es
s

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 20

TP-Monitor components (generic)

persistent
queue

Application
program

Recovery
manager

Log
manager

database

persistent
queue

data
dictionary

context
database

program
library

client

external
resource
manager

client

client

P
re

se
nt

at
io

n
se

rv
ic

es A
ut

he
nt

ic
at

io
n

Administration and operations interfaces

Monitor services

scheduling load balancing

server classqueues

contextbinding

internal
resource
managers

From “Transaction Processing” Gray&Reuter. Morgan Kaufmann 1993

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 21

Example: BEA Tuxedo

client
process

dll
routine

client
handler

bulletin
board

name server
server

process
named
service

resource
manager

service
call

forward call locate
server

server
location

forward call
queue

read invoke
transaction

queue response

response

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 22

Example: BEA Tuxedo
� The client uses DLL (Dynamic Link

Libraries) routines to interact with
the TP-Monitor

� The Monitor Process or Tuxedo
server implements all system
services (name services, transaction
management, load balancing, etc)
and acts as the control point for all
interactions

� Application services are known as
named services. These named
services interact with the system
through a local server process

� Interaction across components is
through message queues rather than
direct calls (although clients and
servers may interact synchronously)

client

dll routine

Monitor process

Named service

DBMS

database

server process

Resource
manager

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 23

TP-Monitor components (Encina)
� The current trend is towards a “family of

products” instead of a single system.
Each element can be used by itself
(reduced footprint) and, in some cases,
can be used completely independent of
the TP-Monitor.

� Monitor: execution environment
providing integrity, availability,
security, fast response time and high
throughput. It includes tools for
administration and installation of
components and the development
environment.

� Communication services: protocols and
mechanisms for persistent messages and
peer to peer communication.

� Transactional RPC: basic interaction
mechanism

� Transactional services: supporting
concurrency control, recovery, logging
and transactional programming.
Behavior of the system can be tailored
(advances transaction models, selective
logging, ad-hoc recovery …)

� Persistent storage

data mgmt.data mgmt.

adminadmin

server mgmt.server mgmt.

schedulingscheduling

Monitor Communication

Txn.-RPC Txn. services

Persistent storage

databasedatabasetxnal. file system.txnal. file system.

queuesqueues

peer to peerpeer to peer

concurrency controlconcurrency control

T-RPCT-RPC

RPCRPC

recoveryrecoverylogginglogging

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 24

External interfaces
With clients

� The main interface is through the
presentation services. In old
systems, presentation services
included terminal handling and
format control for presentation on a
screen. Today, the presentation
services are mostly interfaces to
other systems that take care of data
presentation (mainly web servers)

� The most important part of the
presentation services still in use
today is the RPC (TRPC) stubs and
libraries used on the client side for
invoking services implemented
within the TP-Monitor

With administrators
� The TP-Monitor needs to be

maintained and administered like
any other system. Today there are a
wide variety of tools for doing so.
They include:
� node monitoring
� service monitoring
� load monitoring
� configuration tools
� programming support
� …

� Another important part of the
interfaces to the system are the
development environments which
tend to be similar in nature to that of
RPC systems

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 25

Monitor services
� Monitor servicesare those facilities

that provide the basic functionality
of the TP-Monitor. They can be
implemented as part of the TP-
Monitor process or as external
resource managers

� Server class: each application
program implementing services has
a server class in the monitor. The
server class starts and stops the
application, creates message queues,
monitors the load, etc. In general, it
manages one application program

� Binding: acts as the name and
directory services and offers similar
functionality as the binder in RPC. It
might be coupled with the load
balancing service for better
distribution

� Load balancing: tries to optimize the
resources of the system by providing
an accurate picture of the ongoing
and scheduled work

� Context management: a key service
in TRPC that is also used in keeping
context across transaction
boundaries or to store and forward
data between different resource
managers and servers

� Communication services(queue
management and networking) are
usually implemented as external
resource managers. They take care
of transactional queuing and any
other aspect of message passing

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 26

Resource managers
Internal Resource Managers

� These are modules that implement a
particular service in the TP-Monitor.
There are two kinds:

� Application programs: programs that
implement a collection of services
that can be invoked by the clients of
the TP-Monitor. They define the
application built upon the TP-
Monitor

� Internal services: like logging,
locking, recovery, or queuing.
Implementing these services as
resource managers gives more
modularity to the system and even
allows to use other systems for this
purpose (like queue management
systems)

External Resource Managers
� These are the systems the TP-

Monitor has to integrate
� The typical resource manager is a

database management system with
an SQL/XA interface. It can also be
a legacy application, in which case
wrappers are needed to bridge the
interface gap. A typical example are
screen scraping modules that
interact with mainframe based
applications by posing as dumb
terminals

� The number and type of external
resource managers keeps growing
and a resource manager can be
another TP monitor.

� The WWW is slowly also becoming
a resource manager

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 27

Transaction processing components

Client

TP
Monitor

communication
manager

Service

forward request

response

Transaction
manager

Begin Work
Save Work
Commit
Rollback

Savepoint
Prepare
CommitSavepoint

Prepare
Commit

Service Request/Response

Log
Records

UNDO/
REDO
Log
Records

Savepoint
Prepared
Committed
Completed
Checkpoint

Save Work
Checkpoint
Prepare
Commit

transaction

send /
receive

Log
manager

database Resource
managers

register incoming /
outgoing transactions

From “Transaction Processing” Gray&Reuter. Morgan Kaufmann 1993

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 28

TP-Monitors vs. OS

TP Services Admin interface
Configuration tools
Load balancing
Programming tools

Databases
Disaster recovery

Resource managers
Flow of control

Name server
Server invocation
Protected user
interface

TP internal
system services

Txn identifiers
Server class
Scheduling
Authentication

Transaction manager
Logs and context
Durable queues
Transactional files

Transactional RPC
Transactional
Sessions
RPC

OS Process – Threads
Address space
Scheduling
Local naming protection

Repository

File System
Blocks, paging
File security

IPC
Simple sessions
Naming
Authentication

Hardware CPU Memory Wires, switches

processing data communication

TP
Monitor

From “Transaction Processing” Gray&Reuter. Morgan Kaufmann 1993

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 29

Advantages of TP-Monitors
� TP-Monitors are a development and run-time platform for distributed

applications
� The separation between the monitor and the transaction manager was a practical

consideration but turned out to be a significant advantage as many of the
features provided by the monitor are as valuable as transactions

� The move towards more modular architectures prepared TP-Monitors for
changes that had not been foreseen but turned be quite advantageous:
� the web as the main interface to applications: the presentation services

included an interface so that requests could be channeled through a web
server

� queuing as a form of middleware in itself (Message Oriented Middleware,
MOM): once the queuing service was an internal resource manager, it was
not too difficult to adapt the interface so that the TP-Monitor could talk with
other queuing systems

� Distributed object systems (e.g., CORBA) required only a small syntactic
layer in the development tools and the presentation services so that services
will appear as objects and TRPC would be come a method invocation to
those objects.

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 30

TP-Heavy vs. TP-Light = 2 tier vs. 3 tier
� A TP-heavy monitor provides:

� a full development environment
(programming tools, services,
libraries, etc.),

� additional services (persistent
queues, communication tools,
transactional services, priority
scheduling, buffering),

� support for authentication (of users
and access rights to different
services),

� its own solutions for
communication, replication, load
balancing, storage management ...
(most of the functionality of an
operating system).

� Its main purpose is to provide an
execution environment for resource
managers (applications), and do all this
with guaranteed reasonable performance
(e.g., > 1000 txns. per second).

� This is the traditional monitor: CICS,
Encina, Tuxedo.

� A TP-Light is an extension to a
database:
� it is implemented as threads, instead

of processes,
� it is based on stored procedures

("methods" stored in the database
that perform an specific set of
operations) and triggers,

� it does not provide a development
environment.

� Light Monitors are appearing as
databases become more sophisticated
and provide more services, such as
integrating part of the functionality of a
TP-Monitor within the database.

� Instead of writing a complex query, the
query is implemented as a stored
procedure. A client, instead of running
the query, invokes the stored procedure.

� Stored procedure languages: Sybase's
Transact-SQL, Oracle's PL/SQL.

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 31

TP-light: databases and the 2 tier approach
� Databases are traditionally used to

manage data.
� However, simply managing data is not

an end in itself. One manages data
because it has some concrete application
logic in mind. This is often forgotten
when considering databases (specially
benchmarking) and has allowed SAP to
take over a significant market share
before any other vendors reacted.

� But if the application logic is what
matters, why not move the application
logic into the database? These is what
many vendors are advocating. By doing
this, they propose a 2 tier model with the
database providing the tools necessary to
implement complex application logic.

� These tools include triggers, replication,
stored procedures, queuing systems,
standard access interfaces (ODBC,
JDBC) .. which are already in place in
many databases.

user defined
application logic

database

resource manager

external
application

Database
developing
environment

client

database management system

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 32

TP-Heavy: 3-tier middleware
� TP-heavy are middleware platforms for

developing 3-tier architectures. They
provide all the functionality necessary
for such an architecture to work.

� A system designer only need to program
the services (which will run within the
scope of the TP-Monitor; the services
are linked to a number of TP libraries
providing the needed functionality), the
wrappers (if they are not already
provided), and the clients. The TP-
Monitors takes these components and
embeds them within the overall system
as interconnected components.

� The TP-Monitor provides the
infrastructure for the components to
work and the tools necessary to build
services, wrappers and clients. In some
cases, it provides even its own
programming language (e.g.,
Transational-C of Encina).

Clients

connecting logic

Transaction
control

Services

terminal
handling

2
tie

r
sy

st
e

m
s

Resource
managers

wrappers

T
P

 m
on

ito
r

©Gustavo Alonso, ETH Zurich. Web services: Concepts, Architectures and Applications - Chapter 2 33

Object Transaction Service
� An OTS provides transactional

guarantees to the execution of
invocations between different
components of a distributed
application built on top of an ORB.
It is part of the CORBA standard It
is identical to a basic TP-Monitor

� There are two ways to trace calls:
� Explicit (manual): the invocation

itself contains the transaction
identifier. Then, when the
application registers the resource
manager, it uses this transaction
identifier to say to which
transaction it is “subscribing”

� Implicit (automatic): the call is
made through the OTS, which
will forward the transaction
identifier along with the
invocation. This requires to link
with the OTS library and to
make all methods involved
transactional

� ... and two ways to register
resources (necessary in order to tell
the OTS who will participate in the
2PC protocol and what type of
interface is supported)

� Manual registration implies the the
user provides an implementation of
the resource. This implementation
acts as an intermediary between the
OTS and the actual resource
manager (useful for legacy
applications that need to be
wrapped)

� Automatic registration is used when
the resource manager understands
transactions (i.e., it is a database), in
which case it will support the XA
interface for 2PC directly. A
resource are registered only once,
and implicit propagation is used to
check which transactions go there

©Gustavo Alonso, ETH Zurich. Web services: Concepts, Architectures and Applications - Chapter 2 34

Running a distributed transaction (1)

ORB

App A App B
DB DB

Object
Transaction

Service

1) Assume App A wants to update databases A and B

ORB

App A App B
DB DB

Object
Transaction

Service

ORB

App A App B
DB DB

Object
Transaction

Service

Begin
txn

2) App A obtains a txn identifier for the operation

ORB

App A App B
DB DB

Object
Transaction

Service

Register
db

3) App A registers the database for that transaction

Txn has part
executed in
database A

txn
4) App A runs the txn but does not
commit at the end

©Gustavo Alonso, ETH Zurich. Web services: Concepts, Architectures and Applications - Chapter 2 35

Running a distributed transaction (2)

ORB

App A App B
DB DB

Object
Transaction

Service

5) App A now calls App B

ORB

App A App B
DB DB

Object
Transaction

Service

ORB

App A App B
DB DB

Object
Transaction

Service

Register
db

6) App B registers the database for that transaction

Txn has part
executed in
database B

txn
7) App B runs the txn but does not
commit at the endCall for

Txn

ORB

App A App B
DB DB

Object
Transaction

Service

Commit
txn

2) App A request commit and the OTS runs 2PC

2PC 2PC

©Gustavo Alonso, ETH Zürich. Web services: Concepts, Architectures and Applications - Chapter 2 36

The future of TP-Monitors
� TP-Monitors are the best example of middleware and the most successful

implementation both in terms of performance and functionality.
� Together with object brokers, TP-Monitors form the foundation of today’s

distributed data management products. Enterprise Application Integration is still
largely based on TP-Monitor technology.

� TP-Monitors are the main reference for implementing middleware:
� in terms of performance, TP-Monitors are orders of magnitude ahead of

other middleware systems
� in terms of functionality, TP-Monitors offer a quite complete, well

integrated platform that can be extended to provide the functionality needed
in other middleware systems

� Unlike other forms of middleware, TP-Monitors have proven to be quite
resilient in time: some product lines are almost 30 years old already. Although
the technology changes, the answer to fundamental design problems is well
understood in TP-Monitors. These expertise will still have a significant impact
on any emerging form of middleware.

