
A Research Perspective on Web Services

Gustavo Alonso
Swiss Federal Institute of Technology, ETH

Christoph Bussler
Digital Enterprise Research Institute (DERI)

Tutorial EDBT 2004, Heraklion, Greece

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 2

Contents
I. Introduction to Web Services
II. A critical overview of the technology
III. A critical overview of the context in which the technology is used
IV. Applications and research questions

I.
Introduction to Web Services

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 4

Contents
I. Introduction to Web Services

� SOAP
� WSDL
� UDDI
� Extensions to SOAP
� Common usage patterns

II. A critical overview of the technology
III. A critical overview of the context in which the technology is used
IV. Applications and research questions

SOAP

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 6

What is SOAP?
� The W3C started working on SOAP in 1999. The current W3C recommendation

is Version 1.2
� SOAP covers the following four main areas:

� A message format for one-way communication describing how a message
can be packed into an XML document

� A description of how a SOAP message (or the XML document that makes
up a SOAP message) should be transported using HTTP (for Web based
interaction) or SMTP(for e-mail based interaction)

� A set of rules that must be followed when processing a SOAP message and
a simple classification of the entities involved in processing aSOAP
message. It also specifies what parts of the messages should be read by
whom and how to react in case the content is not understood

� A set of conventions on how to turn an RPC call into a SOAP message and
back as well as how to implement the RPC style of interaction (how the
client makes an RPC call, this is translated into a SOAP message,
forwarded, turned into an RPC call at the server, the reply of the server
converted into a SOAP message, sent to the client, and passed on to the
client as the return of the RPC call)

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 7

The background for SOAP
� SOAP was originally conceived as the minimal possible infrastructure necessary

to perform RPC through the Internet:
� use of XML as intermediate representation between systems
� very simple message structure
� mapping to HTTP for tunneling through firewalls and using the Web

infrastructure
� The idea was to avoid the problems associated with CORBA’s IIOP/GIOP

(which fulfilled a similar role but using a non-standard intermediate
representation and had to be tunneled through HTTP any way)

� The goal was to have an extension that could be easily plugged on top of
existing middleware platforms to allow them to interact through the Internet
rather than through a LAN as it is typically the case. Hence theemphasis on
RPC from the very beginning (essentially all forms of middlewareuse RPC at
one level or another)

� Eventually SOAP started to be presented as a generic vehicle for computer
driven message exchanges through the Internet and then it was open to support
interactions other than RPC and protocols other then HTTP. This process,
however, is only in its very early stages.

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 8

SOAP messages
� SOAP is based on message

exchanges
� Messages are seen as envelops

where the application encloses the
data to be sent

� A message has two main parts:
� header: which can be divided

into blocks
� body: which can be divided into

blocks
� SOAP does not say what to do with

the header and the body, it only
states that the header is optional and
the body is mandatory

� Use of header and body, however, is
implicit. The body is for application
level data. The header is for
infrastructure level data

��������	
��	

����
	��	�

� 	��	���
���

���� � ���

������
���

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 9

For the XML fans (SOAP, body only)

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>
<m:GetLastTradePricexmlns:m="Some-URI">

<symbol>DIS</symbol>
</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

From the: Simple Object Access Protocol (SOAP) 1.1. ©W3C Note 08 May 2000

XML name space identifier for SOAP envelope

XML name space identifier for SOAP serialization

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 10

SOAP example, header and body
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Header>
<t:Transaction

xmlns:t="some-URI"
SOAP-ENV:mustUnderstand="1">

5
</t:Transaction>

</SOAP-ENV:Header>

<SOAP-ENV:Body>
<m:GetLastTradePrice xmlns:m="Some-URI">

<symbol>DEF</symbol>
</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>Fr
om

 th
e:

 S
im

pl
e

O
bj

ec
t A

cc
es

s
Pr

ot
oc

ol
 (

S
O

A
P)

 1
.1

. ©
W

3C
 N

ot
e

08
 M

ay
 2

00
0

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 11

The SOAP header
� The header is intended as a generic place holder for information that is not

necessarily application dependent (the application may not even be aware that a
header was attached to the message).

� Typical uses of the header are: coordination information,identifiers (for, e.g.,
transactions), security information (e.g., certificates)

� SOAP provides mechanisms to specify who should deal with headersand what
to do with them. For this purpose it includes:
� SOAP actor attribute: who should process that particular header entry (or

header block). The actor can be either: none, next, ultimateReceiver. None
is used to propagate information that does not need to be processed. Next
indicates that a node receiving the message can process that block.
ultimateReceiver indicates the header is intended for the final recipient of
the message

� mustUnderstand attribute: with values 1 or 0, indicating whether it is
mandatory to process the header. If a node can process the message (as
indicated by the actor attribute), the mustUnderstand attribute determines
whether it is mandatory to do so.

� SOAP 1.2 adds a relay attribute (forward header if not processed)

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 12

The SOAP body
� The body is intended for the application specific data contained in the message
� A body entry (or a body block) is syntactically equivalent to a header entry with

attributes actor= ultimateReceiver and mustUnderstand = 1
� Unlike for headers, SOAP does specify the contents of some body entries:

� mapping of RPC to a collection of SOAP body entries
� the Fault entry (for reporting errors in processing a SOAP message)

� The fault entry has four elements (in 1.1):
� fault code: indicating the class of error (version, mustUnderstand, client,

server)
� fault string: human readable explanation of the fault (not intended for

automated processing)
� fault actor: who originated the fault
� detail: application specific information about the nature of the fault

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 13

SOAP Fault element (v 1.2)
� In version 1.2, the fault element is specified in more detail. It must contain two

mandatory sub-elements:
� Code: containing a value (the code for the fault) and possibly asubcode (for

application specific information)
� Reason: same as fault string in 1.1

� and may contain a few additional elements:
� detail: as in 1.1
� node: the identification of the node producing the fault (if absent, it defaults

to the intended recipient of the message)
� role: the role played by the node that generated the fault

� Errors in understanding a mandatory header are responded using a fault element
but also include a special header indicating which one o f the original headers
was not understood.

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 14

Message processing
� SOAP specifies in detail how messages must be processed (in particular, how

header entries must be processed)
� Each SOAP node along the message path looks at the role associated with

each part of the message
� There are three standard roles: none, next, or ultimateReceiver
� Applications can define their own roles and use them in the message
� The role determines who is responsible for each part of a message

� If a block does not have a role associated to it, it defaults to ultimateReceiver
� If a mustUnderstand flag is included, a node that matches the role specified must

process that part of the message, otherwise it must generate a fault and do not
forward the message any further

� SOAP 1.2 includes a relay attribute. If present, a node that does not process that
part of the message must forward it (i.e., it cannot remove the part)

� The use of the relay attribute, combined with the role next, is useful for
establishing persistence information along the message path (like session
information)

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 15

From TRPC to SOAP messages

��������	
��	

����
	��	�

� �����������

����	��

���� � ���

����������� �

����������� �

 �� 	��!�����	���	

"�#�"	$�	��

��������	
��	

����
	��	�

���� � ���

"	���������� 	�	�

� �����������

����	��

"�#�"	�����	�%��	��!��
	��& �'

��������	
��	

����
	��	�

���� � ���

(��
��	����

� �����������

����	��

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 16

SOAP and HTTP
� A binding of SOAP to a transport

protocol is a description of how a
SOAP message is to be sent using
that transport protocol

� The typical binding for SOAP is
HTTP

� SOAP can use GET or POST. With
GET, the request is not a SOAP
message but the response is a SOAP
message, with POST both request
and response are SOAP messages
(in version 1.2, version 1.1 mainly
considers the use of POST).

� SOAP uses the same error and status
codes as those used in HTTP so that
HTTP responses can be directly
interpreted by a SOAP module

��������	
��	��������	
��	

����
	��	�

� �����������

����	��

���� ����

����������� 	�	���

����������� 	�	���

 �� 	��!�����	���	

� � � ������

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 17

In XML (a request)
POST /StockQuoteHTTP/1.1

Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>
<m:GetLastTradePrice xmlns:m="Some-URI">

<symbol>DIS</symbol>
</m:GetLastTradePrice>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>F

ro
m

 th
e:

 S
im

pl
e

O
bj

ec
t A

cc
es

s
P

ro
to

co
l (

S
O

A
P

)
1.

1.
 ©

 W
3C

 N
ot

e
08

 M
ay

 2
00

0

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 18

In XML (the response)

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Body>
<m:GetLastTradePriceResponse xmlns:m="Some-URI">

<Price>34.5</Price>
</m:GetLastTradePriceResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

F
ro

m
 th

e:
 S

im
pl

e
O

bj
ec

t A
cc

es
s

P
ro

to
co

l (
S

O
A

P
)

1.
1.

 ©
 W

3C
 N

ot
e

08
 M

ay
 2

00
0

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 19

��������	
��	��������	
��	

����
	��	�

� �����������

����	��

���� ����

����������� 	�	���

����������� 	�	���

 �� 	��!�����	���	

� � � ������

��������	
��	��������	
��	

����
	��	�

� �����������

����	��

���� ����

"	���������� 	�	�

� � � �������&
	�)	� 	��

��"* �#��"�+ , ��� �" ��"* �#���"�* �- �"

"�#���

�
�
�
��
	
�
)�
�	

����
	�)��	

����	���	

�
�
�
��
	
�
)�
�	

����
	�)��	

All together

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 20

SOAP summary
� SOAP, in its current form, provides a basic mechanism for:

� encapsulating messages into an XML document
� mapping the XML document with the SOAP message into an HTTP request
� transforming RPC calls into SOAP messages
� simple rules on how to process a SOAP message (rules became moreprecise

and comprehensive in v1.2 of the specification)
� SOAP takes advantage of the standardization of XML to resolve problems of

data representation and serialization (it uses XML Schema to represent data and
data structures, and it also relies on XML for serializing the data for
transmission). As XML becomes more powerful and additional standards
around XML appear, SOAP can take advantage of them by simply indicating
what schema and encoding is used as part of the SOAP message. Current
schema and encoding are generic but soon there will be vertical standards
implementing schemas and encoding tailored to a particular application area
(e.g., the efforts around EDI)

� SOAP is a very simple protocol intended for transferring data from one
middleware platform to another. In spite of its claims to be open (which are
true), current specifications are very tied to RPC and HTTP.

WSDL

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 22

What is WSDL?
� The Web Services Description Language specification is in working draft 2.0

(November 2003)
� WSDL 1.1 discusses how to describe the different parts that comprise a Web

service:
� Abstract description

• the type system used to describe the messages (based on XML Schema)
• the messages involved in invoking the service
• the individual operations composed of different message exchange

patterns
• an interface that groups the operations that constitute an abstract service

� Concrete description
• binding the interface to a transport protocol
• the endpoint or network address of the binding
• a service as a collection of all bindings of the same interface

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 23

Elements of WSDL
WSDL document

Types (type information for the document, e.g., XML Schema)

Message 1 Message 4Message 3Message 2

Operation 1 Operation 3Operation 2

Message 6Message 5

Interface (abstract service)

binding 1

endpoint 1

binding 2

endpoint 2

binding 3

endpoint 3

binding 4

endpoint 4

Service (the interface in all
its available implementations)

A
bs

tr
ac

t
de

sc
ri

pt
io

n
of

 th
e

se
rv

ic
e

C
on

cr
et

e
de

sc
ri

pt
io

n
of

 th
e

se
rv

ic
e

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 24

Types in WSDL
� The types in WSDL are used to

specify the contents of the messages
(normal messages and fault
messages) that will be exchanged as
part of the interactions with the Web
service

� The type system is typically based
on XML Schema (structures and
data types) - support is mandatory
for all WSDL processors

� An extensibility element can be used
to define a schema other than XML
Schema

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 25

Messages and Faults
� Called “message reference

component” , it contains three
elements:
� message reference: indicating

the message pattern used for this
message

� direction: whether it is an
inbound or outbound message

� message: the actual contents of
the message expressed in terms
of the types previously defined

� Messages are divided into parts,
each of them being a data structure
represented in XML. Each part must
have a type (basic or complex types,
previously declared in the WSDL
document).

� If a SOAP binding is used, a WSDL
message element is meant to match
the contents of the body of a SOAP
message. By looking at the types
and looking at the message, it is
possible to build a SOAP message
that matches the WSDL description
(and this can be done automatically
since the description is XML based
and the types also supported by
SOAP)

� Called the “fault reference
component” , it contains:
� a name
� message reference: the message

to which the fault refers to
� direction: whether the fault is

inbound or outbound
� message: the actual contents

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 26

Operations
� An operation is a set of messages

and faults. The sequencing and
number of messages in the operation
is determined by the message
exchange pattern

� An operation has:
� name
� message exchange pattern
� message references: the

messages involved
� fault references: the faults

involved
� style: RPC, set-attribute or get-

attribute
� features and properties

� Style:
� RPC = implies interactions

mirroring the behavior of RPC
� set- and get- attribute = implies

interactions of the type
commonly found in object
oriented languages

� Features and properties:
� are used to specified

characteristics of the message
exchange implied by an
operation. Examples include
reliability, security, routing, etc

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 27

Message exchange patterns
� IN-ONLY

� a single incoming message (A)
with no faults

� ROBUST IN-ONLY
� an inbound message (A) that

might trigger a fault message
� IN-OUT

� An incoming message (A)
received from node N

� An outgoing message (B) sent to
node N

� Faults, if any, replace message
B

� IN-MULTI-OUT
� Like IN-OUT but with zero or

more outbound messages and
“fault replaces message”
behavior

� OUT-ONLY
� An outbound message (A) that

expects no faults
� ROBUST OUT-ONLY

� An outbound message (A) that
might trigger a fault

� OUT-IN
� An outbound message (A) to

node N
� An inbound message (B) from

node N
� Faults, if any, replace message

B
� ASYNCHRONOUS OUT-IN

� Like OUT-IN but with trigger
behavior for messages

� OUT-MULTI-IN
� reverse of IN-MULTI-OUT

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 28

Interfaces
� An interface defines the messages a

service sends or receives by
grouping the messages into
operations

� An interface can extend the
operations of other interfaces
(inheritance)

� An interface has:
� name
� extended interfaces: other

interfaces that this one extends
� style default: default style for

operations
� operations
� features and properties

� An interface corresponds to the
abstract description of the Web
service, it does not contain any
information about where the service
resides or what protocols are used to
invoke the Web service

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 29

Bindings and ports
� A binding defines message formats

and protocol details for the
operations and messages of a given
Port Type

� A binding corresponds to a single
Port Type (obvious since it needs to
refer to the operations and messages
of the Port Type)

� A Port Type can have several
bindings (thereby providing several
access channels to the same abstract
service)

� The binding is extensible with
elements that allow to specify
mappings of the messages and
operations to any format or transport
protocol. In this way WSDL is not
protocol specific.

� A port specifies the address of a
binding, i.e., how to access the
service using a particular protocol
and format

� Ports can only specify one address
and they should not contain any
binding information

� The port is often specified as part of
a service rather than on its own

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 30

Bindings, endpoints, and services
� A binding describes a concrete

message format and transmission
protocol for a given endpoint

� A binding can be generic or refer to
a concrete interface

� A binding can be defined for an
entire interface or on an operation
basis

� A binding has:
� name
� interface: the interface to which

this binding applies
� operations: a set of binding

operation components
� features and properties

� A binding operation component
specifies the binding for a given
operation:
� name: the operation for which

the binding applies
� message references
� fault references

� The binding operation component
contains message and fault bindings
for all messages and faults of an
operation

� An endpoint associates an address to
a given binding

� A service groups together all the
endpoints for a given interface

� The specification includes bindings
for HHTP, SOAP and MIME (the
latter may eventually be dropped)

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 31

WSDL summary
� WSDL 2.0 provides a mechanism to define the interface to Web services in

terms of messages exchanged with that Web service
� it allows for several forms of interaction (single message, request-response)
� it allows for several bindings (several implementations of the same

interface)
� WSDL plays a similar role as Interface Definition Languages in conventional

middleware platforms:
� describe a service
� can be used to automatically generate code to invoke the service
� can be used by the infrastructure to enforce well formed interactions

� Like other IDLs, WSDL does not contain information about
� semantics
� business protocols and conversations

UDDI

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 33

What is UDDI?
� The UDDI specification is probably the one that has evolved the most from all

specifications we have seen so far. The latest version is version 3 (July 2002):
� version 1 defined the basis for a business service registry
� version 2 adapted the working of the registry to SOAP and WSDL
� version 3 redefines the role and purpose of UDDI registries, emphasizes the

role of private implementations, and deals with the problem of interaction
across private and public UDDI registries

� Originally, UDDI was conceived as an “Universal Business Registry” similar to
search engines (e.g., Google) which will be used as the main mechanism to find
electronic services provided by companies worldwide. This triggered a
significant amount of activity around very advanced and complex scenarios
(Semantic Web, dynamic binsing to partners, runtime/automatic partner
selection, etc.)

� Nowadays UDDI is far more pragmatic and recognizes the realities of B2B
interactions: it presents itself as the “ infrastructure for Web services” , meaning
the same role as a name and directory service (i.e., binder in RPC) but applied to
Web services and mostly used in constrained environments (internally within a
company or among a predefined set of business partners)

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 34

Hype and reality
� There are a few universal UDDI

registries in operation (maintained
by IBM, Microsoft, SAP, etc)

� These registries are very visible and
often the first thing one sees of Web
services

� Unfortunately, these registries are
still very small and most of the
entries in them do not work or do
not correspond to any real service

� This has been a source of criticism
to We services in general. The
criticism has not been entirely
undeserved but it is often misguided:
what was there to criticize was not
UDDI itself but the use that was
been made of it and the hype around
dynamic Web services

� UDDI is rather useful if seen as
supporting infrastructure for Web
services in well defined and
constrained environments (i.e.,
without public access and where
there is a context that provides the
missing information)

� Most of the UDDI registries in place
today are private registries operating
inside companies (recall that the
widest use of Web services today is
for conventional EAI) or maintained
by a set of companies in a private
manner

� UDDI has now become the accepted
way to document Web services and
supply the information missing in
WSDL descriptions

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 35

Role of UDDI
� Services offered through the Internet

to other companies require much
more information that a typical
middleware service

� In many middleware and EAI
efforts, the same people develop the
service and the application using the
service

� This is obviously no longer the case
and, therefore, using a service
requires much more information that
it is typically available for internal
company services

� This documentation has three
aspects to it:
� basic information
� categorization
� technical data

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 36

More detailed (ebXML architecture)

ebXML compliant
system

Business Profiles
Business Scenarios

ebXML
Registry

XML

Request Business Details

1

Build Local System
Implementation

Register Implementation Details
Register COMPANY A Profile

3

2

5
Agree on Business Arrangement4

Query about COMPANY A profile

Download
Scenarios and Profiles

�
�
��
�
�
��
	�
��

�
�
�
��

��
�
�

6

COMPANY A

COMPANY B
ebXML compliant

system

Business Profiles
Business Scenarios

ebXML
Registry

XML

Request Business Details

1

Build Local System
Implementation

Register Implementation Details
Register COMPANY A Profile

3

2

5
Agree on Business Arrangement4

Query about COMPANY A profile

Download
Scenarios and Profiles

�
�
��
�
�
��
	�
��

�
�
�
��

��
�
�

6

COMPANY A

COMPANY B
ebXML compliant

system

Business Profiles
Business Scenarios

ebXML
Registry

XML

Request Business Details

1

Build Local System
Implementation

Register Implementation Details
Register COMPANY A Profile

3

2

5
Agree on Business Arrangement4

Query about COMPANY A profile

Download
Scenarios and Profiles

�
�
��
�
�
��
	�
��

�
�
�
��

��
�
�

6

COMPANY A

COMPANY B

�
20

00
 e

bX
M

L
T

M

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 37

UDDI data
� An entry in an UDDI registry is an XML document composed of different

elements (labeled as such in XML), the most important ones being:
� businessEntity : is a description of the organization that provides the service.
� businessService: a list of all the Web services offered by the business entity.
� bindingTemplate: describes the technical aspects of the service being

offered.
� tModel: (“ technical model”)is a generic element that can be used to store

addotional information about the service, typically additional technical
information on how to use the service, conditions for use, guarantees, etc.

� Together, these elements are used to provide:
� white pages information: data about the service provider (name, address,

contact person, etc.)
� yellow pages information: what type of services are offered and a list of the

different services offered
� green pages information: technical information on how to use each one of

the services offered, including pointers to WSDL descriptions of the
services (which do not reside in the UDDI registry)

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 38

Business entity
� The generic white and yellow pages information about a service provider is

stored in the businessEntity, which contains the following data:
� each businessEntity has a businessKey
� discoveryURLs: a list of URLs that point to alternate, file based service

discovery mechanisms.
� Name: (textual information)
� Business description: (textual information)
� Contacts: (textual information)
� businessServices: a list of services provided by the businessEntity
� identifierBag: a list of external identifiers
� categoryBag: a list of business categories (e.g., industry, product category,

geographic region)

� The businessEntity does not need to be the company. It is meant to represent any
entity that provides services: it can be a department, a group of people, a server,
a set of servers, etc

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 39

Business service
� The services provided by a business entity re described in business terms using

businessServiceelements. A businessServiceelement can describe a single Web
service or a group of related Web services (all of them offered by the same
businessEntity)

� A businessEntity can have several businessServices but a businessService
belongs to one businessEntity

� The businessServicecan actually by provided by a different businessEntity that
the one where the element is found. This is called projection and allows to
include services provided by other organizations as part of the own services

� It contains:
� a serviceKey that uniquely identifies the service and the businessEntity (not

necessarily the same as where the businessService is found)
� name: as before
� description: as before
� categoryBag: as before
� bindingTemplates: a list to all the bindingTemplates for the service with the

technical information on how to access and use the service

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 40

Binding template
� A binding template contains the technical information associated to a particular

service. It contains the following information:
� bindingKey
� serviceKey
� description
� accessPoint: the network address of the service being provided (typically an

URL but it can be anything as this field is a string: e.g., an e-mail address or
even a phone)

� tModels: a list of entries corresponding to tModelsassociated with this
particular binding. The list includes references to the tModels, documents
describing these tModles, short descriptions, etc.

� categoryBag: additional information about the service and its binding (e.g.,
whether it is a test binding, it is on production, etc)

� A businessServicecan have several bindingTemplates but a binding Template
has only one businessService

� The binding template can be best seen as a folder where all the technical
information of a service is put together

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 41

tModel
� A tModel is a generic container of information where designers can writeany

techical information associated to the use of a Web service:
� the actual interface and protocol used, including a pointer to the WSDL

description
� description of the business protocol and conversations supported by the

service
� A tModelisa document with a short description of the technical information and

a pointer to the actual information. It contains:
� tModelKey
� name
� description
� overviewDoc: (with an overviewURL and useType that indicate where to

find the information and its format, e.g., “ text” or “wsdldescription”)
� identifierBag
� categoryBag

� A tModel can point to other tModels and eventually different forms of tModels
will be standardized (tModel for WSDL services, tModels for EDI based
services, etc.)

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 42

Summary of the data in UDDI

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 43

UDDI and WSDL

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 44

UDDI interfaces
� The UDDI specification provides a number of Application Program Interfaces

(APIs) that provide access to an UDDI system:
� UDDI Inquiry: to locate and find details about entries in an UDDI registry.

Support a number of patterns (browsing, drill-down, invocation)
� UDDI Publication: to publish and modify information in an UDDI registry.

All operations in this API are atomic in the transactional sense
� UDDI Security: for access control to the UDDI registry (token based)
� UDDI Subscription: allows clients to subscribe to changes to information in

the UDDI registry (the changes can be scoped in the subscription request)
� UDDI Replication: how to perform replication of information across nodes

in an UDDI registry
� UDDI Custody and Ownership transfer: to change the owner (publisher) of

information and ship custody from one node to another within an UDI
registry

� UDDI also provides a set of APIs for clients of an UDDI system:
� UDDI Subscription Listener: the client side of the subscription API
� UDDI Value Set: used to validate the information provided to an UDDI

registry

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 45

SOAP and UDDI
� Access to an UDDI registry

typically takes place through SOAP
messages that are used to invoke the
corresponding API

� The implicit assumption is that the
APIs behave like RPC and SOAP is
used accordingly

POST /someVerbHereHTTP/1.1
Host: www.somenode.org
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "get_bindingDetail"

<?xml version="1.0" encoding="UTF-8" ?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
<Body>

<get_bindingDetail xmlns="urn:uddi-org:api_v3">
… UDDI Version 3.0 Specif ication, 19 July 2002

� UDDI registries ignore headers, if a
message arrives with a
mustUnderstand header set to 1, a
SOAP fault is generated

� UDDI registries also ignore actor
and use a generic SOAP fault
message

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 46

Summary UDDI
� The UDDI specification is rather complete and encompasses many aspects of an

UDDI registry from its use to its distribution across several nodes and the
consistency of the data in a distributed registry

� Most UDDI registries are private and typically serve as the source of
documentation for integration efforts based on Web services

� UDDI registries are not necessarily intended as the final repository of the
information pertaining Web services. Even in the “universal” version of the
repository, the idea is to standardize basic functions and then built proprietary
tools that exploit the basic repository. That way it is possible to both tailor the
design and maintain the necessary compatibility across repositories

� While being the most visible part of the efforts around Web services, UDDI is
perhaps the least critical due to the complexities of B2B interactions
(establishing trust, contracts, legal constrains and procedures, etc.) . The
ultimate goal is, of course, full automation, but until that happens a long list of
problems need to be resolved and much more standardization is necessary.

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 47

Extensions to SOAP

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 48

The need for attachments
� SOAP is based on XML and relies

on XML for representing data types
� The original idea in SOAP was to

make all data exchanged explicit in
the form of an XML document
much like what happens with IDLs
in conventional middleware
platforms

� This approach reflects the implicit
assumption that what is being
exchanged is similar to input and
output parameters of program
invocations

� This approach makes it very difficult
to use SOAP for exchanging
complex data types that cannot be
easily translated to XML (and there
is no reason to do so): images,
binary files, documents, proprietary
representation formats, embedded
SOAP messages, etc.

<env:Body>
<p:itinerary

xmlns:p="http://.../reservation/travel">
<p:departure>
<p:departing>New York</p:departing>
<p:arriving>Los Angeles</p:arriving>
<p:departureDate>2001-12-

14</p:departureDate>
<p:departureTime>late

afternoon</p:departureTime>
<p:seatPreference>aisle</p:seatPreference>

</p:departure>
<p:return>

<p:departing>Los Angeles</p:departing>
<p:arriving>New York</p:arriving>
<p:departureDate>2001-12

20</p:departureDate>
<p:departureTime>mid-

morning</p:departureTime>
<p:seatPreference/>
</p:return>

</p:itinerary>
</env:Body>

From SOAP Version 1.2 Part 0: Primer.

© W3C December 2002

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 49

A possible solution
� There is a “SOAP messages with

attachments note” proposed in
11.12.02 that addresses this problem

� It uses MIME types (like e-mails)
and it is based in including the
SOAP message into a MIME
element that contains both the
SOAP message and the attachment
(see next page)

� The solution is simple and it follows
the same approach as that taken in e-
mail messages: include a reference
and have the actual attachment at the
end of the message

� The MIME document can be
embedded into an HTTP request in
the same way as the SOAP message

� The Apache SOAP 2.2 toolkit
supports this approach

� Problems with this approach:
� handling the message implies

dragging the attachment along,
which can have performance
implications for large messages

� scalability can be seriously
affected as the attachment is
sent in one go (no streaming)

� not all SOAP implementations
support attachments

� SOAP engines must be extended
to deal with MIME types (not
too complex but it adds
overhead)

� There are alternative proposals like
DIME of Microsoft (Direct Internet
Message Encapsulation) and WS-
attachments

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 50

Attachments in SOAP
MIME-Version: 1.0

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
start="<claim061400a.xml@claiming-it.com>"

Content-Description: This is the optional message description.
--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <claim061400a.xml@claiming-it.com>

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
..
<theSignedForm href="cid:claim061400a.tiff@claiming-it.com"/>
..
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
--MIME_boundary
Content-Type: image/tiff
Content-Transfer-Encoding: binary
Content-ID: <claim061400a.tiff@claiming-it.com>

...binary TIFF image...
--MIME_boundary--Fr

om
S

O
A

P
M

es
sa

ge
s

w
ith

 A
tt

ac
hm

en
ts

. ©
W

3C
 N

ot
e

11
 D

ec
em

be
r

20
00

SO
A

P
 M

E
SS

A
G

E

ATTACHMENT

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 51

The problems with attachments
� Attachments are relatively easy to include in a message and all proposals

(MIME or DIME based) are similar in spirit
� The differences are in the way data is streamed from the sender to the receiver

and how these differences affect efficiency
� MIME is optimized for the sender but the receiver has no idea of how big a

message it is receiving as MIME does not include message length for the
parts it contains

� this may create problems with buffers and memory allocation
� it also forces the receiver to parse the entire message in search for the

MIME boundaries between the different parts (DIME explicitly specifies the
length of each part which can be use to skip what is not relevant)

� All these problems can be solved with MIME as it provides mechanisms for
adding part lengths and it could conceivably be extended to support some basic
form of streaming

� Technically, these are not very relevant issues and have more to do with
marketing and control of the standards

� The real impact of attachments lies on the specification of Web services
(discussed later on)

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 52

Common usage patterns

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 53

A first use of SOAP
� Some of the first systems to

incorporate SOAP as an access
method have been databases. The
process is extremely simple:
� a stored procedure is essentially

an RPC interface
� Web service = stored procedure
� IDL for stored procedure =

translated into WSDL
� call to Web service = use SOAP

engine to map to call to stored
procedure

� This use demonstrates how well
SOAP fits with conventional
middleware architectures and
interfaces. It is just a natural
extension to them

stored procedure API

Stored procedure interfaces

database

resource manager

external
application

client

da
ta

ba
se

 m
an

ag
em

en
t s

ys
te

m

XML
mapping

HTTP
wrapping

HTTP
engine

SOAP engine

Web services
interfaces

D
at

ab
as

e
st

or
ed

 p
ro

ce
du

re
en

gi
ne

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 54

SOAP and the client server model
� The close relation between SOAP, RPC and HTTP has two main reasons:

� SOAP has been initially designed for client server type of interaction which
is typically implemented as RPC or variations thereof

� RPC, SOAP and HTTP follow very similar models of interaction that can be
very easily mapped into each other (and this is what SOAP has done)

� The advantages of SOAP arise from its ability to provide a universal vehicle for
conveying information across heterogeneous middleware platforms and
applications. In this regard, SOAP will play a crucial role in enterprise
application integration efforts in the future as it provides thestandard that has
been missing all these years

� The limitations of SOAP arise from its adherence to the client server model:
� data exchanges as parameters in method invocations
� rigid interaction patterns that are highly synchronous

� and from its simplicity:
� SOAP is not enough in a real application, many aspects are missing

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 55

SOAP exchange patterns (v 1.2)
SOAP response message exchange

� It involves a request which is not a
SOAP message (implemented as an
HTTP GET request method which
eventually includes the necessary
information as part of the requested
URL) and a response that is a SOAP
message

� This pattern excludes the use of any
header information (as the request
has no headers)

SOAP request-response message
exchange

� It involves sending a request as a
SOAP message and getting a second
SOAP message with the response to
the request

� This is the typical mode of operation
for most Web services and the one
used for mapping RPC to SOAP.

� This exchange pattern is also the one
that implicitly takes advantage of the
binding to HTTP and the way HTTP
works

©G. Alonso, C. Bussler EDBT 2004 Tutorial Web services 56

Automatic conversion RPC - SOAP

������
�����	

���
�
��

� � � ������
	

�
������
�
� ������

� ��
����
���� � � �
�� � � ��
���� � �

� � � ������
	

�
������
�
� ������

���
!

����"��	
� � � �

��#
�

$
%
�
�

�

&

� � � �
��

���

 �'����
��	 ����
(��

 �'����
��	 ����
(��

� � � �
��

���

���
��
����

������
�����	

�
�!��

��������

�
�!
�

���
���

