
CHAPTER 1 | Introduction to Orbix

 4

CORBA Objects

CORBA objects are abstract objects in a CORBA system that provide 

distributed object capability between applications in a network. Figure 1 

shows that any part of a CORBA system can refer to the abstract CORBA 

object, but the object is only implemented in one place and time on some 

server of the system.

An object reference is used to identify, locate, and address a CORBA object. 

Clients use an object reference to invoke requests on a CORBA object. 

CORBA objects can be implemented by servers in any supported 

programming language, such as C++ or Java.

Although CORBA objects are implemented using standard programming 

languages, each CORBA object has a clearly-defined interface, specified in 

the CORBA Interface Definition Language (IDL). The interface definition 

specifies which member functions, data types, attributes, and exceptions 

are available to a client, without making any assumptions about an object’s 

implementation. 

With a few calls to an ORB’s application programming interface (API), 

servers can make CORBA objects available to client programs in your 

network.

Figure 1: The nature of abstract CORBA objects

A server implements 

a CORBA object

IDL interface definitions specify 

CORBA objects

Clients access 

CORBA objects 

via object 

references



Why CORBA?

5

To call member functions on a CORBA object, a client programmer needs 

only to refer to the object’s interface definition. Clients can call the member 

functions of a CORBA object using the normal syntax of the chosen 

programming language. The client does not need to know which 

programming language implements the object, the object’s location on the 

network, or the operating system in which the object exists.

Using an IDL interface to separate an object’s use from its implementation 

has several advantages. For example, you can change the programming 

language in which an object is implemented without affecting the clients 

that access the object. You can also make existing objects available across a 

network.



CHAPTER 1 | Introduction to Orbix

 6

Object Request Broker

CORBA defines a standard architecture for object request brokers (ORB). An 

ORB is a software component that mediates the transfer of messages from a 

program to an object located on a remote network host. The ORB hides the 

underlying complexity of network communications from the programmer. 

An ORB lets you create standard software objects whose member functions 

can be invoked by client programs located anywhere in your network. A 

program that contains instances of CORBA objects is often known as a 

server. However, the same program can serve at different times as a client 

and a server. For example, a server program might itself invoke calls on 

other server programs, and so relate to them as a client.

When a client invokes a member function on a CORBA object, the ORB 

intercepts the function call. As shown in Figure 2, the ORB redirects the 

function call across the network to the target object. The ORB then collects 

results from the function call and returns these to the client.

Figure 2: The object request broker

Object

Object Request Broker

Client

Client Host Server Host

Function
Call

Server



CORBA Application Basics

7

CORBA Application Basics

You start developing a CORBA application by defining interfaces to objects 

in your system in CORBA IDL. You compile these interfaces with an IDL 

compiler. An IDL compiler generates C++ or Java code from IDL 

definitions. This code includes client stub code with which you develop 

client programs, and object skeleton code, which you use to implement 

CORBA objects.

When a client calls a member function on a CORBA object, the call is 

transferred through the client stub code to the ORB. Because the 

implemented object is not located in the client’s address space, CORBA 

objects are represented in client code by proxy objects.

A client invokes on object references that it obtains from the server process. 

The ORB then passes the function call through the object skeleton code to 

the target object.

Figure 3: Invoking on a CORBA object

Object

Function
Call

Object Request Broker

Client H ost Server Host

Client

Client
Stub
Code

Object
Skeleton

Code

Server



CHAPTER 1 | Introduction to Orbix

 8

Servers and the Portable Object Adapter

Server processes act as containers for one or more portable object adapters. 

A portable object adapter, or POA, maps abstract CORBA objects to their 

actual implementations, or servants, as shown in Figure 4. Because the 

POA assumes responsibility for mapping servants to abstract CORBA 

objects, the way that you define or change an object’s implementation is 

transparent to the rest of the application. By abstracting an object’s identity 

from its implementation, a POA enables a server to be portable among 

different implementations.

Depending on the policies that you set on a POA, object-servant mappings 

can be static or dynamic. POA policies also determine whether object 

references are persistent or transient, and the threading model that it uses. 

In all cases, the policies that a POA uses to manage its objects are invisible 

to clients. 

Figure 4: The portable object adapter

Client Host Server Host

Portable object
adapter

Client stub
code

Server
skeleton

Client

Object Request Broker

Servant



Servers and the Portable Object Adapter

9

A server can have one or more nested POAs. Because each POA has its own 

set of policies, you can group objects logically or functionally among 

multiple POAs, where each POA is defined in a way that best 

accommodates the needs of the objects that it processes.


