
431

CHAPTER 17

Naming Service
The Orbix naming service lets you associate names with
objects. Servers can register object references by name with
the naming service repository, and advertise those names to
clients. Clients, in turn, can resolve the desired objects in the
naming service by supplying the appropriate name.

The Orbix naming service implements the OMG COS Interoperable Naming

Service, which describes how applications can map object references to

names.

Benefits Using the naming service can offer the following benefits:

• Clients can locate objects through standard names that are

independent of the corresponding object references. This affords

greater flexibility to developers and administrators, who can direct

client requests to the most appropriate implementation. For example,

you can make changes to an object’s implementation or its location

that are transparent to the client.

• The naming service provides a single repository for object references.

Thus, application components can rely on it to obtain an application’s

initial references.

CHAPTER 17 | Naming Service

 432

In this chapter This chapter describes how to build and maintain naming graphs

programmatically. It also shows how to use object groups to achieve load

balancing. It contains these sections:

Many operations that are discussed here can also be executed

administratively with Orbix tools. For more information about these and

related configuration options, refer to the Application Server Platform

Administrator’s Guide.

Naming Service Design

Defining Names

Obtaining the Initial Naming Context

Building a Naming Graph

Using Names to Access Objects

Listing Naming Context Bindings

Maintaining the Naming Service

Federating Naming Graphs

Sample Code

Object Groups and Load Balancing

Load Balancing Example

Naming Service Design

433

Naming Service Design

Naming graph organization The naming service is organized into a naming graph, which is equivalent to

a directory system. A naming graph consists of one or more naming

contexts, which correspond to directories. Each naming context contains

zero or more name-reference associations, or name bindings, each of which

refers to another node within the naming graph. A name binding can refer

either to another naming context or to an object reference. Thus, any path

within a naming graph finally resolves to either a naming context or an

object reference. All bindings in a naming graph can usually be resolved via

an initial naming context.

Example Figure 23 shows how the Account interface described in earlier chapters

might be extended (through inheritance) into multiple objects, and

organized into a hierarchy of naming contexts. In this graph, hollow nodes

are naming contexts and solid nodes are application objects. Naming

contexts are typically intermediate nodes, although they can also be leaf

nodes; application objects can only be leaf nodes.

Figure 23: A naming graph is a hierarchy of naming contexts

Initial naming context

Checking

Savings

NOW

Basic

Premium

Regular
UTMA

Pension

Mortgage

Loans

Personal

Auto

CHAPTER 17 | Naming Service

 434

Each leaf node in this naming graph associates a name with a reference to

an account object such as a basic checking account or a personal loan

account. Given the full path from the initial naming context—for example,

Savings/Regular —a client can obtain the associated reference and invoke

requests on it.

The operations and types that the naming service requires are defined in the

IDL file CosNaming.idl . This file contains a single module, CosNaming ,

which in turn contains three interfaces: NamingContext , NamingContextExt ,

and BindingIterator .

Defining Names

435

Defining Names

Name sequence A naming graph is composed of Name sequences of NameComponent

structures, defined in the CosNaming module:

A Name sequence specifies the path from a naming context to another

naming context or application object. Each name component specifies a

single node along that path.

Name components Each name component has two string members:

• The id field acts as a name component’s principle identifier. This field

must be set.

• The kind member is optional; use it to further differentiate name

components, if necessary.

Both id and kind members of a name component are used in name

resolution. So, the naming service differentiates between two name

components that have the same ids but different kinds.

For example, in the naming graph shown in Figure 23 on page 433, the

path to a Personal loan account object is specified by a Name sequence in

which only the id fields are set:

module CosNaming{
 typedef string Istring;
 struct NameComponent {
 Istring id;
 Istring kind;
 }
 typedef sequence<NameComponent> Name;
 ...
};

Figure 0.1:

Index id kind

0 Loans

1 Personal

CHAPTER 17 | Naming Service

 436

In order to bind another Personal account object to the same Loan naming

context, you must differentiate it from the existing one. You might do so by

setting their kind fields as follows:

Figure 0.2:

Index id kind

0 Loans

1 Personal unsecured

1 Personal secured

Note: If the kind field is unused, it must be set to an empty string.

Defining Names

437

Representing Names as Strings

The CosNaming::NamingContextExt interface defines a StringName type,

which can represent a Name as a string with the following syntax:

id[. kind][/ id[. kind]] ...

Name components are delimited by a forward slash (/); id and kind

members are delimited by a period (.). If the name component contains

only the id string, the kind member is assumed to be an empty string.

StringName syntax reserves the use of three characters: forward slash (/),

period (.), and backslash (\). If a name component includes these

characters, you can use them in a StringFormat by prefixing them with a

backslash (\) character.

The CosNaming::NamingContextExt interface provides several operations

that allow conversion between StringName and Name data:

• to_name() converts a StringName to a Name (see page 438).

• to_string() converts a Name to a StringName (see page 440).

• resolve_str() uses a StringName to find a Name in a naming graph

and returns an object reference (see page 450).

Note: You can invoke these and other CosNaming::NamingContextExt
operations only on an initial naming context that is narrowed to
CosNaming::NamingContextExt .

CHAPTER 17 | Naming Service

 438

Initializing a Name

You can initialize a CosNaming::Name sequence in one of two ways:

• Set the members of each name component.

• Call to_name() on the initial naming context and supply a StringName

argument. This operation converts the supplied string to a Name

sequence.

Setting name component

members

Given the loan account objects shown earlier, you can set the name for an

unsecured personal loan as follows:

Converting a stringname to a

name

The name shown in the previous example can also be set in a more

straightforward way by calling to_name() on the initial naming context (see

“Obtaining the Initial Naming Context” on page 441):

The to_name() operation takes a string argument and returns

aCosNaming::Name , which the previous example sets as follows:

Example 38: Initializing a name

org.omg.CosNaming.NameComponent[] name =
 new org.omg.CosNaming.NameComponent[]
{
 new NameComponent("Loans", "");
 new nameComponent("Personal", "unsecured");
};

Example 39:Using to_name() to initialize a Name

// get initial naming context
org.omg.CosNaming.NamingContextExt root_cxt = ...;

org.omg.CosNaming.NameComponent[] name =
 root_cxt.to_name("Loans/Personal.unsecured");

Figure 0.3:

Index id kind

0 Loans

Defining Names

439

1 Personal unsecured

Figure 0.3:

Index id kind

CHAPTER 17 | Naming Service

 440

Converting a Name to a StringName

You can convert a CosNaming::Name to a CosNamingExt::StringName by

calling to_string() on the initial naming context. This lets server programs

to advertise human-readable object names to clients.

For example, the following code converts Name sequence name to a

StringName :

Example 40:Converting a Name to a StringName

// get initial naming context
org.omg.CosNaming.NamingContextExt root_cxt = ...;

// initialize name
org.omg.CosNaming.NameComponent[] name = ...;

...
org.omg.CosNaming.NamingContextExt.StringName str_n ;
str_n = root_cxt.to_string(name);

Obtaining the Initial Naming Context

441

Obtaining the Initial Naming Context
Clients and servers access a naming service through its initial naming

context, which provides the standard entry point for building, modifying,

and traversing a naming graph. To obtain the naming service’s initial

naming context, call resolve_initial_references() on the ORB. For

example:

To obtain a reference to the naming context, narrow the result with

CosNaming.NamingContextExtHelper.narrow() :

A naming graph’s initial naming context is equivalent to the root directory.

Later sections show how you use the initial naming context to build and

modify a naming graph, and to resolve names to object references.

Example 41:Obtaining the inital naming context

// Initialize the ORB
global_orb = org.omg.CORBA.ORB.init(args, null);
// Get reference to initial naming context
org.omg.CORBA.Object obj =

global_var.resolve_initial_references("NameService");

...
org.omg.CosNaming.NamingContextExt root_cxt;
if (root_cxt =
 org.omg.CosNaming.NamingContextExtHelper.na rrow(obj)) {

} else {...} // Deal with failure to narrow()
...

Note: The NamingContextExt interface provides extra functionality over
the NamingContext interface; therefore, the code in this chapter assumes
that an initial naming context is narrowed to the NamingContextExt
interface

CHAPTER 17 | Naming Service

 442

Building a Naming Graph
A name binding can reference either an object reference or another naming

context. By binding one naming context to another, you can organize

application objects into logical categories. However complex the hierarchy,

almost all paths within a naming graph hierarchy typically resolve to object

references.

In an application that uses a naming service, a server program often builds a

multi-tiered naming graph on startup. This process consists of two repetitive

operations:

• Bind naming contexts into the desired hierarchy.

• Bind objects into the appropriate naming contexts.

Building a Naming Graph

443

Binding Naming Contexts

A server that builds a hierarchy of naming contexts contains the following

steps:

1. Gets the initial naming context (see page 441).

2. Creates the first tier of naming contexts from the initial naming context.

3. Binds the new naming contexts to the initial naming context.

4. Adds naming contexts that are subordinate to the first tier:

♦ Creates a naming context from any existing one.

♦ Binds the new naming context to its designated parent.

The naming graph shown in Figure 23 on page 433 contains three naming

contexts that are directly subordinate to the initial naming context:

Checking, Loans, and Savings. The following code binds the Checking

naming context to the initial naming context, as shown in Figure 24:

Example 42:Binding a naming context to the initial naming context

//get initial naming context
org.omg.CosNaming.NamingContextExt root_cxt = ...;

// create naming context
org.omg.CosNaming.NamingContext checking_cxt =
 root_cxt.new_context();

// initialize name
org.omg.CosNaming.NameComponent[] name = new NameCo mponent[1];
name[0] = new NameComponent("Checking", "");

// bind new context
root_cxt.bind_context(name, checking_cxt);

CHAPTER 17 | Naming Service

 444

Similarly, you can bind the Savings and Loans naming contexts to the initial

naming context. The following code uses the shortcut operation

bind_new_context() , which combines new_context() and bind() . It also

uses the to_name() operation to set the Name variable.

Orphaned naming contexts The naming service can contain naming contexts that are unbound to any

other context. Because these naming contexts have no parent context, they

are regarded as orphaned. Any naming context that you create with

Figure 24: Checking context bound to initial naming context

Initial naming context

Checking

Example 43:Binding a naming context with bind_new_context()

org.omg.CosNaming.NamingContext savings_cxt, loan_c xt;

// create naming contexts
name = root_cxt.to_name("Savings");
savings_cxt = root_cxt.bind_new_context(name);

name = root_cxt.to_name("Loan");
loan_cxt = root_cxt.bind_new_context(name);

Figure 25: Savings and Loans naming contexts bound to initial naming

context

Initial naming context

Checking

Savings

Loans

Building a Naming Graph

445

new_context() is orphaned until you bind it to another context. Although it

has no parent context, the initial naming context is not orphaned inasmuch

as it is always accessible through resolve_initial_references() , while

orphan naming contexts have no reliable means of access.

You might deliberately leave a naming context unbound—for example, you

are in the process of constructing a new branch of naming contexts but wish

to test it before binding it into the naming graph. Other naming contexts

might appear to be orphaned within the context of the current naming

service; however, they might actually be bound to a federated naming graph

in another naming service (see “Federating Naming Graphs” on page 460).

Erroneous usage of orphaned

naming contexts

Orphaned contexts can also occur inadvertently, often as a result of

carelessly written code. For example, you can create orphaned contexts as a

result of calling rebind() or rebind_context() to replace one name binding

with another (see “Rebinding” on page 448). The following code shows how

you might orphan the Savings naming context:

An application can also create an orphan context by calling unbind() on a

context without calling destroy() on the same context object (see

“Maintaining the Naming Service” on page 458).

Example 44:Orphaned naming contexts

//get initial naming context
org.omg.CosNaming.NamingContextExt root_cxt = ...;

org.omg.CosNaming.NamingContext savings_cxt;

// initialize name
org.omg.CosNaming.NameComponent[] name = new NameCo mponent[1];
name[0] = new NameComponent("Savings", "");

// create and bind checking_cxt
savings_cxt = root_cxt.bind_new_context(name);

// make another context
org.omg.CosNaming.NamingContext savings_cxt2;
savings_cxt2 = root_cxt.new_context();

// bind savings_cxt2 to root context, savings_cxt n ow orphaned!
root_cxt.rebind_context(name, savings_cxt2);

CHAPTER 17 | Naming Service

 446

In both cases, if the application exits without destroying the context objects,

they remain in the naming service but are inaccessible and cannot be

deleted.

Building a Naming Graph

447

Binding Object References

After you construct the desired hierarchy of naming contexts, you can bind

object references to them with the bind() operation. The following example

builds on earlier code to bind a Basic checking account object to the

Checking naming context:

The previous code assumes the existence of a NamingContext variable for

the Checking naming context on which you can invoke bind() .

Alternatively, you can invoke bind() on the initial naming context in order to

bind Basic into the naming graph:

Example 45:Binding an object reference

// object reference "basic_check" obtained earlier
...

name[0] = new NameComponent("Basic", "");
checking_cxt.bind(name, basic_check);

Figure 26: Binding an object reference to a naming context

Initial naming context

Checking

Savings

Basic

Loans

name = root_cxt.to_name("Checking/Basic");
root_cxt.bind(name, basic_check);

Note: Because the initial naming context is always available, it is the
most reliable way to access all other contexts within a naming graph.

CHAPTER 17 | Naming Service

 448

Rebinding

If you call bind() or bind_context() on a naming context that already

contains the specified binding, the naming service throws an exception of

AlreadyBound . To ensure the success of a binding operation whether or not

the desired binding already exists, call one of the following naming context

operations:

• rebind() rebinds an application object.

• rebind_context() rebinds a naming context.

Either operation replaces an existing binding of the same name with the new

binding. Calls to rebind() in particular can be useful on server startup, to

ensure that the naming service has the latest object references.

Note: Calls to rebind_context() or rebind() can have the undesired
effect of creating orphaned naming contexts (see page 444). In general,
exercise caution when calling either function.

Using Names to Access Objects

449

Using Names to Access Objects
A client application can use the naming service to obtain object references

in three steps:

1. Obtain a reference to the initial naming context (see page 441).

2. Set a CosNaming::Name structure with the full path of the name

associated with the desired object.

3. Resolve the name to the desired object reference.

Setting object names You specify the path to the desired object reference in a CosNaming::Name .

You can set this name in one of two ways:

Explicitly set the id and kind members of each Name element. For

example, the following code sets the name of a Basic checking account

object:

Call to_name() on the initial naming context. This option is available if the

client code narrows the initial naming context to the NamingContextExt

interface. to_name() takes a CosNaming::CosNamingExt::StringName

argument and returns a CosNaming::Name as follows:

For more about using a StringName with to_name() , see “Converting a

stringname to a name” on page 438.

Example 46:Setting object name components

org.omg.CosNaming.NameComponent[] name =
 new NameComponent[2];
name[0] = new NameComponent("Checking", "");
name[1] = new NameComponent("Basic", "");

Example 47:Setting an object name with to_name()

org.omg.CosNaming.NameComponent[] name =
 root_cxt.to_name("Checking/Basic");

CHAPTER 17 | Naming Service

 450

Resolving names Clients call resolve() on the initial naming context to obtain the object

associated with the supplied name:

Alternatively, the client can call resolve_str() on the initial naming context

to resolve the same name using its StringName equivalent:

In both cases, the object returned in obj is an application object that

implements the IDL interface BasicChecking , so the client narrows the

returned object accordingly:

Resolving names with corbaname You can resolve names with a corbaname URL, which is similar to a

corbaloc URL (see “Using corbaloc URL strings” on page 254). However, a

corbaname URL also contains a stringified name that identifies a binding in a

naming context. For example, the following code uses a corbaname URL to

obtain a reference to a BasicChecking object:

Example 48:Calling resolve()

org.omg.CORBA.Object obj;
...
obj = root_cxt.resolve(name);

Example 49:Calling resolve_str()

org.omg.CORBA.Object obj;
...
obj = root_cxt.resolve_str("Checking/Basic");

BasicChecking checking;
...
try {
 checking = BasicCheckingHelper.narrow(obj);
 // perform some operation on basic checking obj ect
 ...
} // end of try clause, catch clauses not shown

Example 50:Resolving a name with corbaname

org.omg.CORBA.Object obj;
obj = orb.string_to_object(
 "corbaname:rir:/NameService#Checking/Basic"
);

Using Names to Access Objects

451

A corbaname URL has the following syntax:

corbaname:rir: [/NameService]#string-name

string-name is a string that conforms to the format allowed by a

CosNaming::CosNamingExt::StringName (see “Representing Names as

Strings” on page 437). A corbaname can omit the NameService specifier.

For example, the following call to string_to_object() is equivalent to the

call shown earlier:

obj = orb.string_to_object("corbaname:rir:#Checking /Basic");

CHAPTER 17 | Naming Service

 452

Exceptions Returned to Clients

Invocations on the naming service can result in the following exceptions:

NotFound The specified name does not resolve to an existing binding. This

exception contains two data members:

InvalidName The specified name is empty or contains invalid characters.

CannotProceed The operation fails for reasons not described by other

exceptions. For example, the naming service’s internal repository might be

in an inconsistent state.

AlreadyBound Attempts to create a binding in a context throw this exception

if the context already contains a binding of the same name.

Not Empty Attempts to delete a context that contains bindings throw this

exception. Contexts must be empty before you delete them.

why Explains why a lookup failed with one of the following values:

• missing_node : one of the name components specifies a

non-existent binding.

• not_context : one of the intermediate name components

specifies a binding to an application object instead of a

naming context.

• not_object : one of the name components points to a

non-existent object.

rest_of_name Contains the trailing part of the name that could not be

resolved.

Listing Naming Context Bindings

453

Listing Naming Context Bindings
In order to find an object reference, a client might need to iterate over the

bindings in one or more naming contexts. You can invoke the list()

operation on a naming context to obtain a list of its name bindings. This

operation has the following signature:

list() returns with a BindingList , which is a sequence of Binding

structures:

Iterating over binding list

elements

Given a binding list, the client can iterate over its elements to obtain their

binding name and type. Given a Binding element’s name, the client

application can call resolve() to obtain an object reference; it can use the

binding type information to determine whether the object is a naming

context or an application object.

For example, given the naming graph in Figure 23, a client application can

invoke list() on the initial naming context and return a binding list with

three Binding elements:

void list(
 in unsigned long how_many,
 out BindingList bl,
 out BindingIterator it);

enum BindingType{ nobject, ncontext };

struct Binding{
 Name binding_name
 BindingType binding_type;
}
typedef sequence<Binding> BindingList

Figure 0.4:

Index Name BindingType

0 Checking ncontext

1 Savings ncontext

CHAPTER 17 | Naming Service

 454

2 Loan ncontext

Figure 0.4:

Index Name BindingType

Listing Naming Context Bindings

455

Using a Binding Iterator

Limiting number of bindings

returned by list()

In the previous example, list() returns a small binding list. However, an

enterprise application is likely to require naming contexts with a large

number of bindings. list() therefore provides two parameters that let a

client obtain all bindings from a naming context without overrunning

available memory:

how_many sets the maximum number of elements to return in the binding

list. If the number of bindings in a naming context is greater than how_many,

list() returns with its BindingIterator parameter set.

it is a BindingIterator object that can be used to retrieve the remaining

bindings in a naming context. If list() returns with all bindings in its

BindingList , this parameter is set to nil.

A BindingIterator object has the following IDL interface definition:

Obtaining remainder of bindings If list() returns with a BindingIterator object, the client can invoke on it

either next_n() to retrieve the next specified number of remaining bindings,

or next_one() to retrieve one remaining binding at a time. Both functions

return true if the naming context contains more bindings to fetch. Together,

these BindingIterator operations and list() let a client safely obtain all

bindings in a context.

interface BindingIterator{
 boolean next_one(out Binding b);
 boolean next_n(in unsigned long how_many, out B indingList

bl);
 void destroy();
}

Note: The client is responsible for destroying an iterator. It also must be
able to handle exceptions that might return when it calls an iterator
operation, inasmuch as the naming service can destroy an iterator at any
time before the client retrieves all naming context bindings.

CHAPTER 17 | Naming Service

 456

The following client code gets a binding list from a naming context and

prints each element’s binding name and type:

Example 51:Obtaining a binding list

// printing function
void
print_binding_list(org.omg.CosNaming.BindingListHol der bl)
{
 // extract the list of bindings
 org.omg.CosNaming.Binding[] list = bl.value;
 // iterate through list
 for(int i = 0; i < list.length; i++){
 System.out.print(list[i].binding_name[0].i d;
 if(list[i].binding_name[0].kind != null)
 System.out.print(
 "(" + bl[i].binding_name[0].kind + ")");
 if(bl[i].binding_type ==
 org.omg.CosNaming.BindingType.ncontext)
 System.out.println(": naming context");
 else
 System.out.println(": object reference ");
 }
}

void
get_context_bindings(omg.org.CosNaming.NamingContex t cxt)
{
 org.omg.CosNaming.BindingListHolder b_list;
 org.omg.CosNaming.BindingIteratorHolder b_iter =
 new org.omg.CosNaming.BindingIteratorHolder ();
 long MAX_BINDINGS = 50;

 // set up array to store binding list, put it i n holder
 org.omg.CosNaming.Binding[] binding_list =
 new org.omg.CosNaming.Binding[MAX_BINDINGS] ;
 b_list =
 new org.omg.CosNaming.BindingListHolder(bin ding_list);

 // get first set of bindings from cxt
 cxt.list(MAX_BINDINGS, b_list, b_iter);

Listing Naming Context Bindings

457

When you run this code on the initial naming context shown earlier, it yields

the following output:

 //print first set of bindings
 print_binding_list(b_list);

 // look for remaining bindings
 if(b_iter.value != null) {
 org.omg.CosNaming.BindingIterator it = b_it er.value;
 do {
 boolean more = it.next_n(MAX_BINDINGS, b_list);
 // print next set of bindings
 print_binding_list(b_list);
 } while (more);

 // get rid of iterator
 it.destroy();
 }
}

Example 51:Obtaining a binding list

Checking: naming context
Savings: naming context
Loan: naming context

CHAPTER 17 | Naming Service

 458

Maintaining the Naming Service
Destruction of a context and its bindings is a two-step procedure:

• Remove bindings to the target context from its parent contexts by

calling unbind() on them.

• Destroy the context by calling the destroy() operation on it. If the

context contains bindings, these must be destroyed first; otherwise,

destroy() returns with a NotEmpty exception.

These operations can be called in any order; but it is important to call both.

If you remove the bindings to a context without destroying it, you leave an

orphaned context within the naming graph that might be impossible to

access and destroy later (see “Orphaned naming contexts” on page 444). If

you destroy a context but do not remove its bindings to other contexts, you

leave behind bindings that point nowhere, or dangling bindings.

For example, given the partial naming graph in Figure 27, you can destroy

the Loans context and its bindings to the loan account objects as follows:

Example 52:Destroying a naming context

org.omg.CosNaming.NameComponent[] name;

// get initial naming context
org.omg.CosNaming.NamingContextExt root_cxt = ...;

// assume availability of Loans naming context vari able
org.omg.CosNaming.NamingContext loans_cxt = ... ;

// remove bindings to Loans context
name = root_cxt.to_name("Loans/Mortgage");
root_cxt.unbind(name);
name = root_cxt.to_name("Loans/Auto");
root_cxt.unbind(name);
name = root_cxt.to_name("Loans/Personal");
root_cxt.unbind(name);

// remove binding from Loans context to initial nam ing context
name = root_cxt.to_name("Loans");
root_cxt.unbind(name);

Maintaining the Naming Service

459

// destroy orphaned Loans context
loans_cxt.destroy();

Figure 27: Destroying a naming context and removing related bindings

Note: Orbix provides administrative tools to destroy contexts and remove
bindings. These are described in the Application Server Platform

Administrator’s Guide.

Example 52:Destroying a naming context

Initial naming

Before After

context

Initial naming
context

Loans

Mortgage

Auto

Personal

CHAPTER 17 | Naming Service

 460

Federating Naming Graphs
A naming graph can span multiple naming services, which can themselves

reside on different hosts. Given the initial naming context of an external

naming service, a naming context can transparently bind itself to that

naming service’s naming graph. A naming graph that spans multiple naming

services is said to be federated.

Benefits A federated naming graph offers the following benefits:

• Reliability: By spanning a naming graph across multiple servers, you

can minimize the impact of a single server’s failure.

• Load balancing: You can distribute processing according to logical

groups. Multiple servers can share the work load of resolving bindings

for different clients.

• Scalability: Persistent storage for a naming graph is spread across

multiple servers.

• Decentralized administration: Logical groups within a naming graph

can be maintained separately through different administrative

domains, while they are collectively visible to all clients across the

network.

Federation models Each naming graph in a federation must obtain the initial naming context of

other members in order to bind itself to them. The binding possibilities are

virtually infinite; however, two federation models are widely used:

• Hierarchal federation — All naming graphs are bound to a root server’s

naming graph. Clients access objects via the initial naming context of

the root server.

• Fully-connected federation — Each naming graph directly binds itself

to all other naming graphs. Typically, each naming graph binds the

initial naming contexts of all other naming graphs into its own initial

naming context. Clients can access all objects via the initial naming

context of their local naming service.

Federating Naming Graphs

461

Hierarchal federation Figure 28 shows a hierarchal naming service federation that comprises

three servers. The Deposits server maintains naming contexts for checking

and savings accounts, while the Loans server maintains naming contexts for

loan accounts. A single root server serves as the logical starting point for all

naming contexts.

In this hierarchical structure, the naming graphs in the Deposits and Loans

servers are federated through an intermediary root server. The initial naming

contexts of the Deposits and Loans servers are bound to the root server’s

initial naming context. Thus, clients gain access to either naming graph

through the root server’s initial naming context.

Figure 28: A naming graph that spans multiple servers

Initial naming context

Checking

Savings

NOW

Basic

Premium

Regular
UTMA

Pension

Initial naming context

Deposits server Loans server

Initial naming context

Root server

Deposits Loans

Personal

Auto

Mortgage

CHAPTER 17 | Naming Service

 462

The following code binds the initial naming contexts of the Deposits and

Loans servers to the root server’s initial naming context:

Example 53:Federating naming graphs to a root server’s initial naming
context

// Root server
...
public static void main (String[] args) {
 org.omg.CosNaming.NamingContextExt
 root_inc, deposits_inc, loans,_inc;
 org.omg.CosNaming.NameComponent[] name = new

NameComponent[1];
 org.omg.CORBA.Object obj;
 org.omg.CORBA.ORB global_orb;
 String loans_inc_ior, deposits_inc_ior
...
 try {
 global_orb = org.omg.CORBA.global_orb.init(args, null);

 // code to obtain stringified IORs of initi al naming
 // contexts for Loans and Deposits servers (not shown)
 ...

 obj = global_orb.string_to_object(loans_inc _ior);
 loans_inc =
 org.omg.CosNaming.NamingContextExtHelpe r.narrow(obj);
 obj = global_orb.string_to_object(deposits_ inc_ior);
 deposits_inc =
 org.omg.CosNaming.NamingContextExtHelpe r.narrow(obj);

 // get initial naming context for Root serv er
 root_inc = ... ;

 // bind Deposits initial naming context to root server’s
 // initial naming context
 name[0] = new NameComponent("Deposits", "") ;
 root_inc.bind_context(name, deposits_inc);

 // bind Loans initial naming context to roo t server’s
 // initial naming context
 name[0] = new NameComponent("Loans", "");
 root_inc.bind_context(name, deposits_inc);
 }
}

Federating Naming Graphs

463

This yields the following bindings between the three naming graphs:

Fully-connected federation In a purely hierarchical model like the naming graph just shown, clients

obtain their initial naming context from the root server, and the root server

acts as the sole gateway into all federated naming services. To avoid

bottlenecks, it is possible to modify this model so that clients can gain

access to a federated naming graph via the initial naming context of any

member naming service.

The next code example shows how the Deposits and Loans servers can bind

the root server’s initial naming context into their respective initial naming

contexts. Clients can use this binding to locate the root server’s initial

naming context, and then use root-relative names to locate objects.

Figure 29: Multiple naming graphs are linked by binding initial naming
contexts of several servers to a root server.

Deposits server Loans server

Initial naming context

Root server

Deposits Loans

Initial naming contextInitial naming context

CHAPTER 17 | Naming Service

 464

Figure 30 shows how this federates the three naming graphs:

The code for both Deposits and Loans server processes is virtually identical:

Figure 30: The root server’s initial naming context is bound to the initial
naming contexts of other servers, allowing clients to locate the root naming

context.

Deposits server Loans server

Initial naming context

Root server

Deposits Loans

Initial naming contextInitial naming context

parent parent

Example 54:Federating naming graphs through the initial naming contexts

of multiple servers

public static void main (String[] args) {
 org.omg.CosNaming.NamingContextExt root_inc, th is_inc;
 org.omg.CosNaming.NameComponent[] name =
 new NameComponent[1];
 org.omg.CORBA.Object obj;
 org.omg.CORBA.ORB global_orb;
 String root_inc_ior;
 ...
 try {
 global_orb = org.omg.CORBA.global_orb.init(args, null);

 // code to obtain stringified IORs of root server’s
 // initial naming context (not shown)
 ...

 obj = global_orb.string_to_object(root_inc_ ior);
 root_inc =
 org.omg.CosNaming.NamingContextExtHelpe r.narrow(obj);

Federating Naming Graphs

465

 // get initial naming context for this serv er
 this_inc = ... ;

 name[0] = new NameComponent("parent", "");

 // bind root server’s initial naming contex t to
 // this server’s initial naming context
 this_inc.bind_context(name, root_inc);
 ...
 }

Example 54:Federating naming graphs through the initial naming contexts
of multiple servers

CHAPTER 17 | Naming Service

 466

Sample Code
The following sections show the server and client code that is discussed in

previous sections of this chapter.

Server code

Example 55:Server naming service code

public static void main (String[] args) {
 org.omg.CosNaming.NamingContextExt root_cxt;
 org.omg.CosNaming.NamingContext
 checking_cxt, savings_cxt, loan_cxt;
 org.omg.CosNaming.NameComponent[] name;
 org.omg.CORBA.ORB orb;
 org.omg.CORBA.Object obj;
 Checking basic_check, now_check, premium_check;

 // Checking objects initialized from persistent data
 // (not shown)

 try {
 // Initialize the ORB
 orb = org.omg.CORBA.global_orb.init(args, n ull);

 // Get reference to initial naming context
 obj =
 global_orb.resolve_initial_references(" NameService");
 root_cxt =
 org.omg.CosNaming.NamingContextExtHelpe r.narrow(obj);
 if(root_cxt != null) {
 // build naming graph

 // initialize name
 name = root_cxt.to_name("Checking");
 // bind new naming context to root
 checking_cxt = root_cxt.bind_new_contex t(name);

Sample Code

467

Client code

 // bind checking objects to Checking co ntext
 name = root_cxt.to_name("Checking/Basic ");
 checking_cxt.bind(name, basic_check);
 name = root_cxt.to_name("Checking/Premi um");
 checking_cxt.bind(name, premium_check);
 name = root_cxt.to_name("Checking/NOW") ;
 checking_cxt.bind(name, now_check);

 name = root_cxt.to_name("Savings");
 savings_cxt = root_cxt.bind_new_context (name);

 // bind savings objects to savings cont ext
 ...

 name = root_cxt.to_name("Loan");
 loan_cxt = root_cxt.bind_new_context(na me);

 // bind loan objects to loan context
 ...
 }
 else {...} // deal with failure to narrow()
 ...
 } // end of try clause, catch clauses not shown
 ...
}

Example 55:Server naming service code

Example 56:Client naming service code

public static void main (String[] args) {
 org.omg.CosNaming.NamingContextExt root_cxt;
 org.omg.CosNaming.NameComponent[] name;
 BasicChecking_var checking;
 org.omg.CORBA.Object obj;
 org.omg.CORBA.ORB global_orb;
...

 try {
 global_orb = org.omg.CORBA.global_orb.init (args, null);

CHAPTER 17 | Naming Service

 468

 // Find the initial naming context
 obj =
 global_orb.resolve_initial_references(" NameService");
 root_cxt =
 org.omg.CosNaming.NamingContextExtHelpe r.narrow(obj);
 if(root_cxt != null) {
 obj = root_cxt.resolve_str("Checking/Ba sic");
 checking_var == BasicCheckingHelper.nar row(obj);
 if(checking_var != null) {
 // perform some operation on basic checking object
 ...
 }
 else { ... } // Deal with failure to na rrow()
 } else { ... } // Deal with failure to reso lve object

 } // end of try clause, catch clauses not shown
 ...
}

Example 56:Client naming service code

