REALIZATIONS OF AFFINE LIE ALGEBRAS

1. Verma type modules

Let \mathfrak{a} be a Lie algebra with a Cartan subalgebra H and root system Δ . A closed subset $P \subset \Delta$ is called a partition if $P \cap (-P) = \emptyset$ and $P \cup (-P) = \Delta$. If \mathfrak{a} is finite-dimensional then every partition corresponds to a choice of positive roots in Δ and all partitions are conjugate by the Weyl group. The situation is different in the infinite-dimensional case. If \mathfrak{a} is an affine Lie algebra then partitions are divided into a finite number of Weyl group orbits (cf. [JK], [F2]).

Given a partition P of Δ we define a Borel subalgebra $\mathfrak{b}_P \subset \mathfrak{a}$ generated by H and the root spaces \mathfrak{a}_α with $\alpha \in P$. All Borel subalgebras are conjugate in the finite-dimensional case. A parabolic subalgebra is a subalgebra that contains a Borel subalgebra. If \mathfrak{p} is a parabolic subalgebra of a finite-dimensional \mathfrak{a} then $\mathfrak{p} = \mathfrak{p}_0 \oplus \mathfrak{p}_+$ where \mathfrak{p}_0 is a reductive Levi factor and \mathfrak{p}_+ is a nilpotent subalgebra. Parabolic subalgebras correspond to a choice of a basis π of the root system Δ and a subset $S \subset \pi$. A classification of all Borel subalgebras in the affine case was obtained in [F2]. In this case not all of them are conjugate but there exists a finite number of conjugacy classes. These conjugacy classes are parametrized by parabolic subalgebras of the underlined finite-dimensional Lie algebra. Namely, let $\mathfrak{p} = \mathfrak{p}_0 \oplus \mathfrak{p}_+$ a parabolic subalgebra of \mathfrak{G} containing a fixed Borel subalgebra \mathfrak{b} of \mathfrak{G} . Define

$$B_{\mathfrak{p}} = \mathfrak{p}_{+} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathfrak{p}_{0} \otimes t\mathbb{C}[t] \oplus \mathfrak{b} \oplus \mathbb{C}c \oplus \mathbb{C}d.$$

For any Borel subalgebra \mathfrak{B} of $\tilde{\mathfrak{G}}$ there exists a parabolic subalgebra \mathfrak{p} of \mathfrak{G} such that \mathfrak{B} is conjugate to $B_{\mathfrak{p}}$.

When \mathfrak{p} coincides with \mathfrak{G} , i.e. $\mathfrak{p}_+=0$, the corresponding Borel subalgebra $B_{\mathfrak{G}}$ is the *standard* Borel subalgebra defined by the choice of positive roots in $\tilde{\mathfrak{G}}$. Another extreme case is when $\mathfrak{p}_0=\mathcal{H}$. This corresponds to the *natural* Borel subalgebra B_{nat} of $\tilde{\mathfrak{G}}$ considered in [JK].

Given a parabolic subalgebra \mathfrak{p} of \mathfrak{G} let $\lambda: B_{\mathfrak{p}} \to \mathbb{C}$ be a 1-dimensional representation of $B_{\mathfrak{p}}$. Then one defines an induced Verma type $\tilde{\mathfrak{G}}$ -module

$$M_{\mathfrak{p}}(\lambda) = U(\tilde{\mathfrak{G}}) \otimes_{U(B_{\mathfrak{p}})} \mathbb{C}.$$

The module $M_{\mathfrak{G}}(\lambda)$ is the classical Verma module with highest weight λ [K]. In the case of natural Borel subalgebra we obtain *imaginary* Verma modules studied in [F1]. Note that the module $M_{\mathfrak{p}}(\lambda)$ is $U(\mathfrak{p}_{-})$ -free, where \mathfrak{p}_{-} is the opposite subalgebra to \mathfrak{p}_{+} . The theory of Verma type modules was developed in [F2]. It follows immediately from the definition that, unless it is a classical Verma module, Verma type module with highest weight λ has a unique maximal submodule, it has both finite and infinite-dimensional weight spaces and it can be obtained using the parabolic induction from a standard Verma module M with highest weight λ over a certain affine Lie subalgebra. Moreover, if the central element c acts non-trivially on such Verma type module then the structure of this module is completely determined by the structure of module M, which is well-known ([F2], [C1]).

1

2. Boson type realizations of Verma modules

2.1. Finite-dimensional case. Consider first a finite-dimensional case. Let $\mathfrak{G} = LieG$ be a simple finite-dimensional Lie algebra with a Cartan decomposition $\mathfrak{G} = \mathfrak{n}_- \oplus \mathcal{H} \oplus \mathfrak{n}_+$. Take a Borel subalgebra $\mathfrak{b} = \mathfrak{n}_- \oplus \mathcal{H}$. Let $\mathfrak{b} = LieB$, $\mathfrak{n}_\pm = LieN_\pm$. Consider the flag variety X = G/B. Then X has a decomposition into open Schubert cells: $X = \bigcup_{w \in W} C(w)$, where $C(w) = B_+ w B_- / B_-$, W = N(T)/T is the Weyl group and $T = B_+ / N_+$. The codimension of C(w) equals the length of w. The subgroup N_+ acts on X, and the largest orbit \mathcal{U} of this action can be identified with proper N_+ . From Section 3 we know that the Lie algebra \mathfrak{G} can be mapped into vector fields on X and hence on \mathcal{U} . Thus \mathfrak{G} can be embedded into the differential operators on \mathcal{U} of degree ≤ 1 . Since $N_+ \simeq \mathfrak{n}_+$ via the exponential map, we conclude that N_+ can be identified with an affine space $\mathbb{A}^{|\Delta_+|}$. Therefore, the ring of regular functions $\mathcal{O}_{\mathcal{U}}$ on \mathcal{U} is just a polynomial ring in $m = |\Delta_+|$ variables and \mathfrak{G} has an embedding into the Weyl algebra \mathcal{A}_m . In particular, $\mathcal{O}_{\mathcal{U}}$ is a \mathfrak{G} -module. In fact, a \mathfrak{G} -module $\mathcal{O}_{\mathcal{U}}$ is isomorphic to a contragradient module $M^*(0)$ with trivial highest weight.

Example 2.1. Let $\mathfrak{G} = sl(2)$ with a standard basis e, f, h, [e, f] = h, [h, e] = 2e, [h, f] = -2f. Let $\mathfrak{b}_- = span\{f, h\}$. Then $G = SL_2(\mathbb{C})$ and the variety $X = G/B_-$ can be identified with the projective line \mathbb{P}^1 which has a big cell $\mathcal{U} = \mathbb{A}^1$. Denote $\mathcal{O}_{\mathcal{U}} = \mathbb{C}[x]$. Then one computes

$$e \mapsto d/dx, h \mapsto -2xd/dx, f \mapsto -x^2d/dx.$$

Hence, $M^*(0) \simeq \mathbb{C}[x]$ as a \mathfrak{G} -module (see Example 10.2.1 in [FZ]).

In order to obtain a geometrical realization of Verma modules one needs to consider the minimal 1-point orbit of N_+ on X.

Choosing another orbit of N_+ will give us a *twisted* Verma module. Twisted Verma modules are parametrized by the elements of the Weyl group and have the same character as corresponding Verma modules.

- **Remark 2.2.** Consider again example of sl(2). Another way to get a realization of Verma module M(0) on Fock space $\mathbb{C}[x]$ is the following. Apply to sl(2) an automorphism which is a composition of two anti-involutions: $e \leftrightarrow f$, h is fixed, and $x \leftrightarrow d/dx$. Then it gives the following realization in second order differential operators: $f \mapsto x$, $h \mapsto -2xd/dx$, $e \mapsto -x(d/dx)^2$.
- 2.2. **Affine case.** Consider now the loop algebra $\hat{\mathfrak{G}} = \mathfrak{G} \otimes \mathbb{C}[t, t^{-1}]$. Sometimes it is more convenient to consider a completion of $\hat{\mathfrak{G}}$ substituting the Laurent polynomials by the Laurent power series (for a geometric interpretation, but it is irrelevant to us. So jusy ignore the series). We will denote this Lie algebra by $\mathfrak{G}((t))$. The corresponding loop group will be denoted by G((t)). Fix a Cartan decomposition $\mathfrak{G} = \mathfrak{n}_- \oplus \mathcal{H} \oplus \mathfrak{n}_+$ and consider a Borel subalgebra $\mathfrak{b}_\pm = \mathfrak{n}_\pm \oplus \mathcal{H}$. Denote

$$\hat{\mathfrak{n}}_{\pm} = (\mathfrak{n}_{\pm} \otimes 1) \oplus (\mathfrak{G} \otimes t^{\pm} \mathbb{C}[[t^{\pm}]]),$$

 $\hat{\mathfrak{b}}_{\pm} = \hat{\mathfrak{n}}_{\pm} \oplus \mathcal{H} \otimes \mathbb{C}[[t]]$. Let \hat{N}_{\pm} and \hat{B}_{\pm} be Lie groups corresponding to $\hat{\mathfrak{n}}_{\pm}$ and $\hat{\mathfrak{b}}_{\pm}$ respectively. Consider a flag variety $X = G((t))/\hat{B}_{-}$ which has a structure of a scheme of infinite type. As in the finite-dimensional case X splits into \hat{N}_{+} -orbits of finite codimension, parametrized by the affine Weyl group. There is an analogue of a big cell $\hat{\mathcal{U}}$ in X which is a projective limit of affine spaces, and

hence, the ring of regular functions $\mathcal{O}_{\mathcal{U}}$ on \mathcal{U} is a polynomial ring in infinitely many variables. Thus $\mathfrak{G}((t))$ acts on it by differential operators providing a realization for the contragradient Verma module with zero highest weight. Global sections of more general \hat{N}_+ -equivariant sheaves on X will produce an arbitrary highest weight. Other \hat{N}_+ -orbits in X correspond to twisted contragradient Verma modules. A striking difference with the finite-dimensional case is that we can not obtain standard Verma modules this way. They can be obtained considering \hat{N}_+ -orbits on $G((t))/\hat{B}_+$.

3. First free field realization

In the previous section we considered the case of classical Verma modules for affine Lie algebras. Consider the completion \mathfrak{b}_{nat} in $\mathfrak{G}((t))$ of the natural Borel subalgebra $\mathfrak{n}_- \otimes \mathbb{C}[t,t^{-1}] \oplus \mathcal{H} \otimes \mathbb{C}[t^{-1}]$. If N_- is the Lie group corresponding to \mathfrak{n}_- then $\mathfrak{B}_{nat} = N_-((t))\mathcal{H}[[t^{-1}]]$ is the Borel subgroup corresponding to \mathfrak{b}_{nat} . Let $X = G((t))/\mathfrak{B}_{nat}$. The difference with the classical case is that X is not a scheme. This structure is called the semi-infinite manifold [FZ], [V1]. It can be viewed as the space of maps from $Spec\mathbb{C}((t))$ to the finite-dimensional flag variety G/B_- . We can consider the \hat{N}_+ -orbits on the semi-infinite manifold and, in particular, $N_+((t))$ can be viewed as an analogue of the big cell \mathcal{U} in G/B_- .

Example 3.1. ([FZ], 10.3.6). For simplicity we will only consider the case $\mathfrak{G} = sl(2)$. The corresponding semi-infinite manifold can be thought as $\mathbb{P}^1((t))$. The big cell $\mathbb{A}^1 \subset \mathbb{P}^1$ can be lifted to a big cell $\mathbb{A}^1((t)) = \{(x(t) - 1)^t\}$, which coincides with the space of functions $F \simeq \mathbb{C}((t))$ on the punctured disc with the chosen coordinate t on the disc. Denote

$$e_n = e \otimes t^n, h_n = h \otimes t^n, f_n = f \otimes t^n, n \in \mathbb{Z}.$$

Then the corresponding representation by vector fields on \mathcal{F} is the following

$$e_n \mapsto \partial x_n, \ h_n \mapsto -2\sum_{m \in \mathbb{Z}} x_m \partial x_{n+m}, \ f_n \mapsto -\sum_{m,k \in \mathbb{Z}} x_m x_k \partial x_{n+m+k}.$$

Let $V = \mathbb{C}[x_m, m \in \mathbb{Z}]$. It is clear that the differential operators corresponding to f_n are not well-defined on V (they take values in some formal completion of V). One way to deal with this problem is to apply the anti-involutions:

$$e_n \leftrightarrow f_n, h_n \leftrightarrow h_n; x_n \leftrightarrow \partial x_n, n \in \mathbb{Z}$$

which gives the following formulas:

$$f_n \mapsto \partial x_n, \ h_n \mapsto -2\sum_{m \in \mathbb{Z}} x_{n+m} \partial x_m, \ e_n \mapsto -\sum_{m,k \in \mathbb{Z}} x_{n+m+k} \partial x_m \partial x_k.$$

These formulas define the first free field realization of $\hat{sl}(2)$ in the polynomial ring $\mathbb{C}[x_m, m \in \mathbb{Z}]$. This module is, in fact, a quotient M(0) of the imaginary Verma module with trivial highest weight by a submodule generated by the elements $h_n \otimes 1$, n < 0.

A boson type realization of the imaginary Verma module for $\hat{sl}(2)$ with a non-trivial central action was obtained by Bernard and Felder in the Fock space $\mathbb{C}[x_m, m \in \mathbb{Z}] \otimes \mathbb{C}[y_n, n > 0]$:

$$f_n \mapsto x_n, \ h_n \mapsto -2\sum_{m \in \mathbb{Z}} x_{m+n} \partial x_m + \delta_{n < 0} y_{-n} + \delta_{n > 0} 2nK \partial y_n + \delta_{n,0} J,$$

$$e_n \mapsto -\sum_{m} x_{k+m+n} \partial x_k \partial x_m + \sum_{k>0} y_k \partial x_{-k-n} + 2K \sum_{m>0} m \partial y_m \partial x_{m-n} + (Kn+J) \partial x_{-n}.$$

This module is irreducible if and only if $K \neq 0$. If we let K = 0 and quotient out the submodule generated by $y_m, m > 0$ then the factormodule is irreducible if and only if $J \neq 0$ (cf. [F1]). This construction has been generalized for all affine Lie algebras in [C2] providing a realization of imaginary Verma modules.

4. Second free field realization

There is another way to correct the formulas obtained in Example 6.1, which leads to the construction of Wakimoto modules [W].

Denote $a_n = \partial x_n$, $a_n^* = x_{-n}$ and consider formal power series

$$a(z) = \sum_{n \in \mathbb{Z}} a_n z^{-n-1}, \quad a^*(z) = \sum_{n \in \mathbb{Z}} a_n^* z^{-n}.$$

Series a(z) and $a^*(z)$ are called *formal distributions*. It is easy to see that $[a_n, a_m^*] = \delta_{n+m,0}$ and all other products are zero. The formulas in Example 6.1 can be rewritten as follows:

$$e(z) \mapsto a(z), \ h(z) \mapsto -2a^*(z)a(z), \ f(z) \mapsto -a^*(z)^2a(z),$$

where $g(z) = \sum_{n \in \mathbb{Z}} g_n z^{-n-1}$ for $g \in \{e, f, h\}$. This realization is not well-defined since the annihilation and creation operators are in a wrong order. It becomes well-defined after the application of two anti-involutions described above. Then the formulas read:

$$f(z) \mapsto a(z), \ h(z) \mapsto 2a(z)a^*(z), \ f(z) \mapsto -a(z)a^*(z)^2,$$

where a_n and a_n^* have the following meaning now $a_n = x_n$, $a_n^* = -\partial x_{-n}$. This is our quotient of the imaginary Verma module.

A different approach was suggested by Wakimoto ([W]) who introduced the normal ordering. Denote

$$a(z)_{-} = \sum_{n<0} a_n z^{-n-1}, \ a(z)_{+} = \sum_{n>0} a_n z^{-n-1}$$

and define the normal ordering as follows

$$: a(z)b(z) := a(z)_{-}b(z) + b(z)a_{+}(z).$$

Let now

$$a_n = \{ \begin{array}{ll} x_n, & n < 0 \\ \partial x_n, & n \geq 0, \end{array} \ a_n^* = \{ \begin{array}{ll} x_{-n}, & n \leq 0 \\ -\partial x_{-n}, & n > 0, \end{array} \ b_m = \{ \begin{array}{ll} m \partial y_m, & m \geq 0 \\ y_{-m}, & m < 0. \end{array} \right.$$

Here $[a_n, a_m^*] = [b_n, b_m] = \delta_{n+m,0}$.

Theorem 4.1. ([W]). The formulas

$$c \mapsto K, \ e(z) \mapsto a(z), \ h(z) \mapsto -2 : a^*(z)a(z) : +b(z),$$

 $f(z) \mapsto -: a^*(z)^2 a(z) : +K\partial_z a^*(z) + a^*(z)b(z)$

define the second free field realization of the affine sl(2) acting on the space $\mathbb{C}[x_n, n \in \mathbb{Z}] \otimes \mathbb{C}[y_m, m > 0]$.

These modules are celebrated *Wakimoto modules*. They were defined for an arbitrary affine Lie algebra by Feigin and Frenkel [FF1], [FF2]. Generically Wkimoto modules are isomorphic to Verma modules.

5. Intermediate Wakimoto modules

So far we considered two extreme cases of Borel subalgebras in the affine Lie algebras: standard and natural. But if the rank of \mathfrak{G} is more than 1 then the corresponding affine algebra has other conjugacy classes of Borel subalgebras. It should be possible to associate to each such Borel subalgebra a boson type realization by rearranging the annihilation and creation operators as it was done in the first and the second free field realizations. For affine Lie algebras of type $A_n^{(1)}$ associated with sl(n+1) this has been accomplished in [CF], where a series of boson type realizations was constructed depending on the parameter $0 \le r \le n$. If r = n this construction coincides with the construction of Wakimoto modules. On the other hand when r = 0 the obtained representation gives a Fock space realization described in [C2].

Let $0 \leq r \leq n$, $\gamma \in \mathbb{C}^*$, $k = \gamma^2 - (r+1)$. Let H_i , E_i , F_i , i = 1, ..., n be the standard basis for $\mathfrak{G} = sl(n+1)$. Denote $X_m = t^m \otimes X$ for $X, Y \in \mathfrak{G}$ and $m \in \mathbb{Z}$. Let $\{\alpha_1, \ldots, \alpha_n\}$ be a basis for Δ^+ , the positive set of roots for \mathfrak{G} , such that $H_i = \check{\alpha}_i$ and let Δ_r be the root system with basis $\{\alpha_1, \ldots, \alpha_r\}$ ($\Delta_r = \emptyset$, if r = 0) of the Lie subalgebra $\mathfrak{G}_r = sl(r+1)$. Denote by \mathcal{H}_r a Cartan subalgebra of \mathfrak{G}_r spanned by H_i , $i = 1, \ldots, r$. Set $\mathcal{H}_0 = 0$, $\tilde{\mathcal{H}}_r = \mathcal{H}_r \oplus \mathbb{C}c \oplus \mathbb{C}d$.

Denote by E_{im} , F_{im} , H_{im} , $i=1,\ldots,n, m\in\mathbb{Z}$, the generators of the loop algebra corresponding to \mathfrak{G} .

Let $\hat{\mathfrak{a}}$ be the infinite dimensional Heisenberg algebra with generators $a_{ij,m}, a_{ij,m}^*$, and $1, 1 \leq i \leq j \leq n$ and $m \in \mathbb{Z}$, subject to the relations

$$[a_{ij,m}, a_{kl,n}] = [a_{ij,m}^*, a_{kl,n}^*] = 0,$$

$$[a_{ij,m}, a_{kl,n}^*] = \delta_{ik}\delta_{jl}\delta_{m+n,0}\mathbf{1},$$

$$[a_{ij,m}, \mathbf{1}] = [a_{ij,m}^*, \mathbf{1}] = 0.$$

This algebra acts on $\mathbb{C}[x_{ij,m}|i,j,m\in\mathbb{Z}, 1\leq i\leq j\leq n]$ by

$$\begin{split} a_{ij,m} &\mapsto \begin{cases} \partial/\partial x_{ij,m} & \text{if} \quad m \geq 0, \text{ and } j \leq r \\ x_{ij,m} & \text{otherwise,} \end{cases} \\ a_{ij,m}^* &\mapsto \begin{cases} x_{ij,-m} & \text{if} \quad m \leq 0, \text{ and } j \leq r \\ -\partial/\partial x_{ij,-m} & \text{otherwise.} \end{cases} \end{split}$$

and 1 acts as an identity. Hence we have an $\hat{\mathfrak{a}}$ -module generated by v such that

$$a_{ij,m}v = 0$$
, $m \ge 0$ and $j \le r$, $a_{ij,m}^*v = 0$, $m > 0$ or $j > r$.

Let $\hat{\mathfrak{a}}_r$ denote the subalgebra generated by $a_{ij,m}$ and $a_{ij,m}^*$ and $\mathbf{1}$, where $1 \leq i \leq j \leq r$ and $m \in \mathbb{Z}$. If r = 0, we set $\hat{\mathfrak{a}}_r = 0$.

Let $((\alpha_i | \alpha_j))$ be the Cartan matrix for sl(n+1) and let

$$\mathfrak{B}_{ij} := (\alpha_i | \alpha_j)(\gamma^2 - \delta_{i>r}\delta_{j>r}(r+1) + \frac{r}{2}\delta_{i,r+1}\delta_{j,r+1}).$$

Let $\hat{\mathfrak{b}}$ be the Heisenberg Lie algebra with generators b_{im} , $1 \leq i \leq n$, $m \in \mathbb{Z}$, $\mathbf{1}$, and relations $[b_{im}, b_{jp}] = m \mathfrak{B}_{ij} \delta_{m+p,0} \mathbf{1}$ and $[b_{im}, \mathbf{1}] = 0$.

For each $1 \leq i \leq n$ fix $\lambda_i \in \mathbb{C}$ and let $\lambda = (\lambda_1, \dots, \lambda_n)$. Then the algebra $\hat{\mathfrak{b}}$ acts on the space $\mathbb{C}[y_{i,m}|i,m\in\mathbb{N}^*,\ 1\leq i\leq n]$ by

$$b_{i0} \mapsto \lambda_i, \quad b_{i,-m} \mapsto \mathbf{e}_i \cdot \mathbf{y}_m, \quad b_{im} \mapsto m\mathbf{e}_i \cdot \frac{\partial}{\partial \mathbf{y}_m} \quad \text{for} \quad m > 0$$

and $1 \mapsto 1$. Here

$$\mathbf{y}_m = (y_{1m}, \cdots, y_{nm}), \quad \frac{\partial}{\partial \mathbf{v}_m} = \left(\frac{\partial}{\partial y_{1m}}, \cdots, \frac{\partial}{\partial y_{nm}}\right)$$

and \mathbf{e}_i are vectors in \mathbb{C}^n such that $\mathbf{e}_i \cdot \mathbf{e}_j = \mathfrak{B}_{ij}$ where \cdot means the usual dot product. For any $1 \leq i \leq j \leq n$, we define

$$a_{ij}^*(z) = \sum_{n \in \mathbb{Z}} a_{ij,n}^* z^{-n}, \quad a_{ij}(z) = \sum_{n \in \mathbb{Z}} a_{ij,n} z^{-n-1}$$

and

$$b_i(z) = \sum_{n \in \mathbb{Z}} b_{in} z^{-n-1}.$$

Then

$$[b_i(z), b_j(w)] = \mathfrak{B}_{ij}\partial_w \delta(z-w), \quad [a_{ij}(z), a_{kl}^*(w)] = \delta_{ik}\delta_{jl}\mathbf{1}\delta(z-w),$$

where

$$\delta(z-w) = z^{-1} \sum_{n \in \mathbb{Z}} \left(\frac{z}{w}\right)^n.$$

is the formal delta function.

Set

$$a_{ij}(z)_{+} = a_{ij}(z), \quad a_{ij}(z)_{-} = 0$$

 $a_{ij}^{*}(z)_{+} = 0, \quad a_{ij}^{*}(z)_{-} = a_{ij}^{*}(z),$

if j > r.

Denote $\mathbb{C}[\mathbf{x}] = C[x_{ij,m}|i,j,m \in \mathbb{Z}, 1 \leq i \leq j \leq n]$ and $C[\mathbf{y}] = C[y_{i,m}|i,m \in \mathbb{N}^*, 1 \leq i \leq n]$.

Remark 5.1. Note that

:
$$a_{ij}(z)a_{kl}^*(z) := \sum_{m \in \mathbb{Z}} \left(\sum_{n \in \mathbb{Z}} : a_{ij,n} a_{kl,m-n}^* : \right) z^{-m-1}$$

is well defined on $\mathbb{C}[\mathbf{x}] \otimes \mathbb{C}[\mathbf{y}]$)[[z, z^{-1}]] for all l > r or if $l \le r$ and $j \le r$.

Let \mathfrak{b}_r be the Borel subalgebra of \mathfrak{G} corresponding to a parabolic subalgebra of \mathfrak{G} whose semisimple part of the Levi factor is \mathfrak{G}_r .

Fix $\tilde{\lambda} \in \tilde{\mathcal{H}}^*$ and let $M_r(\tilde{\lambda})$ be the Verma type module associated with \mathfrak{b}_r and $\tilde{\lambda}$. When r = n this module is a standard Verma module while in the case r = 0 we get an imaginary Verma module. Denote by $v_{\tilde{\lambda}}$ the generator of $M_r(\tilde{\lambda})$.

Let $\tilde{\lambda}_r = \tilde{\lambda}|_{\tilde{\mathcal{H}}_r}$. The module $M_r(\tilde{\lambda})$ contains a $\tilde{\mathfrak{G}}_r$ -submodule $M(\tilde{\lambda}_r) = U(\tilde{\mathfrak{G}}_r)(v_{\tilde{\lambda}})$ which is isomorphic to the standard Verma module for $\tilde{\mathfrak{G}}_r$. If $\tilde{\lambda}(c) \neq 0$ then the submodule structure of $M_r(\tilde{\lambda})$ is completely determined by the submodule structure of $M(\tilde{\lambda}_r)$ [C1], [FS].

Define

$$E_i(z) = \sum_{n \in \mathbb{Z}} E_{in} z^{-n-1}, \quad F_i(z) = \sum_{n \in \mathbb{Z}} F_{in} z^{-n-1}, \quad H_i(z) = \sum_{n \in \mathbb{Z}} H_{in} z^{-n-1},$$

 $1 \le i \le n.$

Theorem 5.2. ([CF]). Let $\lambda \in \mathfrak{H}^*$ and set $\lambda_i = \lambda(H_i)$. The generating functions

$$F_{i}(z) \mapsto a_{ii} + \sum_{j=i+1}^{n} a_{ij} a_{i+1,j}^{*},$$

$$H_{i}(z) \mapsto 2 : a_{ii} a_{ii}^{*} : + \sum_{j=1}^{i-1} \left(: a_{ji} a_{ji}^{*} : - : a_{j,i-1} a_{j,i-1}^{*} : \right) + \sum_{j=i+1}^{n} \left(: a_{ij} a_{ij}^{*} : - : a_{i+1,j} a_{i+1,j}^{*} : \right) + b_{i},$$

$$E_{i}(z) \mapsto : a_{ii}^{*} \left(\sum_{k=1}^{i-1} a_{k,i-1} a_{k,i-1}^{*} - \sum_{k=1}^{i} a_{ki} a_{ki}^{*} \right) : + \sum_{k=i+1}^{n} a_{ki} a_{ki}^{*}$$

$$E_{i}(z) \mapsto : a_{ii}^{*} \left(\sum_{k=1}^{i-1} a_{k,i-1} a_{k,i-1}^{*} - \sum_{k=1}^{i} a_{ki} a_{ki}^{*} \right) : + \sum_{k=i+1}^{n} a_{i+1,k} a_{ik}^{*} - \sum_{k=1}^{i-1} a_{k,i-1} a_{ki}^{*} - a_{ii}^{*} b_{i} - \left(\delta_{i>r}(r+1) + \delta_{i\leq r}(i+1) - \gamma^{2} \right) \partial a_{ii}^{*},$$

$$c \mapsto \gamma^2 - (r+1)$$

define a representation on the Fock space $\mathbb{C}[\mathbf{x}] \otimes \mathbb{C}[\mathbf{y}]$. In the above a_{ij} , a_{ij}^* and b_i denotes $a_{ij}(z)$, $a_{ij}^*(z)$ and $b_i(z)$ respectively.

This boson type realization of $\tilde{sl}(n+1)$ depends on the parameter $0 \leq r \leq n$ and defines a module structure on the Fock space $\mathbb{C}[\mathbf{x}] \otimes \mathbb{C}[\mathbf{y}]$ which is called an *intermediate Wakimoto module*. Denote it by $W_{n,r}(\lambda,\gamma)$ and consider a \mathfrak{G}_r -submodule $W = U(\mathfrak{G}_r)(v_{\tilde{\lambda}}) \simeq W_{r,r}(\lambda,\gamma)$ of $W_{n,r}(\lambda,\gamma)$. Then W is isomorphic to the Wakimoto module $W_{\lambda(r),\tilde{\gamma}}$ ([FF2]), where $\lambda(r) = \lambda|_{\mathcal{H}_r}$, $\tilde{\gamma} = \gamma^2 - (r+1)$. Since generically Wakimoto modules are isomorphic to Verma modules, intermediate Wakimoto modules provide a realization for generic Verma type modules.

References

- [AL] H.Andersen and N.Lauritzen. Twisted Verma modules. Studies in Memory of I.Schur, PIM 210, Birkhauser, 2002.
- [BF] D. Bernard and G. Felder. Fock representations and BRST cohomology in sl(2) current algebra. Comm. Math. Phys., 127(1):145–168, 1990.
- [BB] A.Beilinson and I.Bernstein. Bernstein. Localisatin de g-modules. C.R. Acad. Sci. Paris, 292:15-18, 1981.
- [B] Y.Billig. Sine-Gordon equation and representations of affine Kac-Moody algebra sl(2). *J. Funct. Analysis*, 192:295-318, 2002.
- [Co] N.Conze. Algébres d'opérateurs différetiels et quotients des algébres enveloppantes. Bull. Soc. Math. France, 102:379-415, 1974.
- [C1] B.Cox. Verma modules induced from nonstandard Borel subalgebras. Pacific J. Math., 165(2):269–294, 1994.
- [C2] B.Cox Fock Space Realizations of Imaginary Verma Modules. Algebras and Representation Theory, Kluwer Publishers.
- [CF] B.Cox and V.Futorny. Intermediate Wakimoto modules for affine sl(n+1). J. Physics A: Math. and General, 37:5589-5603, 2004.
- [DS] V.Drinfeld and V.Sokolov. Equations of KdV type and simple Lie algebras. Soviet Math. Dokl., 23:457-462, 1981.
- [DFO] Yu.Drozd, V.Futorny and S.Ovsienko. Harish-Chandra subalgebras and Gelfand-Zetlin modules. In Finite-dimensional algebras and related topics, NATO Adv. Sci. Inst. Math. and Phys. Sci., 424:79-93, 1994.

- [Fe] B.Feigin. The semi-infinite cohomology of Kac-Moody and Virasoro Lie algebras. Russian Math. Surveys, 39:155-156, 1984.
- [FF1] B.Feigin and E.Frenkel. Affine Kac-Moody algebras and semi-infinite flag manifolds. Comm. Math. Phys., 128(1):161–189, 1990.
- [FF2] B.Feigin and E.Frenkel. Representations of affine Kac-Moody algebras and bosonization. In *Physics and Mathematics of strings*, pages 271–316. World Sci. Publishing, Teaneck, N.J. 1990.
- [FdF] A.Feingold and I.Frenkel. Classical affine algebras. Adv. in Math., 56:117-172, 1985.
- [FZ] E.Frenkel and D.Ben-Zvi. Vertex algebras and algebraic curves. Math. Surveys and Monographs, AMS 83, 2001
- [FS] V.Futorny and H.Saifi. Modules of Verma type and new irreducible representations for affine Lie algebras. In Representations of algebras (Ottawa, ON, 1992), pages 185–191. Amer. Math. Soc., Providence, RI, 1993.
- [F1] V.Futorny. Imaginary Verma modules for affine Lie algebras. Canad. Math. Bull., $37(2):213-218,\ 1994.$
- [F2] V.Futorny. Representations of affine Lie algebras. Queen's Papers in Pure and Applied Math., 1997.
- [JK] H. P. Jakobsen and V. G. Kac. A new class of unitarizable highest weight representations of infinite-dimensional Lie algebras. In Nonlinear equations in classical and quantum field theory (Meudon/Paris, 1983/1984), pages 1–20. Springer, Berlin, 1985.
- [K] V.Kac. Infinite-dimensional Lie algebras. 3rd ed., Cambridge Univ. Press, Cambridge, UK. 1990.
- [Kh] A.Khomenko. Some applications of Gelfand-Tsetlin modules. Fields Institute Proceedings, to appear.
- [LW] J.Lepowsky and R.Wilson. Construction of affine Lie algebra $A_1^{(1)}$. Comm. Math. Phys., 62:43-53, 1978.
- [V1] A. Voronov. Semi-infinite homological algebra. Invent. Math., 113:103-146, 1993.
- [V2] A.Voronov. Semi-infinite induction and Wakimoto modules. Amer. J. Math. 121:1079-1094, 1999.
- [W] M.Wakimoto. Fock representations of the affine Lie algebra $A_1^{(1)}$. Comm. Math. Phys., $104(4):605-609,\ 1986.$