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Abstract. Representations of partially ordered sets (posets) in the category of lin-
ear spaces were introduced in the late sixties of XX century. Firstly we will recall
basic definitions and results. We investigate a similar theory in the category of uni-
tary spaces. There exists not many posets for which it is possible to classify all
unitary representations up to the unitary equivalence, and the classification in that
cases is rather simple (we will discuss these results). Therefore we impose the ad-
ditional condition on representations (so-called orthoscalarity conditions). It turned
out that orthoscalar unitary representations are strictly connected with stable linear
representations. We will discuss some results for orthoscalar unitary representations
which follow studying the stable linear representations of posets. I finish this note
with some open questions.

0. Representations of posets in linear spaces

A poset P is a finite set = {1, . . . , n} with a partial order ≺ which of course has not
to coincide with the usual order on {1, . . . , n}.
To a poset P we associate a poset P0 = P ∪ {0}, with maximal element 0, i.e. i ≺
0, i ∈ P . Then a quiver QP associated to P is the Hasse quiver of P0.

Example 1. If P = {1, 2, 3, 4} with no-relations between the points then its quiver
QP has the following form
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The notion of poset representations was introduced by Nazarova and Roiter (see for
example [NR]). A matrix-representations of P over a field k is a block matrix

A = [A1| . . . |An]

over k. Two representations A = [A1| . . . |An] and Ã = [Ã1| . . . |Ãn] are equivalent if A
can be reduced to Ã by

• elementary row transformations;
• elementary column transformations within blocks Ai;
• additions of linear combinations of columns of Ai to columns of Aj if i ≺ j.

Almost equivalent definition (up to a finite number of indecomposables) of represen-
tations is the following: a representation is a collection of k-vector spaces (V0;Vi)i∈P
in which Vi ⊂ V0 and Vi ⊂ Vj if i ≺ j. Two representations (V0;Vi)i∈P and (Ṽ0; Ṽi)i∈P
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are equivalent if there exist an invertible map g : V0 → Ṽ0 such that g(Vi) = Ṽi for all
i ∈ P . Yet another way to define the representations is to consider the representations
of the quiver QP bounded by all commutative relation generated by non-oriented cycles
in QP , see [Simson, Chapter 14].

To a poset we associate a quadratic form (called Tits form)

qP(x0;x1, . . . , xn) = x20 +
n∑

i=1

x2i +
∑
i≺j

xixj −
n∑

i=1

x0xi;

A quadratic form q : Zn → Z is said to be weakly positive (resp. non-negative) if
q(z) > 0 (resp. q(z) ≥ 0) for all non-zero z = (z1, . . . , zn) ∈ Zn with zi ≥ 0.

Recall two classification theorems. The first one is is due to Kleiner (see, for example,
[Simson, Chapter 10]).

Theorem 1. (Kleiner) The following conditions are equivalent

• A poset P is representation-finite;
• Tits form qP is weakly positive;
• A quiver QP of a poset P does not contain any of the following critical quivers
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The second one is due to L.Nazarova (see, for example, [Simson, Chapter 15]).

Theorem 2. (Nazarova) The folowing conditions are equivalent

• A poset P is representation-tame;
• Tits form qP is weakly non-negative;
• A quiver QP of the poset P does not contain any of the following critical quivers
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1. Representations of posets in unitary spaces

From now on, all representations that we consider are over the field of complex num-
bers. We give the definitions similarly as in linear case. A unitary representation is a
collection of complex vector spaces (U0;Ui)i∈P in which U0 is a unitary space, Ui ⊂ U0

and Ui ⊂ Uj if i ≺ j. Two representations (U0;Ui)i∈P and (Ũ0; Ũi)i∈P are unitarily

equivalent if there exists a unitary map g : U0 → Ũ0 such that g(Ui) = Ũi for all i ∈ P .
A representations is unitary indecomposable if it is not equivalent to an orthogonal di-
rect sum of two non-zero representations. Note also, that one can also give an analogue
of matrix definition of representations.

Define a unitary Tits form wP by

wP(x0;x1, . . . , xn) = x20 + 2
n∑

i=1

x2i + 2
∑
i≺j

xixj − 2
n∑

i=1

x0xi.

A chain is a linearly ordered poset. A semi-chain is a poset of the form P =
⋃k

i=1Pi,
in which each Pi consists of either one point or two incomparable points, and p(1) ≺
p(2) ≺ · · · ≺ p(k) for all p(i) ∈ Pi.

The following theorems give the classification of posets by their unitary representations
types ([BFSY-12]).

Theorem 3. (Bondarenko, Futorny, Sergeichuk, Yusenko) The folowing conditions
are equivalent

• A poset P is unitarily representation-finite;
• A poset P + P is representation-finite;
• A poset P is linearly ordered (chain);
• Unitary Tits form wP is weakly positive.

Each indecomposable unitary representation of the chain has the following form

0 // 0 // . . . // C // C // . . . // C

Theorem 4. (Bondarenko, Futorny, Sergeichuk, Yusenko) The folowing conditions
are equivalent

• A poset P is unitarily representation-tame;
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• A poset P + P is representation-tame;
• A poset P is a semi-chain;
• Unitary Tits form wP is weakly non-negative.

Let us show the description of indecomposable representations of the semi-chain in the
case when it consists of two incomparable points. Apart from obvious one-dimensional
representation there exists an infinite number of non-equivalent two-dimensional rep-
resentations:

C〈e1, e2〉88
qqqqq hh

QQQQQQ

C〈e1〉 C〈e1 + λe2〉

Such representations are non-equivalent for different values of λ and there are no
other indecomposable representations. There are no indecomposable representations in
higher dimensions. Note that the description of all representations of each semi-chain
looks similarly to this example.

If the poset is not a semi-chain then it is unitarily wild. Roughtly speaking that means
that it contains a problem of classification of the pair of self-adjoint matrices under
unitary equivalence, which is unsolved (see [OS] for more details).

So we study the representations which satisfy some additional conditions

2. Orthoscalar representations of posets

Let χ = (χ0;χi)i∈P ∈ R|P|+1
+ . We say that a unitary representation (U0;Ui)i∈P is

χ-orthoscalar if the following condition holds

χ1PU1 + · · ·+ χnPUn = χ0I,

where PUi
is the orthogonal projection on subspace Ui. Representations of this kind

in similar context as well as a terminology were introduced in the series of papers
by Kruglyak, Nazarova and Roiter (see [KNR], references therein and other papers
in ArXiv). Such relations appear in many areas of mathematics, see for example
[Klyachko, Totaro, Wun] and references therein.

My aim is to make a survey on results concerning χ-orthoscalar unitary representations
which follows studying the linear representation of special type.

If we take a trace from two side of last equality we get

(2.1) χ1 dimU1 + . . .+ χn dimUn = χ0 dimU0.

Let us take a subspace M ⊂ U0 and let PM be corresponding orthoprojection on M .
It is not hard to prove that we have

(2.2) χ1 dimU1 ∩M + . . .+ χn dimUn ∩M < χ0 dimM,

if representations is indecomposable. If a given system (V0;Vi)iP of subspaces satisfies
(2.1) and (2.2) we say that it is χ-stable.

So, if indecomposable unitary representation is (U0;Ui)i∈P is χ-orthoscalar then the
corresponding linear representations (U0;Ui)i∈P is χ-stable. In fact it is also vice
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versa, in the sense that given a χ-stable linear representations (V0;Vi)i∈P it is pos-
sible to choose a scalar product in V0 in such a way that this representation becomes
χ-orthoscalar. Note that this stability coincides with the stability on corresponding
bound quiver QP introduced by A.King in [King], see [WY11] for the details.

Moreover, we have the following

Proposition 5. If two χ-orthoscalar representations are equivalent as linear represen-
tations then they are unitarily equivalent.

Using this observation and studying stability for linear representations the following
result was obtained (see [SY11])

Theorem 6. (Samoilenko, Yusenko) The following conditions are equivalent

• A poset P is representation-finite;
• For any weight χ, a poset P has just finite number of non-equivalent χ-orthoscalar

representations.

In one direction this theorem follows from previous Proposition. In other direction
one should show the existence of infinite number of χ-stable linear representations for
critical posets.

Also we have the following result (see [WY11])

Theorem 7. (Weist, Yusenko) Assume that P is representation-wild than there exists
a weight χ such that a poset P has an infinite number of non-equivalent χ-orthoscalar
representations which depends on an arbitrary number of complex parameters.

The last theorem says that if P is representation-wild then the classification of unitarily
non-equivalent χ-orthoscalar can be a hard problem. But the following conjecture is
still remains unsolved

Conjecture 1. Assume that P is representation-wild. There exists a weight χ such
that the classification of χ-orthoscalar representations of P is unitarily representation-
wild problem.

As it was mentioned to build a χ-orthoscalar representation one can find χ-stable linear
representation. So we naturally ask:

Question 1. Under which condition a given linear representation is stable with some
weight?

One of the necessary conditions is that it has to be schurian (i.e., with trivial endo-
morphism ring), but it is not sufficient as next statements show.

• Every indecomposable representation of a poset P is stable with some weight
iff P is representation-finite (Gruchevoy, Yusenko [GY10]);
• If a poset P is representation-tame and primitive than every schurian represen-

tation of P is stable with some weight (Hille, de la Peña [HdlP-02]);
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• For some non-primitive posets P and some dimension vectors d every schurian
representation of P in dimension d is stable with some weight (Yusenko, Weist
[WY11]);
• If a poset P is representation-wild then there exist schurian representations

which are not stable with any weight (see [WY11]).

The following conjecture reminds unsolved (which finishes the classification):

Conjecture 2. Every Schurian representation of representation-tame poset is stable
with some weight.

3. Another open problems

In [Dr74] there were introduced Coxeter functors for representations of posets (see the
original paper for the definitions).

Question 2. Is it true that Drozd’s Coxeter functors map stable representations into
stable ones?

Differentiation of a representation of a poset were introduced by Nazarova and Roiter
for ’matrix language’. We recall the construction for ’subspace language’ which was
given originally by Gabriel (see [Gabriel72]).

Let c be a maximal element in P . Denote by cO = {i ∈ P | i � c}. We say that P is
differentiable with respect to a maximal element c if the width of the poset P − cO is
less then 3. Define a poset P ′c as a union of the poset P − {c} and the set

{r ∨ s | r, s ∈ P , and r, s, c are incomparable}
On P ′c we have an induced partial order. For example if P has the following form

4OO ^^
==== 5OO 6OO

1 2

^^====

3

then P ′4 has the form

5 ∨ 6

5OO
// 5 ∨ 3

OO

6

ccFFFFF

OO

1 2 3

ccFFFFF

Define a functor (see also [Gabriel72])

∂c : P − sp→ P ′c − sp
by the formula ∂c((V0;Vi)i∈P) = (V ′0 ;V ′i )i∈P ′

c
, where

V ′0 = Vc,

V ′i = Vi ∩ Vc; if i ∈ P ,
V ′r∨s = (Vr + Vs) ∩ Vc.
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For example if V has the form

〈e123, e1〉OO ff
NNNNNNN
〈e1, e2〉OO

〈e2, e3〉OO

〈e123〉 〈e1〉 〈e3〉

then V ′ is of the form

〈e123, e1〉

〈e1〉OO
// 〈e123, e1〉

OO

〈e23〉

ffLLLLL

OO

〈e123〉 〈e1〉 0

ffLLLLLLL

where en1...nk
denotes en1 + · · ·+ enk

, and ej is j-th coordinate vector.

See [Gabriel72] and [Simson] for the properties of this functor.

Question 3. Is it true that Differentiation functor maps stable representations into
stable ones?
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