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1. Quantum groups

Consider the Lie algebra sl(n), which is the Lie algebra over C of n × n trace
0 matrices together with the commutator bracket: [A,B] = AB − BA. It is easy
to verify that this is generated by the elements ei := Ei,i+1, fi := Ei+1,i, hi :=
Ei,i−Ei+1,i+1, i = 1, 2, . . . n− 1 where Ei,j is the matrix with 1 in the ith row and
jth column and 0 everywhere else and satisfies the following relations:

(1) [hi, hj] = 0, i, j = 1, 2, . . . , n− 1,
(2) [ei, fj] = δijhi, i, j = 1, 2, . . . , n− 1,
(3) [hi, ej] = aijej, i, j = 1, 2, . . . , n− 1
(4) [hi, fj] = −aijfj, i, j = 1, 2, . . . , n− 1
(5) (adei)

1−aij(ej) = 0, (adfi)
1−aij(fj) = 0, for i 6= j,

where A = (aij)
n−1
i,j=1 is the matrix:

2 −1 0 0 · · · 0 0
−1 2 −1 0 · · · 0 0
0 −1 2 −1 · · · 0 0
...

. . . . . . . . . . . .
...

...
0 0 0 0 . . . −1 2


and adx(y) := [x, y] is the adjoint operator.

In fact, sl(n) is isomorphic to the Lie algebra generated by ei, fi, hi, i = 1, 2, . . . , n
subject to relations (1)-(5) (see for example [H]). This is our motivating example
for the notion of Kac-Moody algebras, which we define next. A standard reference
is [K].

Every Kac-Moody algebra is determined by a generalized Cartan matrix (GCM),
which is a matrix A = (aij)i,j∈I , aij ∈ Z, where I is a finite index set, satisfying
the following conditions:

(1) aii = 2,
(2) aij ≤ 0 if i 6= j,
(3) aij < 0 if and only if aji < 0.
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A GCM is called symmetrizable if there exists a diagonal matrix D = diag(si)i∈I
such that si ∈ Z>0, i ∈ I and DA is a symmetric matrix. We will consider only
symmetrizable GCMs. It may happen that A is singular. Fix a subset S of I of
cardinality |I| − rank(A).

Definition 1. Let A = (aij)i,j∈I be a (symmetrizable) GCM. The Kac-Moody
algebra g(A) is the Lie algebra over C generated by the elements ei, fi, i ∈ I, and
dj, j ∈ S satisfying the following relations:

(1) [hi, hj] = 0, i, j ∈ I, [hi, dj] = 0, i ∈ I, j ∈ S, [di, dj] = 0, i, j ∈ S
(2) [ei, fj] = δijhi, i, j ∈ I
(3) [hi, ej] = aijej, i, j ∈ I, [di, ej] = δijej, i ∈ I, j ∈ S
(4) [hi, fj] = −aijfj, i, j ∈ I, [di, fj] = −δijfj, i ∈ I, j ∈ S
(5) (adei)

1−aij(ej) = 0, (adfi)
1−aij(fj) = 0, for i 6= j ∈ I,

Where there is no confusion about A, we write g for g(A).

We remark that the Kac-Moody algebra g(A) is finite dimensional if and only
if A is a positive definite matrix. In this case, it is a finite dimensional semisimple
Lie algebra (see [H]).

We recall also the notion of the universal enveloping algebra of a Lie algebra g
which is the unique associative algebra U(g) equipped with a map ι : g → U(g)
such that ι([x, y]) = ι(x)ι(y) − ι(y)ι(x) which satisfies the following universal
property: if A is any associative algebra and κ : g → A is a map satisfying
κ([x, y]) = κ(x)κ(y)− κ(y)κ(x) then there exists a unique homomorphism of alge-
bras φ : U(g)→ A such that φ◦ι = κ, alternately, such that the following diagram
commutes:

g

ι
U(g)

κ A

!φ

Recall also (by the Poincaré-Birkhoff-Witt theorem) that g embeds via ι isomor-
phically in U(g), which can be realized as a suitable quotient of the tensor algebra
of g. In order to quantize the universal enveloping algebra of a Kac-Moody algebra,
it is helpful to give an explicit realization in terms of generators and relations:

Proposition 1 (see [HK]). Let g be a Kac-Moody algebra with GCM A. Then U(g)
is isomorphic to the associative algebra over C with 1 generated by ei, fi, hi, i ∈
I, dj, j ∈ S satisfying relations (1)-(4) of definition 1 (with Lie bracket replaced by
commutator bracket) and the following:

(5)
∑1−aij

k=0 (−1)k
(

1− aij
k

)
e
1−aij−k
i eje

k
i = 0 for i 6= j,

(6)
∑1−aij

k=0 (−1)k
(

1− aij
k

)
f
1−aij−k
i fjf

k
i = 0 for i 6= j.
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Now we are ready to give the definition of a quantum group. Let C(q) be the field

of rational functions in the indeterminate q and define [m]q = qm−q−m

q−q−1 ∈ C(q) to be

the q integer m. Define the q-factorial inductively by [0]q! = 1, [m]q! = [m]q[m]q!.

Finally, define

[
m
n

]
q

= [m]q !

[n]q ![m−n]q ! to be the q binomial coefficient. Notice that

the limit as q → 1 of each of these functions is m,m! and
(
m
n

)
respectively. Then

we make the following definition:

Definition 2. Let g be a Kac-Moody algebra with GCM A. The quantum group or
quantized universal enveloping algebra Uq(g) is the associative algebra over C(q)
with 1 generated by the elements ei, fi, Ki, K

−1
i i ∈ I and Dj, D

−1
j , j ∈ S with the

following defining relations:

(1) KiK
−1
i = K−1i Ki = DjD

−1
j = D−1j Dj = 1, i ∈ I, j ∈ S

(2) [Ki, Kj] = 0, i, j ∈ I, [Ki, Dj] = 0, i ∈ I, j ∈ S, [Di, Dj] = 0, i, j ∈ S,
(3) KiejK

−1
i = qaijej, i, j ∈ I,DiejD

−1
i = qδijej, i ∈ I, j ∈ S

(4) KifjK
−1
i = q−aijfj, i, j ∈ I,DifjD

−1
i = q−δijej, i ∈ I, j ∈ S

(5) [ei, fj] = δij
Ki−K−1

i

qi−q−1
i

for i, j ∈ I,

(6)
∑1−aij

k=0 (−1)k
[

1− aij
k

]
qi

e
1−aij−k
i eje

k
i = 0 for i 6= j,

(7)
∑1−aij

k=0 (−1)k
[

1− aij
k

]
qi

f
1−aij−k
i fjf

k
i = 0 for i 6= j.

Where qi = qsi.

It is possible to view U(g) as the formal limit as q → 1 of Uq(g), hence the
terminology (see [HK]). There is also an analogous theory of Uq(g)-modules with
parallels to the theory of U(g)-modules (equivalently representations of g). We
outline the main points next.

Let λ ∈ P := {λ ∈ h∗|λ(hi), λ(dj) ∈ Z, i ∈ I, j ∈ S}, where h = spanC{hi, i ∈
I, dj, j ∈ S} is the Cartan subalgebra of g. Then there exists a Uq(g)-module
V q(λ) which is an irreducible highest weight module with highest weight λ i.e.,
there exists vλ ∈ V q(λ) such that V q(λ) = Uq(g)vλ and

(1) eivλ = {0}, i ∈ I
(2) Ki · vλ = qλ(hi)vλ, i ∈ I,Di · vλ = qλ(dj)vλ, j ∈ S.

For µ ∈ P we define the set V q(λ)µ := {v ∈ V q|Kiv = qµ(hi)v, i ∈ I,Djv =
qµ(dj), j ∈ S} to be the weight space of V q(λ) of weight µ. One of the main results
is the following, due to Lusztig:

Theorem 1. Let λ ∈ P+ := {λ ∈ P |λ(hi), λ(di) ≥ 0, i ∈ I, j ∈ S}. Then

dimC(q)(V
q(Λ)µ) = dimC(V (λ)µ), µ ∈ P.

where V (λ) is the irreducible highest-weight U(g)-module with highest weight λ.
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Therefore, the characters of integrable Uq(g)-modules are the same as the cor-
responding U(g)-modules.

2. Crystal Bases

Crystal bases ([Ka],[Lu]) are essentially bases of Uq(g) modules in the formal
limit as q → 0. Before we define crystal bases, we need the notion of the Kashiwara
operators ẽi, f̃i, i ∈ I. These are certain modified root vectors for the quantum
group Uq(g). But first, we need a preliminary result:

Lemma 1 ([Ka]). Let λ ∈ P+ and V q(λ) be the highest weight Uq(g)-module of
highest weight λ. For each i ∈ I, every weight vector u ∈ V q(λ)µ(µ ∈ P ) may be
written in the form

u = u0 + fiu1 + · · ·+ f
(N)
i uN ,

where N ∈ Z≥0 and uk ∈ V q(λ)µ+kαi
∩ ker ei for all k = 0, 1, . . . , N, αi ∈ P is

defined by αi(hj) = aji, i, j ∈ I, αi(dj) = δi,j, i ∈ I, j ∈ S, and f
(n)
i :=

fni
[n]qi !

.

Here, each uk in the expression is uniquely determined by u and uk 6= 0 only if
µ(hi) + k ≥ 0.

We now have the following:

Definition 3. Let λ ∈ P+. The Kashiwara operators ẽi and f̃i(i ∈ I) on V q(λ)
are defined by

ẽiu =
N∑
k=1

f
(k−1)
i uk, f̃iu =

N∑
k=0

f
(k+1)
i uk.

We also need an auxiliary definition of a crystal lattice, which will make it pos-
sible to formally take the limit as q → 0. Let A0 := {f ∈ C(q)|f is regular at 0}.

Definition 4. Let λ ∈ P+ and V q(λ) be the highest weight Uq(g)-module of highest
weight λ. A free A0-submodule L of V q(λ) is called a crystal lattice if

(1) L generates V q(λ) as a vector space over C(q),
(2) L =

⊕
µ∈P Lµ, where Lµ = L ∩ V q(λ)µ,

(3) ẽiL ⊂ L, f̃iL ⊂ L for all i ∈ I.

Finally, we have the following:

Definition 5. A crystal base of the irreducible highest weight Uq(g)-module V q(λ), λ ∈
P+ is a pair (L,B) such that

(1) L is a crystal lattice of V q(λ),
(2) B is a C-basis of L/qL,
(3) B =

⊔
µ∈P Bµ, where Bµ = B ∩ (Lµ/qLµ),

(4) ẽiB ⊂ B ∪ {0}, f̃iB ⊂ B ∪ {0} for all i ∈ I,
(5) for any b, b′ ∈ B and i ∈ I, we have f̃ib = b′ if and only if b = ẽib

′.
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The set B is called the crystal or crystal graph of (L,B). This is because B can
be regarded as a colored, oriented graph by defining

b
i→ b′ ⇐⇒ f̃ib = b′.

Example: Let V q(m),m ≥ 0 be the highest weight Uq(sl(2))-module spanC(q){v0, v1, . . . , vm}
with the following actions of the generators:

K · vj = qm−2jvj

f · vj = [j + 1]qvj+1

e · vj = [m− j + 1]qvj−1

where vj is understood to be 0 if j < 0 or j > m. Then L = spanA0
{vj|j =

0, 1, . . . ,m} is a crystal lattice of V q(m) and (L,B) is a crystal base, where B =
{v̄0, v̄1, . . . , v̄m} (we write v̄i for vi + qL). The action of the Kashiwara operators
on B is

ẽ(v̄j) = v̄j−1,

f̃(v̄j) = v̄j+1,

again v̄j is understood to be 0 if j < 0 or j > m. Therefore the crystal graph is:

v̄0 → v̄1 → v̄2 → · · · → v̄m

In this way, theory of crystal bases enables us to study “combinatorial skeleton”
of Uq(g)-modules. In particular, the crystal base of a Uq(g)-module satisfies the
conditions for an (abstract) crystal.

Definition 6. A crystal associated with Uq(g) is a set B together with maps wt :

B → P, ẽi, f̃i : B → B ∪ {0}, and εi, ϕi : B → Z ∪ {−∞}, for i ∈ I satisfying the
following properties:

(1) ϕi(b) = εi(b) + 〈hi,wt(b)〉 for all i ∈ I,
(2) wt(ẽib) = wt(b) + αi if ẽib ∈ B,

(3) wt(f̃ib) = wt(b)− αi if f̃ib ∈ B,
(4) εi(ẽib) = εi(b)− 1, ϕi(ẽib) = ϕi(b) + 1 if ẽib ∈ B,
(5) εi(f̃ib) = εi(b) + 1, ϕi(f̃ib) = ϕi(b)− 1 if f̃ib ∈ B,
(6) f̃ib = b′ if and only if b = ẽib

′ for b, b′ ∈ B, i ∈ I,
(7) if ϕi(b) = −∞ for b ∈ B, then ẽib = f̃ib = 0.

Then one may easily prove the following:

Proposition 2 ([Ka]). Let (L,B) be the crystal basis of a Uq(g)-module V q(λ).

Then B is a crystal if we define in addition to ẽi, f̃i:

• wt(b) = µ if b ∈ Bµ,
• εi(b) = max{k|ẽki (b) 6= 0},
• ϕi(b) = max{k|f̃ki (b) 6= 0}.
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i i+ 1 i+ 2 · · ·
i− 1 i i+ 1 · · ·
i− 2 i− 1 i · · ·

...
...

...

Figure 1. Color pattern for an extended Young diagram of charge
i. All labels are reduced modulo n.

3. Realization of ŝl(n)-modules

We probably should say “combinatorial realization of Uq(ŝl(n))-modules”, but

in light of Theorem 1 the terminology is justified. The Kac-Moody algebra ŝl(n)
has GCM A = (ai,j)i,j∈I where I = {0, 1, . . . , n} and

2 −1 0 0 · · · 0 −1
−1 2 −1 0 · · · 0 0
0 −1 2 −1 · · · 0 0
...

. . . . . . . . . . . .
...

...
−1 0 0 0 . . . −1 2


The Kac-Moody algebra ŝl(n) is the infinite-dimensional analogue of sl(n), hence
the terminology.

Let I := {0, 1, . . . n − 1} denote the index set for ŝl(n). An extended Young
diagram is a collection of I-colored boxes arranged in rows and columns, such that
the number of boxes in each row is greater than or equal to the number of boxes
in the row below. To every extended Young diagram we associate a charge, i ∈ I.
In each box, we put a color j ∈ I given by j ≡ a − b + i (mod n) where a is the
number of columns from the right and b is the number of rows from the top (see
figure 1).

For example,
1 2 0
0 1 is an extended Young diagram of charge 1 for n = 3. The

null diagram with no boxes—denoted by ∅—is also considered as an extended
Young diagram.

A column in an extended Young diagram is i-removable if the bottom box con-
tains i and can be removed leaving another extended Young diagram. A column is
i-admissible if a box containing i could be added to give another extended Young
diagram.

An extended Young diagram is called n-regular if there are at most (n − 1)
rows with the same number of boxes. Let Y(i), i ∈ I denote the collection of
all n-regular extended Young diagrams of charge j. Then Y(i) can be given the

structure of a crystal with the following actions of ẽj, f̃j, εj, ϕj, and wt(·). For
each j ∈ I and b ∈ Y(i) we define the j-signature of b to be the string of +’s,
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and −’s in which each j-admissible column receives a + and each j-removable
column receives a − reading from right to left. The reduced j-signature is the
result of recursively canceling all ‘+−’ pairs in the i-signature leaving a string of
the form (−, . . . ,−,+ . . . ,+). The Kashiwara operator ẽj acts on b by removing
the box corresponding to the rightmost −, or maps b to 0 if there are no minus
signs. Similarly, f̃j adds a box to the bottom of the column corresponding to the
leftmost +, or maps b to 0 if there are no plus signs. The function ϕj(b) is the
number of + signs in the reduced j-signature of b and εj(b) is the number of −
signs. We define wt: Y(i)→ P by b 7→ Λi−

∑n−1
j=0# {j-colored boxes in b}αj where

Λi ∈ P is the ith fundamental weight given by Λi(hj) = δij,Λi(d) = 0. Then we
have the following:

Theorem 2 (MM). Let B(Λi) be the crystal graph of the Uq(ŝl(n))-module V q(Λi).
Then Y(i) ∼= B(Λi) as crystals.

We give the top part of Y(0) for ŝl(n) below:

∅

0

0

1

0 1

2

0
2

2

0 1 2

1

0 1
2

0

0 1 2 0

...

2

0 1 2
2

...

0

0 1
2 0

...

1

0 1
2
1

...
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