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Abstract

We consider a large class of matrix problems, which includes the problem of classifying
arbitrary systems of linear mappings. For every matrix problem from this class, we construct
Belitskii's algorithm for reducing a matrix to a canonical form, which is the generalization of
the Jordan normal form, and study the €gt, of indecomposable canonical x n matrices.
ConsideringCy,;, as a subset in the affine spacemofx n matrices, we prove that eithél,;,
consists of a finite number of points and straight lines for every n, or C,,, contains a
2-dimensional plane for a certaim x n. © 2000 Elsevier Science Inc. All rights reserved.
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All matrices are considered over an algebraically closed field™*" denotes
the set ofn x n matrices ovek. This article consists of three sections.

In Section 1, we present Belitsls algorithm [2] (see also [3]) in a form, which
is convenient for linear algebra. In particular, the algorithm permits to reduce pairs
of n x n matrices to a canonical form by transformations of simultaneous similarity:
(A, B) — (S71AS, $71BS); another solution of this classical problem was given
by Friedland [15]. This section uses rudimentary linear algebra (except for the proof
of Theorem 1.1) and may be interested for the general reader.

In Section 2, we determine a broad class of matrix problems, which includes the
problems of classifying representations of quivers, partially ordered sets and finite
dimensional algebras. In Section 3, we get the following geometric characterization
of the set of canonical matrices in the spirit of [17]: if a matrix problem does not
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‘contain’ the canonical form problem for pairs of matrices under simultaneous sim-
ilarity, then its set of indecomposable canonieak » matrices in the affine space
k™>" consists of a finite number of points and straight lines (contrary to [17], these
lines are unpunched).

A detailed introduction is given at the beginning of every section. Each introduc-
tion may be read independently.

1. Belitskir's algorithm

1.1. Introduction

Every matrix problem is given by a set of admissible transformations that deter-
mines an equivalence relation on a certain set of matrices (or sequences of matrices).
The question is to find aanonical form—i.e., determine a ‘nice’ set of canonical
matrices such that each equivalence class contains exactly one canonical matrix.
Two matrices are then equivalent if and only if they have the same canonical form.

Many matrix problems can be formulated in terms of quivers and their represen-
tations, introduced by Gabriel [16] (see also [18])ghiveris a directed graph, its
representation As given by assigning to each verter finite dimensional vector
spaceA; overk and to each arrow : i — j a linear mappingd, : A; — A;. For
example, the diagonalization theorem, the Jordan normal form, and the matrix pencil
theorem give the solution of the canonical form problem for representations of the
quivers, respectively,

— T
° ° ‘\D ° - ®
(Analogously, one may study systems of forms and linear mappings as represen-
tations of a partially directed grap®, assigning a bilinear form to an undirected
edge. As was proved in [28,30], the problem of classifying representatioBgf
reduced to the problem of classifying representations of a certain guivee class
of studied matrix problems may be extended by considering quivers with relations
[18,26] and partially directed graphs with relations [30].)

The canonical form problem was solved only for the quivers of so-called tame
type by Donovan and Freislich [9] and Nazarova [23], this problem is considered as
hopeless for the other quivers (see Section 2). Nevertheless, the matrices of each in-
dividual representation of a quiver may be reduced to a canonical form by Begitski
algorithm (see [2] and its extended version [3]). This algorithm and the well-known
Littlewood algorithm [21] (see also [32,35]) for reducing matrices to canonical form
under unitary similarity have the same conceptual sketch: The matrix is partitioned
and successive admissible transformations are applied to reduce the submatrices to
some nice form. At each stage, one refines the partition and restricts the set of permis-
sible transformations to those that preserve the already reduced blocks. The process
ends in a finite number of steps, producing the canonical form.
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We will apply Belitski’s algorithm to the canonical form problem for matrices
underA-similarity, which is defined as follows. Let be an algebra of x n matrices
(i.e., a subspace &f'*" that is closed with respect to multiplication and contains the
identity matrixl) and letA* be the set of its nonsingular matrices. We say that two
n x n matricedM andN areA-similarand writeM ~ 4 N if there existsS € A* such
thatS—*MS = N (~, is an equivalence relation; see the end of Section 1.2).

Example 1.1. The problem of classifying representations of each quiver can be for-
mulated in terms oft-similarity, where is an algebra of block-diagonal matrices

in which some of the diagonal blocks are required to be equal. For instance, the
problem of classifying representations of the quiver

2
aolygx- 1)

3¢

is the canonical form problem for matrices of the form

A, 0 0 O

Ag 0 0 O

A, 0 0 O

As A: A O
under A-similarity, whereA consists of block-diagonal matrices of the foSn®
S2® S30 Ss.

Example 1.2. By the definition of Gabriel and Roiter [18], a linear matrix problem
of sizem x n is given by a paiD*, .#), whereD is a subalgebra df" <™ x k"*"
and./ is a subset ok”*" such thatSAR~! € .# wheneverA € .# and(S, R) €
D*. The question is to classify the orbits o under the actionS,R) : A +—
SAR™L. Clearly, twom x n matricesA andB belong to the same orbit if and only if

o o ™[5 ¢

are/-similar, whered := {S @ R | (S, R) € D}is an algebra ofm + n) x (m + n)
matrices.

In Section 1.2, we prove that for every algebtac k"*" there exists a nonsin-
gular matrixP such that the algebl® AP := {P~1AP | A € A} consists of upper
block-triangular matrices, in which some of the diagonal blocks must be equal and
off-diagonal blocks satisfy a system of linear equations. The algebtal P will be
called areduced matrix algebrarhe A-similarity transformations with a matrib
correspond to the®~14 P-similarity transformations with the matriR =13 P and
hence it suffices to studyl-similarity transformations given by a reduced matrix
algebrad.
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In Section 1.3 for every Jordan matthwe construct a matrig® = p~1J P (P
is a permutation matrix) such that all matrices commuting with it form a reduced
algebra. We call* aWeyr matrixsince its form is determined by the set of its Weyr
characteristics (Belitski2,3] calls /# a modified Jordan matrix; it plays a central
role in his algorithm).

In Section 1.4 we construct an algorithm (which is a modification of Belitski
algorithm [2,3]) for reducing matrices to canonical form undesimilarity with a
reduced matrix algebrd. In Section 1.5 we study the construction of canonical
matrices.

1.2. Reduced matrix algebras

In this section, we prove that for every matrix algebra k" *" there exists a
nonsingular matri® such that the algebr8 1A P is a reduced matrix algebra in
the sense of the following definition.

Ablock matrixM = [M;;], M;; € k™*", will be called ann x n matrix, where
m = (my,mp,...), n=(ny,np,...)andm;,n; €{0,1,2, ...} (we take into con-
sideration blocks without rows or columns).

Definition 1.1. An algebraA of n x n matricesy = (n1, ..., n;), will be called a
reducedr x n algebraif there exist
(a) an equivalence relation

~ inT={1,...,t}, (2)
(b) a family of systems of linear equations

!
Z Ci(j)xij =0, 1</<g,, ' v
Idi<jef sretl

indexed by pairs of equivalence classes, whé’.l)ee kandg,, >0,
such that1 consists of all upper block-triangufgrx n matrices

S11 812 -0 Su
§ = SZZ . . ’ Sij c i Xn , (4)
o Si—1
0 Sit

in which diagonal blocks satisfy the condition
Sii = S;; whenever i ~ j, (5)
and off-diagonal blocks satisfy the equalities

Z Ci(]l')Sij =0, 1<I< Qyy» (6)
Ioi<jeyg
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for each paits, # € T/~.

Clearly, the sequence = (n1, ..., n;) and the equivalence relation are uni-
quely determined byl; moreoverp; =n;j if i ~ j.

Example 1.3. Let us consider the classical canonical form problem for pairs of
matrices(A, B) under simultaneous similarity (i.e., for representations of the quiver
G-0). Reducing(A, B) to the form(J, C), whereJ is a Jordan matrix, and restrict-
ing the set of permissible transformations to those that presgnue obtain the
canonical form problem fo€ underA-similarity, where consists of all matrices
commuting withJ. In the next section, we modifysuch that1 becomes a reduced
matrix algebra.

Theorem 1.1. For every matrix algebrad C k"*", there exists a nonsingular
matrix P such that? =14 P is a reduced matrix algebra.

Proof. LetV be a vector space ové&rand A C End.(V) be an algebra of linear
operators. We prove briefly that their matrices in a certain basisfofm a reduced
algebra (this fact is used only in Section 2.5; the reader may omit the proof if he is
not familiar with the theory of algebras).

Let R be the radical of1. By the Wedderburn—Malcev theorem [13], there ex-
ists a subalgebrd c A such thatd ~ A/R andA N R = 0. By the Wedderburn—
Artin theorem [13],4 ~ k1% x ... x k™a*™Ma e denote b)el.(j?‘) eA( je
(1,....,me}, 1< a < q) the elements ofl that correspond to the matrix units of
kMaXMe  Pyte, = eﬁ), e=e1+---+e4 andVp=eV.

We considerdg := eAe as a subalgebra of Epd/), its radical isRg := RN
Ao andAg/Ro = k x --- x k. Let Rf' % # 0= RY. We choose a basis ¢y ~*Vy
formed by vectorsy, ..., v, € |, e« Vo, complete it to a basis Q‘TS"ZVO by vec-
torsvy, 41, . ... v, € U, €« Vo, and so on, until we obtain a basis . .., v, of Vo.

All its vectors have the formy; = ey, v;; putfy = {i |oy =} forl <o <gq.

Sinceeqep =0 if o # B, e§ = ey, ande is the unit of 4, the vector space of
Ag is the direct sum of alk, Apeg. Moreover,e, Ageg = eq Roepg for o + g and
ea Aoeq = keq ® eqRoe. Hencedg = (P, key) & (@a,ﬁ eq Roeg). The matrix of

every linear operator fror, Roeg in the basisvy, .. ., v, has the forn’[a,-j]jf”/.zl,
wherea;; # 0 impliesi < j and(i, j) € 4, x #g. Therefore, the set of matrices
[a;;] of linear operators fromig in the basisy, .. ., v,, may be given by a system

of linear equations of the form
aij =0 (G >j), ai=aj; ({i,j}C I,
Z Cl-(jl-)aij =0 (1< < qup).

Jadi<jESR
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The matrices of linear operators froin the basig % vy, . . ., ¢“? v1, €%y, . . .,

Moy
er(’sz)lvz, ... of V have form (4) and are given by the system of relations (5), (6).

Hence their set is a reduced matrix algebral

For every matrix algebral C k"*", the setA* of its nonsingular matrices is a
group and hence thé-similarity is an equivalence relation. Indeed, we may assume
that A is a reduced matrix algebra. Then evelrg A* can be written in the form
D(I — C),whereD, C € A such thaD is block-diagonal and all diagonal blocks of
C are zero. Sinc€ is nilpotent,S™1 = (I + C + C%2+-- )DL € A*.

Note also that every finite dimensional algebra is isomorphic to a matrix algebra
and hence, by Theorem 1.1, it is isomorphic to a reduced matrix algebra.

1.3. Weyr matrices

Following Belitski [2,3], for every Jordan matrid we define a matrix/# =
P~1J P (Pis a permutation matrix) such that all matrices commuting with it form
a reduced algebra. We will fix a linear orderin k (if k is the field of complex
numbers, we may use the lexicographic ordering: bi < ¢ + di if eithera = ¢
andb <dora < c).

Definition 1.2. A Weyr matrixis a matrix of the form

W=Wuy @ @Wy,) A< <h, )
where
Milmyy — Win 0
il 1

Wiki—1

O )"ilm,'k.
mj1 > --- > mj;. The standard partitionof W is then x n partition, wheren =
(n4, ...,n,)andn; isthe sequence;1 — m;2, mijp — m;3, ..., Mj k-1 — Mik;, Mik;;
Mip — M3, ..o, My fy—1 — Mk, Mik;s - . .5 My —1 — M, Mk, ; Mg from which all

zero components are removed.

The standard partition oV is the most coarse partition for which all diagonal
blocks have the form; I and all off-diagonal blocks have the form Olor

The matrixW is named a ‘Weyr matrix’ sincén;1, m;2, ..., mjy,) is the Weyr
characteristic oW (and of every matrix that is similar t&) for A;. Recall (see
[22,35,38]) that thaVeyr characteristiof a square matriA for an eigenvalue. is
the decreasing listm1, m2, ...), wherem; := rank A — A1)~ — rank(A — AI)'.
Clearly,m; is the number of Jordan cellg(r), [ > i, in the Jordan form oA (i.e.,
m; —m;y1 is the number of/; (1)), and so the Jordan form is uniquely, up to per-
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mutation of Jordan cells, determined by the set of eigenvaluésamid their Weyr
characteristics. Taking into account the inequality at the right-hand side of (7), we
get the first statement of the following theorem:

Theorem 1.2. Every square matrix A is similar to exactly one Weyr mattfx The
matrix A* is obtained from the Jordan form of A by simultaneous permutations of its
rows and columns. All matrices commuting with form a reduced matrix algebra
A(A*) of n x n matrices(4) with equalities(6) of the formS;; = Si/;» andS;; =0,
wheren x n is the standard partition ofA*.

To make the proof of the second and the third statements clearer, we begin with
an example.
Example 1.4. Let us construct the Weyr fordﬁ} of the Jordan matrix

Jpy = Ja() @ - ® Ja() ® () ® - - ® (L)

p-times g-times

with a single eigenvalug. Gathering Jordan cells of the same size, we first reduce
Jpy to J{JA“} = Ja(Mlp) ® J2(11,). The matrixJ{J{} and all matrices commuting with
it have the form, respectively,

(11)  (21) (31) (41) (12) (22) (11)  (21) (31) (41) (12) (22)
M, I, (11) Ay Ay Az Ay | By By |(11)
A, I, (21) AL Ay Ag By |2
M, I 0 (31) Ay Ag (31)
Al (41) Ay (41)
Ay I, |(12) C1 Cy | D1 Dy |12
0 Al [22) C Dy |(22)

Simultaneously permuting strips in these matrices, we get the Weyr m#\tfiand

all matrices commuting with it (they form a reducedx n aIgebraA(J{ﬁ}) with
equalities (6) of the forns;; = S/, S;; = 0, and withn = (p, q, p.q, p, p)):

(11)  (12)  (21) (22) (31) (41) (11)  (12) (21) (22) (31) (41)
/\[P Ip (11) A1 By | Ay By | A3 | A4 |11
)\Iq Iq (12) D Do C4 Cy |(12)
)‘Ip Ip (21) Ay By | A | Az |21
Al (22) D; Cy [(22)
A, | I, |31) Ay | As |31
AL |(a1) Aq |41)

Proof of Theorem 1.2.We may suppose thatis a Jordan matrix
‘I:J{M}@"'@J{)\r}, A < e < A,

whereJy;; denotes a Jordan matrix with a single eigenvalu€hen
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# # # # # # .
JT=05) @@ U,y AUT) =AU, X x AU,

the second sinc&J# = J#sifandonlyif S=S1 @ --- & S, andSiJ{ﬁi} = Jﬁi}S,».
So we may restrict ourselves to a Jordan maifjx with a single eigenvalug; it
reduces to the form

J{—K} = Jpl()tlnl) D ---D Jp,()tlnl), pL> > pil. (8)

The matrix (8) consists dfhorizontal and vertical strips, théth strip is divided
into p; substrips. We will index theith substrip of thdth strip by the painc, i).
Permuting vertical and horizontal substrips such that they become lexicographically
ordered with respect to these pairs,

11, (12), ..., (1), (21, (22, ..., 9)

we obtain the Weyr forrﬂ{ﬁ} of Jp,; (see Example 1.4). The partition into substrips
is its standar@ x n partition.

Itis well known (and is proved by direct calculations, see [19, Section VIII, § 2])
that all matrices commuting with the matrix (8) have the farm- [Ci./]f,j:r where
eachC;; is of the form

(7)o (p3)

(15) ;) X1 Xy o0 Xp |09
X1 Xy - Xp | (19) X,
X, - X5
N or
X X1
0
X1 |(pid)
0

(pii)

if, respectively,p; < p; or p; > p;. Hence, if anonzerosubblock is located at the
intersection of thelw, i) horizontal substrip and thés, j) vertical substrip, then
eithera = B andi < j, or o < B. Rating the substrips o in the lexicographic
order (9), we obtain an upper block-triangutax n matrix S that commutes with
J{ﬁ}. The matrice$Sform the aIgebrad(J{*;}), which is a reduced algebra with (6) of
the formsS;; = Sy andS;; =0. O

Note thatj{ﬁ} is obtained from

Joy =)@ - & J, (A, k1= =k, (10)

as follows: We collect the first columns df, (A), ..., Ji, (1) on the firstt columns
of Ji5;, then permute the rows as well. Next collect the second columns and permute
the rows as well, continue the process um{iil} is achieved.
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Remark 1.1. The block-triangular form oft(J#) is easily explained with the help
of Jordan chains. The matrix (10) represents a linear operétiorthe lexicograph-

ically ordered basiseij}l?:l’;’zl such that
oA —Al:ey, = -+ e > e1 — O. (12)

The matrixj*f\ represents the same linear operatobut in the basige;; }, lexico-
graphically ordered with respect to the paijsi):

e11, €21, ..., e, €12, €22, ... (12)

Clearly, s~1J7%, S = Jf, for a nonsingular matri§ if and only if Sis the transi-

tion matrix from the basis (12) to another Jordan basis ordered like (12). This tran-
sition can be realized by a sequence of operations of the following formithhe
Jordan chain (11) is replaced withe;x, + Beix,—p > @eix-1+ Beirk,—p-1 >
---,wherea, 8 € k, o # 0, andp > max0, k;; — k;}. Since a long chain cannot be
added to a shorter chain, the mat8is block-triangular.

1.4. Algorithm

In this section, we give an algorithm for reducing a makfixo a canonical form
underA-similarity with a reduced x n algebra.
We apply toM the partitionn x n:

My -+ My
M = | criass s 5 Ml] € knanj.

A block M;; will be calledstableif it remains invariant unded-similarity trans-
formations withM. ThenM;; = a;;I whenevei ~ j andM;; = 0 (we puta;; = 0)
whenevei 7 j since the equalitieS;;* M;; S;; = M;; must hold for all nonsingular
block-diagonal matriceS = S11 @ So2 ® - - - @ S;; satisfying (5).

If all the blocks ofM are stable, theM is invariant undert-similarity. HenceM
is canonical 1 = M).

Let there exist a nonstable block. We put the blockisioh order

Mo <Mo<-- <My <M-11<Mi—12<--<M-1,<-- (13)

and reduce the first (with respect to this ordering) nonstable blggk Let M’ =
S~1MS, whereS € A* has form (4). Then thd, r) block of the matrixM s = SM’

is
Mi1S1r + Mi2Sor + - -+ 4 Miy Spr = SuMy, + SpivaMj g, + -+ SuMj,
or, since allM;; < M;, are stable,

a1y + -+ al,rflSrfl,r + M- Syr
= SuM;, + Spi1a141,r + - + Sy (14)
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(we have removed in (14) all summands with = 0; their sizes may differ from the
size of My,).

Let.#, # € T/~ be the equivalence classes such that# andr € 7.

Casel: Theg s, equalities (6) do not imply

aitS1r + appSor + -+ ar—18—1r = Spi41a141,r + - + Siasr (15)

(i.e., there exists a nonzero admissible additionvfp from other blocks). Then
we makeM,, = 0 usingS € A* of the form (4) that has the diagon8} =1 (i =
1, ..., 1) and fits both (6) and (14) with/;, = 0.

Casell: The g, , equalities (6) imply (15); » j. Then (14) simplifies to

My Spr = SuMj,, (16)

whereS,, andsS;; are arbitrary nonsingular matrices. We chdse A* such that

0 0|

Caselll: The ¢, 4 equalities (6) imply (15)i ~ j. Then (14) simplifies to form
(16) with an arbitrary nonsingular matrks, = §y;; M;, = Slle,,Srr is chosen as
a Weyr matrix.

We restrict ourselves to those admissible transformations Mitlthat preserve
M; . Let us prove that they are th&-similarity transformations with

A= {SeA|SM = M'S}, (17)

whereA = B meansthaf andB aren x n matrices andi;, = By, for the pair(l, r).
The transformatioM’ — S~1M’'S, S € (A)*, preservedt] (i.e.M' = S~1M'S)
if and only if SM’ = M’S sinceSis upper block-triangular angi/’ coincides with
S~1M’s on the places of all (stable) blockg;; < M;,. The setA’ is an algebra:
let S, R € A’, thenM’S and SM’ coincide on the places of all;; < M;, andR
is upper block-triangular, and heng€ SR = SM'R; analogouslySM'R = SRM’
and SR € A’. The matrix algebrad’ is a reduced algebra sinc€ consists of all
S € A satisfying condition (14) withd/;, instead ofM;, .

In Case |4’ consists of allS§ € 4 satisfying (15) (we add it to system (6). In Case
II, A’ consists of allS € A for which

0 I 0 I
Sll [0 0:| = |:O Oi| S}’}’s

that is,

P P
S = |:01 P§:| . S = I:Qol g§i| s P = Q3-
In Case I, A" consists of allS € A for which the blocksS; andS,, are equal and
commute with the Weyr matri®/;,. (It gives an additional partition of € 4 in
Cases Il and IlI; we rewrite (5) and (6) for smaller blocks and add the equalities that

are needed fo$; M|, = M| S,,.)

_ 0 1
Mj, = S, My Syr = [ }
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In this manner, for every pai(M, A) we construct a new paitM’, A’) with
A" c A.If M’ is not invariant undert’-similarity, then we repeat this construction
(with an additional partition of1’ in accordance with the structure df) and ob-
tain (M"”, A”), and so on. Since at every step we reduce a new block, this process
ends with a certain pait™?’, A(”)) in which all the blocks of\/(”) are stable (i.e.
MP) is AP)-similar only to itself). Putting M>°, A®) := (MP), A(P)), we get the
sequence

(MO, A% = (M, A), (M, A), ..., (MP, APy = (M®, %), (18)
where
A ={Se A|M®S = SM™). (19)

Definition 1.3. The matrixaZ*° will be called theA-canonical form of M

Theorem 1.3. Let A C k"*" be a reduced matrix algebra. Thew ~, M for
everyM € k" andM ~, N if and only if M>° = N°°.

Proof. Let A be areduced x n algebrapM ~, N, and letM;, be the first nonsta-
ble block ofM. ThenM;; and N;; are stable blocks (moreoved;; = N;;) for all
M;; < M,,. By reasons of symmetry;, is the first nonstable block &f; moreover,
M;, andN;, are reduced to the same forM;. = N,.. We obtain pair§M’, A’) and
(N', A') with the samet” andM’ ~, N’. HenceM?) ~ i, N for all i, and so
M>® =N, O

Example 1.5. In Example 1.3, we considered the canonical form problem for a pair
of matrices under simultaneous similarity. Suppose the first matrix is reduced to the
Weyr matrix

A Iz
W= |: 0 )Jzi| ’

PreservingV, we may reduce the second matrix by transformations$-eimilarity,
where/ consists of all 4x 4 matrices of the form

[Sl 52:| S € k<2,

0 5
For instance, one of the-canonical matrices is
o | Cel Gl [-1 1]2]0
c=|"3|C|Cs|=| 0 —1[0]1], (20)
Ci| C2 30, 7
whereCy, ..., C7 are reduced blocks and, = ¥ means thaC, was made zero

by additions from other blocks (Case | of the algorithm). Her(@®, C) may be
considered as a canonical pair of matrices under similarity. Note that
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w C
0O O
is a canonical matrix with respect B>similarity, whereD = {S @ S| § € k2%2}.

Definition 1.4. By the canonical form of a pair of x n matrices(A, B) under
simultaneous similarity is meant a paW, C), where

o 9]

is the canonical form of the matrix

A B
0 O
with respect tdD-similarity with D = {S & S| S € k"*"}.

Clearly, each pair of matrices is similar to a canonical pair and two pairs of matri-
ces are similar if and only if they reduce to the same canonical pair. The full list of ca-
nonical pairs of complex 4 4 matrices under simultaneous similarity was presented
in [34].

Remark 1.2. Instead of (13), we may use another linear ordering in the set of
blocks, for exampleM;1 < My_11 < --- < M11 < My < M;_12 < ---Of M1 <
Mi_11 < M2 < Mi_21 < M;_12 < M3 < ---. Itis necessary only that, j) <

(', j') impliesM;; < My j,, where(i, j) < (i, j') indicates the existence of a non-
zero addition fromVM;; to M;:;» and is defined as follows:

Definition 1.5. Let A be areduced x n algebra. For unequal pai¢s j), (i’, j') €
T x T (see (2)), we puti, j) < (i’, j/) if eitheri = i” and there exist§ € A* with
S;i # 0, 0orj = j" and there exist§ € A* with S;;; # 0.

1.5. Structuredi-canonical matrices

The structure of a1-canonical matrixM will be clearer if we partition it into
boxesM1, M, ..., as it was made in (20).

Definition 1.6. Let M = M) for a certainr € {0, 1,..., p} (see (18)). We par-
tition its reduced part intdoxesM1, Ma, ..., M,,,,—1 as follows: LetA? (1<

1 <r) be areducea” x n® algebra from sequence (18), we denotemg) the
blocks of M under then® x n® partition. ThenM,, ., for [ # p denotes the first
nonstable block among{l.(;) with respect tad)-similarity (it is reduced when/ )
is transformed ta (+D); My 41 < -+ < My, -1(q0:=0) areall the blocksl/[g)

941
such that N
(i) if £ < p, thenM D < M,
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(i) if I >0, thenMi@ is not contained in the boxed, c My
(Note that each EOM,» is 0,

o o

or a Weyr matrix.) Furthermore, put

A‘Iz = Aql+1 == A‘]Hl_l =40, (21)
Generalizing equalities (17) and (19), we obtain
A ={SeA|MS=; SM}, (22)

whereM S =; SM means thaM § — SM is zero on the places df1, ..., M;.

Definition 1.7. By astructuredA-canonical matrixwe mean al-canonical matrix
M which is divided into boxes/1, Mo, .. ., My, -1 and each bo¥/; that falls into
Case | from Section 1.4 (and hence is 0) is marked ligee (20)).

Now we describe the construction dfcanonical matrices.

Definition 1.8. By a part of a matrixM = [a[j];lj:l is meant an arbitrary set of

its entries given with their indices. By @ctangular partwe mean a part of the
form B = [a;;1, p1 <i < p2, q1 < J < q2. We consider a partition d¥! into dis-

joint rectangular parts (which is not, in general, a partition into substrips, see the
matrix /(20)) and write, generalizing (133, < B’ if either p2 = p5, andg1 < g, or

p2 > py.

Definition 1.9. Let M = [M;;] be amm x n matrix partitioned into rectangular parts
M1 < My < --- < My, such that this partition refines the partition into the blocks
M;;, and let eachds; be equal to

0 I .
0, [O 0}’ or a Weyr matrix
Foreveryg € {0, 1, ..., m}, we define a subdivision of strips intpstrips as follows:

The Ostripsare the strips ofl. Letg > 0. We make subdivisions & into substrips

that extend the partitions @f1, . . ., M, into cells 0,1, 11 (i.e., the new subdivisions

run the length of every boundary of the cells). If a subdivision passes through a cell
I oril from My, ..., M,, then we construct the perpendicular subdivision such that
the cell takes the form

I O Al 0
0 I 0 A’
and repeat this construction for all new divisions uM, ..., M, are partitioned

into cells Q I, or AI. The obtained substrips will be called thestrips of M for
example, the patrtition intg-strips of matrix (20) has the form



66 V.V. Sergeichuk / Linear Algebra and its Applications 317 (2000) 53-102

-1| 1|2]|0
O|-1|0(1

forg =0,1,2 3 0107 forqg =3,4,5,6,7.
0| 3|0f|0

We say that therth g-strip of anith (horizontal or vertical) strijis linked tothe Bth
g-strip of anjth strip if (i) « = g andi ~ j (includingi = j; see (2)), or if (ii) their
intersection is a (new) cellfrom My, ..., M,, or if (iii) they are in the transitive
closure of (i) and (ii).

Note that ifM is a-canonical matrix with the boxe¥1, . . ., My, -1 (see Def-
inition 1.6), thenM1 < --- < M,,.,—1. Moreover, if4, (1 < g < gp+1, See (21))
is a reducedlq xn, algebra with the equivalence relation (see (2)), then the
partition intog-strips is thelq xn, partition; theith g-strip is linked with thejth
g-strip if and only ifi ~ j.

Theorem 1.4. Let A be a reduced: x n algebra and let M be an arbitrary x n
matrix partitioned into rectangular part8/; < M» < --- < M,,, where eachV/; is
equal to

0 I
¢ (amarked zero blogk [O 0}, or a Weyr matrix

Then M is a structuredi-canonical matrix with boxes4, ..., M,, if and only if

eachM, (1 < g < m) satisfies the following conditions

(a) M, is the intersection of twgg — 1)-strips.

(b) Suppose there exisi¢’ = S~1M S (partitioned into rectangular parts conform-
alto M; S € A*) such thatM = Mq, ..., M[Fl =M1, butM(; # M,. Then
M, =9.

(c) SupposeV’ from (b) does not exist. TheM, is a Weyr matrix if the horizontal
and the verticalg — 1)-strips of M, are linked

M — 0 I
“]10 0
otherwise.

Proof. This theorem follows immediately from the algorithm of Section 1.4l

2. Linear matrix problems

2.1. Introduction

In Section 2, we study a large class of matrix problems. In the theory of represen-
tations of finite dimensional algebras, similar classes of matrix problems are given
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by vectorspace categories [26,36], bocses [27,6], modules over aggregates [17,18]
or vectroids [4].

Let us define the considered class of matrix problems (in terms of elementary
transformations to simplify its use; a more formal definition will be given in Section
2.2). Let~ be an equivalence relation h= {1, ..., t}. We say that a x ¢ matrix
A = [a;;] links an equivalence clasé € T/~ to an equivalence clasg € T/~ if
aij + 0 implies(i, j) € # x #. Clearly, if Alinks . to ,# and A’ links .#' to ¢/,
thenAA’ links .7 to ¢’ when # = .7/, andAA’ = 0 when ¢ # .’. 1 We also say
that a sequence of nonnegative integees (n1, no, ..., n;) is astep-sequence
i ~ jimpliesn; =n;.

LetA = [a;;]link .# to 7, letn be a step-sequence, and(gtr) € {1, ...,n;} x
{1,...,n;}for (i, j) € # x ¢ (sincen is a step-sequence; andn ; do not depend
on the choice ofi, j)); denote byAl""] then x n matrix that is obtained from
by replacing each entry;; with the followingn; x n; block A””]' if a;; = 0, then

A'i o = 0, andifa;; # 0, then thgl, r) entry ofA” s aij and the others are zeros.
Let a triple

(T/~, AP}y, (Vi¥i_y) (23)
consist of the set of equivalence classed’cf {1, ..., ¢}, a finite or empty set of
linking nilpotent upper-triangular matriceg® € k'*/, and a finite set of linking ma-
tricesV; € k"*'. Denote by? the product closure dfP; }p , and by7” the closure of
{V/}" , with respect to multiplication by (i.e., 72 C "V and2v” C v7). Since
P; are nilpotent upper-triangularx r matrices,P;, P, =0forallis,...,i.
Hence,# and v are finite sets consisting of Imking nllpotent upper- trlangular ma-
trices and, respectively, linking matrices:

O/Z{Pilpiz"'Pir|r<t}a

(24)
7 ={PV;P'|P,P' c{}U2, 1<) <q).

For every step-sequenge= (11, . . ., n;), we denote by#, «,, the vector space gen-
erated by alk x n matrices of the fornv!>"1, 0 £ V € 7.

Definition 2.1. A linear matrix problengiven by a triple (23) is the canonical form
problem forn x n matricesM = [M;;] € .#,xn With respect to sequences of the
following transformations:

(i) Foreach equivalence clagse T/ ~, the same elementary transformations with-
in all the vertical stripa, ;, i € ., then the inverse transformations within the
horizontal stripdV; o, i € 7.

(ii) For a € k and a nonzero matriR = € Z linking .# to ¢, the transforma-
ton M — (I +aP"h=Ip —l—aP[/’]) that is, the addition ofip;; times

1 Linking matrices behave as mappings; one may use vector spacestead of equivalence classes
J (dimV, = #(.#)) and linear mappings of the corresponding vector spaces instead of linking matrices.
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the Ith column of the stripM, ; to therth column of the stripM, ; simul-
taneously for alli, j) € .4 x #, then the inverse transformations with rows
of M.

Example 2.1. As follows from Example 1.1, the problem of classifying representa-
tions of quiver (1) may be given by the triple

({1}, {2}, {3, 4}}, 9, {e11, e21, €31, ea1, e42, ea3)),

wheree;; denotes the matrix in which th€, j) entry is 1 and the others are 0.
The problem of classifying representations of each quiver may be given in the same
manner.

Example 2.2. Let ¥ = {p1,..., p,} be a finite partially ordered set whose ele-
ments are indexed such that < p; impliesi < j. Its representatioris a matrix

M partitioned inton vertical stripsM1, . .., M,; we allow arbitrary row-transforma-
tions, arbitrary column-transformations within each vertical strip, and additions of
linear combinations of columns @f; to a column ofM; if p; < p;. (This notion is
important for representation theory and was mtroduced by Nazarova and Roiter [25],
see also [18,36].) The problem of classifying representations of the pos&ty be
given by the triple

{1 (2}, ..., {n+ 1, {eij | pi < pj) {entr1, eni1,2, -y €ngin}).

Example 2.3. Let us consider Wasow’s canonical form problem for an analytic at
the pointe = 0 matrix

A(e) = Ao+ A1+ 2As+---, A; € CV, (25)
relative to analytic similarity

A(e) > B(e) := S(e) tA(e)S(e), (26)
whereS(e) = So + ¢S1 + - - - andS(¢) ! are analytic matrices at 0. Let us restrict
ourselves to the canonical form problem for the finstatricesAg, A1, ..., A,_1in

expansion (25). By (26)§(e)B(e) = A(e)S(¢e), that isSoBo = ApSo, ..., SoBr—1
+81B o+ ---+8_1Bo= AgS;_1+ A1S;_2+---+ A,_1S0, or in the matrix
form

So Sv - S-1|rBy, By --- Bi1
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Ap A1 -+ A1 S S1o- S
_ Ag ; So :
Al Sl
0 Ao 0 So

Hence this problem may be given by the following triple of one-element sets:
(T}, {4h L),

whereJ; = e12+ e23+ - - - + ¢;—1, IS the nilpotent Jordan block. Then all elements
of T ={1,2,...,t} are equivalent? = {J;, Jtz, R J,’_l} and? ={I;, J;, ...,
Jt’_l}. This problem is wild even if = 2, see [14,31]. | am grateful to Friedland for
this example.

In Section 2.2, we give a definition of the linear matrix problems in a form, which
is more similar to Gabriel and Roiter’s definition (see Example 1.2) and is better
suited for Belitski's algorithm.

In Section 2.3, we prove that every canonical matrix may be decomposed in-
to a direct sum of indecomposable canonical matrices by permutations of its rows
and columns. We also investigate the canonical form problem for upper triangular
matrices under upper triangular similarity (see [37]).

In Section 2.4, we consider a canonical matrix as a parametric matrix whose
parameters are eigenvalues of its Jordan blocks. It enables us to describe a set of
canonical matrices having the same structure.

In Section 2.5, we consider linear matrix problems that give matrix problems with
independent row and column transformations and prove that the problem of classi-
fying modules over a finite dimensional algebra may be reduced to such a matrix
problem. The reduction is a modification of Drozd’s reduction of the problem of
classifying modules over an algebra to the problem of classifying representations of
bocses [11] (see also [6]). Another reduction of the problem of classifying modules
over an algebra to a matrix problem with arbitrary row transformations was given in
[17].

2.2. Linear matrix problems and-similarity

In this section, we give another definition of the linear matrix problems, which
is equivalent to Definition 2.1 but is often more convenient. The set of admissible
transformations will be formulated in terms dfsimilarity; it simplifies the use of
Belitskii's algorithm.

Definition 2.2. An algebral” c k"> of upper triangular matrices will be called a
basic matrix algebraf
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ail -+ an all O
i | el implies erl.
O Ay O Aart
Lemma 2.1.

(a) LetI' C k"' be a basic matrix algebraz the set of its diagonal matriceand
Z the set of its matrices with zero diagonal. Then there exists a lbasis ., E,
of 2 over k such that all entries of its matrices @@nd 1. Moreover

Ei4 -4+ E =1, E4Eg=0(a#p), E2=E,. (27)

As a vector space over K is a direct sum of subspaces

r=9e#= <@kEa) o | P E«2Es |- (28)
a=1

o,f=1

(b) The set of basie x ¢ algebras is the set of reducedlx 1 algebras where
1:=(1,1,...,1). A basict x ¢ algebraTl is the reducedl x 1 algebra given
b
oyT/~= {41,...,.7,}, where .4, is the set of indices defined by, =
Y ics, €ii> S€e27), and
e a family of systems of forr8) such that for every, 8 € {1, ..., r} the
solutions of its(.7, .# g) system form the spade, ZEg.

Proof. (a) By Definition 2.2,I" is the direct sum of vector spacé&sand#. Denote
by # the set of diagonal x r matrices with entries if0, 1}. Let D € . Then

D=a1F1+---+aF;, whereas, ..., q are distinct nonzero elements kfand
F1,..., F; are such matrices from# that F; F; = 0 whenever + j. The vectors
(ai,....ap), @2,...,ad),..., (@}, ... a}) are linearly independent (they form a

Vandermonde determinant), and hence there éxist. ., b; € k such thatF; =
b1D + boD? + .- -+ b D! € 9, analogouslyFy, ..., F; € 2. It follows that 2 =
kE1® - - ®kE,, whereEy, ..., E, € # and satisfy (27). Therefore® = (E1 +
oo+ ENREL+ -+ Ep) = @a’ﬁ E,ZEg, we getthe decomposition (28). (Note
that (27) is a decomposition of the identity Bfinto a sum of minimal orthogonal
idempotents and (28) is the Peirce decomposition,afee [13].) O

Definition 2.3. A linear matrix problem given by a pair

I, )y, TI#HMcCHu, 4 C M, (29)

consisting of a basie x r algebral” and a vector space/ C k'*!, is the canonical
form problem for matriced/ € .#,x, with respect tal’, ,-similarity transforma-
tions

M — S7Ims, Ser*

nxn
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wherel',x, and.Z,x, consist ofn x n matrices whose blocks satisfy the same
linear relations as the entries of alk r matrices froml” and.#, respectively.

More exactly,I', «, is the reduced x n algebra given by the same system (3)
andT/ ~= {41, ...,.7,} asI (see Lemma 2.1(b)¥.

Next,

(ZE ) ZEﬁ = erB Ey MlEg (30)

o,f=1

(see (27)). Hence there is a system of linear equations

Y dPx;=0 1<I<py, JaSpeT/~, (31)
(i,j)EfaXfﬁ

such that/# consists of all matricefn;; ]! =1 whose entries satisfy system (31).
Then.Z,x, (n is a step-sequence) denotes the vector space afsalk matrices
[M,.,] _1 Whose blocks satisfy system (31):

Yo dPMy =0 1<I<py, JuIpeT/~.
(i,j)EfaXJﬁ

Theorem 2.1. Definitions 2.1 and 2.3 determine the same class of matrix

problems

(a) The linear matrix problem given by a tripl@’/~, {P; }, 1 {V/}"_l) may be
also given by the paitI’, .#), whereI is the basic matrix algebra generated
by P1, ..., Pp and all matricest, = 3., ¢;; (J € T/~) and.# is the min-
imal vector space of matrices containififg, . .., V, and closed with respect to
multiplication by Py, ..., Pp.

(b) The linear matrix problem given by a paif’, .#) may be also given by a triple
(T/~, AP}y, {V}j_p), whereT/~={s1,...,.7,} (see Lemma.1(b))
{P} —1 is the union of bases for the spacEsZE s (see(28)), and{V; }" _1is
the union of bases for the spacBs.# Eg (see(30)).

Proof. (a) Letn be a step-sequence. We first prove that the set of admissible trans-
formations is the same for both the matrix problems; that is, there exists a sequence
of transformations (i)—(ii) from Definition 2.1 transformirg to N (then we write
M ~ N) if and only if they areA-similar with A := ' x,.

By Definition 2.1,M ~ N if and only if S~M S = N, whereSis a product of
matrices of the form

I+aEY @+ -1ifl=r), I+bPU", (32)

2 i n1>0,..., ny > 0, thenl’, x, is Morita equivalent td”; moreover/[” is the basic algebra fdr, x,
in terms of the theory of algebras, see [13].
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wherea,b e k, ¥ € T/~ and 0+ P € 2. SinceS € A, M ~ N impliesM ~, N.

Let M ~4 N, that isSMS~—! = N for a nonsingulass € A. To proveM ~ N,
we must expand 1 into factors of form (32); it suffices to reducto | multi-
plying by matrices (32). The matri® has form (4) withS;; = S;; whenever ~
J; we reducesS to form (4) with S;; = I,, for all i multiplying by matricesl +
aE""). Denote by2 the set of allz x n matrices of the formP!""1, P ¢ 2. Since

20 {Et[yl,”]}feT/N is product closed, it generatet as a vector space. Therefore,
S=1+4Ypcra00Q (ag €k).Put2; ={Q € 2| Q' =0}, then2p = ¥ and 2, =
2. Multiplying Sby [[pc,(I —apQ) =1—3 pc,a0Q + -+, we makeS = I +
---, where the points denote a linear combination of products of matrices from
and each product consists of at least two matrices (so its degree of nilpotency is at
mostr — 1). Each product is contained #)_; since2 is product closed, and hence
S=1+) pcy_,bo0Q.Inthe samewayweget=1+> ,., ,coQ,andsoon
until obtain$ = 1.

Clearly, the set of reduced x n matrices.#, x, is the same for both the matrix
problems. O

Hereafter we shall use only Definition 2.3 of linear matrix problems.
2.3. Krull-Schmidt theorem

In this section, we study decompositions of a canonical matrix into a direct sum
of indecomposable canonical matrices.
Let a linear matrix problem be given by a péit, .#). By thecanonical matrices
is meant thd",, x,-canonical matrices/ < .#,, for step-sequences We say that
n x n matricesM andN are equivalentand write M >~ N if they are I, ,-simi-
lar. Theblock-direct sunof anm x m matrix M = [Mi./]f,jzl and am x n matrix

N = [N,-j]l’:j:1 isthe(m + n) x (m + n) matrix

MWYN = [M;; ® Njj E,j:l'
Amatrix M € .,y is said to béndecomposablié bothn # 0 andM ~ My W M>
implies thatM1 or M> has size 0« 0.

Theorem 2.2. For every canonicak x n matrix M, there exists a permutation
matrix P € I'yx, such that

PIMP=MW- - WM UMW &M, (33)
— —_——
g1-copies q1-copies

where M; are distinct indecomposable canonical matrices. Decompos{88jis
determined by M uniquely up to permutation of summands.

Proof. LetM be a canonical x n matrix. The repeated application of Belit8kial-
gorithm produces sequence (181, A), (M, A),...,: (M AP)) whered =
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I'yxn and AP = {Se A|MS =SM} (see (19)) are reducedx n andm x m
algebras; by Definition 1.1(a)t and A‘”) determine equivalence relations in
={1,...,t}and~in T ={1,...,r}. SinceM is canonicalM @ differs from
M+D only by additional subdivisions. The strips with respect toithe m parti-
tion will be called thesubstrips
Denote byA(()p) the subalgebra oft” consisting of its block-diagonak x m

matrices, and le§ € Agp). Then it has the form
S=C1®---®C,, Cy=Cp ifa=p.

It may also be considered as a block-diagaenaln matrixS = S1 & --- ® S; from
A (sinceA” ¢ A); each blocks; is a direct sum of sub-blockg, .

Let.# be an equivalence class frdf%”) / ~. In eachs;, we permute its sub-blocks
C, with o € .7 into the first sub-blocks:

5i=Cay @ ®Ca, ®Cp, @+ ®Cp,, 1< <ap PL<-<Pqy,

whereas, ..., ap € Sandpy, ..., By € -7 (notethalCy, = --- = Cap); it gives the
matrix S = 0150, whereQ = 01 @ --- ® Q; andQ, are permutation matrices.
Leti ~ j. ThenS; = S; (for all S € 4), and hence the permutations with§nand
S; are the same. We havg; = Q; if i ~ j, and therefore e 4.

Making the same permutations of substrips within each strid ofve getM =
0 IMQ. Let M = [M;; ]! i=1 relatively to then x n partition, and letM =
[Nepl, p=1 relatively to them x m partition. SinceM is canonical, allN.s are
reduced. HenceV, g =0 if o % B and Nyg is a scalar square matrix if ~ f.
The M is obtained fromMl by gathering all sub- block¥ug, (a, B) € S x 7, inthe
left upper cover of every bloch;;. HenceM,-j = A;; ® B;j, whereA;; consists of
s_ub-blocksNalg, a, B € ., andB;; consists of sub-block¥,g, o, B ¢ .#. We have
M = A1 B, whereA; = [A;;] and B = [B;;]. Next apply the same procedure to
B; continue the process until get

PIMP =AW ... WA,

whereP € A is a permutation matrix and the summangsorrespond to the equiv-
alence classes @f(?) /.

The matrixA; is canonical. Indeedyl is a canonical matrix, by Definition 1.6,
each boxX of M has the form

0 I .
@, [0 0}, or a Weyr matrix
It may be proved that the part &fat the intersection of substrips with indicesin
has the same form and this part is a boxdaf Furthermore, the matriX; consists
of sub-blocksVug, (o, B) € J x .#, that are scalar matrices of the same sjze 1;.
Hence, A1 = M1 W --- & My (t1-times), whereM is canonical. Analogously; =
M; ¥ ... M; for all i and the matrices/; are canonical. [J
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Corollary (Krull-Schmidt theorem)For every matrixM € .4, x,, there exists its
decomposition

M>~M Y- WM,
into a block-direct sum of indecomposable matridgse My, xn, - Moreover if
M >~ N Ny

is another decomposition into a block-direct sum of indecomposable mattiess
r = s and, after a suitable reindexing\f; >~ N1, ..., M, >~ N;,.

Proof. This statement follows from Theorems 1.3 and 2.2. Note that this statement
is a partial case of the Krull-Schmidt theorem [1] for additive categories; namely,
for the category of matrices) .#,, (the union over all step-sequenegswhose
morphisms fromM € .4 xm 0 N € M x, are the matrice$ € .4, such that

MS = SN. (The set# ,x, of m x n matrices is defined like#, x,.) O

Example 2.4. Let us consider theanonical form problem for upper triangular ma-
trices under upper triangular similaritgsee [37] and the references given there). The
setI"" of all upper triangular x ¢ matrices is a reduced 1 algebra, and so every

A € I'"is reduced to thé”-canonical formA® by Belitski's algorithm; moreover,

in this case the algorithm is very simplified: All diagonal entriesicf [a;;] are not
changed by transformations; the over-diagonal entries are reduced starting with the
last but one row:

ar—1t, Ar—2t-1, Ar—2,¢t; QAr-3,+-2, Ar—3,t—1, Ar—-3,t; - - -

Leta,, be the first that changes by admissible transformations. If there is a nonzero
admissible addition, we maks,, = 0O; otherwisez,,, is reduced by transformations

of equivalence or similarity, in the first case we makg < {0, 1}, in the second case

apq is not changed. Then we restrict the set of admissible transformations to those
that preserve the reduceg,, and so on. Note that this reduction is possible for an
arbitrary fieldk, which does not need to be algebraically closed.

Furthermore]™ is a basia x ¢ algebra. So we may considdf® as a canonical
matrix for the linear matrix problem given by the p&ir, I'"). By Theorem 2.2 and
since a permutationx r matrix P belongs td™ only if P = I, there exists a unique
decomposition

A =AW WA,

where eachy; is an indecomposable canoniealx n; matrix,n; € {0, 1}'. Lets; x
1; be the size of4;, theanll_ «n;, May be identified with™ andA; may be considered
as al"i-canonical matrix.

Let A® = [Cl[j]? ._,- Define the grapl@ 4 with vertices 1. .., t having the edge
i-j (i < j)ifand only if botha;; = 1 anda;; were reduced by equivalence trans-
formations. TherG 4 is a union of trees; moreoveg,, is a tree if and only ifA% is
indecomposable (compare with [30]).
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The Krull-Schmidt theorem for this case and a description of nonequivalent in-
decomposable x t+ matrices for < 6 were given by Thijsse [37].

2.4. Parametric canonical matrices

Let a linear matrix problem be given by a paif, .#). The set.Z may be
presented as the matrix space of all solutipng | i=1 of system (31) in which the
unknownsy;; are disposed like the blocks (13:)1 < x¢2 < ---. The GaussJordan
elimination procedure to system (31) starting with the Iast unknown reduces system
to the form

xe= Y el xiy (Ur) e N, (34)
(i, j)en s

where/; and./; are suchthatly U Ay = {1,..., 1} x {1, ..., t}andAg N N} =
#; the inequalitycf’.”) # 0 impliesi ~ 1, j ~r andx;; < x;- (i.e., every unknown
xir With (I, r) € /g N (S x #) is a linear combination of the preceding unknowns
with indices inAy N (S x 7).

Ablock M;; ofM € M nxn Will be calledfreeif (i, j) € Ay, dependenif (i, j) e
;. A box M; will be calledfree (dependentif it is a part of a free (dependent)
block.

Lemma 2.2. The vector space#,x, consists of alln x n matnces[Ml,]l j=1
whose free blocks are arbitrary and the dependent blocks are their Ilnear combi-
nations given by34):

My= Y "My, (.r)e N (35)
i, J)eN s
On each step of Belitsks algorithm the reduced subblock af € .#, «, belongs

to a free blocKi.e., all boxesM,,, M,,, ... from Definition1.6are sub-blocks of free
blocks.

Proof. Let us prove the second statement. Onlthestep of Belitski's algorithm,
we reduce the first nonstable bIoMgffﬁ) of the matrixm ) = [M, (l)] with respect to

AD-similarity. If M() is a subblock of a dependent blogk;, thenMéﬁ) is a linear
(O]

combination of already reduced sub-blocks of blocks preceding; foHenceM f
is stable, a contradiction.[J

We now describe a set of canonical matrices having ‘the same form’.

Definition 2.4. Let M be a structured (see Definition 1.7) canonicat n matrix,
let M,, <--- < M,, be those of its free boxes that are Weyr matrices (Case Il of
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Belitskii’s algorithm), and lek,, ,+1 < --- < A, be the distinct eigenvalues &f,,.
Considering some of; (resp. allx;) as parameters, we obtain a parametric matrix
M@, %= Ay, .., Ai,) (1€SpX = (A1, ..., Ap), p = t;), which will be called

a semi-parametri¢resp.parametrig canonical matrix Its domain of parameterns

the set of alli € k? such thatM (a) is a structured canonical x n matrix with the
same disposition of the boxésas inM.

Theorem 2.3. The domain of parameters of a parametric canonical x n matrix

M) is given by a system of equations and inequalities of the following three types
() f() =0, .

(i) (d1(0), ..., dn(2) # (0,...,0),

(i) hi < hit1,

wheref,d; € k[x1,...,xp].

Proof. Let M1 < --- < M,, be all the boxes oM(X). Put.«7g := k? and denote
by .7, (1< ¢ < m)the setof all € k? such thatM (a) coincides withM (a)* on
Mz, ..., M. Denote byd,(a) (1< g <m, a € o/,)the subalgebraof :=I',,
consisting of allS € A such thatSM (a) coincides withM (a)S on the places of
My, ..., My.

We prove that there is a syste#f), (. of equations of forms (5) and (6) (in which

everycl.(jl.) is an element ok or a parametek; from My, ..., M,) satisfying the
following two conditions for everﬁ =dedy

(a) the equations of eaqly, ¢#) subsystem of (6) are linearly independent, and
(b) 44(a) is areducea, x n, algebra given by, (a).

This is obvious for1g(a) := A(a). Let it hold forg — 1, we prove it forg.

We may assume that, is a free box since otherwis¢, 1 = ./, andA4,(a) =
Ay-1(a) foralla € o#/,_1. Let(l, r) be the indices oM, as a block of the,,_; x
n,_ 1 matrixM (i.e. M, = M;,). In accordance with the algorithm of Section 1.4, we
consider two cases:

Casel: M, = #. Then equality (15) is not implied by systefi,_1(a) (more
exactly, by its(.#, #) subsystem with# x # > (I, r), see (6)) for alla € 7. It
means that there is a nonzero determinant formed by columns of coefficients of sys-
tem(6) U (15). Hence,/,, consists of alli € .«/,_1 that satisfy condition (i), where
di(%), ..., d, (%) are all such determinants; we havg (i) = %, _1(%) U (15).

Case2: M, # . Then equality (15) is implied by the systeffi,_1(a) for all
a € o/,. Hence,«/, consists of alla € «/,_1 that satisfy conditiong/1(a) = 0,
..., dy(a) = 0 of form (i) and (if M, is a Weyr matrix with the parametexs 1,
...,A,q) the conditionsk,qfﬁl <<y, of form (iii). System.7, (X) is obtained
from f/’q_l(i) as follows: we rewrite (5) and (6) for smaller blocksAf (every sys-
tem (6) with.# > [ or # > r gives several systems with the same coefficients, each
of them connects equally disposed sub-blocks of the blSgksith (i, j) € J x #)
and add the equations needed$piM;, = M, S, .
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Since./g = kP, /4 (1< g < m) consists of alz € .«,_1 that satisfy a cer-
tain system of conditions (ifiii) and & := .«/,, is the domain of parameters of
M@®). O

Example 2.5. The canonical pair of matrices from Example 1.5 has the parametric
form

w1 g [l t|ele

0 M 0 2| p3| ua

O ‘)\2 1 ni 0 7
0 X 0 w1

Its domain of parameters is given by the conditians< A, n1 # 0, uz =0, and
Ha F us.

Remark 2.1. The number of parametric canonieak n matrices is finite for every
n since there exists a finite number of partitions into boxes, and each box is

0 I
g, [0 0}, or a Weyr matrix (consisting of 0, 1, and parameters)

Therefore, a linear matrix problem for matrices of size n is reduced to the
problem of finding a finite set of parametric canonical matrices and their domains of
parameters. Each domain of parametersis given by a system of polynomial equations
and inequalities (of the types {{jjii)), and so it is a semi-algebraic set; moreover, it
is locally closed up to condition (iii).

2.5. Modules over finite dimensional algebras

In this section, we consider matrix problems with independent row and column
transformations (such problems are cakegaratedn [18]) and reduce to them the
problem of classifying modules over algebras.

Lemma2.3. Let ' C k™™ and 4 C k"*" be two basic matrix algebras and let
N C k™*" be a vector space such thet)” c .4/ and./"4 C ./". Denote byo\./*
the vector space din + n) x (m + n) matrices of the form

0 N
./V.
[O 0}, N e

Then the pair
(' 4, 0\AN)

determines the canonical form problem for matridéss .4, <, in which the row
transformations are given b and the column transformations are given by
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N +— CNS, Cer} Sed;

mxm> nxn:
Proof. Put
M 0 N
10 0
and apply Definition 2.3. (I

In particular, if I' = k, then the row transformations are arbitrary; this classifi-
cation problem is studied intensively in representation theory where it is given by a
vectorspace category [26,36], by a module over an aggregate [17,18], or by a vectroid
[4].

The next theorem shows that the problem of classifying modules over a finite
dimensional algebr& may be reduced to a linear matrix problem. If the reader is
not familiar with the theory of modules (the used results can be found in [13]), he
may omit this theorem since it is not used in the following sections. The algebra
I' is isomorphic to a matrix algebra, and so by Theorem 1.1 we may assume that
I' is a reduced matrix algebra. Moreover, by the Morita theorem [13], the category
of modules over is equivalent to the category of modules over its basic algebra.
Hence we may assume thiais a basic matrix algebra. All modules are taken to be
right finite dimensional.

Theorem 2.4. For every basie x r algebrarl’, there is a natural bijection between

(i) the set of isoclasses of indecomposable modulesioaed

(i) the set of indecomposahlE & I', 0\#) canonical matrices without zemx n
matrices with = (0, ..., 0, n;41, ..., n2 ), whereZ = radrI (it consists of the
matrices froml” with zero diagonal

Proof. We will successively reduce

(a) the problem of classifying, up to isomorphism, modules over a basic matrix al-
gebral’ C k'*!

to a linear matrix problem.

Drozd [11] (see also [6]) proposed a method for reducing problem (a) (with an
arbitrary finite dimensional algebid to a matrix problem. His method was founded
on the following well-known property of projective modules [13, p. 156]:

For every modulé/ over I, there exists an exact sequence

Pp%olim—o (36)
Kerp c radP, Img CradQ, (37)

whereP andQ are projective modules. Moreover, if

P/LQ/LM/—>O
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is another exact sequence with these properties, ¥henisomorphic toM’ if and
only if there exist isomorphismg : P — P’ andg : Q — Q’ such thaigg = ¢'f.
Hence, problem (a) reduces to

(b) the problem of classifying triple&P, Q, ¢), whereP andQ are projective mod-
ules over a basic matrix algebfaandy : P — Q is a homomorphism satisfy-
ing (37), up to isomorphismg, g) : (P, Q,¢) — (P’, Q’', ¢’) given by pairs of
isomorphismsf : P — P’ andg : Q — Q’ suchthaige = ¢'f.

By Lemma 2.1,I" is a reduced algebra, it defines an equivalence relation

T ={1,...,t}(see (2)). Moreover,il’/~= {41, ..., .7,},thenthe matriceg, =

Zie% eii (@ =1,...,r) form a decomposition (27) of the identity dfinto a sum

of minimal orthogonal idempotents, altd = E1l, ..., P, = E,I" are all noniso-

morphic indecomposable projective modules aver
Let ¢ € Homp(Pg, Py). Theng is given by F := ¢(Eg). SinceF € Py, F =

E,F. Sinceyp is a homomorphismp(EgG) = 0 impliesFG = 0O for everyG € I

TakingG = I — Eg, we haveF (I — Eg) = 0,and soF = FEg = E,FEg. Hence

we may identify Hom(Pg, Py) andE,'Eg:

Homr(Pg, Py) = I'up := EqI'Ep. (38)

The set# of all matrices froml” with zero diagonal is the radical @f; rad P, =
Py = Eq%.Hencep € Homp(Pg, P,,) satisfies Imp C radP, ifand only if¢(Eg)
€ Rup := EqREg.
Let
P:P]fl’l)@“.eapr([’r)’ Q=Q§Q1)®®Q£Qr)

be two projective modules, whese™ := X @ --- @ X (i-times); we may identify
Homy(P, Q) with the set of block matrice$ = [@,p1,, ;_,, Whered,s < e
isagy x pp block with entries in'og. Moreover, Im@ C rad Q if and only if @, €

%Z‘;X”ﬂ forall o, . The condition Kep C rad P means that there exists no decom-
positionP = P’ & P” such thatP” # 0 andy(P”) =0
Hence, problem (b) reduces to

(c) the problem of classifying x p matrices® = [(Da/g]g’ﬁ:l, Dop € %Z‘;}XW’ up
to transformations

® — COPS, (39)

whereC = [Copl;, 4y andS = [Segl, 4, are invertibleg x g andp x p ma-

trices, Cop € FZ‘;X%, andSys € I'"""". The matricesb must satisfy the con-
dition: that there exists no transformation (39) making a zero colundn in

Every element ofl .4 is an upper triangular matrix = [a,j]l =1 define its
submatrixa = [a;;]1q, NeSaxIgs (by (38),a;; =0 1if (i, j) & Jo x Jﬁ) Let @ =

[Paplly p_q With Pep € jg‘g PP replacing every entry of @,s by the matrixa
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and permuting rows and columns to order them in accordance with their position
in I', we obtain a matrixp from I'y, ., Wherem; := g, if i € S, andn; := pg if
Jj € Jg. Itreduces problem (c) to

(d) the problem of classifyingn x n matriceSN € Z,x, (m andn are step-
sequences) up to transformations

N +— CNS, CerTl%, . Serl* (40)

mxm> nxn

The matricedN must satisfy the condition: for each equivalence class 7/ ~,
there is no transformation (40) making 0 the first column in allithevertical
strips withi € 7.

By Lemma 2.3, problem (d) is the linear matrix problem given by the @ap
I, O\#) with an additional condition on the transformed matrices: they do not
reduce to a block-direct sum with a zero summand whose size has the ferm
n=1(0,...,0,n41,...,n2). O

Corollary. The following three statements are equivalent
(i) The number of nonisomorphic indecomposable modules over an algeisra
finite.
(i) The set of nonequivalentx n matrices ovel' is finite for every integer n.
(i) The set of nonequivalent elements is finite in every algelhrdnat is Morita
equivalenf13] to I" (two elements, b € A are said to be equivalent if = x
by for invertiblex, y € A).

The corollary follows from the proof of Theorem 2.4 and from the second
Brauer-Thrall conjecture [18]: the number of nonisomorphic indecomposable mod-
ules over an algebra is infinite if and only if there exist infinitely many nonisomor-
phic indecomposablg-modules of the same dimension. Condition (37) does not
change the finiteness since every exact sequence (36) is the direct sum of an exact
sequence’; — Q1 — M — 0 that satisfies this condition and exact sequences of
the forme; I’ — ¢;I' - 0 — Oande;’ - 0 — 0 — O, wherel=e1 4+ --- + ¢, is
a decomposition of & I' into a sum of minimal orthogonal idempotents.

3. Tame and wild matrix problems
3.1. Introduction

In this section, we prove the Tam#/ild theorem in a form approaching to the
third main theorem from [17].

Generalizing the notion of a quiver and its representations, Roiter [27] introduced
the notions of a bocs (= bimodule over category with coalgebra structure) and its rep-
resentations. For each free triangular bocs, Drozd [11] (see also [10,12]) proved that
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the problem of classifying its representations satisfies one and only one of the follow-
ing two conditions (respectively, is ¢dimeor wild type): (a) all but a finite number

of nonisomorphic indecomposable representations of the same dimension belong
to a finite number of one-parameter families, and (b) this problem ‘contains’ the
problem of classifying pairs of matrices up to simultaneous similarity. It confirmed

a conjecture due to Donovan and Freislich [8] states that every finite dimensional
algebra is either tame or wild. Drozd’s proof was interpreted by Crawley-Boevey
[6,7]. The authors of [17] got a new proof of the Tarddld Theorem for matrix
problems given by modules over aggregates and studied a geometric structure of the
set of nonisomorphic indecomposable matrices.

The problem of classifying pairs of matrices up to simultaneous similarity (i.e.
representations of the quivz-0) is used as a measure of complexity since it ‘con-
tains’ a lot of matrix problems, in particular, the problem of classifying represen-
tations of every quiver. For instance, the classes of isomorphic representations of
quiver (1) correspond, in a one-to-one manner, to the classes of similar pairs of the
form

I 0 0 0] [4 O 0 0
0 27 0 0| |4 0 0 O
0o o0 & of|la 0 0 O (41)
0 0 0 4| |A A I A

Indeed, if (J, A) and (J, A’) are two similar pairs of form (41), thef~1JS =
J, S7TAS = A, the first equality implies = S1 @ S> ® S3 @ S4 and equating the
(4, 3) blocks in the second equality gives = S4 (compare with Example 1.1).
LetAy, ..., A, € kK™ For a parametric matri®dd (A1, ..., Ap) = [a;j + bijAi1
+ - +dijrpl (aij, bij, . ... d;j € k), the matrix that is obtained by replacement of
its entries witha;; I, + b;j A1+ - - - +d;; A, will be denoted byM (Aq, ..., A)p).
In this section, we get the following strengthened form of the Tafi&l theo-
rem, which is based on an explicit description of the set of canonical matrices.

Theorem 3.1. Every linear matrix problem satisfies one and only one of the follow-

ing two conditiongrespectivelyis of tame or wild typg

(i) For every step-sequencae the set of indecomposable canonical matrices in
the affine space of x n matrices consists of a finite number of points and
straight lines® of the form{L(J,,(1)) | » € k}, whereL(x) = laij + xb;j] is a
one-parametef x [ matrix (a;;, b;; € k, I = n/m)andJ, (1) is the Jordan cell.
Changing m gives a new line of indecomposable canonical matficés (1));

3 Contrary to [17], these lines are unpunched. Thomas Bristle and the author proved that the number of
points and lines is bounded b§f Avhered = dim(.#, xn)- This estimate is based on an explicit form of
canonical matrices given in the proof of Theorem 3.1 and is an essential improvement of the estimate [5],
which started from the article [17].
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there exists an integer p such that the number of points of interseétiofnthe
line L(J,; (1)) with other linesispifn > landporp + 1if m = L

(i) There exists a two-parameterx n matrix P(x, y) = [a;; + xb;j + ycij] (aij,
bij, cij € k) suchthatthe plangP(a, b) | a, b € k} consists only of indecompos-
able canonical matrices. Moreovea pair (A, B) of m x m matrices is in the
canonical form with respect to simultaneous similarity if and onlg (i, B) is
a canonicalnn x mn matrix.

We will prove Theorem 3.1 analogously to the proof of the Tawi#d theorem in
[11]: We reduce an indecomposable canonical maifito canonical form (making
additional partitions into blocks) and meet a free (in the sense of Section 2.4) block
P that is reduced by similarity transformations. If there exist infinitely many values
of eigenvalues oP for which we cannot simultaneously make zero all free blocks
afterP, then the matrix problem satisfies condition (ii). If there is no mattiwith
such a blockP, then the matrix problem satisfies condition (i). We will consider the
first case in Section 3.3 and the second case in Section 3.4. Two technical lemmas
are proved in Section 3.2.

3.2. Two technical lemmas

In this section, we get two lemmas, which will be used in the proof of
Theorem 3.1.

Lemma 3.1. Given two matrices L and R of the foln= A[,,, + F andR = ul,, +
G, where F and G are nilpotent upper triangular matrices. Define

A = Za;jLiARj (42)
ij
for everyA € k™" and f(x, y) = 3_; ;-o@ijx'y/ € k[x, y]. Then
(i) (A1)s = AT¢ = (A.g)f; :
(i) Af =3 b;j F'AG/, whereboo = f (0. 1), bor = 5 (k. ). ...
(i) if f(x, ) = 0, then the left lower entry oA/ is 0;
(iv) if f(x, ) # O, then for everyn x n matrix B there exists a unique A such that
A/ = B (in particular, B = 0impliesA = 0).

Proof. (i) A/ = a;; (M + FY A(ul +G) =Y agrAipn/ A+ Y aijhl ju/—tA
G+

(iii) 1t follows from (ii). .

(iv) Let f(x, u) # 0 andA € k™. By (i), B:= A/ = b;;F'AG/, where
boo= f (1. ). ThenA = bog[B — Y, ;-1 bij F' AGY]. Substituting this equality

4 Hypothesis: this number is equal to 0.
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in its right-hand side gives

A=bogB—bl | Y bjiF'BGI— Y ¢;;F'AG/
i+j>1 i+j>2
Repeating this substitutiom + n times, we eliminatéA on the right sinceF™ =
G" = 0 (recall that- andG are nilpotent). [J

Lemma 3.2. Given a polynomiap x t matrix [ f;;1, fij € k[x, y], and an infinite
setD C k x k. Foreveryl € {0,1, ..., p}, (A, n) € D,and%; = {m,n, F, G, N1,
..., Ni}, whereF € k™™ and G € k™" are nilpotent upper triangular matrices

andNi, ..., N; € K" we define a system of matrix equations
Sr=L100m, F): X4 xl =N, =11, (43)

(see(42))thatis empty if = 0. Supposgfor every(i, u) € D, there exists7 , such
that the systen¥’,, is unsolvable.
Then there exist an infinite s&' C D, a polynomiald € k[x, y] that is zero on
D', a nonnegative integap < min(p — 1, r), and pairwise distincj, ..., ji—w €
{1, ...t} satisfying the conditions
(i) For each(r, n) € D' and.# ,, the systen?”,,(A, ., % ) is solvable and every
(t —w)-tuple S;,, Sj,,...,S;_, € k™" is uniquely completed to its solution
(S1,....80).

(i) For each (A, n) € D/, 973 ={m,n, F,G,0,...,0}, and for every solution
(S1,...,8)of (X, i, 973), there exists a matrix S such that

S:{u:+1,l 4t Stqurl,t — Sd. (44)

Proof. Step-by-step, we will simplify systef , (1, ., # ) with (&, 1) € D.

First step.Let there exist a polynomigf ;, say f1,, that is nonzero on an infinite
setD1 C D. By Lemma 3.1(iv), for eaclin, u) € D1 and everyXy, ..., X;_1 there
exists a uniqueX; such that the first equation of (43) holds. Subtracting fhth
power of the first equation of (43) from th@&,th power of theith equation of (43)
foralli > 1, we obtain the system

X§t xSt = N N, 2<i < (45)

whereg;; = fij fu — f1j fir. By Lemma 4.1(iv), the systen¥’, and the system
(45) supplemented by the first equation.@f, have the same set of solutions for
all (x, n) € Dyand all7 .

Second steplet there exist a polynomial;, saygo -1, that is nonzero on an
infinite setD, C D1. We eliminateX;_1 from Eqs. (45) with 3< i < I.

Last stepAfter thewth step, we obtain a system

r1 Fi—w
le + o + thfu: - N}

(46)
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(empty ifw = t) and an infinite seD,, such that the projection
(S1,..,8) = (S, ... S;_,)

is a bijection of the set of solutions of systert), (A, i, Z ) into the set of solutions
of system (46) for everyx, u) € Dy,.

Since for every(x, u) € D there exists7 , such that the syster’, is unsolv-
able, the process stops on system (46) witk: p for which either

(a) there exists; #+ 0 andr1(A, u) = --- = r;—y (A, u) = 0 for almost all(x, ) €
D,,, or
(b) rl:---:r,_wzoorwzt.

We add thew + 1)th equation
X{wﬂ,l +ooeed Xl.fw+l.t _ X{wﬂ,l Foe gt thuHrl,t

to the system?,, (i, u, Z#°) with (x, u) € D, and#° = {m,n, F, G,0,...,0}
and apply thew steps; we obtain the equation

—w Suw+1, Swt1,

X:i +“.+X;;7w = (X3 +1.1 ot X +1,:)w (47)
wherer, ..., r;_, are the same as in (46) apdr, 1) # 0. Clearly, the solutions
(S1,...,8) of (A, u, 973) satisfy (47); moreover

(S}Oll N S;?rr::;)d — (S{u,v+l,1 NN Stfu,r+1,r)(p (48)
for (A, u) € D', whereps, ..., pr—w.d € k[x, y] and D’ define as follows: In case
(@),r1,...,r—y have a common divisaf (x, y) with infinitely many roots inD,,

(we use the following form of the Bezout theorem [20, Section 1.3]: two relatively
prime polynomialsfi, f2 € k[x, y] of degreesi; anddz have no more thadid>
common roots); we pup; = r;/d and D’ = {(A, u) € Dy, |d(A, u) = 0}. In case
(b), the left-hand side of (47) is zero; we pit=--- = p;—, =0 (if w < 1),d =0,
andD’ = D,,.

We take(r, 1) € D' and puip(x, y) = ¢(x + A, y + ). Sincep(0, 0) = (A, )
+ 0, there exists/ € k[x, y] for which ¢y = 1 mod(x*, y*), wheres s such that
F¥ = G* =0.We puty(x, y) = ¥ (x — A, y — ). ThenA®¥ = A foreverym x n
matrix A. By (48),

S{wﬂ,l +oe gt Stfw+1.r _ (S}{?ll 4+t S}‘frt::)wﬁ
it proves (44). O

3.3. Proof of Theorem 3.1 for wild problems

A sub-block of a free (dependent) block will be named a fi@ependentsub-
block. In this section, we consider a matrix problem given by a @&ir.#) such
that there exists a semi-parametric canonical malfix .#,, having a free box
M, # ¢ with the following property:
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The horizontal or the verticalg — 1)-strip of M, is linked (see
Definition 1.9) to a § — 1)-strip containing annfinite parameter
from a free boxM,,, v < ¢, (i.e., the domain of parameters contains
infinitely many vectors with distinct values of this parameter).

(49)

We choose suclM € .#,, having the smalles} n = ny +nz + - - - and take its
free boxM, # ¢, that is the first with property (49). Then ea@h— 1)-strip ofM is
linked to the horizontal or the verticgy — 1)-strip containing),,. Our purpose is
to prove that the matrix problem satisfies condition (ii) of Theorem 3.1. Let each of
the boxesV,;, M1, ..., thatis free be replaced by 0, and let as many as possible
parameters in the boxé#,, ..., M,_1 be replaced by elementslo{corresponding-
ly we retouch dependent boxes and narrow down the domain of paramgtsush
that property (49) still stands (note that all the parameters of a “new” semi-parametric
canonical matrixV are infinite and thad/, = 0 but M, + ¢). The following three
cases are possible:

Case 1. The horizontal and the verticaly — 1)-strips of M, are linked to
(g — 1)-strips containing distinct parametersanda,, respectively.

Case 2: The horizontal or the verticalg — 1)-strip of M, is linked to no
(g — 1)-strips containing parameters.

Case 3: The horizontal and the verticaly — 1)-strips of M, are linked to
(¢ — 1)-strips containing the same parameter

3.3.1. Study Case 1

By Theorem 2.2, the minimality op _n, and since eacly — 1)-strip of M is
linked to a(g — 1)-strip containingM,, we have thaM is a two-parameter ma-
trix (hencel, r € {1, 2}) and, up to permutation afy — 1)-strips, it has the form
H, & H,, whereH, = Hi(Js, (M 1)) andH, = H, (Js, (A 1)) lie in the intersection of
all (¢ — 1)-strips linked to the horizontal and, respectively, the vertigal 1)-strips
of M,, H,(a) andH, (a) are indecomposable canonical matrices forad k, and

a1 0
i
Js (M) =
S
0 A

We will assume that the parametersandi, are enumerated such that the free
boxesM, andM, containing\; and, respectively,, satisfyu < v (clearly, M, and
M, are Weyr matrices).

Let firstu < v. Then

My =A@ J,(M1)@® B, M, =Jy,(2l), (50)

whereA andB lie in H> (M, does not contain summands frah sinqe every box
M; with i > u that is reduced by similarity transformations belongéftoor Ho).
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By the n* x n* partition of M into blocks M} (which will be calledx-blocks
and the corresponding strips will be calleestrips), we mean the partition obtained
from the partition into(v — 1)-strips by removing the divisions inside @, (x17)
and the corresponding divisions inside of the horizontal and vertical 1)-strips
of M,, and inside of allu — 1)-strips that are linked with them. Clearlg, (A1) and
Jy,(x21) are freex-blocks, the othex-blocks are zero or scalar matrices, agl is
a part of ax-block. Denote by# (respectively#) the set of indices ok-strips of A,
(respectivelyH,) in M = [M}]¢,_;. Thens U 7 = {1,....e}and.s N 7 = 0.
Step 1(A selection oM* ) In this step we will select both afreeblockM* > M,
with (¢,n) € ¥ x ¢ and an infinite set ofa, b) €  such thatM*,] cannot be made
arbitrary by transformations o¥ (a, b) preserving allMy, ..., M, and aIIM*

M* SuchM, exists sinceM, + () is a part of afree\/I*/ W|th (i, j) € ¥ x /

Denote byAp the algebra of alsfrom A := I';», for whichMSandSMare co-
incident on the places of the box&g, ..., M, (see (22)). Then the transformations

M+— M =SMS™t, Se Ag, (51)

preserveMs, ..., M,. Note thatdg is an algebra of upper block-triangular x n*
(and evem, x n ) matrices.
Let Mc*n be selected and It € A be such that transformation (51) preserves all

M} < M}, Equating the¢, n) x-blocks in the equalityt’s = SM gives

2474
M ST, + o ME Sy, M Sy = SEME 4+ SEME, (52)
wheree x e is the number ofk-blocks inM. Since
M} #0 implies (i, j) € (J x H)U(J x 9), (53)

equality (52) may contaiﬂi*j onlyif (i, j) e 4 x Zor(i,j) = ,n). HenceMé‘;)
is fully determined by, S and the family of:-blocks
Sy, =185 16, j) e s x 7}
We will selectMgn in the sequence
Fi<Fy<---<Fs (54)

of aIIfreeM: suchthati, j) € .# x /andM* ¢ MyU---UM,. Fora € {1,.
3} denote byA, the algebra of allS € Ag for which MS and SM coincide on the
places of aIIMl; < F,. Then the transformations

M — M =SMS™t Se Az, (55)

preserveMy, ..., M, and aIIM* < Fy.

Letus |nvest|gate the faml|§1/¢ for eachS € A}.

The algebral = I'; ., consists of alk x n matricesS = [S;;] whose blocks sat-
isfy a system of linear equations of the forms (5) and (6) completes} oy O for
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all i > j. Let us rewrite this system for smalla-blocks S* The equations that
contain blocks from the fam|I)$ , contain no bIocksS* & S vy (Indeed, by the

definition of Case 1, thég — 1)- strlps of Hy are not Irnked to thég — 1)-strips of
H>, and so the partition oF into .# and ¢ is in agreement with its partitiofi/ ~ into
equivalence classes; see (2) and Definition 1.9.) Hence the fasrp;lyfor SeA*
is given by a system of equations of the form

Z l(jr)Sl’}—O t=1,..., w1 (56)
(i.))esx g
Denote by%, (respectively%,,) the part ofM consisting of all entries that are
in the intersection of J;, M; (respectivelyl J, _;, M;; by the union of boxes we
mean the part of the matrix formed by these boxesxgm)e Ny, M* Letus prove
that%, and%,, are unions o%k- bIocksM” i, j)e s x ¢g.ltis clearfor,/? since
the partition intox-strips is a refinement of the partition inte — 1)-strips. It is also
true for 4,, since4,, is partitioned into rectangular parts (see Definition 1.8) of
the form[ M 1|M 2| -+ |My ] if r =1 and[M] |M]]|--- |MTTS1]T if I =1 (the
indicesl andr were defined in the formulation of Case 1) recall thabgllare boxes
andM, has form (50).
By the definition of the algebra, it consists of allS € A such thatM¥§ — SM
is zero on the places of the box&g < M,. To obtain the conditions on the family
, of blocks of S € Ao, by virtue of statement (53), it suffices to equate zero the
blocks ofMS — SM on the places of all freg- bIocksM* from %4, and %4, (note
that some of them may saUsM* > M* ) Since all free* blocks ofM except for
Js, (A1I) and Jy, (A21) are scalar or zero matrices, we obtain a system of equalities
of the form

Z ,(f)S,*,—O’ T=wi+1, ..., wy, (57)
(i,))eIx g
for the places fron%, and
)
Z (Sl?'j)gfj =0, v=1 ..., ws, (58)
(i, j)esxg

)
for the places fron#,,,, where(Sl.*/.)gf«f , gl.(})) € k[x, y] (more preciselygf/.”) € k[x]

if 1 =1 andg{} € k[y] if r = 1), are given by (42) withl. = J,, (1) and R =
Js, O D). ‘

Applying the Gausslordan elimination algorithm to system (56) (57), we
choosesy, ..., S; € S* such that they are arbitrary and the ottS«,%re S} are
their linear combmatlons Rewriting system (58) fat ..., S;, we obtam a system
of equalities of the form

sit4ysfir=0 i=1.. wa (59)

The algebrat, (1 < o < 8) consists of allS € Ag such thaSMandMShave the
same blocks on the places of all fr&@y < Fy:
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M;lst +o R MESY, = Se My, e+ S;‘eMe*y. (60)

We may omit equalities (60) for alk, y) such tha‘rM}y is contained i1, ..., M,
(by the definition ofAg), or (x, y) € .# x _# (by (53), equalities (60) contaii?}*j €
S}/ only if (x,y) € # x 7). The remaining equalities (60) correspondid, e
{F1, ..., Fy} (which are zero) and take the form

Sty 48/ =0 izws+l ... wsta (61)

It follows from the preceding that any sequence of matriges. ., S; is the se-
guence of corresponding blocks of a matix A, if and only if system (59 (61)
holds forSy, ..., S;.

Puta = § (see (54))p = w3 + 8, andD = {(a;, a,) | (a1, az) € Z}. SinceM, +
#is a part of afreeVIl.*/. with (i, j) € 4 x ¢, forevery(a;, a;) € D we may change
the right-hand part of system (59) (61) to obtain an unsolvable system. Apply-
ing Lemma 3.2 to system (59) (61), we get an infiniteD’ ¢ D, a polynomial
d € k[x, y] that is zero onD’, a nonnegative integes < min(p — 1, ¢), and pair-
wise distinctj1, ..., ji—w € {1, ..., t} satisfying conditions (i) and (ii) of Lemma
3.2. We takeF,,+1—w; as the desired bIocM;n. SinceM, is the first among free
boxes# ¢ with property (49)Mz'n > M,. Equality (52) takes the form

Slfw+1,1 T Stfw+1.r _ S;{ MC*T) — MZ;?S,”’,) (62)

Step 2 (A construction ofP(x, y)). In this step, we construct the two-parameter
matrix P (x, y) from condition (ii) of Theorem 3.1.

Let us fix a pair(a;, a,;) € D' in the following manner. If the polynomial €
k[x, y]is zero, thena, a,) is an arbitrary pair fronD’. Letd # 0; if d is reducible,
we replace it by its irreducible factor. Sinckis zero on the infinite seD’ that
does not contain infinitely many paits;, a,) with the sames; (otherwise, thdth
parameter can be replaced with but we have already replaced as many as possible
parameters by elementslosuch that property (49) still stands), it follow'sZ k[x]
and sody :=0d /3y # 0. Sinced is an irreducible polynomiald, d}) = 1; by the
Bezout theorem (see the proof of Lemma 3.2), we may chagse,) € D’ such
that

d(alﬂ ai’) = 07 d; (ala ar) 5& O (63)

Denote byP(x, y) the matrix that is obtained frorM by replacement of its
*-blocksJ, (A1) and Jy, (A, I) with Weyr matrices

L= I(Ji(a) & J3(@) @ Js(a;) @ J7(ar) © Jo(ap) 1171,
R = Js(a,I2)

(64)

(wherell is a permutation matrix, see Theorem 1.2) andsthiglock Mc*n with
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[0 0 0 0 O
O1 | e
(o) 0O 0 0O O o
pf=1|0s|. 0=|1 0 0 0 0.
Q4 0O 0 0 0 O
Os | |
|0 0 0 0 0
(65)
T 1y
T 1 x
T={T3|={1 1},
T4 1 0
Ts 0 1

whereQ; is (2i — 1) x 10 (its zero blocks are & 2) and7; is in the middle row.
(Each nonzero frea-block M* of M, except forJ, (;1) and J;, (A1), iS a sca-
lar matrix with (i, j) € (S x f) U (Z x #),itis replaced by the scalar matrPg*
with the same diagonal having the side+ 3+54+7+4+9) x (1+3+5+ 7+ 9)
if (i, j) € # x #and 10x 10if (i, j) € ¢ x #.) The dependentblocks are, respec-
tively, corrected by formulas (35).

Let us enumerate the rows and columng et J1(a;) @ Ja(a;) ® Js(a;) @ J7(ap)
@ Jo(a;) and the rows o[Qi]?zl by the pairs of numberd, 1); (3, 1), (3, 2), (3, 3);
(5,1), (5,2),...,(55);...;(9,1), (9,2),...,(9,9). Going over to the matri®,
we have permuted them in= 17/ 1171 andP* = I1[Q;] in the following order:

(9.1).(7.1),(5,1).(3.1).(11).(9,2),(7,2), (52), (3,2),
(9.3),(7,3),(5,3),(3,3),(9.4), (7.4, (54), (66)
(9,9), (7.5),(5,5),(9,6), (7,6),(9,7),(7,7),(9,8),(9,9)

(see Section 1.3). In the same manner, we will enumerate the rows and columns in
everyith x-strip (i € .#) of P(x, y).

We will prove thatP (x, y) satisfies condition (ii) of Theorem 3.1. L%, B) be
a canonical pair ofz x m matrices under simultaneous similarity; put

K =P(W,B) (67)

and denote by;, T;, L, R the blocks ofK that correspond t@;, T;, L, R (see
(64)) from P (x, y):

L=T0J7I" R=Jsa o), (68)
J = Jiaily) @ Ja(aly) @ Js(arly) ® J7(aily) @ Jolaily), (69)

wherell is a permutation matrix. It suffices to show tiais a canonical matrix (i.e.,
K is stable relatively to the algorithm of Section 1.4). To prove it, we will construct
the partition ofK into boxes.
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Clearly, the boxed1y, ..., M, of M convert to the boxeky, ..., K, of K. The
box M, of M is replaced by the boX; of K. The numbers andv may be distinct
sinceM, andK, may have distinct numbers of cells. The p&itU - - - U K; of Kiis
in canonical form. The partition df obtained after reduction &€, ..., Kj is the
partition intou-strips; the corresponding blocks will be calledblocks for instance,
Ty, ..., Ts ared-blocks.

The transformations df that preserve the boxdg,, ..., K; are

K — K' =SKS™1, Sedi,. (70)

For every matrixSfrom the algebralo, the family &%  ofits x-blocks satisfies sys-
tem (56)(58). SoS1, ..., S € S;f (which correspondtés, ..., S; for S € Ag) are
arbitrary satisfying Eqgs. (59) and the oth};.*; € S;/ are their linear combinations.

Step 3. We prove the following statement:

Let pe{1,...,5} and let the matrixK be reduced by those
transformations (70) that preserve all-blocks precedingf,,.
Then T, is transformed into7, = A,T,B, here A, is an arbi-
trary nonsingular matrix an@ is a nonsingular matrix for which
there exist nonsingular matrices, 1, ..., As satisfying T,,H =
ApiaTpaB, ..., Ts = AsTsB.

The rows and columns d?(x, y) convert to thesubstripsof K = P(W, B). For
everyi € .4, we have enumerated the rows and columns intthe-strip of P (x, y)
by pairs (66); we will use the same indexing for the substrips intthe-strip of K.

By analogy with (52), equating iK’S = SK (see (70)) the blocks on the place

AR
of K7, gives

= ak 5ok Qk gk * K
K;151n+"'+K;r;Sm;—S;;K;n+"'+S;eKen (72)

For p from (71) andi € .#, we denote byCy;, Kéil., I%;i (respectivelyD;;) the
matrices that are obtained fro&gi, KZI’ K7; (respectivelyK s;) by deletion of all
horizontal (respectively, horizontal and vertical) substrips except for the substrips
indexed by(2p — 1, p), 2p—1,p+1),...,(2p —1,2p —1). Then (72) implies

Kiq ST, + -+ Ky Sy = Coc Ky + -+ Cre K (73)

(71)

The considered in (71) transformations (70) preserve-alocks precedinq_p.
SinceT, is av-block from the(2p — 1, p) substrip of thezth horizontalx-strip
whose substrips are ordered by (66), the blﬁ’gk (i < n)islocated in a part oK
preserved by these transformations, thakis, = K;;. If n > i € .7, thenK/, 5% =
D¢;Cjy sinceK }; is a scalar matrix Of (see (68)).1f) > i € ¢, then[%él. = IQU =
0. So equality (73) is presented in the form

n—1 e
Y DiCiy+ K}, Sy, = Coc K2+ Y CriKl, (74)
i=1 i=¢+1
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Equality (74) containg;; only if (i, j) € .# x #, and so each of them is a part

of §* € S,’},- We have chosefiy, ..., S; in S}/ such that they are arbitrary and
the others are their linear combinations;dat . . ., C; be the corresponding parts of
S1,..., 5. Itis easy to show thaf, . . ., C; satisfy the system that is obtained from

(59)u(61) withwsz + & = w + 1 by replacingSy, . . ., Sy with C1, ..., C;. EachDy;

in (74) is a scalar or zero matrixlf; isnotL andD;; = J,(a;I,) otherwise, each
K;’ (i < ¢)isascalar or zero matrix ® = Js(a, I2,,), and so equality (74) may be
rewritten in the form

C{w+l,1 +oot thw+1.t — CZCKZ*U - I%éns,j,,, (75)

where f,,11,; are the same as in (62) arﬂqf‘”“"' is defined by (42) withL =
Jp(ail,) and R = Js(a, Io,). By (44), the left-hand side of (75) has the fored,
and so

C! = Coe K2y — K[, St (76)
Let us study the right-hand side of (76). Since .# andn € 7, the bIocksS’Z‘C
andsy, are arbitrary matrices satisfying

S L =LS;, Sy;,R=RS},. (77)

By (68) and (77)Z := 1_7_15;;1_7 commutes with/. Let us partitionZ into blocks

ZijG,j=1,...,5andX := 1'7‘1(5;;1{;,7 — K Sy = Z[0i1 - 10;1S, (recall

thatKC*n = I1[Q,)) into horizontal strips(1, . . ., X5 in accordance with the partition
of J into diagonal blockg1(a; 1), Ja(aily), . .., Jo(aily,) (see (69)). Then

Xp=2Zp01+4 -+ Zps05— 0,5,

SinceZ commutes with/, ZpiJoi—1(ailn) = J2p—1(ailn) Zpi. HenceZ,, has
the form

_A,‘ v ]
A,‘ A,‘ *
A
or l X
A; K
0 Aj

0

if p>iorp <i,respectively. We look at
[0 0 0 0 O]
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to get

whereA , is the diagonat: x m block of Z,,, andB is the diagonal 2 x 2m block
of S;n (recall thatS;,7 commutes withJs(a, I2,,)). SinceX , is formed by the sub-
strips ofS?, K, — K, Sy, indexed by the pair®p — 1, 1), ..., (2p — 1,2p — 1),
equality (76) implies

A,,Y_’,,—I_};B * ok ok %
R:=CY= 0 0 0 0 0of (78)
0 0O 0 0 O

Let us prove that
ApT, =T,B. (79)

If d = 0, then equality (79) follows from (78). Let= 0. We partitionrCandR = C*
into p x 5 blocksC;; and R;; conformal to the block form of the matrix on the
right-hand side of (78). By Lemma 3.1(ii) and (78),

R=C"= " byjJp(0n) Cs(Ozn), (80)
ij
Rij = 0 ifi>1, (81)

proves (79) forp = 1. Letp > 2. ThenR 2 = bp1Cp1 = 0 by (80) andC;,1 = 0 by
(81). Next,R ;3 = bp1Cp2 = 0 by (80) andC),> = 0 by (81), and so on until we ob-

tainCpy =--- = Cps = 0.By (80),R,—1,1 = O, it proves (79) fop = 2. Letp > 3.
Then Rp_12=>b01Cp-11=0 and Cp11=0; further, Rp-13=0b01Cp-12=0
andC,_12 = 0, and so on until we obtai@,_11 = --- = C,—1,3 = 0. Therefore,

R, 21=0; we have (79) forp=3 and C, 21=C,_22=0 otherwise.
Analogously, we get (79) fop =4 andC,_31 = 0 otherwise, and, at last, (79)
for p =5.

By (71), the considered transformation preservegidilocks preceding;. So
we may repeat this reasoning for edch {p + 1, ..., 5} instead ofp and obtain
A;T; = T;B. It proves (71).

Step 4 (A construction ofK;41, Kjy2,...). The boxesKj, ..., K; were con-
structed at the end of Step 2. The first nonzero frd#ock of K that is not con-
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tained inKy U ---U K3 is Ts = [0,, I,]. The 9-blocks that precedinds and are

not contained inK1 U - -- U K are zero. So they are the box&$.1, ..., Ky -1
for a certainvy € N. By statement (71), the admissible transformations Witihat
preservethe boxes, ..., Ky,—1 reduce, fofTs, to the equivalence transformations;

therefore Ts = [0y, I,,] is canonlcal an&,, = Ts.

Conformal to the block form ok, = [0,, I,], we divide eachv-block ofK into
two vi-blocks. The first nonzero freg -block that is not contained ik, U - - - U
Ky, is I, from Ta = [I,, O,]. The vi-blocks that preceeding it and are not con-
tained inKy U - - - U K, are the boxeX,,+1, Ky,, ..., Ky,—1 for a certainu € N.
By statement (71), the admissible transformations wWitthat preserve the boxes
K1, ..., Ky,—1 reduce, forTy, to the transformations of the form

Ty — ATy I:g gi|
with nonsingularm x m matricesA andB. Since the blocks = [1,, 0,.] is canon-
ical under these transformations, we havye= [1,, 0,,] = [Kv,|Ky,+1]; and so on
until we get the partition oK into boxes.

It remains to consider the case= v; in this case the parameteks and A
are parameters of a certain free bak,. Sinceii and i, are distinct (by pre-
scribing of Case 1) parameters of the same Weyr madifix we haveai # az
for all (a1, a2) from the domain of parameters c k2. We will assume that the
parametera; andip are enumerated such that there exists a2) € & with a1 <
az. Then by Definition 1.2 of Weyr matrices < ap for all (a1, a2) € 2. By the
minimality of Zn M, = Js,(01D) @ Js,(X21), all (v —1)-strips are linked, and
M = H(M,) = H o H,, WhereH(a) is an indecomposable canonical matrix for
allack, H := H(J; (A1) and H, = H(JW(A 1)) (i.e. H= H; = H,, see the
beginning of Section 3.3.1). By the x n* partition of M into bIockle;, we mean
the partition into(v — 1)-strips supplemented by the division of evépy— 1)-strip
into two substrips in accordance with the partitionAdf into sub-blocks/y, (A11)
andJy,(A21). ThenJs, (A11) and Jy,(121) are freex-blocks, the othex-blocks are
zero or scalar matrices, and, is a part of ax-block. The reasoning in this case is
the same as in the cage< v (but with 4,,, = ).

3.3.2. Study Case 2

In this case,M = M (1) is a one-parameter matrix with an infinite domain of
parametersZ C k. Up to permutation ofg — 1)-strips,M has the formH; & H>,
where H1(a) and H» are indecomposable canonical matrices foraadl &, Hy =
H1(Js, (AD)), and[flz is obtained fromH; by replacement of its elemenkg; with
hijIs,. The matrixJy, (AI) is a part ofM, (see (49)). Let, r € {1, 2} be such that
the horizontakg — 1)-strip of M, crossesH; and its verticalg — 1)-strip crosses
H,. Under thex-partition of M, we mean the partition obtained from thg — 1)-
partition by removing the divisions inside 8f; (+7) and the corresponding divisions
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inside of the horizontal and verticab — 1)-strips of M,, and all (v — 1)-strips that
are linked with them; thei,, is ax-block. Denote by# (respectively#) the set of
indices ofx-strips of H; (respectivelyd,) in M.

Let M, be the last nonzero free box i (clearly,z > v). Denote by# the part of
M consisting of all entries that are in the mtersectlobj;L MiandU; jyerx s M-
By analogy with Case 1% is a union Ofxk- bIockij for some(i, j) € 4 x 7.

Let Ap be the algebra of alb € A such thatM S — SM is zero on the places
of the boxesM; < M,. Equating zero the blocks a¥/ S — SM on the places of
all free *—blocksM;;. from 4, we obtain a system of equalities of forms (57) and
(58) with g € k[x] if [ =1 andg|}’ € k[y] if [ = 2 for x-blocks of § = [S*] e
Ag from the famllys;? {S | (i, J) € J x J}. Solving system (56 (57) we
choosesy, ..., S, € Sf‘j such that they are arbitrary and the others are their linear
combinations, then we present system (58) in form (59).

Let F; < F» < --- < Fs be the sequence of all freM* such thath ¢ My U

--UM; and(i, j) € 4 x #.Denote byd, (¢ € {1,. 5}) the algebra of alb €
Ag for which MS and SM are coincident on the places of aw; < Fy; it gives
additional conditions (61) o ,

By analogy with Case 1, transformatlon (55) preservesfalivith i < z and all
M* < F,; moreover, any sequence of matricgs. .., S; is the sequence of the
correspondmg blocks of a matrke A, if and only if system (59V (61) holds.

Puttinga =38, p = w3 +38, D ={(a,a)|a € } and applying Lemma 3.2 to
(59) U (61) (note thatf;; € k[x] or f;; € k[y]), we get an infinite seD’ C D, a
polynomiald, an integerw < min(p — 1,¢), andj1, ..., ji—w € {1, ..., t} satisfy-
ing conditions (i) and (ii) of Lemma 3.2. The polynomidle k[x]U k[y] is zero
since it is zero on the infinite sét | (a, a) € D'}.

Letusfixay,...,as € D', a1 < a2 < ... < as (with respect to the ordering ig
see the beginning of Section 1.3), and denotélgy, y) the matrix that is obtained
from M by replacement of

(i) its %-block Jy, (A1) with diag(ay, az, . .., as),
(ii) all entriesh;; I, of Ha with h;; I, and
(i) M7, with T (see (65)) ifl = 1 and with

1 0 1 x y| ..,
[01111}'”—2’

and by the corresponding correction of dependent blocks. As in Case 1, we can prove
that P(x, y) satisfies condition (ii) of Theorem 3.1.

3.3.3. Study Case 3

The free box, is a Weyr matrix that is similar td,, (A1) @ Jy,(AI) (s1 # s2) or
Js(AI). Hence it has the formv, = Al + F, whereF is a nilpotent upper triangular
matrix. Clearly,M = M ()) is a one-parameter matrix with an infinite domain of pa-
rametersz C k; moreoverM = H(M,), whereH (a) (a € k) is anindecomposable
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canonical matrix. Under th&-partition we mean the partition int@ — 1)-strips
(thenM, is a%-block).

Step 1(A construction ofP (x, y)). LetA_; (respectivelydp) be the algebra of all

S € Asuchthat¥S — SM is zero on the places of the boxés < M, (respectively

M; < M,). ThenA_1 is a reduced* x n* algebra whose equivalence relation (2)
in T* ={1,...,e} is full (i.e. every two elements are equivalent). The blocks of
S € A_; satisfy a system of equations of the form

SI]. = SEZ = - Se*E’ (82)
!

Z ()S*_ ’ 1:1,2,---’61T*T* (83)

l<]

(see (6)). Solving system (83), we chodse. .., S; € {Sl.*j |i < j} such that they
are arbitrary and the othé’;*j (i < j) are their linear combinations. The algebta
consists of allS € A3 for with S}, M, = M, S7;.

Let F; < F» < --- < Fs be the sequence of all freﬂl.*/. ¢ M1U---UM,, and
let Ay (o € {1,...,8}) denote the algebra of afl € Ag for which MSandSMare
coincident on the places of dWl.*/. < Fy; it gives conditions or$; of the form

sty 485/t=0 i=1..,a, (84)
wheref;; € k[x. y] ands;" is defined by (42) withL = R = M,.
Puttingp =8, D = {(a, a) | a € Z} and applying Lemma 3.2 to (84) with:=
8, we get an infiniteD’ C D, d € k[x,y], w < min(p —1,1), and j1, ..., ji_w €
{1,...,1}. Sinced(a, a) = Oforall (a,a) € D', d(x, y) is divisible byx — y by the
Bezout theorem (see the proof of Lemma 3.2). We may take
d(xsy):x_y' (85)
Let us fix an arbitrary: € D’ and denote byP(x, y) the matrix that is obtained
from M by replacement of its-blocks M, andMl*,7 with

al, O I> 0 0O 0O O O
|0 an O 0 «_|0 0 0 O
Po=l0o 0 an 5| @ PL=|7 o o o @
0 0 0 ab 0O 0 0 O
where
|1 C|x oy

and by the corresponding correction of dependent blocks.i{ a Weyr matrix
that is similar toJ1(a) ® J3(al2).) We prove thatP (x, y) satisfies condition (ii) of
Theorem 3.1. LetW, B) be a canonical pair ofi x m matrices under simultaneous
similarity, putk = P(W, B) and denote by) andT the blocks oK that correspond
to Q andT. It suffices to show thaf is a canonical matrix.
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Step 2(A construction oKy, ..., K;). The boxes\y, ..., M, of M become the
boxesKy, ..., K, of K.

Let us consider the algebrh_; for the matrixK. For eachS € A_y, its x-blocks
satisfy system (83). So we may chodge. .., S; € {S;*j |i < j} (onthe same places
as forA_1) that are arbitrary and the othﬂ;;. (i < j) are their linear combinations.
A matrix S € A_1 belongs tao if and only if the matrixs;; = S5, = - - - (see (82))
commutes withK,,, that is,

Ao B» A1 A»
Bob 0 B
SIl = S;Z == S:e = Ao Az (88)

0 Ao

by (86) and by analogy with Example 1.4.

The first nonzero free-block of K that is not contained ik, U --- U K, is O
(see (87)). The-blocks that preceedin@ and are not contained iki; U - - - U K,
are the boxeX, 11, ..., Ky, -1 for a certainvy € N.

The blockQ is reduced by the transformations

K — K'=SKS™1, Sedp, (89)

with the matrixK; these transformations preserve the bokgs. . ., K, of K. Each
*-strip of P(x, y) consists of seven rows or columns (singge k’*7, see (86));
they become theubstripsof the correspondinge-strip of K. Denote byC;;, Kl’]

I?ij (respectivelyD;;) the matrices that are obtained froﬁ’)j, K:]/ Kl’; (respec-

tively Kl.*j) by elimination of the first five horizontal (respectively, horizontal and
vertical) sub-strips; note tha is contained in the remaining sixth and seventh sub-
strips of K;n. Eq. (72) implies (73). Since aIKi’} < K;n are upper triangular,
Eq. (73) implies (74).

Equality (74) takes the form (75), whe@, ..., C, are the corresponding parts
of S1,..., 8 fuwt1; are the same as in (84) amf‘”*l‘j is defined by (42) with
L = aly, (apartofK,)andR = K,.

By (44) and (85),

C{uHrl,l IS thwl,z = C¥ Y.
by (75),

C*Y = CeeKE, — KL, St (90)
As follows from the form of the second matrix in (86) and from (88),

* *

* gk ook _ o *
Sec Koy = KpnSpy = AoT — T’ Ag %

0 AoQ — Q'Bo

(91)

O % * *
* X X ¥
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Looking at the form of the matriX, (see (86)), we have

* *

*

K,D — DK, = (92)

Dag1 *
0 —Day

for an arbitrary block matrixD = [D;;]. So equality (90) can be presented in the
form

[0 0 —Dg1 *] = [0 AoQ—Q'Bg O *] , (93)
whereC = [D41 Da2 Da3z Daya). It follows A()Q — Q’Bo =0 andQ’ = AoQBo_l.

Therefore, the block) is reduced by elementary transformations. Sigce: [6] is
canonical K, := Q is a box.

O ¥ ¥ %
* % % ¥

Step 3(A construction oK, 11, ..., Ky,).  The partition intovs-strips coincides
with the partition into substrips. So the-blocks are the sub-blocks Kfcorrespond-
ing to the entries oP. The first nonzero free sub-block Kfthat is not contained in
K1U---UK,, is To1 = I,, from T = [T;;]? " i—1- The sub-blocks that preceeding
T»1 and are not contained iK1 U - - - U K., are the boxeXy, 41, ..., Ky,—1 for a
certainvy € N.

Let a transformation (89) preserve the boXas. . ., K,,—1. Denote b)C,j, u

Kij ; (respectively,D;;) the matrices that are obtained frof)‘; K;! i K * (respec-
tively K*) by elimination of the first four horizontal (respectively, horlzontal and

vertical) substrlps note thdby = 1,, is contained in the fifth horizontal substrip of

;n. LetC1, ..., C; be the corresponding parts 8f, ..., S;. Similar to Step 2, we
have equalities (75) and (90). As follows from (91) and (92), equality (90) may be
presented in the form

(Da1)2  * * *
0 0 —Dy1 =

B |:(A0T —T'Ag)2 * * *:|

_ (94)
0 AgQ —Q0'Bp 0 =%

(compare with (93)) wheréDa1)2 and (AoT — T’ Ag), are the lower substrlps of
Dy andAoT — T’ Ao. It follows that AgQ — Q'Bg = 0, D41 = 0, and so(AoT —
T'Ap)2 =0.ButQ = Q' = [ ]. Hence

A1l A
Ag = , 95
0 [ 0 Ax ] (95)

and we haved2,T»1 — Tj,A11 = 0. S0T>1 is reduced by equivalence transforma-
tions. Thereforelz; = I, is canonical and ,, = To1 = I
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Step 4(A construction oK,,, Ky,+1,...). The partition intov,-strips coincides
with the partition into substrips. The first nonzero free subblocK dhat is not
contained inK; U ---U K,, is T11 = W from T. The sub-blocks that preceeding
T11 and are not contained iK1 U - - - U K,, are the boxeK,,11, ..., Ky,—1 for a
certainvs € N.

Let a transformation (89) preserve the boXas. . ., K,,—1. Denote byC;;, I%l’]
I?ij (respectively,D;;) the matrices that are obtained froS’D, K;;/, Kl’; (respec-
tively Kl.*j) by elimination of the first three horizontal (respectively, horizontal and
vertical) substrips. In this case, instead of (94) we get the equality

D1 * * *| AoT — T'Ag ok * ok
0 0 —Da1 x| 0 AoQ—Q0'Bp 0 =«

So AT — T'Ag = 0, whereAg is of form (95). Since[To1 T2l = [T}, T3, =
[Z» 0,1, we haveA11 = Azxp andA12 =0, and SOA]_]_T]_]_ — Tl/lAll =0 and T]_]_
is reduced by similarity transformations. Sin€e; = W is a Weyr matrix, it is
canonical and&,, = W.

FurthermoreA11T12 — T{,A11 = 0, whereA11 commutes withi. HenceT1, =
B is canonical too. It proves th&tis a canonical matrix.

3.4. Proof of Theorem 3.1 for tame problems

In this section, we consider a matrix problem given(By .#) for which there
exists no semi-parametric canonical matvbhaving a free box3/, #+ ¢ with prop-
erty (49). Our purpose is to prove that the matrix problem satisfies condition (i) of
Theorem 3.1.

Let n be a step-sequence. By Remark 2.1, the number of parametric canonical
n x n matrices is finite. LeM be a parametric canonicalx n matrix and one of
its parameters is a finite parameigthat is, the set ok-components in the domain
of parameters is a finite séiy, ..., a,}. Puttingh = a1, ..., a, givesr semi-para-
metric canonical matrices. Repeating this procedure, we obtain a finite number of
semi-parametric canonicalx n matrices having only infinite parameters or having
no parameters.

Let M be an indecomposable semi-parametric canonicaln matrix that has
no finite parameters but has infinite parameters, andflebe the first among its
boxes with parameters (theM, is free). By property (49), if a-strip is linked
with a v-strip containing a parametér from M,, then it does not contain a free
boxM; > M, such thatM; + ¢. SinceM is indecomposable, it follows that all its
strips are linked, all free boxed; > M, are equal t&, andM, = J,,(1). Hence, all
free v-blocks exceptingVf, are scalar matrices and = L(J,,(1)), whereL()A) =
[aij + Ab;;]1 is a semi-parametric canonical matrix with a free 1 box M, = [A]
and all free boxes after it arexl 1 matrices of the fornd.
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LetZ,, C k be the domain of parametersidf By property (49)%,, is a cofinite
subset (i.ek \ 2y, is finite).

If a & Z,,, then the matrixM (a) is canonical and there exists a free iy >
M, such thatM, + @. This boxM, is the zero Ix 1 matrix. SinceéM is indecompos-
able, all its rows and columns are linked. &g is reduced by similarity transforma-
tions. Replacing it by the parametric bfix], we obtain a straight line of indecom-
posable canonical matrices that intersdatgi) | A € k} at the pointM (a). Hence,
eachM(a), a & 9, is a point of intersection ofM (1) | A € k} with a straight line
of indecomposable canonical matrices.

Let M(a), a € 9,,, be a point of intersection too; that is, there exists a line
{N(n) | n € k} of indecomposable canonical matrices such tat) = N (b) for
a certainb € k. ThenM (1) has a free boM,, (1 < v) that is a Weyr matrixb is
its eigenvalue, and/ (1) is obtained fromM (a) by replacement ab with . Since
M () and N(w) coincide onM1 U ---UM,_1, M, = N, for u = b. By analogy
with the structure oM (1), all free boxesV; > N, are zero. Henc#/, = 0if A = a.
SinceM, = J,, (1), M (a) with a € &,, can be a point of intersection onlysif = 1
andi = 0.

Replacingm by an arbitrary integen gives a new semi-parametric canonical ma-
trix L(J, (1)) with the domain of parametefs,. To prove that condition (i) of The-
orem 3.1 holds, it suffices to show thaf, = 2,,. Moreover, it suffices to show that
D = D1.

Let firsta € 1. By analogy with Section 3.3.3, under thepartition we mean
the partition into(v — 1)-strips. Theru € 2, if and only if all free x-blocks after
M, in M(a) aref. Thex-blocks of evens e A* ; (see Section 3.3.3) satisfy system
(82) U (83), Wherecf.j do not depend om anda. Solving system (83), we choose
S1,...,8; € {Si*j |i < j} such that they are arbitrary and the othfgr (i < j)are
their linear combinations.

Let /1 < F» < --- < Fs be the sequence of all fre’ﬂi’} ¢ M1U---UM, and
let K be obtained fronM by replacingF1, ..., Fs with arbitrary m x m matri-
cesGai, ..., Gs. To prove thatt € ,,, we must show thafy = --- = Fs = ¢ for
M (a); that is, there exist§ € Aj such thatG) =--- =G5 =0in K" := SKS1.

It suffices to considerthecasgy =--- =G, 1=0# G, (g € {1,...,6})and to

show that there exists € 4™ ; with S}; = 53, = --- = I,, (thenS e A7) such that
Gi=--= G;fl = G, = 0. It means that th&-blockssy, ..., S; of Ssatisfy the

system of equations that is obtained by equatin&i§ = SK the blocks on the
places ofGy, ..., Gy:

Sty 4sfi=0, 1=1...,4g-1 (96)

ST+ S =y, (97)

whereg(a,a) # 0 andS]f"j is defined by (42) withL = R = J,,(a). Note that the
polynomialsf;; are the same for ath € N anda.
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Taking 1 instead ofn, we obtain the system

fma,a)s1+ -+ fula,a)s;, =0, [=1,...,q—-1,
Jqr(a, a)s1+ -+ fq(a, a)s: = g.
Sincea € %1, this system is solvable with respectstg. . ., s, for all g € k. It holds
for all g, so the rows of := [ f;;(a, a)] are linearly independent.
LetsS, = [si(j’)]’" 1 andGq = [gi; 17 i1 SinceL = R = J,,,(a), the system of
matrix equations (96) (97) is equivalent to the:2 systems ofj linear equations

relatively to the entries of1, . . ., S;, each of them is obtained by equating thej)
entries for the correspondinigj € {1, ..., m} and has the form:

fiula. s+ + fu@ a)s) =d, 1=1.....q, (98)
Wheredi@ is a linear combination of(,lj),,... s(,’),, @, jHe{@j,....,0 —1 )}

U{G, j+21,3U j+2),...},and (onlyifil=q) g,/ Since the rowsoF_[f,j(a a)]l
are linearly independent system (98) f@r j) = (m, 1) is solvable. Lets,;1 =
'}511{, ... (’)) be its solution. Knowings,,;1, we calculated,(rf) 11 and d(l), then
solve system (98) fofi, j) = m — 1, 1) and for(i, j) = (m, 2). We next calculate
dfj’.), i — j =m — 2,and solve (98) fofi, j) = (m — 2, 1), (m —1,2), (m, 3), and
so on, until we obtain a solutiofll ., S, of (96), a contradiction. Heneee Z,,,
which clearly implies: € 2. It proves Theorem 3.1.

Remark 3.1. We can give a more precise description of the set of canonical matrices
based on the proof of Theorem 3.1. For simplicity, we restrict ourselves to the case
M= kT
Namely, a linear matrix problem given by a palt, k' ") satisfies one and only
one of the following two conditions (respectively, is of tame or wild type):
(i) For every step-sequengethere exists a finite set of semi-parametric canonical
n x n matricesM, ;(1),i =1,...,t,, whose domains of parametets, ; are
cofinite subsets ik and
(a) for everym > 1, M, ; (J,»(A)) is a semi-parametric canonical matrix with
the same domain of parameterg ; and the following partition into box-
es: J, (1) is a box, all boxes preceeding it are the scalar matrige®
Lnu,...,Bi®1I, (whereBy, ..., B; are the boxes oM, ;(1) preceeding
[A]), and all boxes after it are thexd 1 matrices;

(b) foreveryr’, the set of matrices of the forM,, ; (J,, (@), mn =n",a € D,
is a cofinite subset in the set of indecomposable canomical:’ matrices.

(i) There exists a semi-parametric canonigak n matrix P(«, 8) (in which two

entries are the parametersand 8 and the other entries are elementkp$uch

that

(a) two pairs ofm x m matrices(A, B) and(C, D) are similar if and only if
P(A, B) ~ P(C, D); moreover,



V.V. Sergeichuk / Linear Algebra and its Applications 317 (2000) 53-102 101

(b) a pair ofm x m matrices(A, B) is canonical under similarity (see Defini-
tion 1.4) if and only if thenn x mn matrix P(A, B) is canonical.
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