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Abstract

We consider a large class of matrix problems, which includes the problem of classifying
arbitrary systems of linear mappings. For every matrix problem from this class, we construct
Belitskĭı’s algorithm for reducing a matrix to a canonical form, which is the generalization of
the Jordan normal form, and study the setCmn of indecomposable canonicalm× nmatrices.
ConsideringCmn as a subset in the affine space ofm× n matrices, we prove that eitherCmn
consists of a finite number of points and straight lines for everym× n, or Cmn contains a
2-dimensional plane for a certainm× n. © 2000 Elsevier Science Inc. All rights reserved.
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All matrices are considered over an algebraically closed fieldk; km×n denotes
the set ofm× n matrices overk. This article consists of three sections.

In Section 1, we present Belitskiı̆’s algorithm [2] (see also [3]) in a form, which
is convenient for linear algebra. In particular, the algorithm permits to reduce pairs
of n× nmatrices to a canonical form by transformations of simultaneous similarity:
(A,B) 7→ (S−1AS, S−1BS); another solution of this classical problem was given
by Friedland [15]. This section uses rudimentary linear algebra (except for the proof
of Theorem 1.1) and may be interested for the general reader.

In Section 2, we determine a broad class of matrix problems, which includes the
problems of classifying representations of quivers, partially ordered sets and finite
dimensional algebras. In Section 3, we get the following geometric characterization
of the set of canonical matrices in the spirit of [17]: if a matrix problem does not
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‘contain’ the canonical form problem for pairs of matrices under simultaneous sim-
ilarity, then its set of indecomposable canonicalm× n matrices in the affine space
km×n consists of a finite number of points and straight lines (contrary to [17], these
lines are unpunched).

A detailed introduction is given at the beginning of every section. Each introduc-
tion may be read independently.

1. Belitskiı̆ı’s algorithm

1.1. Introduction

Every matrix problem is given by a set of admissible transformations that deter-
mines an equivalence relation on a certain set of matrices (or sequences of matrices).
The question is to find acanonical form—i.e., determine a ‘nice’ set of canonical
matrices such that each equivalence class contains exactly one canonical matrix.
Two matrices are then equivalent if and only if they have the same canonical form.

Many matrix problems can be formulated in terms of quivers and their represen-
tations, introduced by Gabriel [16] (see also [18]). Aquiver is a directed graph, its
representation Ais given by assigning to each vertexi a finite dimensional vector
spaceAi overk and to each arrowα : i → j a linear mappingAα : Ai → Aj . For
example, the diagonalization theorem, the Jordan normal form, and the matrix pencil
theorem give the solution of the canonical form problem for representations of the
quivers, respectively,

(Analogously, one may study systems of forms and linear mappings as represen-
tations of a partially directed graphG, assigning a bilinear form to an undirected
edge. As was proved in [28,30], the problem of classifying representations ofG is
reduced to the problem of classifying representations of a certain quiverḠ. The class
of studied matrix problems may be extended by considering quivers with relations
[18,26] and partially directed graphs with relations [30].)

The canonical form problem was solved only for the quivers of so-called tame
type by Donovan and Freislich [9] and Nazarova [23], this problem is considered as
hopeless for the other quivers (see Section 2). Nevertheless, the matrices of each in-
dividual representation of a quiver may be reduced to a canonical form by Belitskiı̆’s
algorithm (see [2] and its extended version [3]). This algorithm and the well-known
Littlewood algorithm [21] (see also [32,35]) for reducing matrices to canonical form
under unitary similarity have the same conceptual sketch: The matrix is partitioned
and successive admissible transformations are applied to reduce the submatrices to
some nice form. At each stage, one refines the partition and restricts the set of permis-
sible transformations to those that preserve the already reduced blocks. The process
ends in a finite number of steps, producing the canonical form.
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We will apply Belitskĭı’s algorithm to the canonical form problem for matrices
underK-similarity, which is defined as follows. LetK be an algebra ofn× nmatrices
(i.e., a subspace ofkn×n that is closed with respect to multiplication and contains the
identity matrixI) and letK∗ be the set of its nonsingular matrices. We say that two
n× nmatricesM andN areK-similar and writeM ∼K N if there existsS ∈ K∗ such
thatS−1MS = N (∼K is an equivalence relation; see the end of Section 1.2).

Example 1.1. The problem of classifying representations of each quiver can be for-
mulated in terms ofK-similarity, whereK is an algebra of block-diagonal matrices
in which some of the diagonal blocks are required to be equal. For instance, the
problem of classifying representations of the quiver

(1)

is the canonical form problem for matrices of the form

Aα 0 0 0
Aβ 0 0 0
Aγ 0 0 0
Aδ Aε Aζ 0




underK-similarity, whereK consists of block-diagonal matrices of the formS1 ⊕
S2 ⊕ S3 ⊕ S3.

Example 1.2. By the definition of Gabriel and Roiter [18], a linear matrix problem
of sizem× n is given by a pair(D∗,M), whereD is a subalgebra ofkm×m × kn×n
andM is a subset ofkm×n such thatSAR−1 ∈ M wheneverA ∈ M and(S,R) ∈
D∗. The question is to classify the orbits ofM under the action(S,R) : A 7→
SAR−1. Clearly, twom× nmatricesA andB belong to the same orbit if and only if[

0 A

0 0

]
and

[
0 B

0 0

]
areK-similar, whereK := {S ⊕ R | (S,R) ∈ D} is an algebra of(m+ n)× (m+ n)

matrices.

In Section 1.2, we prove that for every algebraK ⊂ kn×n there exists a nonsin-
gular matrixP such that the algebraP−1KP := {P−1AP |A ∈ K} consists of upper
block-triangular matrices, in which some of the diagonal blocks must be equal and
off-diagonal blocks satisfy a system of linear equations. The algebraP−1KP will be
called areduced matrix algebra. TheK-similarity transformations with a matrixM
correspond to theP−1KP -similarity transformations with the matrixP−1MP and
hence it suffices to studyK-similarity transformations given by a reduced matrix
algebraK.
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In Section 1.3 for every Jordan matrixJ we construct a matrixJ # = P−1JP (P
is a permutation matrix) such that all matrices commuting with it form a reduced
algebra. We callJ # aWeyr matrixsince its form is determined by the set of its Weyr
characteristics (Belitskiı̆ [2,3] callsJ # a modified Jordan matrix; it plays a central
role in his algorithm).

In Section 1.4 we construct an algorithm (which is a modification of Belitskiı̆’s
algorithm [2,3]) for reducing matrices to canonical form underK-similarity with a
reduced matrix algebraK. In Section 1.5 we study the construction of canonical
matrices.

1.2. Reduced matrix algebras

In this section, we prove that for every matrix algebraK ⊂ kn×n there exists a
nonsingular matrixP such that the algebraP−1KP is a reduced matrix algebra in
the sense of the following definition.

A block matrixM = [Mij ],Mij ∈ kmi×nj , will be called anm× nmatrix, where
m = (m1,m2, . . .), n = (n1, n2, . . .) andmi, nj ∈ {0,1,2, . . .} (we take into con-
sideration blocks without rows or columns).

Definition 1.1. An algebraK of n× n matrices,n = (n1, . . . , nt ), will be called a
reducedn× n algebraif there exist
(a) an equivalence relation

∼ in T = {1, . . . , t}, (2)

(b) a family of systems of linear equations
 ∑

I3i<j∈J
c
(l)
ij xij = 0, 1 6 l 6 q

IJ




I,J∈T/∼
, (3)

indexed by pairs of equivalence classes, wherec
(l)
ij ∈ k andq

IJ
> 0,

such thatK consists of all upper block-triangularn× n matrices

S =



S11 S12 · · · S1t

S22
...

...

. . . St−1,t

0 Stt


 , Sij ∈ kni×nj , (4)

in which diagonal blocks satisfy the condition

Sii = Sjj whenever i ∼ j, (5)

and off-diagonal blocks satisfy the equalities∑
I3i<j∈J

c
(l)
ij Sij = 0, 1 6 l 6 q

IJ
, (6)
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for each pairI,J ∈ T/∼.

Clearly, the sequencen = (n1, . . . , nt ) and the equivalence relation∼ are uni-
quely determined byK; moreover,ni = nj if i ∼ j .

Example 1.3. Let us consider the classical canonical form problem for pairs of
matrices(A,B) under simultaneous similarity (i.e., for representations of the quiver

). Reducing(A,B) to the form(J, C), whereJ is a Jordan matrix, and restrict-
ing the set of permissible transformations to those that preserveJ, we obtain the
canonical form problem forC underK-similarity, whereK consists of all matrices
commuting withJ. In the next section, we modifyJ such thatK becomes a reduced
matrix algebra.

Theorem 1.1. For every matrix algebraK ⊂ kn×n, there exists a nonsingular
matrix P such thatP−1KP is a reduced matrix algebra.

Proof. Let V be a vector space overk andK ⊂ Endk(V ) be an algebra of linear
operators. We prove briefly that their matrices in a certain basis ofV form a reduced
algebra (this fact is used only in Section 2.5; the reader may omit the proof if he is
not familiar with the theory of algebras).

Let R be the radical ofK. By the Wedderburn–Malcev theorem [13], there ex-
ists a subalgebrāK ⊂ K such thatK̄ ' K/R andK̄ ∩ R = 0. By the Wedderburn–
Artin theorem [13],K̄ ' km1×m1 × · · · × kmq×mq . We denote bye(α)ij ∈ K̄ (i, j ∈
{1, . . . ,mα}, 1 6 α 6 q) the elements ofK that correspond to the matrix units of
kmα×mα . Puteα = e

(α)
11 , e = e1 + · · · + eq, andV0 = eV .

We considerK0 := eKe as a subalgebra of Endk(V0), its radical isR0 := R ∩
K0 andK0/R0 ' k × · · · × k. LetRm−1

0 /= 0 = Rm0 . We choose a basis ofRm−1
0 V0

formed by vectorsv1, . . . , vt1 ∈ ⋃α eαV0, complete it to a basis ofRm−2
0 V0 by vec-

torsvt1+1, . . . , vt2 ∈ ⋃α eαV0, and so on, until we obtain a basisv1, . . . , vtm of V0.
All its vectors have the formvi = eαi vi ; putIα = {i | αi = α} for 1 6 α 6 q.

Sinceeαeβ = 0 if α /= β, e2
α = eα , ande is the unit ofK0, the vector space of

K0 is the direct sum of alleαK0eβ. Moreover,eαK0eβ = eαR0eβ for α /= β and
eαK0eα = keα ⊕ eαR0eα . HenceK0 = (

⊕
α keα)⊕ (

⊕
α,β eαR0eβ). The matrix of

every linear operator fromeαR0eβ in the basisv1, . . . , vtm has the form[aij ]tmi,j=1,
whereaij /= 0 implies i < j and(i, j) ∈ Iα × Iβ . Therefore, the set of matrices
[aij ] of linear operators fromK0 in the basisv1, . . . , vtm may be given by a system
of linear equations of the form

aij = 0 (i > j), aii = ajj ({i, j } ⊂ Iα),∑
Iα3i<j∈Iβ

c
(l)
ij aij = 0 (1 6 l 6 qαβ).
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The matrices of linear operators fromK in the basise(α1)
11 v1, . . . , e

(α1)
mα11v1, e

(α2)
11 v2, . . . ,

e
(α2)
mα21v2, . . . of V have form (4) and are given by the system of relations (5), (6).

Hence their set is a reduced matrix algebra.�

For every matrix algebraK ⊂ kn×n, the setK∗ of its nonsingular matrices is a
group and hence theK-similarity is an equivalence relation. Indeed, we may assume
that K is a reduced matrix algebra. Then everyS ∈ K∗ can be written in the form
D(I − C), whereD,C ∈ K such thatD is block-diagonal and all diagonal blocks of
C are zero. SinceC is nilpotent,S−1 = (I + C + C2 + · · ·)D−1 ∈ K∗.

Note also that every finite dimensional algebra is isomorphic to a matrix algebra
and hence, by Theorem 1.1, it is isomorphic to a reduced matrix algebra.

1.3. Weyr matrices

Following Belitskĭı [2,3], for every Jordan matrixJ we define a matrixJ # =
P−1JP (P is a permutation matrix) such that all matrices commuting with it form
a reduced algebra. We will fix a linear order≺ in k (if k is the field of complex
numbers, we may use the lexicographic ordering:a + bi ≺ c + di if either a = c

andb < d or a < c).

Definition 1.2. A Weyr matrixis a matrix of the form

W = W{λ1} ⊕ · · · ⊕W{λr }, λ1 ≺ · · · ≺ λr , (7)

where

W{λi } =



λiImi1 Wi1 0

λiImi2
...
... Wi,ki−1

0 λiImiki


 , Wij =

[
I

0

]
,

mi1 > · · · > miki . The standard partitionof W is then× n partition, wheren =
(n1, . . . , nr ) andni is the sequencemi1 −mi2,mi2 −mi3, . . . ,mi,ki−1 −miki ,miki ;
mi2 −mi3, . . . ,mi,ki−1 −miki ,miki ; . . . ;mi,ki−1 −miki ,miki ;miki from which all
zero components are removed.

The standard partition ofW is the most coarse partition for which all diagonal
blocks have the formλiI and all off-diagonal blocks have the form 0 orI.

The matrixW is named a ‘Weyr matrix’ since(mi1,mi2, . . . ,miki ) is the Weyr
characteristic ofW (and of every matrix that is similar toW ) for λi . Recall (see
[22,35,38]) that theWeyr characteristicof a square matrixA for an eigenvalueλ is
the decreasing list(m1,m2, . . .), wheremi := rank(A− λI)i−1 − rank(A− λI)i .
Clearly,mi is the number of Jordan cellsJl(λ), l > i, in the Jordan form ofA (i.e.,
mi −mi+1 is the number ofJi(λ)), and so the Jordan form is uniquely, up to per-
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mutation of Jordan cells, determined by the set of eigenvalues ofA and their Weyr
characteristics. Taking into account the inequality at the right-hand side of (7), we
get the first statement of the following theorem:

Theorem 1.2. Every square matrix A is similar to exactly one Weyr matrixA#. The
matrixA# is obtained from the Jordan form of A by simultaneous permutations of its
rows and columns. All matrices commuting withA# form a reduced matrix algebra
K(A#) of n× n matrices(4) with equalities(6) of the formSij = Si′j ′ andSij = 0,
wheren× n is the standard partition ofA#.

To make the proof of the second and the third statements clearer, we begin with
an example.

Example 1.4. Let us construct the Weyr formJ #{λ} of the Jordan matrix

J{λ} := J4(λ)⊕ · · · ⊕ J4(λ)︸ ︷︷ ︸
p9times

⊕ J2(λ)⊕ · · · ⊕ J2(λ)︸ ︷︷ ︸
q9times

with a single eigenvalueλ. Gathering Jordan cells of the same size, we first reduce
J{λ} to J+

{λ} = J4(λIp)⊕ J2(λIq). The matrixJ+
{λ} and all matrices commuting with

it have the form, respectively,

Simultaneously permuting strips in these matrices, we get the Weyr matrixJ #{λ} and

all matrices commuting with it (they form a reducedn× n algebraK(J #{λ}) with
equalities (6) of the formSij = Si′j ′ , Sij = 0, and withn = (p, q, p, q, p, p)):

Proof of Theorem 1.2.We may suppose thatA is a Jordan matrix

J = J{λ1} ⊕ · · · ⊕ J{λr }, λ1 ≺ · · · ≺ λr ,

whereJ{λ} denotes a Jordan matrix with a single eigenvalueλ. Then
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J # = J #{λ1} ⊕ · · · ⊕ J #{λr }, K(J #) = K(J #{λ1})× · · · × K(J #{λr });
the second sinceSJ # = J #S if and only if S = S1 ⊕ · · · ⊕ Sr andSiJ #{λi} = J #{λi}Si .

So we may restrict ourselves to a Jordan matrixJ{λ} with a single eigenvalueλ; it
reduces to the form

J+
{λ} = Jp1(λIn1)⊕ · · · ⊕ Jpl (λInl ), p1 > · · · > pl. (8)

The matrix (8) consists ofl horizontal andl vertical strips, theith strip is divided
into pi substrips. We will index theαth substrip of theith strip by the pair(α, i).
Permuting vertical and horizontal substrips such that they become lexicographically
ordered with respect to these pairs,

(11), (12), . . . , (1l), (21), (22), . . . , (9)

we obtain the Weyr formJ #{λ} of J{λ} (see Example 1.4). The partition into substrips
is its standardn× n partition.

It is well known (and is proved by direct calculations, see [19, Section VIII, § 2])
that all matrices commuting with the matrix (8) have the formC = [Cij ]li,j=1,where
eachCij is of the form

if, respectively,pi 6 pj or pi > pj . Hence, if anonzerosubblock is located at the
intersection of the(α, i) horizontal substrip and the(β, j) vertical substrip, then
eitherα = β and i 6 j , or α < β. Rating the substrips ofC in the lexicographic
order (9), we obtain an upper block-triangularn× n matrix S that commutes with
J #{λ}. The matricesSform the algebraK(J #{λ}), which is a reduced algebra with (6) of
the formSij = Si′j ′ andSij = 0. �

Note thatJ #{λ} is obtained from

J{λ} = Jk1(λ)⊕ · · · ⊕ Jkt (λ), k1 > · · · > kt , (10)

as follows: We collect the first columns ofJk1(λ), . . . , Jkt (λ) on the firstt columns
of J{λ}, then permute the rows as well. Next collect the second columns and permute
the rows as well, continue the process untilJ #{λ} is achieved.



V.V. Sergeichuk / Linear Algebra and its Applications 317 (2000) 53–102 61

Remark 1.1. The block-triangular form ofK(J #) is easily explained with the help
of Jordan chains. The matrix (10) represents a linear operatorA in the lexicograph-
ically ordered basis{eij }ti=1

ki
j=1 such that

A − λ1 : eiki 7→ · · · 7→ ei2 7→ ei1 7→ 0. (11)

The matrixJ #{λ} represents the same linear operatorA but in the basis{eij }, lexico-
graphically ordered with respect to the pairs(j, i):

e11, e21, . . . , et1, e12, e22, . . . (12)

Clearly,S−1J #{λ}S = J #{λ} for a nonsingular matrixS if and only if S is the transi-
tion matrix from the basis (12) to another Jordan basis ordered like (12). This tran-
sition can be realized by a sequence of operations of the following form: theith
Jordan chain (11) is replaced withαeiki + βei,ki′−p 7→ αei,ki−1 + βei′,ki′−p−1 7→
· · ·, whereα, β ∈ k, α /= 0, andp > max{0, ki′ − ki}. Since a long chain cannot be
added to a shorter chain, the matrixS is block-triangular.

1.4. Algorithm

In this section, we give an algorithm for reducing a matrixM to a canonical form
underK-similarity with a reducedn× n algebraK.

We apply toM the partitionn× n:

M =

M11 · · · M1t

. . . . . . . . . . . . . . .
Mt1 · · · Mtt


 , Mij ∈ kni×nj .

A blockMij will be calledstableif it remains invariant underK-similarity trans-
formations withM. ThenMij = aij I wheneveri ∼ j andMij = 0 (we putaij = 0)
wheneveri 6∼ j since the equalitiesS−1

ii Mij Sjj = Mij must hold for all nonsingular
block-diagonal matricesS = S11 ⊕ S22 ⊕ · · · ⊕ Stt satisfying (5).

If all the blocks ofM are stable, thenM is invariant underK-similarity. HenceM
is canonical (M∞ = M).

Let there exist a nonstable block. We put the blocks ofM in order

Mt1 < Mt2 < · · · < Mtt < Mt−1,1 < Mt−1,2 < · · · < Mt−1,t < · · · (13)

and reduce the first (with respect to this ordering) nonstable blockMlr . LetM ′ =
S−1MS, whereS ∈ K∗ has form (4). Then the(l, r) block of the matrixMS = SM ′
is

Ml1S1r +Ml2S2r + · · · +MlrSrr = SllM
′
lr + Sl,l+1M

′
l+1,r + · · · + SltM

′
t r

or, since allMij < Mlr are stable,

al1S1r + · · · + al,r−1Sr−1,r +MlrSrr

= SllM
′
lr + Sl,l+1al+1,r + · · · + Slt atr (14)
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(we have removed in (14) all summands withaij = 0; their sizes may differ from the
size ofMlr ).

Let I,J ∈ T/∼ be the equivalence classes such thatl ∈ I andr ∈ J.
CaseI: TheqIJ equalities (6) do not imply

al1S1r + al2S2r + · · · + al,r−1Sr−1,r = Sl,l+1al+1,r + · · · + Sltatr (15)

(i.e., there exists a nonzero admissible addition toMlr from other blocks). Then
we makeM ′

lr = 0 usingS ∈ K∗ of the form (4) that has the diagonalSii = I (i =
1, . . . , t) and fits both (6) and (14) withM ′

lr = 0.
CaseII: The qIJ equalities (6) imply (15);i 6∼ j . Then (14) simplifies to

MlrSrr = SllM
′
lr , (16)

whereSrr andSll are arbitrary nonsingular matrices. We choseS ∈ K∗ such that

M ′
lr = S−1

ll MlrSrr =
[
0 I

0 0

]
.

CaseIII: The qIJ equalities (6) imply (15);i ∼ j . Then (14) simplifies to form
(16) with an arbitrary nonsingular matrixSrr = Sll ; M ′

lr = S−1
ll MlrSrr is chosen as

a Weyr matrix.
We restrict ourselves to those admissible transformations withM ′ that preserve

M ′
lr . Let us prove that they are theK′-similarity transformations with

K′ := {S ∈ K | SM ′ ≡ M ′S}, (17)

whereA ≡ B means thatA andB aren× nmatrices andAlr = Blr for the pair(l, r).
The transformationM ′ 7→ S−1M ′S, S ∈ (K′)∗, preservesM ′

lr (i.e.M ′ ≡ S−1M ′S)
if and only if SM ′ ≡ M ′S sinceS is upper block-triangular andM ′ coincides with
S−1M ′S on the places of all (stable) blocksMij < Mlr . The setK′ is an algebra:
let S,R ∈ K′, thenM ′S andSM ′ coincide on the places of allMij < Mlr andR
is upper block-triangular, and henceM ′SR ≡ SM ′R; analogously,SM ′R ≡ SRM ′
andSR ∈ K′. The matrix algebraK′ is a reduced algebra sinceK′ consists of all
S ∈ K satisfying condition (14) withM ′

lr instead ofMlr .
In Case I,K′ consists of allS ∈ K satisfying (15) (we add it to system (6). In Case

II, K′ consists of allS ∈ K for which

Sll

[
0 I

0 0

]
=
[
0 I

0 0

]
Srr,

that is,

Sll =
[
P1 P2
0 P3

]
, Srr =

[
Q1 Q2
0 Q3

]
, P1 = Q3.

In Case III,K′ consists of allS ∈ K for which the blocksSll andSrr are equal and
commute with the Weyr matrixM ′

lr . (It gives an additional partition ofS ∈ K in
Cases II and III; we rewrite (5) and (6) for smaller blocks and add the equalities that
are needed forSllM ′

lr = M ′
lrSrr .)
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In this manner, for every pair(M,K) we construct a new pair(M ′,K′) with
K′ ⊂ K. If M ′ is not invariant underK′-similarity, then we repeat this construction
(with an additional partition ofM ′ in accordance with the structure ofK′) and ob-
tain (M ′′,K′′), and so on. Since at every step we reduce a new block, this process
ends with a certain pair(M(p),K(p)) in which all the blocks ofM(p) are stable (i.e.
M(p) is K(p)-similar only to itself). Putting(M∞,K∞) := (M(p),K(p)), we get the
sequence

(M0,K0) = (M,K), (M ′,K′), . . . , (M(p),K(p)) = (M∞,K∞), (18)

where

K∞ = {S ∈ K |M∞S = SM∞}. (19)

Definition 1.3. The matrixM∞ will be called theK-canonical form of M.

Theorem 1.3. Let K ⊂ kn×n be a reduced matrix algebra. ThenM ∼K M
∞ for

everyM ∈ kn×n andM ∼K N if and only ifM∞ = N∞.

Proof. Let K be a reducedn× n algebra,M ∼K N , and letMlr be the first nonsta-
ble block ofM. ThenMij andNij are stable blocks (moreover,Mij = Nij ) for all
Mij < Mlr . By reasons of symmetry,Nlr is the first nonstable block ofN; moreover,
Mlr andNlr are reduced to the same form:M ′

lr = N ′
lr . We obtain pairs(M ′,K′) and

(N ′,K′) with the sameK′ andM ′ ∼K′ N ′. HenceM(i) ∼K(i) N
(i) for all i, and so

M∞ = N∞. �

Example 1.5. In Example 1.3, we considered the canonical form problem for a pair
of matrices under simultaneous similarity. Suppose the first matrix is reduced to the
Weyr matrix

W =
[
λI2 I2
0 λI2

]
.

PreservingW , we may reduce the second matrix by transformations ofK-similarity,
whereK consists of all 4× 4 matrices of the form[

S1 S2
0 S1

]
, Si ∈ k2×2.

For instance, one of theK-canonical matrices is

C =

C3

C6 C7

C4 C5

C1 C2


 =


−1 1 2 ∅

0 −1 0 1
3I2 ∅


 , (20)

whereC1, . . . , C7 are reduced blocks andCq = ∅ means thatCq was made zero
by additions from other blocks (Case I of the algorithm). Hence,(W,C) may be
considered as a canonical pair of matrices under similarity. Note that
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W C

0 0

]
is a canonical matrix with respect toD-similarity, whereD = {S ⊕ S | S ∈ k2×2}.

Definition 1.4. By the canonical form of a pair ofn× n matrices(A,B) under
simultaneous similarity is meant a pair(W,C), where[

W C

0 0

]
is the canonical form of the matrix[

A B

0 0

]
with respect toD-similarity withD = {S ⊕ S | S ∈ kn×n}.

Clearly, each pair of matrices is similar to a canonical pair and two pairs of matri-
ces are similar if and only if they reduce to the same canonical pair. The full list of ca-
nonical pairs of complex 4× 4 matrices under simultaneous similarity was presented
in [34].

Remark 1.2. Instead of (13), we may use another linear ordering in the set of
blocks, for example,Mt1 < Mt−1,1 < · · · < M11 < Mt2 < Mt−1,2 < · · · orMt1 <

Mt−1,1 < Mt2 < Mt−2,1 < Mt−1,2 < Mt3 < · · · . It is necessary only that(i, j) �
(i ′, j ′) impliesMij < Mi′j ′ , where(i, j) � (i ′, j ′) indicates the existence of a non-
zero addition fromMij toMi′j ′ and is defined as follows:

Definition 1.5. Let K be a reducedn× n algebra. For unequal pairs(i, j), (i ′, j ′) ∈
T × T (see (2)), we put(i, j) � (i ′, j ′) if either i = i ′ and there existsS ∈ K∗ with
Sjj ′ /= 0, orj = j ′ and there existsS ∈ K∗ with Si′i /= 0.

1.5. StructuredK-canonical matrices

The structure of aK-canonical matrixM will be clearer if we partition it into
boxesM1,M2, . . ., as it was made in (20).

Definition 1.6. Let M = M(r) for a certainr ∈ {0,1, . . . , p} (see (18)). We par-
tition its reduced part intoboxesM1,M2, . . . ,Mqr+1−1 as follows: LetK(l) (1 6
l 6 r) be a reducedn(l) × n(l) algebra from sequence (18), we denote byM

(l)
ij the

blocks ofM under then(l) × n(l) partition. ThenMql+1 for l /= p denotes the first

nonstable block amongM(l)
ij with respect toK(l)-similarity (it is reduced whenM(l)

is transformed toM(l+1));Mq
l
+1 < · · · < Mq

l+1−1 (q0 := 0) are all the blocksM(l)
ij

such that
(i) if l < p, thenM(l)

ij < Mq
l+1

;
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(ii) if l > 0, thenM(l)
ij is not contained in the boxesM1, . . . ,Mq

l
.

(Note that each boxMi is 0,[
0 I

0 0

]
,

or a Weyr matrix.) Furthermore, put

Kq
l
= Kq

l
+1 = · · · = Kq

l+1−1 := K(l). (21)

Generalizing equalities (17) and (19), we obtain

Ki = {S ∈ K |MS ≡i SM}, (22)

whereMS ≡i SM means thatMS − SM is zero on the places ofM1, . . . ,Mi .

Definition 1.7. By a structuredK-canonical matrixwe mean aK-canonical matrix
M which is divided into boxesM1,M2, . . . ,Mqp+1−1 and each boxMi that falls into
Case I from Section 1.4 (and hence is 0) is marked by∅ (see (20)).

Now we describe the construction ofK-canonical matrices.

Definition 1.8. By a part of a matrixM = [aij ]ni,j=1 is meant an arbitrary set of
its entries given with their indices. By arectangular partwe mean a part of the
formB = [aij ], p1 6 i 6 p2, q1 6 j 6 q2. We consider a partition ofM into dis-
joint rectangular parts (which is not, in general, a partition into substrips, see the
matrix (20)) and write, generalizing (13),B < B ′ if eitherp2 = p′

2 andq1 < q ′
1, or

p2 > p
′
2.

Definition 1.9. LetM = [Mij ] be ann× nmatrix partitioned into rectangular parts
M1 < M2 < · · · < Mm such that this partition refines the partition into the blocks
Mij , and let eachMi be equal to

0,

[
0 I

0 0

]
, or a Weyr matrix.

For everyq ∈ {0,1, . . . ,m}, we define a subdivision of strips intoq-strips as follows:
The 0-stripsare the strips ofM. Letq > 0. We make subdivisions ofM into substrips
that extend the partitions ofM1, . . . ,Mq into cells 0,I, λI (i.e., the new subdivisions
run the length of every boundary of the cells). If a subdivision passes through a cell
I or λI fromM1, . . . ,Mq , then we construct the perpendicular subdivision such that
the cell takes the form[

I 0
0 I

]
or

[
λI 0
0 λI

]
,

and repeat this construction for all new divisions untilM1, . . . ,Mq are partitioned
into cells 0, I , or λI . The obtained substrips will be called theq-strips of M; for
example, the partition intoq-strips of matrix (20) has the form
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

−1 1 2 0
0 −1 0 1
3 0 0 0
0 3 0 0


 for q = 0,1,2;




−1 1 2 0
0 −1 0 1
3 0 0 0
0 3 0 0


 for q = 3,4,5,6,7.

We say that theαth q-strip of anith (horizontal or vertical) stripis linked totheβth
q-strip of anjth strip if (i) α = β andi ∼ j (includingi = j ; see (2)), or if (ii) their
intersection is a (new) cellI from M1, . . . ,Mq , or if (iii) they are in the transitive
closure of (i) and (ii).

Note that ifM is aK-canonical matrix with the boxesM1, . . . ,Mqp+1−1 (see Def-
inition 1.6), thenM1 < · · · < Mqp+1−1. Moreover, ifKq (1 6 q < qp+1, see (21))
is a reducedn q × n q algebra with the equivalence relation∼ (see (2)), then the
partition intoq-strips is then q × n q partition; theith q-strip is linked with thejth
q-strip if and only ifi ∼ j .

Theorem 1.4. Let K be a reducedn× n algebra and let M be an arbitraryn× n

matrix partitioned into rectangular partsM1 < M2 < · · · < Mm, where eachMi is
equal to

∅ (a marked zero block),

[
0 I

0 0

]
, or a Weyr matrix.

Then M is a structuredK-canonical matrix with boxesM1, . . . ,Mm if and only if
eachMq (1 6 q 6 m) satisfies the following conditions:
(a) Mq is the intersection of two(q − 1)-strips.
(b) Suppose there existsM ′ = S−1MS (partitioned into rectangular parts conform-

al to M; S ∈ K∗) such thatM ′
1 = M1, . . . ,M

′
q−1 = Mq−1, butM ′

q /= Mq . Then
Mq = ∅.

(c) SupposeM ′ from (b) does not exist. ThenMq is a Weyr matrix if the horizontal
and the vertical(q − 1)-strips ofMq are linked;

Mq =
[
0 I

0 0

]
otherwise.

Proof. This theorem follows immediately from the algorithm of Section 1.4.�

2. Linear matrix problems

2.1. Introduction

In Section 2, we study a large class of matrix problems. In the theory of represen-
tations of finite dimensional algebras, similar classes of matrix problems are given



V.V. Sergeichuk / Linear Algebra and its Applications 317 (2000) 53–102 67

by vectorspace categories [26,36], bocses [27,6], modules over aggregates [17,18]
or vectroids [4].

Let us define the considered class of matrix problems (in terms of elementary
transformations to simplify its use; a more formal definition will be given in Section
2.2). Let∼ be an equivalence relation inT = {1, . . . , t}. We say that at × t matrix
A = [aij ] links an equivalence classI ∈ T/∼ to an equivalence classJ ∈ T/∼ if
aij /= 0 implies(i, j) ∈ I × J. Clearly, if A links I to J andA′ links I′ to J′,
thenAA′ links I to J′ whenJ = I′, andAA′ = 0 whenJ /= I′. 1 We also say
that a sequence of nonnegative integersn = (n1, n2, . . . , nt ) is a step-sequenceif
i ∼ j impliesni = nj .

LetA = [aij ] link I toJ, letn be a step-sequence, and let(l, r) ∈ {1, . . . , ni} ×
{1, . . . , nj } for (i, j) ∈ I × J (sincen is a step-sequence,ni andnj do not depend
on the choice of(i, j)); denote byA[l,r] then× n matrix that is obtained fromA
by replacing each entryaij with the followingni × nj blockA[l,r]

ij : if aij = 0, then

A
[l,r]
ij = 0, and ifaij /= 0, then the(l, r) entry ofA[l,r]

ij is aij and the others are zeros.
Let a triple

(T /∼, {Pi}pi=1, {Vj }qj=1) (23)

consist of the set of equivalence classes ofT = {1, . . . , t}, a finite or empty set of
linking nilpotent upper-triangular matricesPi ∈ kt×t , and a finite set of linking ma-
tricesVj ∈ kt×t . Denote byP the product closure of{Pi}pi=1 and byV the closure of
{Vj }qj=1 with respect to multiplication byP (i.e.,VP ⊂ V andPV ⊂ V). Since
Pi are nilpotent upper-triangulart × t matrices,Pi1Pi2 · · ·Pit = 0 for all i1, . . . , it .
Hence,P andV are finite sets consisting of linking nilpotent upper-triangular ma-
trices and, respectively, linking matrices:

P = {Pi1Pi2 · · ·Pir | r 6 t},
(24)

V = {PVjP ′ |P,P ′ ∈ {It } ∪ P, 1 6 j 6 q}.
For every step-sequencen = (n1, . . . , nt ), we denote byMn×n the vector space gen-
erated by alln× n matrices of the formV [l,r], 0 /= V ∈ V.

Definition 2.1. A linear matrix problemgiven by a triple (23) is the canonical form
problem forn× n matricesM = [Mij ] ∈ Mn×n with respect to sequences of the
following transformations:
(i) For each equivalence classI ∈ T/∼, the same elementary transformations with-

in all the vertical stripsM•,i , i ∈ I, then the inverse transformations within the
horizontal stripsMi,•, i ∈ I.

(ii) For a ∈ k and a nonzero matrixP = [pij ] ∈ P linking I to J, the transforma-
tion M 7→ (I + aP [l,r])−1M(I + aP [l,r]); that is, the addition ofapij times

1 Linking matrices behave as mappings; one may use vector spacesVI instead of equivalence classes
I (dimVI = #(I)) and linear mappings of the corresponding vector spaces instead of linking matrices.
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the lth column of the stripM•,i to the rth column of the stripM•,j simul-
taneously for all(i, j) ∈ I × J, then the inverse transformations with rows
of M.

Example 2.1. As follows from Example 1.1, the problem of classifying representa-
tions of quiver (1) may be given by the triple

({{1}, {2}, {3,4}}, ∅, {e11, e21, e31, e41, e42, e43}),
whereeij denotes the matrix in which the(i, j) entry is 1 and the others are 0.
The problem of classifying representations of each quiver may be given in the same
manner.

Example 2.2. Let S = {p1, . . . , pn} be a finite partially ordered set whose ele-
ments are indexed such thatpi < pj implies i < j . Its representationis a matrix
M partitioned inton vertical stripsM1, . . . ,Mn; we allow arbitrary row-transforma-
tions, arbitrary column-transformations within each vertical strip, and additions of
linear combinations of columns ofMi to a column ofMj if pi < pj . (This notion is
important for representation theory and was introduced by Nazarova and Roiter [25],
see also [18,36].) The problem of classifying representations of the posetS may be
given by the triple

({{1}, {2}, . . . , {n+ 1}}, {eij |pi < pj }, {en+1,1, en+1,2, . . . , en+1,n}).

Example 2.3. Let us consider Wasow’s canonical form problem for an analytic at
the pointε = 0 matrix

A(ε) = A0 + εA1 + ε2A2 + · · · , Ai ∈ Cn×n, (25)

relative to analytic similarity

A(ε) 7→ B(ε) := S(ε)−1A(ε)S(ε), (26)

whereS(ε) = S0 + εS1 + · · · andS(ε)−1 are analytic matrices at 0. Let us restrict
ourselves to the canonical form problem for the firstt matricesA0, A1, . . . , At−1 in
expansion (25). By (26),S(ε)B(ε) = A(ε)S(ε), that isS0B0 = A0S0, . . . , S0Bt−1
+ S1Bt−2 + · · · + St−1B0 = A0St−1 + A1St−2 + · · · + At−1S0, or in the matrix
form 



S0 S1 · · · St−1

S0
...

...

. . . S1

0 S0






B0 B1 · · · Bt−1

B0
...

...

. . . B1

0 B0



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=



A0 A1 · · · At−1

A0
...

...

. . . A1

0 A0






S0 S1 · · · St−1

S0
...

...

. . . S1

0 S0


 .

Hence this problem may be given by the following triple of one-element sets:

({T }, {Jt }, {It }),
whereJt = e12 + e23 + · · · + et−1,t is the nilpotent Jordan block. Then all elements
of T = {1,2, . . . , t} are equivalent,P = {Jt , J 2

t , . . . , J
t−1
t } andV = {It , Jt , . . . ,

J t−1
t }. This problem is wild even ift = 2, see [14,31]. I am grateful to Friedland for

this example.

In Section 2.2, we give a definition of the linear matrix problems in a form, which
is more similar to Gabriel and Roiter’s definition (see Example 1.2) and is better
suited for Belitskĭı’s algorithm.

In Section 2.3, we prove that every canonical matrix may be decomposed in-
to a direct sum of indecomposable canonical matrices by permutations of its rows
and columns. We also investigate the canonical form problem for upper triangular
matrices under upper triangular similarity (see [37]).

In Section 2.4, we consider a canonical matrix as a parametric matrix whose
parameters are eigenvalues of its Jordan blocks. It enables us to describe a set of
canonical matrices having the same structure.

In Section 2.5, we consider linear matrix problems that give matrix problems with
independent row and column transformations and prove that the problem of classi-
fying modules over a finite dimensional algebra may be reduced to such a matrix
problem. The reduction is a modification of Drozd’s reduction of the problem of
classifying modules over an algebra to the problem of classifying representations of
bocses [11] (see also [6]). Another reduction of the problem of classifying modules
over an algebra to a matrix problem with arbitrary row transformations was given in
[17].

2.2. Linear matrix problems andK-similarity

In this section, we give another definition of the linear matrix problems, which
is equivalent to Definition 2.1 but is often more convenient. The set of admissible
transformations will be formulated in terms ofK-similarity; it simplifies the use of
Belitskĭı’s algorithm.

Definition 2.2. An algebraC ⊂ kt×t of upper triangular matrices will be called a
basic matrix algebraif
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
a11 · · · a1t

. . .
...

0 att


 ∈ C implies



a11 0

...
0 att


 ∈ C.

Lemma 2.1.
(a) Let C ⊂ kt×t be a basic matrix algebra, D the set of its diagonal matrices, and

R the set of its matrices with zero diagonal. Then there exists a basisE1, . . . , Er
ofD over k such that all entries of its matrices are0 and1.Moreover

E1 + · · · + Er = It , EαEβ = 0 (α /= β), E2
α = Eα. (27)

As a vector space over k, C is a direct sum of subspaces:

C = D ⊕ R =
(

r⊕
α=1

kEα

)
⊕

 r⊕
α,β=1

EαREβ


 . (28)

(b) The set of basict × t algebras is the set of reduced1 × 1 algebras, where
1:= (1,1, . . . ,1). A basict × t algebraC is the reduced1 × 1 algebra given
by
• T/∼= {I1, . . . ,Ir }, where Iα is the set of indices defined byEα =∑

i∈Iα eii , see(27), and
• a family of systems of form(3) such that for everyα, β ∈ {1, . . . , r} the

solutions of its(Iα,Iβ) system form the spaceEαREβ .

Proof. (a) By Definition 2.2,C is the direct sum of vector spacesD andR. Denote
by F the set of diagonalt × t matrices with entries in{0,1}. Let D ∈ D. Then
D = a1F1 + · · · + alFl , wherea1, . . . , al are distinct nonzero elements ofk and
F1, . . . , Fl are such matrices fromF thatFiFj = 0 wheneveri /= j . The vectors
(a1, . . . , al), (a2

1, . . . , a
2
l ), . . . , (a

l
1, . . . , a

l
l ) are linearly independent (they form a

Vandermonde determinant), and hence there existb1, . . . , bl ∈ k such thatF1 =
b1D + b2D

2 + · · · + blD
l ∈ D, analogouslyF2, . . . , Fl ∈ D. It follows thatD =

kE1 ⊕ · · · ⊕ kEr , whereE1, . . . , Er ∈ F and satisfy (27). Therefore,R = (E1 +
· · · + Er)R(E1 + · · · + Er) = ⊕

α,β EαREβ , we get the decomposition (28). (Note
that (27) is a decomposition of the identity ofC into a sum of minimal orthogonal
idempotents and (28) is the Peirce decomposition ofC, see [13].) �

Definition 2.3. A linear matrix problem given by a pair

(C,M), CM ⊂ M, MC ⊂ M, (29)

consisting of a basict × t algebraC and a vector spaceM ⊂ kt×t , is the canonical
form problem for matricesM ∈ Mn×n with respect toCn×n-similarity transforma-
tions

M 7→ S−1MS, S ∈ C∗
n×n,
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whereCn×n andMn×n consist ofn× n matrices whose blocks satisfy the same
linear relations as the entries of allt × t matrices fromC andM, respectively.

More exactly,Cn×n is the reducedn× n algebra given by the same system (3)
andT/ ∼ = {I1, . . . ,Ir } asC (see Lemma 2.1(b)).2

Next,

M =
(

r∑
α=1

Eα

)
M


 r∑
β=1

Eβ


 =

r⊕
α,β=1

EαMEβ (30)

(see (27)). Hence there is a system of linear equations∑
(i,j)∈Iα×Iβ

d
(l)
ij xij = 0, 1 6 l 6 pαβ, Iα,Iβ ∈ T/∼, (31)

such thatM consists of all matrices[mij ]ti,j=1 whose entries satisfy system (31).
ThenMn×n (n is a step-sequence) denotes the vector space of alln× n matrices
[Mij ]ti,j=1 whose blocks satisfy system (31):∑

(i,j)∈Iα×Iβ

d
(l)
ij Mij = 0, 1 6 l 6 pαβ, Iα,Iβ ∈ T/∼ .

Theorem 2.1. Definitions 2.1 and 2.3 determine the same class of matrix
problems:
(a) The linear matrix problem given by a triple(T /∼, {Pi}pi=1, {Vj }qj=1) may be

also given by the pair(C,M), whereC is the basic matrix algebra generated
byP1, . . . , Pp and all matricesEI = ∑

j∈I ejj (I ∈ T/∼) andM is the min-
imal vector space of matrices containingV1, . . . , Vq and closed with respect to
multiplication byP1, . . . , Pp .

(b) The linear matrix problem given by a pair(C,M) may be also given by a triple
(T /∼, {Pi}pi=1, {Vj }qj=1), whereT/∼ = {I1, . . . ,Ir } (see Lemma2.1(b)),

{Pi}pi=1 is the union of bases for the spacesEαREβ (see(28)), and{Vj }qj=1 is
the union of bases for the spacesEαMEβ (see(30)).

Proof. (a) Letn be a step-sequence. We first prove that the set of admissible trans-
formations is the same for both the matrix problems; that is, there exists a sequence
of transformations (i)–(ii) from Definition 2.1 transformingM to N (then we write
M ' N) if and only if they areK-similar withK := Cn×n.

By Definition 2.1,M ' N if and only if S−1MS = N , whereS is a product of
matrices of the form

I + aE
[l,r]
I (a /= −1 if l = r), I + bP [l,r], (32)

2 If n1 > 0, . . . , nt > 0, thenCn×n is Morita equivalent toC; moreover,C is the basic algebra forCn×n
in terms of the theory of algebras, see [13].
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wherea, b ∈ k, I ∈ T/∼ and 0 /= P ∈ P. SinceS ∈ K,M ' N impliesM ∼K N .
Let M ∼K N , that isSMS−1 = N for a nonsingularS ∈ K. To proveM ' N ,

we must expandS−1 into factors of form (32); it suffices to reduceS to I multi-
plying by matrices (32). The matrixS has form (4) withSii = Sjj wheneveri ∼
j ; we reduceS to form (4) with Sii = Ini for all i multiplying by matricesI +
aE

[l,r]
I . Denote byQ the set of alln× n matrices of the formP [l,r], P ∈ P. Since

Q ∪ {E[l,r]
I }I∈T/∼ is product closed, it generatesK as a vector space. Therefore,

S = I +∑
Q∈Q aQQ (aQ ∈ k). PutQl = {Q ∈ Q |Ql = 0}, thenQ0 = ∅ andQt =

Q. Multiplying Sby
∏
Q∈Q(I − aQQ) = I −∑

Q∈Q aQQ+ · · ·, we makeS = I +
· · ·, where the points denote a linear combination of products of matrices fromQ
and each product consists of at least two matrices (so its degree of nilpotency is at
mostt − 1). Each product is contained inQt−1 sinceQ is product closed, and hence
S = I +∑

Q∈Qt−1
bQQ. In the same way we getS = I +∑

Q∈Qt−2
cQQ, and so on

until obtainS = I .
Clearly, the set of reducedn× n matricesMn×n is the same for both the matrix

problems. �

Hereafter we shall use only Definition 2.3 of linear matrix problems.

2.3. Krull–Schmidt theorem

In this section, we study decompositions of a canonical matrix into a direct sum
of indecomposable canonical matrices.

Let a linear matrix problem be given by a pair(C,M). By thecanonical matrices
is meant theCn×n-canonical matricesM ∈ Mn×n for step-sequencesn. We say that
n× n matricesM and N areequivalentand writeM ' N if they areCn×n-simi-
lar. Theblock-direct sumof anm×m matrixM = [Mij ]ti,j=1 and ann× n matrix
N = [Nij ]ti,j=1 is the(m+ n)× (m+ n) matrix

M ]N = [Mij ⊕Nij ]ti,j=1.

A matrixM ∈ Mn×n is said to beindecomposableif bothn /= 0 andM ' M1 ]M2
implies thatM1 orM2 has size 0× 0.

Theorem 2.2. For every canonicaln× n matrix M, there exists a permutation
matrixP ∈ Cn×n such that

P−1MP = M1 ] · · · ]M1︸ ︷︷ ︸
q19copies

] · · · ]Ml ] · · · ]Ml︸ ︷︷ ︸
ql9copies

, (33)

whereMi are distinct indecomposable canonical matrices. Decomposition(33) is
determined by M uniquely up to permutation of summands.

Proof. Let M be a canonicaln× nmatrix. The repeated application of Belitskiı̆’s al-
gorithm produces sequence (18):(M,K), (M ′,K′), . . . , : (M(p),K(p)), whereK =
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Cn×n and K(p) = {S ∈ K |MS = SM} (see (19)) are reducedn× n andm×m

algebras; by Definition 1.1(a)K and K(p) determine equivalence relations∼ in
T = {1, . . . , t} and≈ in T (p) = {1, . . . , r}. SinceM is canonical,M(i) differs from
M(i+1) only by additional subdivisions. The strips with respect to them×m parti-
tion will be called thesubstrips.

Denote byK(p)0 the subalgebra ofK(p) consisting of its block-diagonalm×m

matrices, and letS ∈ K(p)0 . Then it has the form

S = C1 ⊕ · · · ⊕ Cr, Cα = Cβ if α ≈ β.

It may also be considered as a block-diagonaln× n matrixS = S1 ⊕ · · · ⊕ St from
K (sinceK(p) ⊂ K); each blockSi is a direct sum of sub-blocksCα .

LetI be an equivalence class fromT (p)/≈. In eachSi , we permute its sub-blocks
Cα with α ∈ I into the first sub-blocks:

S̄i = Cα1 ⊕ · · · ⊕ Cαp ⊕ Cβ1 ⊕ · · · ⊕ Cβq , α1 < · · · < αp, β1 < · · · < βq,

whereα1, . . . , αp ∈ I andβ1, . . . , βq 6∈ I (note thatCα1 = · · · = Cαp ); it gives the
matrix S̄ = Q−1SQ, whereQ = Q1 ⊕ · · · ⊕Qt andQi are permutation matrices.
Let i ∼ j . ThenSi = Sj (for all S ∈ K), and hence the permutations withinSi and
Sj are the same. We haveQi = Qj if i ∼ j , and thereforeQ ∈ K.

Making the same permutations of substrips within each strip ofM, we getM̄ =
Q−1MQ. Let M = [Mij ]ti,j=1 relatively to the n× n partition, and letM =
[Nαβ ]rα,β=1 relatively to them×m partition. SinceM is canonical, allNαβ are
reduced. HenceNαβ = 0 if α 6≈ β andNαβ is a scalar square matrix ifα ≈ β.
TheM̄ is obtained fromM by gathering all sub-blocksNαβ , (α, β) ∈ I × I, in the
left upper cover of every blockMij . HenceM̄ij = Aij ⊕ Bij , whereAij consists of
sub-blocksNαβ , α, β ∈ I, andBij consists of sub-blocksNαβ , α, β 6∈ I. We have
M̄ = A1 ] B, whereA1 = [Aij ] andB = [Bij ]. Next apply the same procedure to
B; continue the process until get

P−1MP = A1 ] · · · ] Al,
whereP ∈ K is a permutation matrix and the summandsAi correspond to the equiv-
alence classes ofT (p)/≈.

The matrixA1 is canonical. Indeed,M is a canonical matrix, by Definition 1.6,
each boxX of M has the form

∅,
[
0 I

0 0

]
, or a Weyr matrix.

It may be proved that the part ofX at the intersection of substrips with indices inI
has the same form and this part is a box ofA1. Furthermore, the matrixA1 consists
of sub-blocksNαβ , (α, β) ∈ I × I, that are scalar matrices of the same sizet1 × t1.
Hence,A1 = M1 ] · · · ]M1 (t1-times), whereM1 is canonical. Analogously,Ai =
Mi ] · · · ]Mi for all i and the matricesMi are canonical. �
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Corollary (Krull–Schmidt theorem).For every matrixM ∈ Mn×n, there exists its
decomposition

M ' M1 ] · · · ]Mr

into a block-direct sum of indecomposable matricesMi ∈ Mni×ni . Moreover, if

M ' N1 ] · · · ]Ns
is another decomposition into a block-direct sum of indecomposable matrices, then
r = s and, after a suitable reindexing, M1 ' N1, . . . ,Mr ' Nr .

Proof. This statement follows from Theorems 1.3 and 2.2. Note that this statement
is a partial case of the Krull–Schmidt theorem [1] for additive categories; namely,
for the category of matrices

⋃
Mn×n (the union over all step-sequencesn) whose

morphisms fromM ∈ Mm×m to N ∈ Mn×n are the matricesS ∈ Mm×n such that
MS = SN . (The setMm×n of m× n matrices is defined likeMn×n.) �

Example 2.4. Let us consider thecanonical form problem for upper triangular ma-
trices under upper triangular similarity(see [37] and the references given there). The
setCt of all upper triangulart × t matrices is a reduced 1× 1 algebra, and so every
A ∈ Ct is reduced to theCt -canonical formA∞ by Belitskĭı’s algorithm; moreover,
in this case the algorithm is very simplified: All diagonal entries ofA = [aij ] are not
changed by transformations; the over-diagonal entries are reduced starting with the
last but one row:

at−1,t; at−2,t−1, at−2,t; at−3,t−2, at−3,t−1, at−3,t; . . .
Let apq be the first that changes by admissible transformations. If there is a nonzero
admissible addition, we makeapq = 0; otherwiseapq is reduced by transformations
of equivalence or similarity, in the first case we makeapq ∈ {0,1}, in the second case
apq is not changed. Then we restrict the set of admissible transformations to those
that preserve the reducedapq , and so on. Note that this reduction is possible for an
arbitrary fieldk, which does not need to be algebraically closed.

Furthermore,Ct is a basict × t algebra. So we may considerA∞ as a canonical
matrix for the linear matrix problem given by the pair(Ct ,Ct ). By Theorem 2.2 and
since a permutationt × t matrixP belongs to0t only if P = I , there exists a unique
decomposition

A∞ = A1 ] · · · ] Ar
where eachAi is an indecomposable canonicalni × ni matrix,ni ∈ {0,1}t . Let ti ×
ti be the size ofAi , thenCtni×ni may be identified withCti andAi may be considered

as aCti -canonical matrix.
LetA∞ = [aij ]ti,j=1. Define the graphGA with vertices 1, . . . , t having the edge

i–j (i < j) if and only if bothaij = 1 andaij were reduced by equivalence trans-
formations. ThenGA is a union of trees; moreover,GA is a tree if and only ifA∞ is
indecomposable (compare with [30]).
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The Krull–Schmidt theorem for this case and a description of nonequivalent in-
decomposablet × t matrices fort 6 6 were given by Thijsse [37].

2.4. Parametric canonical matrices

Let a linear matrix problem be given by a pair(C,M). The setM may be
presented as the matrix space of all solutions[mij ]ti,j=1 of system (31) in which the
unknownsxij are disposed like the blocks (13):xt1 ≺ xt2 ≺ · · ·. The Gauss–Jordan
elimination procedure to system (31) starting with the last unknown reduces system
to the form

xlr =
∑

(i,j)∈Nf

c
(l,r)
ij xij , (l, r) ∈ Nd , (34)

whereNd andNf are such thatNd ∪ Nf = {1, . . . , t} × {1, . . . , t} andNd ∩ Nf =
∅; the inequalityc(l,r)ij /= 0 impliesi ∼ l, j ∼ r andxij ≺ xlr (i.e., every unknown
xlr with (l, r) ∈ Nd ∩ (I × J) is a linear combination of the preceding unknowns
with indices inNf ∩ (I × J)).

A blockMij ofM ∈ Mn×n will be calledfreeif (i, j) ∈ Nf , dependentif (i, j) ∈
Nd . A box Mi will be called free (dependent) if it is a part of a free (dependent)
block.

Lemma 2.2. The vector spaceMn×n consists of alln× n matrices[Mij ]ti,j=1
whose free blocks are arbitrary and the dependent blocks are their linear combi-
nations given by(34):

Mlr =
∑

(i,j)∈Nf

c
(l,r)
ij Mij , (l, r) ∈ Nd . (35)

On each step of Belitskiı̆’s algorithm, the reduced subblock ofM ∈ Mn×n belongs
to a free block(i.e., all boxesMq1,Mq2, . . . from Definition1.6are sub-blocks of free
blocks).

Proof. Let us prove the second statement. On thelth step of Belitskĭı’s algorithm,
we reduce the first nonstable blockM(l)

αβ of the matrixM(l) = [M(l)
ij ] with respect to

K(l)-similarity. If M(l)
αβ is a subblock of a dependent blockMij , thenM(l)

αβ is a linear

combination of already reduced sub-blocks of blocks preceding toMij . HenceM(l)
αβ

is stable, a contradiction.�

We now describe a set of canonical matrices having ‘the same form’.

Definition 2.4. Let M be a structured (see Definition 1.7) canonicaln× n matrix,
let Mr1 < · · · < Mrs be those of its free boxes that are Weyr matrices (Case III of
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Belitskĭı’s algorithm), and letλti−1+1 ≺ · · · ≺ λti be the distinct eigenvalues ofMri .
Considering some ofλi (resp. allλi ) as parameters, we obtain a parametric matrix
M(Eλ), Eλ := (λi1, . . . , λip ) (resp.Eλ := (λ1, . . . , λp), p := ts ), which will be called
a semi-parametric(resp.parametric) canonical matrix. Its domain of parametersis
the set of allEa ∈ kp such thatM(Ea) is a structured canonicaln× n matrix with the
same disposition of the boxes∅ as inM.

Theorem 2.3. The domain of parametersD of a parametric canonicaln× nmatrix
M(Eλ) is given by a system of equations and inequalities of the following three types:
(i) f (Eλ) = 0,
(ii) (d1(Eλ), . . . , dn(Eλ)) /= (0, . . . ,0),
(iii ) λi ≺ λi+1,

wheref, dj ∈ k[x1, . . . , xp].

Proof. Let M1 < · · · < Mm be all the boxes ofM(Eλ). PutA0 := kp and denote
byAq (1 6 q 6 m) the set of allEa ∈ kp such thatM(Ea) coincides withM(Ea)∞ on
M1, . . . ,Mq . Denote byKq(Ea) (1 6 q 6 m, Ea ∈ Aq) the subalgebra ofK := Cn×n
consisting of allS ∈ K such thatSM(Ea) coincides withM(Ea)S on the places of
M1, . . . ,Mq .

We prove that there is a systemSq(Eλ) of equations of forms (5) and (6) (in which

every c(l)ij is an element ofk or a parameterλi from M1, . . . ,Mq ) satisfying the

following two conditions for everyEλ = Ea ∈ Aq :
(a) the equations of each(I, J) subsystem of (6) are linearly independent, and
(b) Kq(Ea) is a reducednq × nq algebra given bySq(Ea).

This is obvious forK0(Ea) := K(Ea). Let it hold forq − 1, we prove it forq.
We may assume thatMq is a free box since otherwiseAq−1 = Aq andKq(Ea) =

Kq−1(Ea) for all Ea ∈ Aq−1. Let (l, r) be the indices ofMq as a block of thenq−1 ×
nq−1 matrixM (i.e.Mq = Mlr ). In accordance with the algorithm of Section 1.4, we
consider two cases:

Case1: Mq = ∅. Then equality (15) is not implied by systemSq−1(Ea) (more
exactly, by its(I,J) subsystem withI × J 3 (l, r), see (6)) for allEa ∈ Aq . It
means that there is a nonzero determinant formed by columns of coefficients of sys-
tem(6) ∪ (15). Hence,Aq consists of allEa ∈ Aq−1 that satisfy condition (ii), where
d1(Eλ), . . . , dn(Eλ) are all such determinants; we haveSq(Eλ) = Sq−1(Eλ) ∪ (15).

Case2: Mq /= ∅. Then equality (15) is implied by the systemSq−1(Ea) for all
Ea ∈ Aq . Hence,Aq consists of allEa ∈ Aq−1 that satisfy conditionsd1(Ea) = 0,
. . . , dn(Ea) = 0 of form (i) and (ifMq is a Weyr matrix with the parametersλtq−1+1,

. . . , λtq ) the conditionsλtq−1+1 ≺ · · · ≺ λtq of form (iii). SystemSq(Eλ) is obtained

fromSq−1(Eλ) as follows: we rewrite (5) and (6) for smaller blocks ofKq (every sys-
tem (6) withI 3 l or J 3 r gives several systems with the same coefficients, each
of them connects equally disposed sub-blocks of the blocksSij with (i, j) ∈ I × J)
and add the equations needed forSllMlr = MlrSrr .
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SinceA0 = kp, Aq (1 6 q 6 m) consists of allEa ∈ Aq−1 that satisfy a cer-
tain system of conditions (i)–(iii) and D := Am is the domain of parameters of
M(Eλ). �

Example 2.5. The canonical pair of matrices from Example 1.5 has the parametric
form 




λ1 1
0 λ1

0

0 λ2 1
0 λ2


 ,



µ2 1

0 µ2

µ5 ∅
µ3 µ4

µ1 0

0 µ1
∅




 .

Its domain of parameters is given by the conditionsλ1 ≺ λ2, µ1 /= 0, µ3 = 0, and
µ4 /= µ5.

Remark 2.1. The number of parametric canonicaln× nmatrices is finite for every
n since there exists a finite number of partitions into boxes, and each box is

∅,
[
0 I

0 0

]
, or a Weyr matrix (consisting of 0, 1, and parameters).

Therefore, a linear matrix problem for matrices of sizen× n is reduced to the
problem of finding a finite set of parametric canonical matrices and their domains of
parameters. Each domain of parameters is given by a system of polynomial equations
and inequalities (of the types (i)–(iii)), and so it is a semi-algebraic set; moreover, it
is locally closed up to condition (iii).

2.5. Modules over finite dimensional algebras

In this section, we consider matrix problems with independent row and column
transformations (such problems are calledseparatedin [18]) and reduce to them the
problem of classifying modules over algebras.

Lemma 2.3. Let C ⊂ km×m and D ⊂ kn×n be two basic matrix algebras and let
N ⊂ km×n be a vector space such thatCN ⊂ N andND ⊂ N. Denote by0\N
the vector space of(m+ n)× (m+ n) matrices of the form[

0 N

0 0

]
, N ∈ N.

Then the pair

(C ⊕ D, 0\N)

determines the canonical form problem for matricesN ∈ Nm×n in which the row
transformations are given byC and the column transformations are given byD:
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N 7→ CNS, C ∈ C∗
m×m, S ∈ D∗

n×n.

Proof. Put

M =
[
0 N

0 0

]
and apply Definition 2.3. �

In particular, ifC = k, then the row transformations are arbitrary; this classifi-
cation problem is studied intensively in representation theory where it is given by a
vectorspace category [26,36], by a module over an aggregate [17,18], or by a vectroid
[4].

The next theorem shows that the problem of classifying modules over a finite
dimensional algebraC may be reduced to a linear matrix problem. If the reader is
not familiar with the theory of modules (the used results can be found in [13]), he
may omit this theorem since it is not used in the following sections. The algebra
C is isomorphic to a matrix algebra, and so by Theorem 1.1 we may assume that
C is a reduced matrix algebra. Moreover, by the Morita theorem [13], the category
of modules overC is equivalent to the category of modules over its basic algebra.
Hence we may assume thatC is a basic matrix algebra. All modules are taken to be
right finite dimensional.

Theorem 2.4. For every basict × t algebraC, there is a natural bijection between:
(i) the set of isoclasses of indecomposable modules overC and
(ii) the set of indecomposable(C ⊕ C, 0\R) canonical matrices without zeron× n

matrices withn = (0, . . . ,0, nt+1, . . . , n2t ), whereR = radC (it consists of the
matrices fromC with zero diagonal).

Proof. We will successively reduce

(a) the problem of classifying, up to isomorphism, modules over a basic matrix al-
gebraC ⊂ kt×t

to a linear matrix problem.
Drozd [11] (see also [6]) proposed a method for reducing problem (a) (with an

arbitrary finite dimensional algebraC) to a matrix problem. His method was founded
on the following well-known property of projective modules [13, p. 156]:

For every moduleM overC, there exists an exact sequence

P
ϕ−→ Q

ψ−→ M −→ 0, (36)

Kerϕ ⊂ radP, Imϕ ⊂ radQ, (37)

whereP andQ are projective modules. Moreover, if

P ′ ϕ′
−→ Q′ ψ ′

−→ M ′ −→ 0
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is another exact sequence with these properties, thenM is isomorphic toM ′ if and
only if there exist isomorphismsf : P → P ′ andg : Q → Q′ such thatgϕ = ϕ′f .

Hence, problem (a) reduces to

(b) the problem of classifying triples(P,Q, ϕ), whereP andQ are projective mod-
ules over a basic matrix algebraC andϕ : P → Q is a homomorphism satisfy-
ing (37), up to isomorphisms(f, g) : (P,Q, ϕ) → (P ′,Q′, ϕ′) given by pairs of
isomorphismsf : P → P ′ andg : Q → Q′ such thatgϕ = ϕ′f .

By Lemma 2.1,C is a reduced algebra, it defines an equivalence relation∼ in
T = {1, . . . , t} (see (2)). Moreover, ifT/∼ = {I1, . . . ,Ir}, then the matricesEα =∑
i∈Iα eii (α = 1, . . . , r) form a decomposition (27) of the identity ofC into a sum

of minimal orthogonal idempotents, andP1 = E1C, . . . , Pr = ErC are all noniso-
morphic indecomposable projective modules overC.

Let ϕ ∈ HomC(Pβ, Pα). Thenϕ is given byF := ϕ(Eβ). SinceF ∈ Pα, F =
EαF . Sinceϕ is a homomorphism,ϕ(EβG) = 0 impliesFG = 0 for everyG ∈ C.
TakingG = I − Eβ , we haveF(I − Eβ) = 0, and soF = FEβ = EαFEβ . Hence
we may identify HomC(Pβ, Pα) andEαCEβ :

HomC(Pβ, Pα) = Cαβ := EαCEβ. (38)

The setR of all matrices fromC with zero diagonal is the radical ofC; radPα =
PαR = EαR. Henceϕ ∈ HomC(Pβ, Pα) satisfies Imϕ ⊂ radPα if and only ifϕ(Eβ)
∈ Rαβ := EαREβ .

Let

P = P
(p1)

1 ⊕ · · · ⊕ P
(pr )
r , Q = Q

(q1)

1 ⊕ · · · ⊕Q
(qr)
r

be two projective modules, whereX(i) := X ⊕ · · · ⊕X (i-times); we may identify
HomC(P,Q) with the set of block matricesU = [Uαβ ]rα,β=1, whereUαβ ∈ C

qα×pβ
αβ

is aqα × pβ block with entries inCαβ . Moreover, ImU ⊂ radQ if and only if Uαβ ∈
R
qα×pβ
αβ for all α, β. The condition Kerϕ ⊂ radP means that there exists no decom-

positionP = P ′ ⊕ P ′′ such thatP ′′ /= 0 andϕ(P ′′) = 0.
Hence, problem (b) reduces to

(c) the problem of classifyingq × p matricesU = [Uαβ ]rα,β=1, Uαβ ∈ R
qα×pβ
αβ , up

to transformations

U 7−→ CUS, (39)

whereC = [Cαβ ]rα,β=1 andS = [Sαβ ]rα,β=1 are invertibleq × q andp × p ma-

trices,Cαβ ∈ C
qα×qβ
αβ , andSαβ ∈ C

pα×pβ
αβ . The matricesU must satisfy the con-

dition: that there exists no transformation (39) making a zero column inU.

Every element ofCαβ is an upper triangular matrixa = [aij ]ti,j=1; define its
submatrix ā = [aij ](i,j)∈Iα×Iβ (by (38), aij = 0 if (i, j) 6∈ Iα × Iβ ). Let U =
[Uαβ ]rα,β=1 with Uαβ ∈ R

qα×pβ
αβ ; replacing every entrya of Uαβ by the matrixā
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and permuting rows and columns to order them in accordance with their position
in C, we obtain a matrix̄U from Cm×n, wheremi := qα if i ∈ Iα andnj := pβ if
j ∈ Iβ . It reduces problem (c) to

(d) the problem of classifyingm× n matricesN ∈ Rm×n (m and n are step-
sequences) up to transformations

N 7→ CNS, C ∈ C∗
m×m, S ∈ C∗

n×n. (40)

The matricesN must satisfy the condition: for each equivalence classI ∈ T/∼,
there is no transformation (40) making 0 the first column in all theith vertical
strips withi ∈ I.

By Lemma 2.3, problem (d) is the linear matrix problem given by the pair(C ⊕
C, 0\R) with an additional condition on the transformed matrices: they do not
reduce to a block-direct sum with a zero summand whose size has the formn× n,
n = (0, . . . ,0, nt+1, . . . , n2t ). �

Corollary. The following three statements are equivalent:
(i) The number of nonisomorphic indecomposable modules over an algebraC is

finite.
(ii) The set of nonequivalentn× n matrices overC is finite for every integer n.
(iii ) The set of nonequivalent elements is finite in every algebraK, that is, Morita

equivalent[13] to C (two elementsa, b ∈ K are said to be equivalent ifa = x

by for invertiblex, y ∈ K).

The corollary follows from the proof of Theorem 2.4 and from the second
Brauer–Thrall conjecture [18]: the number of nonisomorphic indecomposable mod-
ules over an algebraK is infinite if and only if there exist infinitely many nonisomor-
phic indecomposableK-modules of the same dimension. Condition (37) does not
change the finiteness since every exact sequence (36) is the direct sum of an exact
sequenceP1 → Q1 → M → 0 that satisfies this condition and exact sequences of
the formeiC → eiC → 0 → 0 andeiC → 0 → 0 → 0, where 1= e1 + · · · + er is
a decomposition of 1∈ C into a sum of minimal orthogonal idempotents.

3. Tame and wild matrix problems

3.1. Introduction

In this section, we prove the Tame–Wild theorem in a form approaching to the
third main theorem from [17].

Generalizing the notion of a quiver and its representations, Roiter [27] introduced
the notions of a bocs (= bimodule over category with coalgebra structure) and its rep-
resentations. For each free triangular bocs, Drozd [11] (see also [10,12]) proved that
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the problem of classifying its representations satisfies one and only one of the follow-
ing two conditions (respectively, is oftameor wild type): (a) all but a finite number
of nonisomorphic indecomposable representations of the same dimension belong
to a finite number of one-parameter families, and (b) this problem ‘contains’ the
problem of classifying pairs of matrices up to simultaneous similarity. It confirmed
a conjecture due to Donovan and Freislich [8] states that every finite dimensional
algebra is either tame or wild. Drozd’s proof was interpreted by Crawley-Boevey
[6,7]. The authors of [17] got a new proof of the Tame–Wild Theorem for matrix
problems given by modules over aggregates and studied a geometric structure of the
set of nonisomorphic indecomposable matrices.

The problem of classifying pairs of matrices up to simultaneous similarity (i.e.
representations of the quiver ) is used as a measure of complexity since it ‘con-
tains’ a lot of matrix problems, in particular, the problem of classifying represen-
tations of every quiver. For instance, the classes of isomorphic representations of
quiver (1) correspond, in a one-to-one manner, to the classes of similar pairs of the
form 




I 0 0 0
0 2I 0 0
0 0 3I 0
0 0 0 4I


 ,


Aα 0 0 0
Aβ 0 0 0
Aγ 0 0 0
Aδ Aε I Aζ




 . (41)

Indeed, if (J,A) and (J,A′) are two similar pairs of form (41), thenS−1JS =
J, S−1AS = A′, the first equality impliesS = S1 ⊕ S2 ⊕ S3 ⊕ S4 and equating the
(4,3) blocks in the second equality givesS3 = S4 (compare with Example 1.1).

LetA1, . . . , Ap ∈ km×m. For a parametric matrixM(λ1, . . . , λp) = [aij + bij λ1
+ · · · + dij λp] (aij , bij , . . . , dij ∈ k), the matrix that is obtained by replacement of
its entries withaij Im + bijA1 + · · · + dijAp will be denoted byM(A1, . . . , Ap).

In this section, we get the following strengthened form of the Tame–Wild theo-
rem, which is based on an explicit description of the set of canonical matrices.

Theorem 3.1. Every linear matrix problem satisfies one and only one of the follow-
ing two conditions(respectively, is of tame or wild type):
(i) For every step-sequencen, the set of indecomposable canonical matrices in

the affine space ofn× n matrices consists of a finite number of points and
straight lines3 of the form{L(Jm(λ)) | λ ∈ k}, whereL(x) = [aij + xbij ] is a
one-parameterl × l matrix (aij , bij ∈ k, l = n/m) andJm(λ) is the Jordan cell.
Changing m gives a new line of indecomposable canonical matricesL(Jm′(λ));

3 Contrary to [17], these lines are unpunched. Thomas Brüstle and the author proved that the number of
points and lines is bounded by 4d , whered = dim(Mn×n). This estimate is based on an explicit form of
canonical matrices given in the proof of Theorem 3.1 and is an essential improvement of the estimate [5],
which started from the article [17].
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there exists an integer p such that the number of points of intersections4 of the
lineL(Jm(λ)) with other lines is p ifm > 1 and p orp + 1 if m = 1.

(ii) There exists a two-parametern× n matrix P(x, y) = [aij + xbij + ycij ] (aij ,
bij , cij ∈ k) such that the plane{P(a, b) | a, b ∈ k} consists only of indecompos-
able canonical matrices. Moreover, a pair (A,B) of m×m matrices is in the
canonical form with respect to simultaneous similarity if and only ifP(A,B) is
a canonicalmn×mn matrix.

We will prove Theorem 3.1 analogously to the proof of the Tame–Wild theorem in
[11]: We reduce an indecomposable canonical matrixM to canonical form (making
additional partitions into blocks) and meet a free (in the sense of Section 2.4) block
P that is reduced by similarity transformations. If there exist infinitely many values
of eigenvalues ofP for which we cannot simultaneously make zero all free blocks
afterP, then the matrix problem satisfies condition (ii). If there is no matrixM with
such a blockP, then the matrix problem satisfies condition (i). We will consider the
first case in Section 3.3 and the second case in Section 3.4. Two technical lemmas
are proved in Section 3.2.

3.2. Two technical lemmas

In this section, we get two lemmas, which will be used in the proof of
Theorem 3.1.

Lemma 3.1. Given two matrices L and R of the formL = λIm + F andR = µIn +
G, where F and G are nilpotent upper triangular matrices. Define

Af =
∑
ij

aijL
iARj (42)

for everyA ∈ km×n andf (x, y) = ∑
i,j>0 aij x

iyj ∈ k[x, y]. Then

(i) (Af )g = Afg = (Ag)f ;
(ii) Af = ∑

bijF
iAGj, whereb00 = f (λ,µ), b01 = of

oy (λ, µ), . . . ;
(iii ) if f (λ,µ) = 0, then the left lower entry ofAf is 0;
(iv) if f (λ,µ) /= 0, then for everym× n matrix B there exists a unique A such that

Af = B (in particular, B = 0 impliesA = 0).

Proof. (ii) Af = ∑
aij (λI + F)iA(µI +G)j = ∑

aijλ
iµjA+∑

aij λ
ijµj−1A

G+ · · · .
(iii) It follows from (ii).
(iv) Let f (λ,µ) /= 0 andA ∈ km×n. By (ii), B := Af = ∑

bijF
iAGj , where

b00 = f (λ,µ). ThenA = b−1
00 [B −∑

i+j>1 bijF
iAGj ]. Substituting this equality

4 Hypothesis: this number is equal to 0.
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in its right-hand side gives

A = b−1
00B − b−2

00


 ∑
i+j>1

bijF
iBGj −

∑
i+j>2

cijF
iAGj


 .

Repeating this substitutionm+ n times, we eliminateA on the right sinceFm =
Gn = 0 (recall thatF andG are nilpotent). �

Lemma 3.2. Given a polynomialp × t matrix [fij ], fij ∈ k[x, y], and an infinite
setD ⊂ k × k. For everyl ∈ {0,1, . . . , p}, (λ, µ) ∈ D, andFl = {m,n, F,G,N1,

. . . , Nl}, whereF ∈ km×m andG ∈ kn×n are nilpotent upper triangular matrices
andN1, . . . , Nl ∈ km×n, we define a system of matrix equations

Sl = Sl (λ, µ,Fl ) : X
fi1
1 + · · · +X

fit
t = Ni, i = 1, . . . , l, (43)

(see(42)) that is empty ifl = 0. Suppose, for every(λ, µ) ∈ D, there existsFp such
that the systemSp is unsolvable.

Then there exist an infinite setD′ ⊂ D, a polynomiald ∈ k[x, y] that is zero on
D′, a nonnegative integerw 6 min(p − 1, t), and pairwise distinctj1, . . . , jt−w ∈
{1, . . . , t} satisfying the conditions:
(i) For each(λ, µ) ∈ D′ andFw, the systemSw(λ,µ,Fw) is solvable and every

(t − w)-tupleSj1, Sj2, . . . , Sjt−w ∈ km×n is uniquely completed to its solution
(S1, . . . , St ).

(ii) For each (λ, µ) ∈ D′, F0
w = {m,n, F,G,0, . . . ,0}, and for every solution

(S1, . . . , St ) ofSw(λ,µ,F
0
w), there exists a matrix S such that

S
fw+1,1
1 + · · · + S

fw+1,t
t = Sd . (44)

Proof. Step-by-step, we will simplify systemSp(λ,µ,Fp) with (λ, µ) ∈ D.
First step.Let there exist a polynomialf1j , sayf1t , that is nonzero on an infinite

setD1 ⊂ D. By Lemma 3.1(iv), for each(λ, µ) ∈ D1 and everyX1, . . . , Xt−1 there
exists a uniqueXt such that the first equation of (43) holds. Subtracting thefit th
power of the first equation of (43) from thef1t th power of theith equation of (43)
for all i > 1, we obtain the system

X
gi1
1 + · · · +X

gi,t−1
t−1 = N

f1t
i −N

fit
1 , 2 6 i 6 l, (45)

wheregij = fij f1t − f1j fit . By Lemma 4.1(iv), the systemSp and the system
(45) supplemented by the first equation ofSp have the same set of solutions for
all (λ, µ) ∈ D1 and allFp.

Second step.Let there exist a polynomialg2j , sayg2,t−1, that is nonzero on an
infinite setD2 ⊂ D1. We eliminateXt−1 from Eqs. (45) with 36 i 6 l.

Last step.After thewth step, we obtain a system

X
r1
j1

+ · · · + X
rt−w
jt−w = N

. . . . . . . . . . . .

}
(46)



84 V.V. Sergeichuk / Linear Algebra and its Applications 317 (2000) 53–102

(empty ifw = t) and an infinite setDw such that the projection

(S1, . . . , St ) 7→ (Sj1, . . . Sjt−w )

is a bijection of the set of solutions of systemSp(λ,µ,Fp) into the set of solutions
of system (46) for every(λ, µ) ∈ Dw.

Since for every(λ, µ) ∈ D there existsFp such that the systemSp is unsolv-
able, the process stops on system (46) withw < p for which either
(a) there existsri /= 0 andr1(λ, µ) = · · · = rt−w(λ,µ) = 0 for almost all(λ, µ) ∈

Dw, or
(b) r1 = · · · = rt−w = 0 orw = t .

We add the(w + 1)th equation

X
fw+1,1
1 + · · · +X

fw+1,t
t = X

fw+1,1
1 + · · · + X

fw+1,t
t

to the systemSw(λ,µ,F
0
w) with (λ, µ) ∈ Dw andF0

w = {m,n, F,G,0, . . . ,0}
and apply thew steps; we obtain the equation

X
r1
j1

+ · · · + X
rt−w
jt−w = (X

fw+1,1
1 + · · · +X

fw+1,t
t )ϕ (47)

wherer1, . . . , rt−w are the same as in (46) andϕ(λ,µ) /= 0. Clearly, the solutions
(S1, . . . , St ) of Sw(λ,µ,F

0
w) satisfy (47); moreover

(S
ρ1
j1

+ · · · + S
ρt−w
jt−w )

d = (S
fw+1,1
1 + · · · + S

fw+1,t
t )ϕ (48)

for (λ, µ) ∈ D′, whereρ1, . . . , ρt−w, d ∈ k[x, y] andD′ define as follows: In case
(a), r1, . . . , rt−w have a common divisord(x, y) with infinitely many roots inDw
(we use the following form of the Bezout theorem [20, Section 1.3]: two relatively
prime polynomialsf1, f2 ∈ k[x, y] of degreesd1 andd2 have no more thand1d2
common roots); we putρi = ri/d andD′ = {(λ, µ) ∈ Dw | d(λ,µ) = 0}. In case
(b), the left-hand side of (47) is zero; we putρ1 = · · · = ρt−w = 0 (if w < t), d = 0,
andD′ = Dw.

We take(λ, µ) ∈ D′ and putϕ̄(x, y) = ϕ(x + λ, y + µ). Sinceϕ̄(0,0) = ϕ(λ,µ)

/= 0, there existsψ̄ ∈ k[x, y] for which ϕ̄ψ̄ ≡ 1 mod(xs, ys), wheres is such that
F s = Gs = 0. We putψ(x, y) = ψ̄(x − λ, y − µ). ThenAϕψ = A for everym× n

matrixA. By (48),

S
fw+1,1
1 + · · · + S

fw+1,t
t = (S

ρ1
j1

+ · · · + S
ρt−w
jt−w )

ψd;
it proves (44). �

3.3. Proof of Theorem 3.1 for wild problems

A sub-block of a free (dependent) block will be named a free(dependent) sub-
block. In this section, we consider a matrix problem given by a pair(C, M) such
that there exists a semi-parametric canonical matrixM ∈ Mn×n having a free box
Mq /= ∅ with the following property:
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The horizontal or the vertical(q − 1)-strip of Mq is linked (see
Definition 1.9) to a (q − 1)-strip containing aninfinite parameter
from a free boxMv, v < q, (i.e., the domain of parameters contains
infinitely many vectors with distinct values of this parameter).

(49)

We choose suchM ∈ Mn×n having the smallest
∑
n = n1 + n2 + · · · and take its

free boxMq /= ∅, that is the first with property (49). Then each(q − 1)-strip ofM is
linked to the horizontal or the vertical(q − 1)-strip containingMq . Our purpose is
to prove that the matrix problem satisfies condition (ii) of Theorem 3.1. Let each of
the boxesMq, Mq+1, . . . , that is free be replaced by 0, and let as many as possible
parameters in the boxesM1, . . . ,Mq−1 be replaced by elements ofk (corresponding-
ly we retouch dependent boxes and narrow down the domain of parametersD) such
that property (49) still stands (note that all the parameters of a “new” semi-parametric
canonical matrixM are infinite and thatMq = 0 butMq /= ∅). The following three
cases are possible:

Case 1: The horizontal and the vertical(q − 1)-strips of Mq are linked to
(q − 1)-strips containing distinct parametersλl andλr , respectively.

Case 2: The horizontal or the vertical(q − 1)-strip of Mq is linked to no
(q − 1)-strips containing parameters.

Case 3: The horizontal and the vertical(q − 1)-strips of Mq are linked to
(q − 1)-strips containing the same parameterλ.

3.3.1. Study Case 1
By Theorem 2.2, the minimality of

∑
n, and since each(q − 1)-strip of M is

linked to a(q − 1)-strip containingMq , we have thatM is a two-parameter ma-
trix (hencel, r ∈ {1,2}) and, up to permutation of(q − 1)-strips, it has the form
Ĥl ⊕ Ĥr , whereĤl = Hl(Jsl (λlI )) andĤr = Hr(Jsr (λrI )) lie in the intersection of
all (q − 1)-strips linked to the horizontal and, respectively, the vertical(q − 1)-strips
ofMq ,Hl(a) andHr(a) are indecomposable canonical matrices for alla ∈ k, and

Js(λI) :=



λI I 0

λI
. . .
. . . I

0 λI


 .

We will assume that the parametersλ1 andλ2 are enumerated such that the free
boxesMu andMv containingλ1 and, respectively,λ2 satisfyu 6 v (clearly,Mu and
Mv are Weyr matrices).

Let firstu < v. Then

Mu = A⊕ Js1(λ1I)⊕ B, Mv = Js2(λ2I), (50)

whereA andB lie in Ĥ2 (Mv does not contain summands from̂H1 since every box
Mi with i > u that is reduced by similarity transformations belongs toĤ1 or Ĥ2).
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By the n. × n. partition of M into blocksM.

ij (which will be called.-blocks
and the corresponding strips will be called.-strips), we mean the partition obtained
from the partition into(v − 1)-strips by removing the divisions inside ofJs1(λ1I)

and the corresponding divisions inside of the horizontal and vertical(u− 1)-strips
ofMu and inside of all(u− 1)-strips that are linked with them. Clearly,Js1(λ1I) and
Js2(λ2I) are free.-blocks, the other.-blocks are zero or scalar matrices, andMq is
a part of a.-block. Denote byI (respectivelyJ) the set of indices of.-strips ofĤl
(respectivelyĤr ) in M = [M.

ij ]ei,j=1. ThenI ∪ J = {1, . . . , e} andI ∩ J = ∅.

Step 1(A selection ofM.

ζη). In this step we will select both a free.-blockM.

ζη > Mv

with (ζ, η) ∈ I × J and an infinite set of(a, b) ∈ D such thatM.

ζη cannot be made
arbitrary by transformations ofM(a, b) preserving allM1, . . . ,Mv and allM.

ij <

M.

ζη. SuchM.

ζη exists sinceMq /= ∅ is a part of a freeM.

ij with (i, j) ∈ I × J.
Denote byK0 the algebra of allS from K := Cn×n for which MSandSMare co-

incident on the places of the boxesM1, . . . ,Mv (see (22)). Then the transformations

M 7−→ M ′ = SMS−1, S ∈ K∗
0, (51)

preserveM1, . . . ,Mv . Note thatK0 is an algebra of upper block-triangularn. × n.

(and evennv × nv) matrices.
LetM.

ζη be selected and letS ∈ K∗
0 be such that transformation (51) preserves all

M.

ij < M.

ζη. Equating the(ζ, η) .-blocks in the equalityM ′S = SM gives

M.

ζ1S
.

1η + · · · +M.

ζ,η−1S
.

η−1,η +Mø′
ζηS

.

ηη = S.

ζζM
.

ζη + · · · + S.

ζeM
.

eη, (52)

wheree × e is the number of.-blocks inM. Since

M.

ij /= 0 implies (i, j) ∈ (I × I) ∪ (J × J), (53)

equality (52) may containS.

ij only if (i, j) ∈ I × J or (i, j) = (η, η). HenceMø′
ζη

is fully determined byM, S.

ηη and the family ofø-blocks

S.

IJ := {S.

ij | (i, j) ∈ I × J}.
We will selectM.

ζη in the sequence

F1 < F2 < · · · < Fδ (54)

of all freeM.

ij such that(i, j) ∈ I × J andM.

ij 6⊂ M1 ∪ · · · ∪Mv. Forα ∈ {1, . . . ,
δ} denote byKα the algebra of allS ∈ K0 for which MS andSM coincide on the
places of allM.

ij 6 Fα . Then the transformations

M 7−→ M ′ = SMS−1, S ∈ K∗
α, (55)

preserveM1, . . . ,Mv and allM.

ij 6 Fα .
Let us investigate the familyS.

IJ for eachS ∈ K∗
α.

The algebraK = Cn×n consists of alln× nmatricesS = [Sij ] whose blocks sat-
isfy a system of linear equations of the forms (5) and (6) completed bySij = 0 for
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all i > j . Let us rewrite this system for smaller.-blocksS.

ij . The equations that
contain blocks from the familyS.

IJ contain no blocksS.

ij 6∈ S.

IJ. (Indeed, by the

definition of Case 1, the(q − 1)-strips ofĤ1 are not linked to the(q − 1)-strips of
Ĥ2, and so the partition ofT intoI andJ is in agreement with its partitionT/∼ into
equivalence classes; see (2) and Definition 1.9.) Hence the familyS.

IJ for S ∈ K.

is given by a system of equations of the form∑
(i,j)∈I×J

α
(τ)
ij S

.

ij = 0, τ = 1, . . . , w1. (56)

Denote byBu (respectivelyBuv) the part ofM consisting of all entries that are
in the intersection of

⋃
i6u Mi (respectively

⋃
u<i6v Mi ; by the union of boxes we

mean the part of the matrix formed by these boxes) and
⋃
(i,j)∈I×JM

.

ij . Let us prove
thatBu andBuv are unions of.-blocksM.

ij , (i, j) ∈ I × J. It is clear forBu since
the partition into.-strips is a refinement of the partition into(u− 1)-strips. It is also
true forBuv sinceBuv is partitioned into rectangular parts (see Definition 1.8) of
the form[Mτ+1|Mτ+2| · · · |Mτ+s1] if r = 1 and[MT

τ1
|MT

τ2
| · · · |MT

τs1
]T if l = 1 (the

indicesl andr were defined in the formulation of Case 1); recall that allMi are boxes
andMu has form (50).

By the definition of the algebraK0, it consists of allS ∈ K such thatMS − SM

is zero on the places of the boxesMi 6 Mv. To obtain the conditions on the family
S.

IJ of blocks ofS ∈ K0, by virtue of statement (53), it suffices to equate zero the
blocks ofMS − SM on the places of all free.-blocksM.

ij fromBu andBuv (note
that some of them may satisfyM.

ij > M.

ζη). Since all free.-blocks ofM except for
Js1(λ1I) andJs2(λ2I) are scalar or zero matrices, we obtain a system of equalities
of the form∑

(i,j)∈I×J

α
(τ)
ij S

.

ij = 0, τ = w1 + 1, . . . , w2, (57)

for the places fromBu and∑
(i,j)∈I×J

(S.

ij )
g
(ν)
ij = 0, ν = 1, . . . , w3, (58)

for the places fromBuv, where(S.

ij )
g
(ν)
ij , g(ν)ij ∈ k[x, y] (more precisely,g(ν)ij ∈ k[x]

if l = 1 andg(ν)ij ∈ k[y] if r = 1), are given by (42) withL = Jsl (λlI ) andR =
Jsr (λrI ).

Applying the Gauss–Jordan elimination algorithm to system (56)∪ (57), we
chooseS1, . . . , St ∈ S.

IJ such that they are arbitrary and the otherS.

ij ∈ S.

IJ are
their linear combinations. Rewriting system (58) forS1, . . . , St , we obtain a system
of equalities of the form

S
fi1
1 + · · · + S

fit
t = 0, i = 1, . . . , w3. (59)

The algebraKα (1 6 α 6 δ) consists of allS ∈ K0 such thatSMandMShave the
same blocks on the places of all freeM.

xy 6 Fα :
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M.

x1S
.

1y + · · · +M.

xyS
.

yy = S.

xxM
.

xy + · · · + S.

xeM
.

ey . (60)

We may omit equalities (60) for all(x, y) such thatM.

xy is contained inM1, . . . ,Mv

(by the definition ofK0), or (x, y) 6∈ I × J (by (53), equalities (60) containS.

ij ∈
S.

IJ only if (x, y) ∈ I × J). The remaining equalities (60) correspond toM.

xy ∈
{F1, . . . , Fα} (which are zero) and take the form

S
fi1
1 + · · · + S

fit
t = 0, i = w3 + 1, . . . , w3 + α. (61)

It follows from the preceding that any sequence of matricesS1, . . . , St is the se-
quence of corresponding blocks of a matrixS ∈ Kα if and only if system (59)∪ (61)
holds forS1, . . . , St .

Putα = δ (see (54)),p = w3 + δ, andD = {(al, ar ) | (a1, a2) ∈ D}. SinceMq /=
∅ is a part of a freeM.

ij with (i, j) ∈ I × J, for every(al, ar ) ∈ D we may change
the right-hand part of system (59)∪ (61) to obtain an unsolvable system. Apply-
ing Lemma 3.2 to system (59)∪ (61), we get an infiniteD′ ⊂ D, a polynomial
d ∈ k[x, y] that is zero onD′, a nonnegative integerw 6 min(p − 1, t), and pair-
wise distinctj1, . . . , jt−w ∈ {1, . . . , t} satisfying conditions (i) and (ii) of Lemma
3.2. We takeFw+1−w3 as the desired blockM.

ζη. SinceMq is the first among free
boxes/= ∅ with property (49),M.

ζη > Mv. Equality (52) takes the form

S
fw+1,1
1 + · · · + S

fw+1,t
t = S.

ζζM
.

ζη −Mø′
ζηS

.

ηη. (62)

Step 2 (A construction ofP(x, y)). In this step, we construct the two-parameter
matrixP(x, y) from condition (ii) of Theorem 3.1.

Let us fix a pair(al, ar) ∈ D′ in the following manner. If the polynomiald ∈
k[x, y] is zero, then(al, ar ) is an arbitrary pair fromD′. Let d /= 0; if d is reducible,
we replace it by its irreducible factor. Sinced is zero on the infinite setD′ that
does not contain infinitely many pairs(al, ar ) with the sameal (otherwise, thelth
parameter can be replaced withal, but we have already replaced as many as possible
parameters by elements ofk such that property (49) still stands), it followsd 6∈ k[x]
and sod ′

y :=od/oy /= 0. Sinced is an irreducible polynomial,(d, d ′
y) = 1; by the

Bezout theorem (see the proof of Lemma 3.2), we may choose(al, ar ) ∈ D′ such
that

d(al, ar ) = 0, d ′
y(al, ar) /= 0. (63)

Denote byP(x, y) the matrix that is obtained fromM by replacement of its
.-blocksJsl (λlI ) andJsr (λrI ) with Weyr matrices

L := P(J1(al)⊕ J3(al)⊕ J5(al)⊕ J7(al)⊕ J9(al))P−1,

R := J5(arI2)
(64)

(whereP is a permutation matrix, see Theorem 1.2) and the.-blockM.

ζη with
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P .

ζη = P



Q1
Q2
Q3
Q4
Q5


 , Qi =




0 0 0 0 0
. . . . . . . . . . . . . . . . .
0 0 0 0 0
Ti 0 0 0 0
0 0 0 0 0
. . . . . . . . . . . . . . . . .
0 0 0 0 0



,

(65)

T =



T1
T2
T3
T4
T5


 =




1 y

1 x

1 1
1 0
0 1


 ,

whereQi is (2i − 1)× 10 (its zero blocks are 1× 2) andTi is in the middle row.
(Each nonzero free.-blockM.

ij of M, except forJsl (λlI ) andJsr (λrI ), is a sca-
lar matrix with(i, j) ∈ (I × I) ∪ (J × J); it is replaced by the scalar matrixP .

ij

with the same diagonal having the size(1 + 3 + 5 + 7 + 9)× (1 + 3 + 5 + 7 + 9)
if (i, j) ∈ I × I and 10× 10 if (i, j) ∈ J × J.) The dependent blocks are, respec-
tively, corrected by formulas (35).

Let us enumerate the rows and columns ofJ = J1(al)⊕ J3(al)⊕ J5(al)⊕ J7(al)

⊕ J9(al) and the rows of[Qi]5i=1 by the pairs of numbers〈1,1〉; 〈3,1〉, 〈3,2〉, 〈3,3〉;
〈5,1〉, 〈5,2〉, . . . , 〈5,5〉; . . . ; 〈9,1〉, 〈9,2〉, . . . , 〈9,9〉. Going over to the matrixP,
we have permuted them inL = PJP−1 andP .

ζη = P[Qi ] in the following order:

〈9,1〉, 〈7,1〉, 〈5,1〉, 〈3,1〉, 〈1,1〉, 〈9,2〉, 〈7,2〉, 〈5,2〉, 〈3,2〉,
〈9,3〉, 〈7,3〉, 〈5,3〉, 〈3,3〉, 〈9,4〉, 〈7,4〉, 〈5,4〉,

〈9,5〉, 〈7,5〉, 〈5,5〉, 〈9,6〉, 〈7,6〉, 〈9,7〉, 〈7,7〉, 〈9,8〉, 〈9,9〉
(66)

(see Section 1.3). In the same manner, we will enumerate the rows and columns in
everyith .-strip (i ∈ I) of P(x, y).

We will prove thatP(x, y) satisfies condition (ii) of Theorem 3.1. Let(W,B) be
a canonical pair ofm×mmatrices under simultaneous similarity; put

K = P(W,B) (67)

and denote byQ̄i , T̄i , L̄, R̄ the blocks ofK that correspond toQi, Ti, L, R (see
(64)) fromP(x, y):

L̄ = P̄J̄ P̄
−1
, R̄ = J5(arI2m), (68)

J̄ := J1(alIm)⊕ J3(alIm)⊕ J5(alIm)⊕ J7(alIm)⊕ J9(alIm), (69)

whereP̄ is a permutation matrix. It suffices to show thatK is a canonical matrix (i.e.,
K is stable relatively to the algorithm of Section 1.4). To prove it, we will construct
the partition ofK into boxes.
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Clearly, the boxesM1, . . . ,Mu of M convert to the boxesK1, . . . ,Ku of K. The
boxMv of M is replaced by the boxKv̄ of K. The numbersv andv̄ may be distinct
sinceMu andKu may have distinct numbers of cells. The partK1 ∪ · · · ∪Kv̄ of K is
in canonical form. The partition ofK obtained after reduction ofK1, . . . ,Kv̄ is the
partition intov̄-strips; the corresponding blocks will be calledv̄-blocks; for instance,
T̄1, . . . , T̄5 arev̄-blocks.

The transformations ofK that preserve the boxesK1, . . . ,Kv̄ are

K 7−→ K ′ = SKS−1, S ∈ K̄
∗
0. (70)

For every matrixSfrom the algebrāK0, the familyS.

IJ of its .-blocks satisfies sys-
tem (56)–(58). SoS1, . . . , St ∈ S.

IJ (which correspond toS1, . . . , St for S ∈ K0) are
arbitrary satisfying Eqs. (59) and the otherS.

ij ∈ S.

IJ are their linear combinations.

Step 3. We prove the following statement:

Let p ∈ {1, . . . ,5} and let the matrixK be reduced by those
transformations (70) that preserve allv̄9blocks precedingT̄p.
Then T̄p is transformed intoT̄ ′

p = ApT̄pB, hereAp is an arbi-
trary nonsingular matrix andB is a nonsingular matrix for which
there exist nonsingular matricesAp+1, . . . , A5 satisfying T̄p+1 =
Ap+1T̄p+1B, . . . , T̄5 = A5T̄5B.

(71)

The rows and columns ofP(x, y) convert to thesubstripsof K = P(W,B). For
everyi ∈ I, we have enumerated the rows and columns in theith .-strip ofP(x, y)
by pairs (66); we will use the same indexing for the substrips in theith .-strip ofK.

By analogy with (52), equating inK ′S = SK (see (70)) the blocks on the place
of K.

ζη gives

Kø′
ζ1S

.

1η + · · · +Kø′
ζηS

.

ηη = S.

ζζK
.

ζη + · · · + S.

ζeK
.

eη (72)

For p from (71) andi ∈ I, we denote byCζi, K̂ ′
ζ i , K̂ζ i (respectivelyDζi) the

matrices that are obtained fromS.

ζ i , K
ø′
ζ i , K

.

ζ i (respectivelyK.

ζ i ) by deletion of all
horizontal (respectively, horizontal and vertical) substrips except for the substrips
indexed by〈2p − 1, p〉, 〈2p − 1, p + 1〉, . . . , 〈2p − 1,2p − 1〉. Then (72) implies

K̂ ′
ζ1S

.

1η + · · · + K̂ ′
ζηS

ø
ηη = CζζK

.

ζη + · · · + CζeK
.

eη. (73)

The considered in (71) transformations (70) preserve allv̄-blocks precedinḡTp.
SinceT̄p is a v̄-block from the〈2p − 1, p〉 substrip of theζ th horizontal.-strip
whose substrips are ordered by (66), the blockK̂ζ i (i < η) is located in a part ofK
preserved by these transformations, that is,K̂ ′

ζ i = K̂ζ i . If η > i ∈ I, thenK̂ ′
ζ iS

.

iη =
DζiCiη sinceK.

ζ i is a scalar matrix or̄L (see (68)). Ifη > i ∈ J, thenK̂ ′
ζ i = K̂ζ i =

0. So equality (73) is presented in the form

η−1∑
i=1

DζiCiη + K̂ ′
ζηS

ø
ηη = CζζK

.

ζη +
e∑

i=ζ+1

CζiK
.

iη. (74)
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Equality (74) containsCij only if (i, j) ∈ I × J, and so each of them is a part
of S.

ij ∈ S.

IJ. We have chosenS1, . . . , St in S.

IJ such that they are arbitrary and
the others are their linear combinations; letC1, . . . , Ct be the corresponding parts of
S1, . . . , St . It is easy to show thatC1, . . . , Ct satisfy the system that is obtained from
(59)∪(61) withw3 + α = w + 1 by replacingS1, . . . , St with C1, . . . , Ct . EachDζi
in (74) is a scalar or zero matrix ifK.

ζ i is notL̄ andDζi = Jp(alIm) otherwise, each

K.

iη (i < ζ ) is a scalar or zero matrix or̄R = J5(arI2m), and so equality (74) may be
rewritten in the form

C
fw+1,1
1 + · · · + C

fw+1,t
t = CζζK

.

ζη − K̂ ′
ζηS

.

ηη, (75)

wherefw+1,j are the same as in (62) andC
fw+1,i
i is defined by (42) withL =

Jp(alIm) andR = J5(arI2m). By (44), the left-hand side of (75) has the formCd ,
and so

Cd = CζζK
.

ζη − K̂ ′
ζηS

.

ηη. (76)

Let us study the right-hand side of (76). Sinceζ ∈ I andη ∈ J, the blocksS.

ζζ

andS.

ηη are arbitrary matrices satisfying

S.

ζζ L̄ = L̄S.

ζζ , S.

ηηR̄ = R̄S.

ηη. (77)

By (68) and (77),Z := P̄
−1
S.

ζζ P̄ commutes withJ̄ . Let us partitionZ into blocks

Zij (i, j = 1, . . . ,5) andX := P̄
−1
(S.

ζζK
.

ζη −Kø′
ζηS

.

ηη) = Z[Q̄i] − [Q̄′
i ]S.

ηη (recall

thatK.

ζη = P̄[Q̄i ]) into horizontal stripsX1, . . . , X5 in accordance with the partition

of J̄ into diagonal blocksJ1(alIm), J3(alIm), . . . , J9(alIm) (see (69)). Then

Xp = Zp1Q̄1 + · · · + Zp5Q̄5 −Q′
pS

.

ηη.

SinceZ commutes withJ̄ , ZpiJ2i−1(alIm) = J2p−1(alIm)Zpi . HenceZpi has
the form



Ai ∗
Ai

. . .
Ai

0




or




Ai ∗
Ai

. . .
0 Ai




if p > i or p 6 i, respectively. We look at

Q̄i =




0 0 0 0 0
. . . . . . . . . . . . . . . . .

0 0 0 0 0
T̄i 0 0 0 0
0 0 0 0 0
. . . . . . . . . . . . . . . . .

0 0 0 0 0



,
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to get

Xp =




∗ ∗ ∗ ∗ ∗
. . . . . . . . . . . . . . . . . . . . . . . . . . .

∗ ∗ ∗ ∗ ∗
ApT̄p − T̄ ′

pB ∗ ∗ ∗ ∗
0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0



,

whereAp is the diagonalm×m block ofZpp andB is the diagonal 2m× 2m block
of S.

ηη (recall thatS.

ηη commutes withJ5(arI2m)). SinceXp is formed by the sub-
strips ofS.

ζζ K
.

ζη −Kø′
ζηS

.

ηη indexed by the pairs〈2p − 1,1〉, . . . , 〈2p − 1,2p − 1〉,
equality (76) implies

R := Cd =



ApT̄p − T̄ ′

pB ∗ ∗ ∗ ∗
0 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0


 . (78)

Let us prove that

ApT̄p = T̄ ′
pB. (79)

If d = 0, then equality (79) follows from (78). Letd /= 0. We partitionCandR = Cd

into p × 5 blocksCij andRij conformal to the block form of the matrix on the
right-hand side of (78). By Lemma 3.1(ii) and (78),

R = Cd =
∑
ij

bij Jp(0m)iCJ5(02m)
j , (80)

Rij = 0 if i > 1, (81)

whereb00 = d(al, ar ) = 0 andb01 = d ′
y(al, ar) /= 0 (see (63)). HenceRp1 = 0, it

proves (79) forp = 1. Letp > 2. ThenRp2 = b01Cp1 = 0 by (80) andCp1 = 0 by
(81). Next,Rp3 = b01Cp2 = 0 by (80) andCp2 = 0 by (81), and so on until we ob-
tainCp1 = · · · = Cp4 = 0. By (80),Rp−1,1 = 0, it proves (79) forp = 2. Letp > 3.
ThenRp−1,2 = b01Cp−1,1 = 0 andCp−1,1 = 0; further,Rp−1,3 = b01Cp−1,2 = 0
andCp−1,2 = 0, and so on until we obtainCp−1,1 = · · · = Cp−1,3 = 0. Therefore,
Rp−2,1 = 0; we have (79) forp = 3 and Cp−2,1 = Cp−2,2 = 0 otherwise.
Analogously, we get (79) forp = 4 andCp−3,1 = 0 otherwise, and, at last, (79)
for p = 5.

By (71), the considered transformation preserves allv̄-blocks precedinḡTl. So
we may repeat this reasoning for eachl ∈ {p + 1, . . . ,5} instead ofp and obtain
AlT̄l = T̄lB. It proves (71).

Step 4 (A construction ofKv̄+1,Kv̄+2, . . .). The boxesK1, . . . ,Kv̄ were con-
structed at the end of Step 2. The first nonzero freev̄-block of K that is not con-
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tained inK1 ∪ · · · ∪Kv̄ is T̄5 = [0m Im]. The v̄-blocks that precedinḡT5 and are
not contained inK1 ∪ · · · ∪Kv̄ are zero. So they are the boxesKv̄+1, . . . ,Kv1−1
for a certainv1 ∈ N. By statement (71), the admissible transformations withK that
preserve the boxesK1, . . . ,Kv1−1 reduce, forT̄5, to the equivalence transformations;
therefore,T̄5 = [0m Im] is canonical andKv1 = T̄5.

Conformal to the block form ofKv1 = [0m Im], we divide each̄v-block ofK into
two v1-blocks. The first nonzero freev1-block that is not contained inK1 ∪ · · · ∪
Kv1 is Im from T̄4 = [Im 0m]. The v1-blocks that preceeding it and are not con-
tained inK1 ∪ · · · ∪Kv1 are the boxesKv1+1,Kv2, . . . ,Kv2−1 for a certainv2 ∈ N.
By statement (71), the admissible transformations withK that preserve the boxes
K1, . . . ,Kv2−1 reduce, forT̄4, to the transformations of the form

T̄4 7−→ AT̄4

[
B C

0 B

]
with nonsingularm×m matricesA andB. Since the block̄T4 = [Im 0m] is canon-
ical under these transformations, we haveT̄4 = [Im 0m] = [Kv2|Kv2+1]; and so on
until we get the partition ofK into boxes.

It remains to consider the caseu = v; in this case the parametersλ1 and λ2
are parameters of a certain free boxMv. Sinceλ1 and λ2 are distinct (by pre-
scribing of Case 1) parameters of the same Weyr matrixMv, we havea1 /= a2
for all (a1, a2) from the domain of parametersD ⊂ k2. We will assume that the
parametersλ1 andλ2 are enumerated such that there exists(a1, a2) ∈ D with a1 ≺
a2. Then by Definition 1.2 of Weyr matricesa1 ≺ a2 for all (a1, a2) ∈ D. By the
minimality of

∑
n, Mv = Js1(λ1I)⊕ Js2(λ2I), all (v − 1)-strips are linked, and

M = H(Mv) = Ĥl ⊕ Ĥr , whereH(a) is an indecomposable canonical matrix for
all a ∈ k, Ĥl := H(Jsl (λlI )) and Ĥr := H(Jsr (λrI )) (i.e. H = Hl = Hr , see the
beginning of Section 3.3.1). By then. × n. partition of M into blocksM.

ij , we mean
the partition into(v − 1)-strips supplemented by the division of every(v − 1)-strip
into two substrips in accordance with the partition ofMu into sub-blocksJs1(λ1I)

andJs2(λ2I). ThenJs1(λ1I) andJs2(λ2I) are free.-blocks, the other.-blocks are
zero or scalar matrices, andMq is a part of a.-block. The reasoning in this case is
the same as in the caseu < v (but withBuv = ∅).

3.3.2. Study Case 2
In this case,M = M(λ) is a one-parameter matrix with an infinite domain of

parametersD ⊂ k. Up to permutation of(q − 1)-strips,M has the formĤ1 ⊕ Ĥ2,
whereH1(a) andH2 are indecomposable canonical matrices for alla ∈ k, Ĥ1 :=
H1(Js1(λI)), andĤ2 is obtained fromH2 by replacement of its elementshij with
hij Is2. The matrixJs1(λI) is a part ofMv (see (49)). Letl, r ∈ {1,2} be such that
the horizontal(q − 1)-strip ofMq crossesĤl and its vertical(q − 1)-strip crosses
Ĥr . Under the.-partition ofM, we mean the partition obtained from the(q − 1)-
partition by removing the divisions inside ofJs1(λI) and the corresponding divisions
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inside of the horizontal and vertical(v − 1)-strips ofMv and all(v − 1)-strips that
are linked with them; thenMv is a.-block. Denote byI (respectivelyJ) the set of
indices of.-strips ofĤl (respectivelyĤr ) in M.

LetMz be the last nonzero free box ofM (clearly,z > v). Denote byB the part of
M consisting of all entries that are in the intersection of

⋃
i6z Mi and

⋃
(i,j)∈I×JM

.

ij .
By analogy with Case 1,B is a union of.-blocksM.

ij for some(i, j) ∈ I × J.
Let K0 be the algebra of allS ∈ K such thatMS − SM is zero on the places

of the boxesMi 6 Mz. Equating zero the blocks ofMS − SM on the places of
all free .-blocksM.

ij from B, we obtain a system of equalities of forms (57) and

(58) with g(τ)ij ∈ k[x] if l = 1 andg(τ)ij ∈ k[y] if l = 2 for .-blocks ofS = [S.

ij ] ∈
K0 from the familyS.

IJ := {S.

ij | (i, j) ∈ I × J}. Solving system (56)∪ (57), we
chooseS1, . . . , St ∈ S.

IJ such that they are arbitrary and the others are their linear
combinations, then we present system (58) in form (59).

Let F1 < F2 < · · · < Fδ be the sequence of all freeM.

ij such thatM.

ij 6⊂ M1 ∪
· · · ∪Mz and(i, j) ∈ I × J. Denote byKα (α ∈ {1, . . . , δ}) the algebra of allS ∈
K0 for which MS and SM are coincident on the places of allM.

ij 6 Fα ; it gives
additional conditions (61) onS.

IJ.
By analogy with Case 1, transformation (55) preserves allMi with i 6 z and all

M.

ij 6 Fα ; moreover, any sequence of matricesS1, . . . , St is the sequence of the
corresponding blocks of a matrixS ∈ Kα if and only if system (59)∪ (61) holds.

Putting α = δ, p = w3 + δ, D = {(a, a) | a ∈ D} and applying Lemma 3.2 to
(59) ∪ (61) (note thatfij ∈ k[x] or fij ∈ k[y]), we get an infinite setD′ ⊂ D, a
polynomiald, an integerw 6 min(p − 1, t), andj1, . . . , jt−w ∈ {1, . . . , t} satisfy-
ing conditions (i) and (ii) of Lemma 3.2. The polynomiald ∈ k[x] ∪ k[y] is zero
since it is zero on the infinite set{a | (a, a) ∈ D′}.

Let us fixa1, . . . , a5 ∈ D′, a1 ≺ a2 ≺ . . . ≺ a5 (with respect to the ordering ink,
see the beginning of Section 1.3), and denote byP(x, y) the matrix that is obtained
from M by replacement of
(i) its .-blockJs1(λI) with diag(a1, a2, . . . , a5),
(ii) all entrieshij Is2 of Ĥ2 with hij I2, and
(iii) M.

ζη with T (see (65)) ifl = 1 and with[
1 0 1 x y

0 1 1 1 1

]
if l = 2,

and by the corresponding correction of dependent blocks. As in Case 1, we can prove
thatP(x, y) satisfies condition (ii) of Theorem 3.1.

3.3.3. Study Case 3
The free boxMv is a Weyr matrix that is similar toJs1(λI)⊕ Js2(λI) (s1 /= s2) or

Js(λI). Hence it has the formMv = λI + F , whereF is a nilpotent upper triangular
matrix. Clearly,M = M(λ) is a one-parameter matrix with an infinite domain of pa-
rametersD ⊂ k; moreover,M = H(Mv), whereH(a) (a ∈ k) is an indecomposable
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canonical matrix. Under the.-partition we mean the partition into(v − 1)-strips
(thenMv is a.-block).

Step 1(A construction ofP(x, y)). LetK−1 (respectivelyK0) be the algebra of all
S ∈ K such thatMS − SM is zero on the places of the boxesMi < Mv (respectively
Mi 6 Mv). ThenK−1 is a reducedn. × n. algebra whose equivalence relation (2)
in T . = {1, . . . , e} is full (i.e. every two elements are equivalent). The blocks of
S ∈ K−1 satisfy a system of equations of the form

S.

11 = S.

22 = · · · = S.

ee, (82)∑
i<j

c
(l)
ij S

.

ij = 0, l = 1,2, . . . , q
T.T.

(83)

(see (6)). Solving system (83), we chooseS1, . . . , St ∈ {S.

ij | i < j } such that they
are arbitrary and the otherS.

ij (i < j) are their linear combinations. The algebraK0

consists of allS ∈ K−1 for with S.

11Mv = MvS
.

11.
Let F1 < F2 < · · · < Fδ be the sequence of all freeM.

ij 6⊂ M1 ∪ · · · ∪Mv , and
let Kα (α ∈ {1, . . . , δ}) denote the algebra of allS ∈ K0 for which MS andSMare
coincident on the places of allM.

ij 6 Fα ; it gives conditions onSi of the form

S
fi1
1 + · · · + S

fit
t = 0, i = 1, . . . , α, (84)

wherefij ∈ k[x, y] andS
fij
i is defined by (42) withL = R = Mv.

Puttingp = δ, D = {(a, a) | a ∈ D} and applying Lemma 3.2 to (84) withα :=
δ, we get an infiniteD′ ⊂ D, d ∈ k[x, y], w 6 min(p − 1, t), andj1, . . . , jt−w ∈
{1, . . . , t}. Sinced(a, a) = 0 for all (a, a) ∈ D′, d(x, y) is divisible byx − y by the
Bezout theorem (see the proof of Lemma 3.2). We may take

d(x, y) = x − y. (85)

Let us fix an arbitrarya ∈ D′ and denote byP(x, y) the matrix that is obtained
from M by replacement of its.-blocksMv andM.

ζη with

Pv =



aI2 0 I2 0
0 aI1 0 0
0 0 aI2 I2
0 0 0 aI2


 and P .

ζη =




0 0 0 0
0 0 0 0
T 0 0 0
0 Q 0 0


 , (86)

where

Q =
[
1
0

]
, T =

[
x y

1 0

]
, (87)

and by the corresponding correction of dependent blocks. (Pv is a Weyr matrix
that is similar toJ1(a)⊕ J3(aI2).) We prove thatP(x, y) satisfies condition (ii) of
Theorem 3.1. Let(W,B) be a canonical pair ofm×mmatrices under simultaneous
similarity, putK = P(W,B) and denote bȳQ andT̄ the blocks ofK that correspond
to Q andT. It suffices to show thatK is a canonical matrix.
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Step 2(A construction ofK1, . . . ,Kv1). The boxesM1, . . . ,Mv of M become the
boxesK1, . . . ,Kv of K.

Let us consider the algebrāK−1 for the matrixK. For eachS ∈ K̄−1, its .-blocks
satisfy system (83). So we may chooseS1, . . . , St ∈ {S.

ij | i < j } (on the same places
as forK−1) that are arbitrary and the otherS.

ij (i < j) are their linear combinations.

A matrix S ∈ K̄−1 belongs toK̄0 if and only if the matrixS.

11 = S.

22 = · · · (see (82))
commutes withKv , that is,

S.

11 = S.

22 = · · · = S.

ee =



A0 B2 A1 A2

B0 0 B1
A0 A1

0 A0


 (88)

by (86) and by analogy with Example 1.4.
The first nonzero freev-block of K that is not contained inK1 ∪ · · · ∪Kv is Q̄

(see (87)). Thev-blocks that preceedinḡQ and are not contained inK1 ∪ · · · ∪Kv
are the boxesKv+1, . . . ,Kv1−1 for a certainv1 ∈ N.

The blockQ̄ is reduced by the transformations

K 7−→ K ′ = SKS−1, S ∈ K̄
∗
0, (89)

with the matrixK; these transformations preserve the boxesK1, . . . ,Kv of K. Each
.-strip of P(x, y) consists of seven rows or columns (sincePv ∈ k7×7, see (86));
they become thesubstripsof the corresponding.-strip of K. Denote byCij , K̂ ′

ij ,

K̂ij (respectivelyDij ) the matrices that are obtained fromS.

ij , K
ø′
ij , K

.

ij (respec-
tively K.

ij ) by elimination of the first five horizontal (respectively, horizontal and

vertical) sub-strips; note that̄Q is contained in the remaining sixth and seventh sub-
strips ofK.

ζη. Eq. (72) implies (73). Since allK.

ij < K.

ζη are upper triangular,
Eq. (73) implies (74).

Equality (74) takes the form (75), whereC1, . . . , Ct are the corresponding parts

of S1, . . . , St ; fw+1,j are the same as in (84) andC
fw+1,j
j is defined by (42) with

L = aI2m (a part ofKv) andR = Kv .
By (44) and (85),

C
fw+1,1
1 + · · · + C

fw+1,t
t = Cx−y;

by (75),

Cx−y = CζζK
.

ζη − K̂ ′
ζηS

.

ηη. (90)

As follows from the form of the second matrix in (86) and from (88),

S.

ζζK
.

ζη −Kø′
ζηS

.

ηη =




∗ ∗ ∗ ∗
∗ ∗ ∗

A0T̄ − T̄ ′A0 ∗ ∗ ∗
0 A0Q̄− Q̄′B0 0 ∗


 . (91)
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Looking at the form of the matrixKv (see (86)), we have

KvD −DKv =




∗ ∗ ∗ ∗
∗ ∗ ∗

D41 ∗ ∗ ∗
0 0 −D41 ∗


 (92)

for an arbitrary block matrixD = [Dij ]. So equality (90) can be presented in the
form [

0 0 −D41 ∗] = [
0 A0Q̄− Q̄′B0 0 ∗] , (93)

whereC = [D41 D42 D43 D44]. It followsA0Q̄− Q̄′B0 = 0 andQ̄′ = A0Q̄B
−1
0 .

Therefore, the block̄Q is reduced by elementary transformations. SinceQ̄ = [
I
0

]
is

canonical,Kv1 := Q̄ is a box.

Step 3(A construction ofKv1+1, . . . ,Kv2). The partition intov1-strips coincides
with the partition into substrips. So thev1-blocks are the sub-blocks ofK correspond-
ing to the entries ofP. The first nonzero free sub-block ofK that is not contained in
K1 ∪ · · · ∪Kv1 is T̄21 = Im from T̄ = [T̄ij ]2i,j=1. The sub-blocks that preceeding

T̄21 and are not contained inK1 ∪ · · · ∪Kv1 are the boxesKv1+1, . . . ,Kv2−1 for a
certainv2 ∈ N.

Let a transformation (89) preserve the boxesK1, . . . ,Kv2−1. Denote byCij , K̂ ′
ij ,

K̂ij (respectively,Dij ) the matrices that are obtained fromS.

ij ,K
ø′
ij , K

.

ij (respec-
tively K.

ij ) by elimination of the first four horizontal (respectively, horizontal and

vertical) substrips; note that̄T21 = Im is contained in the fifth horizontal substrip of
K.

ζη. LetC1, . . . , Ct be the corresponding parts ofS1, . . . , St . Similar to Step 2, we
have equalities (75) and (90). As follows from (91) and (92), equality (90) may be
presented in the form[

(D41)2 ∗ ∗ ∗
0 0 −D41 ∗

]

=
[
(A0T̄ − T̄ ′A0)2 ∗ ∗ ∗

0 A0Q̄− Q̄′B0 0 ∗

]
(94)

(compare with (93)), where(D41)2 and(A0T̄ − T̄ ′A0)2 are the lower substrips of
D41 andA0T̄ − T̄ ′A0. It follows thatA0Q̄− Q̄′B0 = 0,D41 = 0, and so(A0T̄ −
T̄ ′A0)2 = 0. ButQ̄ = Q̄′ = [

I
0

]
. Hence

A0 =
[
A11 A12

0 A22

]
, (95)

and we haveA22T̄21 − T̄ ′
21A11 = 0. SoT̄21 is reduced by equivalence transforma-

tions. Therefore,̄T21 = Im is canonical andKv2 = T̄21 = Im.
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Step 4(A construction ofKv2, Kv2+1, . . .). The partition intov2-strips coincides
with the partition into substrips. The first nonzero free subblock ofK that is not
contained inK1 ∪ · · · ∪Kv2 is T̄11 = W from T̄ . The sub-blocks that preceeding
T̄11 and are not contained inK1 ∪ · · · ∪Kv2 are the boxesKv2+1, . . . ,Kv3−1 for a
certainv3 ∈ N.

Let a transformation (89) preserve the boxesK1, . . . ,Kv3−1. Denote byCij , K̂ ′
ij ,

K̂ij (respectively,Dij ) the matrices that are obtained fromS.

ij , K
ø′
ij , K

.

ij (respec-
tively K.

ij ) by elimination of the first three horizontal (respectively, horizontal and
vertical) substrips. In this case, instead of (94) we get the equality[

D41 ∗ ∗ ∗
0 0 −D41 ∗

]
=
[
A0T̄ − T̄ ′A0 ∗ ∗ ∗

0 A0Q̄− Q̄′B0 0 ∗
]
.

So A0T̄ − T̄ ′A0 = 0, whereA0 is of form (95). Since[T̄21 T̄22] = [T̄ ′
21 T̄

′
22] =

[Im 0m], we haveA11 = A22 andA12 = 0, and soA11T̄11 − T̄ ′
11A11 = 0 andT̄11

is reduced by similarity transformations. SinceT̄11 = W is a Weyr matrix, it is
canonical andKv3 = W .

Furthermore,A11T̄12 − T̄ ′
12A11 = 0, whereA11 commutes withW . HenceT̄12 =

B is canonical too. It proves thatK is a canonical matrix.

3.4. Proof of Theorem 3.1 for tame problems

In this section, we consider a matrix problem given by(C, M) for which there
exists no semi-parametric canonical matrixM having a free boxMq /= ∅ with prop-
erty (49). Our purpose is to prove that the matrix problem satisfies condition (i) of
Theorem 3.1.

Let n be a step-sequence. By Remark 2.1, the number of parametric canonical
n× n matrices is finite. LetM be a parametric canonicaln× n matrix and one of
its parameters is a finite parameterλ; that is, the set ofλ-components in the domain
of parameters is a finite set{a1, . . . , ar }. Puttingλ = a1, . . . , ar givesr semi-para-
metric canonical matrices. Repeating this procedure, we obtain a finite number of
semi-parametric canonicaln× n matrices having only infinite parameters or having
no parameters.

Let M be an indecomposable semi-parametric canonicaln× n matrix that has
no finite parameters but has infinite parameters, and letMv be the first among its
boxes with parameters (thenMv is free). By property (49), if av-strip is linked
with a v-strip containing a parameterλ from Mv , then it does not contain a free
boxMi > Mv such thatMi /= ∅. SinceM is indecomposable, it follows that all itsv-
strips are linked, all free boxesMi > Mv are equal to∅, andMv = Jm(λ). Hence, all
freev-blocks exceptingMv are scalar matrices andM = L(Jm(λ)), whereL(λ) =
[aij + λbij ] is a semi-parametric canonical matrix with a free 1× 1 boxMv = [λ]
and all free boxes after it are 1× 1 matrices of the form∅.
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LetDm ⊂ k be the domain of parameters ofM. By property (49),Dm is a cofinite
subset (i.e.k \ Dm is finite).

If a 6∈ Dm, then the matrixM(a) is canonical and there exists a free boxMq >

Mv such thatMq /= ∅. This boxMq is the zero 1× 1 matrix. SinceM is indecompos-
able, all its rows and columns are linked. SoMq is reduced by similarity transforma-
tions. Replacing it by the parametric box[µ], we obtain a straight line of indecom-
posable canonical matrices that intersects{M(λ) | λ ∈ k} at the pointM(a). Hence,
eachM(a), a 6∈ Dm, is a point of intersection of{M(λ) | λ ∈ k} with a straight line
of indecomposable canonical matrices.

Let M(a), a ∈ Dm, be a point of intersection too; that is, there exists a line
{N(µ) |µ ∈ k} of indecomposable canonical matrices such thatM(a) = N(b) for
a certainb ∈ k. ThenM(λ) has a free boxMu (u < v) that is a Weyr matrix,b is
its eigenvalue, andN(µ) is obtained fromM(a) by replacement ofb with µ. Since
M(λ) andN(µ) coincide onM1 ∪ · · · ∪Mu−1, Mu = Nu for µ = b. By analogy
with the structure ofM(λ), all free boxesNi > Nu are zero. HenceMv = 0 if λ = a.
SinceMv = Jm(λ),M(a) with a ∈ Dm can be a point of intersection only ifm = 1
andλ = 0.

Replacingmby an arbitrary integern gives a new semi-parametric canonical ma-
trix L(Jn(λ)) with the domain of parametersDn. To prove that condition (i) of The-
orem 3.1 holds, it suffices to show thatDm = Dn. Moreover, it suffices to show that
Dm = D1.

Let first a ∈ D1. By analogy with Section 3.3.3, under the.-partition we mean
the partition into(v − 1)-strips. Thena ∈ Dm if and only if all free.-blocks after
Mv inM(a) are∅. The.-blocks of everyS ∈ K∗−1 (see Section 3.3.3) satisfy system
(82) ∪ (83), whereclij do not depend onm anda. Solving system (83), we choose
S1, . . . , St ∈ {S.

ij | i < j } such that they are arbitrary and the otherS.

ij (i < j) are
their linear combinations.

Let F1 < F2 < · · · < Fδ be the sequence of all freeM.

ij 6⊂ M1 ∪ · · · ∪Mv and
let K be obtained fromM by replacingF1, . . . , Fδ with arbitrarym×m matri-
cesG1, . . . ,Gδ. To prove thata ∈ Dm, we must show thatF1 = · · · = Fδ = ∅ for
M(a); that is, there existsS ∈ K∗

0 such thatG′
1 = · · · = G′

δ = 0 in K ′ := SKS−1.
It suffices to consider the caseG1 = · · · = Gq−1 = 0 /= Gq (q ∈ {1, . . . , δ}) and to
show that there existsS ∈ K∗−1 with S.

11 = S.

22 = · · · = Im (thenS ∈ K∗
0) such that

G′
1 = · · · = G′

q−1 = G′
q = 0. It means that the.-blocksS1, . . . , St of Ssatisfy the

system of equations that is obtained by equating inK ′S = SK the blocks on the
places ofG1, . . . ,Gq :

S
fl1
1 + · · · + S

flt
t = 0, l = 1, . . . , q − 1, (96)

S
fq1
1 + · · · + S

fqt
t = Gϕq , (97)

whereϕ(a, a) /= 0 andS
fij
j is defined by (42) withL = R = Jm(a). Note that the

polynomialsfij are the same for allm ∈ N anda.
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Taking 1 instead ofm, we obtain the system

fl1(a, a)s1 + · · · + flt (a, a)st = 0, l = 1, . . . , q − 1,

fq1(a, a)s1 + · · · + fqt (a, a)st = g.

Sincea ∈ D1, this system is solvable with respect tos1, . . . , st for all g ∈ k. It holds
for all q, so the rows ofF := [fij (a, a)] are linearly independent.

Let Sr = [s(r)ij ]mi,j=1 andGϕq = [gij ]mi,j=1. SinceL = R = Jm(a), the system ofq

matrix equations (96)∪ (97) is equivalent to them2 systems ofq linear equations
relatively to the entries ofS1, . . . , St , each of them is obtained by equating the(i, j)
entries for the correspondingi, j ∈ {1, . . . ,m} and has the form:

fl1(a, a)s
(1)
ij + · · · + flt (a, a)s

(t)
ij = d

(l)
ij , l = 1, . . . , q, (98)

whered(l)ij is a linear combination ofs(1)
i′j ′ , . . . , s

(t)

i′j ′ , (i ′, j ′) ∈ {(1, j), . . . , (i − 1, j)}
∪ {(i, j + 1), (i, j+2), . . .}, and (only ifl=q) gij . Since the rows ofF =[fij (a, a)]
are linearly independent, system (98) for(i, j) = (m,1) is solvable. Lets̄m1 =
(s̄
(1)
m1, . . . , s̄

(t)
m1) be its solution. Knowinḡsm1, we calculated(l)m−1,1 and d(l)m2, then

solve system (98) for(i, j) = (m− 1,1) and for(i, j) = (m,2). We next calculate
d
(l)
ij , i − j = m− 2, and solve (98) for(i, j) = (m− 2,1), (m− 1,2), (m,3), and

so on, until we obtain a solution̄S1, . . . , S̄t of (96), a contradiction. Hencea ∈ Dm,
which clearly impliesa ∈ D1. It proves Theorem 3.1.

Remark 3.1. We can give a more precise description of the set of canonical matrices
based on the proof of Theorem 3.1. For simplicity, we restrict ourselves to the case
M = kt×t .

Namely, a linear matrix problem given by a pair(C, kt×t ) satisfies one and only
one of the following two conditions (respectively, is of tame or wild type):
(i) For every step-sequencen, there exists a finite set of semi-parametric canonical
n× n matricesMn,i(λ), i = 1, . . . , tn, whose domains of parametersDn,i are
cofinite subsets ink and
(a) for everym > 1, Mn,i(Jm(λ)) is a semi-parametric canonical matrix with

the same domain of parametersDn,i and the following partition into box-
es: Jm(λ) is a box, all boxes preceeding it are the scalar matricesB1 ⊗
Im, . . . , Bl ⊗ Im (whereB1, . . . , Bl are the boxes ofMn,i(λ) preceeding
[λ]), and all boxes after it are the 1× 1 matrices∅;

(b) for everyn′, the set of matrices of the formMn,i(Jm(a)),mn = n′, a ∈ Dn,i ,
is a cofinite subset in the set of indecomposable canonicaln′ × n′ matrices.

(ii) There exists a semi-parametric canonicaln× n matrix P(α, β) (in which two
entries are the parametersα andβ and the other entries are elements ofk) such
that
(a) two pairs ofm×m matrices(A,B) and(C,D) are similar if and only if

P(A,B) ' P(C,D); moreover,
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(b) a pair ofm×m matrices(A, B) is canonical under similarity (see Defini-
tion 1.4) if and only if themn×mn matrixP(A, B) is canonical.
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