On the base problem for the polynomial identities of matrix algebras*

Alexey Kuz'min

Since 1950, the Amitsur-Levitzki Theorem [1]-[7] is known: the minimal polynomial identity for the algebra $M_{n}(F)$ of $n \times n$ matrices over a field F of characteristic 0 is the standard polynomial

$$
\operatorname{st}_{2 n}=\sum_{\sigma \in \mathrm{S}_{2 n}} \operatorname{sgn}(\sigma) x_{\sigma(1)} x_{\sigma(2)} \ldots x_{\sigma(2 n)},
$$

where S_{k} is the group of permutations on the elements $\{1,2, \ldots, k\}$ and $\operatorname{sgn}(\sigma)=\left\{\begin{array}{r}1, \text { if } \sigma \text { is even, } \\ -1, \text { if } \sigma \text { is odd. }\end{array}\right.$ In 1973, Ju. P. Razmyslov [8] provided the 9 polynomials forming a base for identities of $M_{2}(F)$. V. S. Drensky [9] reduced the Razmyslov's base up to 2 polynomials. However, the problem on finding a base for polynomial identities of $M_{n}(F)(n \geqslant 3)$ is still open and there is no solution in sight, even for $n=3$. Actually, we only know [10, 11] that all the identities of $M_{3}(F)$ of degree $d \leqslant 8$ follow from st ${ }_{6}$.

In this talk, we consider an embedding of $M_{n}(F)$ into a \mathbb{Z}_{n}-graded associative ring $A^{(n)}$ obtained as a quotient ring $A^{(n)}=R[x, \varphi] /\left(x^{n}-1\right)$ for a ring $R[x, \varphi]$ of (associative but not commutative) skew-polynomials on one variable x over a free associative commutative ring R with an automorphism $\varphi: R \mapsto R$. We present some results on the connections between the polynomial identities of $M_{n}(F)$ and $A^{(n)}$. We also formulate some problems on the identities of $A^{(n)}$ related naturally with $M_{n}(F)$.

References

[1] A. S. Amitsur, J. Levitzki, Minimal identities for algebras, Proc. Am. Math. Soc. 1 (1950), 449-463.

[^0][2] B. Kostant, A theorem of Frobenius, a theorem of Amitsur-Levitski and cohomology theory, J. Math. Mech. 7 (1958), 237-264.
[3] R. G. Swan, An application of graph theory to algebra, Proc. Am. Math. Soc. 14 (1963), 367-373.
[4] Ju. P. Razmyslov, Identities with trace in full matrix algebras over a field of characteristic zero, Math. USSR, Izv. 8 (1975), 727-760.
[5] S. Rosset, A new proof of the Amitsur-Levitski identity, Isr. J. Math. 23 (1976), 187-188.
[6] J. Szigeti, Z. Tuza, G. Revesz, Eulerian polynomial identiies on matrix rings, J. Algebra 161 (1993), 90-101.
[7] C. Procesi, On the theorem of Amitsur-Levitski, Isr. J. Math. 207 (2015), 151-154.
[8] Ju. P. Razmyslov, Finite basing of the identities of a matrix algebra of second order over a field of characteristic 0, Algebra Logic 12 (1974), 47-63.
[9] V. S. Drensky, A minimal basis of identities for a second-order matrix algebra over a field of characteristic 0, Algebra Logic 20 (1982), 188-194.
[10] V. S. Drensky, A. Kasparian, Polynomial identities of eighth degree for 3×3 matrices, God. Sofij. Univ., Fak. Mat. Mekh. 77 (1988), 175-195.
[11] S. Bondari, Constructing the polynomial identities and central identities of degree <9 of 3×3 matrices, Linear Algebra Appl. 258 (1997), 233-249.

[^0]: *Supported by the Capes-PPgMAE program of the Federal University of Rio Grande do Norte (UFRN)

