On the base problem for the polynomial identities of matrix algebras

Alexey Kuz‘min

Since 1950, the Amitsur-Levitzki Theorem [1]–[7] is known: the minimal polynomial identity for the algebra $M_n(F)$ of $n \times n$ matrices over a field F of characteristic 0 is the standard polynomial

$$st_{2n} = \sum_{\sigma \in S_{2n}} \text{sgn}(\sigma) x_{\sigma(1)} x_{\sigma(2)} \ldots x_{\sigma(2n)},$$

where S_k is the group of permutations on the elements \{1, 2, \ldots, k\} and \(\text{sgn}(\sigma) = \begin{cases} 1, & \text{if } \sigma \text{ is even;} \\ -1, & \text{if } \sigma \text{ is odd.} \end{cases}\)

In 1973, Ju. P. Razmyslov [8] provided the 9 polynomials forming a base for identities of $M_2(F)$. V. S. Drensky [9] reduced the Razmyslov’s base up to 2 polynomials. However, the problem on finding a base for polynomial identities of $M_n(F)$ $(n \geq 3)$ is still open and there is no solution in sight, even for $n = 3$. Actually, we only know [10, 11] that all the identities of $M_3(F)$ of degree $d \leq 8$ follow from st_6.

In this talk, we consider an embedding of $M_n(F)$ into a \mathbb{Z}_n-graded associative ring $A^{(n)}$ obtained as a quotient ring $A^{(n)} = R[x, \varphi]/(x^n - 1)$ for a ring $R[x, \varphi]$ of (associative but not commutative) skew-polynomials on one variable x over a free associative commutative ring R with an automorphism $\varphi : R \rightarrow R$. We present some results on the connections between the polynomial identities of $M_n(F)$ and $A^{(n)}$. We also formulate some problems on the identities of $A^{(n)}$ related naturally with $M_n(F)$.

References

*Supported by the Capes–PPgMAE program of the Federal University of Rio Grande do Norte (UFRN)
[2] B. Kostant, A theorem of Frobenius, a theorem of Amitsur-Levitski and co-

[4] Ju. P. Razmyslov, Identities with trace in full matrix algebras over a field of

(1976), 187–188.

151–154.

[8] Ju. P. Razmyslov, Finite basing of the identities of a matrix algebra of
second order over a field of characteristic 0, *Algebra Logic* 12 (1974),
47–63.

[9] V. S. Drensky, A minimal basis of identities for a second-order matrix

[10] V. S. Drensky, A. Kasparian, Polynomial identities of eighth degree for

[11] S. Bondari, Constructing the polynomial identities and central identi-
ties of degree < 9 of 3 × 3 matrices, *Linear Algebra Appl.* 258 (1997),
233–249.