AN INTRODUCTION TO REPRESENTATION THEORY.

2. Lecture 2. IRREDUCible and indecomposable representations. Density theorem.

2.1. Indecomposable representations and density theorem.

Definition 1. A direct sum of two representations V_{1} and V_{2} of an algebra A is a representation $V_{1} \oplus V_{2}$ with the action $\rho(x, y)=\rho_{1}(x) \oplus \rho_{2}(y)$.
Definition 2. A nonzero representation V of an algebra A is said to be indecomposable if it is not isomorphic to a direct sum of two nonzero representations.

If a representation is irreducible representation then it is indecomposable. The converse is false in general (see in examples).
Definition 3. A semisimple representation of A is a direct sum of of simple (irreducible) representations.

Example 1. Some examples:
(1) Assume that $V_{1}=k$ is one-dimensional representation of k. Then $V_{1} \oplus V_{1}$ is $k \oplus k$ with

$$
\rho: x \mapsto\left(\begin{array}{cc}
x & 0 \\
0 & x
\end{array}\right), \quad x \in k
$$

(2) Let $V=k^{2}$ be a representation of $k[x]$ given by

$$
\rho: x \mapsto\left(\begin{array}{cc}
x & 1 \\
0 & x
\end{array}\right), \quad x \in k .
$$

This representation is indecomposable but not irreducible (the subspace $\{(x, 0) \mid x \in$ $k\}$ is invariant). In particular it is not semi-simple.
(3) Let V be an irreducible representation of A of dimension n. Then $Y=\operatorname{End}(V)$, with action of A by left multiplication, is a semisimple representation of A, isomorphic to $n V$ (the direct sum of n copies of V). Indeed, any basis v_{1}, \ldots, v_{n} of V gives rise to an isomorphism of representations $\operatorname{End}(V) \rightarrow n V$, given by $x \mapsto\left(x v_{1}, \ldots, x v_{n}\right)$.

Let us discuss the case $A=k[x]$. Since this algebra is commutative, the irreducible representations of A are always 1 -dimensional representations $\rho(x)=\lambda \in k$.

The classification of indecomposable representations of $k[x]$ is more interesting. Recall that any linear operator on a finite dimensional vector space V can be reduced to Jordan normal form. More specifically, recall that the Jordan block $J_{\lambda, n}$ is the operator on k^{n} which in the standard basis is given by the formulas $J_{\lambda, n} e_{i}=\lambda e_{i}+e_{i-1}$ for $i>1$, and
$J_{\lambda, n} e_{1}=\lambda e_{1}$. Then for any linear operator $B: V \rightarrow V$ there exists a basis of V such that the matrix of B in this basis is a direct sum of Jordan blocks. This implies that all the indecomposable representations of A are $V_{\lambda, n}=k^{n}, \lambda \in k$, with $\rho(x)=J_{\lambda, n}$. The fact that these representations are indecomposable and pairwise non-isomorphic follows from the Jordan normal form theorem (which in particular says that the Jordan normal form of an operator is unique up to permutation of blocks).

Proposition 1. Let V_{i}, \ldots, V_{m} be irreducible finite dimensional pairwise nonisomorphic representations of A, and W be a subrepresentation of $V=\oplus_{i=1}^{m} n_{i} V_{i}$. Then W is isomorphic to $\oplus_{i=1}^{m} r_{i} V_{i}, r_{i} \leq n_{i}$, and the inclusion $\varphi: W \rightarrow V$ is a direct sum of inclusions $\varphi_{i}: r_{i} V_{i} \rightarrow n_{i} V_{i}$ given by multiplication of a row vector of elements of V_{i} (of length r_{i}) by a certain r_{i}-by- n_{i} matrix X_{i} with linearly independent rows: $\varphi\left(v_{1}, \ldots, v_{r_{i}}\right)=\left(v_{1}, \ldots, v_{r_{i}}\right) X_{i}$.

Proof. The proof is by induction in $n:=\sum_{i=1}^{m} n_{i}$. The base of induction $(n=1)$ is clear. To perform the induction step, let us assume that W is nonzero, and fix an irreducible subrepresentation $P \subset W$. Recall that such P exists. By Schurfs lemma, P is isomorphic to V_{i} for some i, and the inclusion $\varphi: P \rightarrow V$ factors through $n_{i} V_{i}$, and after the identification of P with V_{i} is given by the formula $v \mapsto\left(v q_{1}, \ldots, v q_{n_{i}}\right)$, where $q_{l} \in k$ are not all zero.

Now note that the group $G_{i}=G L_{n_{i}}(k)$ of invertible n_{i}-by- n_{i} matrices over k acts on $n_{i} V_{i}$ by $\left(v_{1}, \ldots, v_{n_{i}}\right) \mapsto\left(v_{1}, \ldots, v_{n_{i}}\right) g_{i}$ (and by the identity on $n_{j} V_{j}, j \neq i$), and therefore acts on the set of subrepresentations of V, preserving the property we need to establish: namely, under the action of g_{i}, the matrix X_{i} goes to $X_{i} g_{i}$, while $X_{j}, j \neq$ i don't change. Take $g_{i} \in G_{i}$ such that $\left(q_{1}, \ldots, q_{n_{i}}\right) g_{i}=(1,0, \ldots, 0)$. Then $W_{g_{i}}$ contains the first summand V_{i} of $n_{i} V_{i}$ (namely, it is $P g_{i}$), hence $W g_{i}=V_{i} \oplus W^{\prime}$, where $W^{\prime} \subset n_{1} V_{1} \oplus \ldots n_{m} V_{m}$ is the kernel of the projection of $W g_{i}$ to the first summand V_{i} along the other summands. Thus the required statement follows from the induction assumption.

Corollary 2. Let V be an irreducible finite dimensional representation of A, and $v_{1}, \ldots, v_{n} \in V$ be any linearly independent vectors. Then for any $w_{1}, \ldots, w_{n} \in V$ there exists an element $a \in A$ such that $a v_{i}=w_{i}$.

Proof. Assume the contrary. Then the image of the map $A \rightarrow n V$ given by $a \mapsto$ $\left(a v_{1}, \ldots, a v_{n}\right)$ is a proper subrepresentation, it corresponds to an r-by- n matrix X , $r<n$. Thus, taking $a=1$, we see that there exist vectors $u_{1}, \ldots, u_{r} \in V$ such that $\left(u_{1}, \ldots, u_{r}\right) X=\left(v_{1}, \ldots, v_{n}\right)$. Let $\left(q_{1}, \ldots, q_{n}\right)$ be a nonzero vector such that $X\left(q_{1}, \ldots, q_{n}\right) T=0$ (it exists because $r<n$). Then $\sum q_{i} v_{i}=\left(u_{1}, \ldots, u_{r}\right) X\left(q_{1}, \ldots, q_{n}\right) T=$ 0 , i.e. $P q_{i} v_{i}=0-$ a contradiction with the linear independence of v_{i}.

Theorem 3. (the Density Theorem).
(i) Let V be an irreducible finite dimensional representation of A. Then the map $\rho: A \rightarrow \operatorname{End} V$ is surjective.
(ii) Let $V=V_{1} \oplus \cdots \oplus V_{r}$, where V_{i} are irreducible pairwise nonisomorphic finite dimensional representations of A. Then the map $\oplus_{i=1}^{r} \rho_{i}: A \rightarrow \oplus_{i=1}^{r} \operatorname{End}\left(V_{i}\right)$ is surjective.

Proof. (i) Let B be the image of A in $\operatorname{End}(V)$. Our aim is to show that $B=\operatorname{End}(V)$. Let $c \in \operatorname{End}(V), v_{1}, \ldots, v_{n}$ be a basis of V, and $w_{i}=c v_{i}$. By Corollary 2, there exists $a \in A$ such that $a v_{i}=w_{i}$. Then $\rho(a)=c$, so $c \in B$, and we are done.
(ii) Let B_{i} be the image of A in $\operatorname{End}(V)$, and B be the image of A in $\oplus_{i=1}^{r} \operatorname{End}\left(V_{i}\right)$. Recall that as a representation of $\mathrm{A}, \oplus_{i=1}^{r} \operatorname{End}\left(V_{i}\right)$ is semisimple: it is isomorphic to $\oplus_{i=1}^{r} d_{i} V_{i}$, where $d_{i}=\operatorname{dim} V_{i}$. Then by Proposition $2.2, B=\oplus_{i} B_{i}$. On the other hand, (i) implies that $B_{i}=\operatorname{End}\left(V_{i}\right)$. Thus (ii) follows.

2.2. Direct sum of matrix algebras.

Definition 4. Let A be an algebra, then it is dual $A^{o p}=a \in A$ is an algebra with multiplication $a \cdot b=b a$.

Definition 5. (Dual representation) Let V be a representation of any algebra A. Then the dual representation V is the representation of the opposite algebra $A^{o p}$ with the action

$$
\rho: a \mapsto \phi_{a} \in \operatorname{End}\left(V^{*}\right), \quad \phi_{a}(f(v))=f(a v) .
$$

Direct sum of matrix algebras is an algebra $A=\oplus_{i=1}^{r} \operatorname{Mat}_{d_{i}}(k)$.
Theorem 4. Let $A=\oplus_{i=1}^{r} \operatorname{Mat}_{d_{i}}(k)$. Then the irreducible representations of A are $V_{1}=k^{d_{1}}, \ldots, V_{r}=k^{d_{r}}$ and any finite dimensional representation of A is a direct sum of copies of V_{1}, \ldots, V_{r}.

Proof. First, the given representations are clearly irreducible, as for any $v \neq 0, w \in V_{i}$, there exists $a \in A$ such that $a v=w$. Next, let X be an n-dimensional representation of A. Then, X^{*} is an n-dimensional representation of $A^{o p}$. But $\left(\operatorname{Mat}_{d_{i}}(k)\right)^{o p} \cong \operatorname{Mat}_{d_{i}}(k)$ with isomorphism $\varphi(X)=X^{T}$, as $(B C)^{T}=C^{T} B^{T}$. Thus, $A \cong A^{o p}$ and X^{*} may be viewed as an n-dimensional representation of A. Define

$$
\varphi: \oplus_{i=1}^{n} A \mapsto X^{*}
$$

by

$$
\varphi\left(a_{1}, \ldots, a_{n}\right)=a_{1} y_{1}+\cdots+a_{n} y_{n}
$$

where $\{y i\}$ is a basis of $X^{*} . \varphi$ is clearly surjective, as $k \subset A$. Thus, the dual map $\varphi^{*}: X \rightarrow A^{n *}$ is injective. But $A^{n *} \cong A^{n}$ as representations of A (check it!). Hence, $\operatorname{Im} \varphi^{*} \cong X$ is a subrepresentation of A^{n}. Also, $\operatorname{Mat}_{d_{i}}(k)=d_{i} V_{i}$, so $A=\oplus_{i=1}^{r} d_{i} V_{i}, A^{n}=$ $\oplus_{i=1}^{r} n d_{i} V_{i}$, as a representation of A. Hence $X=\oplus_{i=1}^{r} m_{i} V_{i}$.

Home work.

(1) Let $A=\mathbb{C}[G]$ be a group algebra of a finite group G. Show that a representation V of A is indecomposable if and only if it is irreducible.

