
AN INTRODUCTION TO REPRESENTATION THEORY.

2. Lecture 2. Irreducible and indecomposable representations.
Density theorem.

2.1. Indecomposable representations and density theorem.

Definition 1. A direct sum of two representations V1 and V2 of an algebra A is a
representation V1 ⊕ V2 with the action ρ(x, y) = ρ1(x)⊕ ρ2(y).

Definition 2. A nonzero representation V of an algebra A is said to be indecomposable
if it is not isomorphic to a direct sum of two nonzero representations.

If a representation is irreducible representation then it is indecomposable. The converse
is false in general (see in examples).

Definition 3. A semisimple representation of A is a direct sum of of simple (irre-
ducible) representations.

Example 1. Some examples:

(1) Assume that V1 = k is one-dimensional representation of k. Then V1 ⊕ V1 is
k ⊕ k with

ρ : x 7→
(
x 0
0 x

)
, x ∈ k

(2) Let V = k2 be a representation of k[x] given by

ρ : x 7→
(
x 1
0 x

)
, x ∈ k.

This representation is indecomposable but not irreducible (the subspace {(x, 0) | x ∈
k} is invariant). In particular it is not semi-simple.

(3) Let V be an irreducible representation of A of dimension n. Then Y = End(V ),
with action of A by left multiplication, is a semisimple representation of A,
isomorphic to nV (the direct sum of n copies of V ). Indeed, any basis v1, . . . , vn
of V gives rise to an isomorphism of representations End(V ) → nV , given by
x 7→ (xv1, . . . , xvn).

Let us discuss the case A = k[x]. Since this algebra is commutative, the irreducible
representations of A are always 1-dimensional representations ρ(x) = λ ∈ k.

The classification of indecomposable representations of k[x] is more interesting. Recall
that any linear operator on a finite dimensional vector space V can be reduced to Jordan
normal form. More specifically, recall that the Jordan block Jλ,n is the operator on kn

which in the standard basis is given by the formulas Jλ,nei = λei + ei−1 for i > 1, and
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Jλ,ne1 = λe1. Then for any linear operator B : V → V there exists a basis of V such
that the matrix of B in this basis is a direct sum of Jordan blocks. This implies that
all the indecomposable representations of A are Vλ,n = kn, λ ∈ k, with ρ(x) = Jλ,n.
The fact that these representations are indecomposable and pairwise non-isomorphic
follows from the Jordan normal form theorem (which in particular says that the Jordan
normal form of an operator is unique up to permutation of blocks).

Proposition 1. Let Vi, . . . , Vm be irreducible finite dimensional pairwise nonisomor-
phic representations of A, and W be a subrepresentation of V = ⊕mi=1niVi. Then W
is isomorphic to ⊕mi=1riVi, ri ≤ ni, and the inclusion ϕ : W → V is a direct sum
of inclusions ϕi : riVi → niVi given by multiplication of a row vector of elements
of Vi (of length ri) by a certain ri-by-ni matrix Xi with linearly independent rows:
ϕ(v1, . . . , vri) = (v1, . . . , vri)Xi.

Proof. The proof is by induction in n :=
∑m

i=1 ni. The base of induction (n = 1) is
clear. To perform the induction step, let us assume that W is nonzero, and fix an
irreducible subrepresentation P ⊂ W . Recall that such P exists. By Schurfs lemma,
P is isomorphic to Vi for some i, and the inclusion ϕ : P → V factors through niVi,
and after the identification of P with Vi is given by the formula v 7→ (vq1, . . . , vqni

),
where ql ∈ k are not all zero.

Now note that the group Gi = GLni
(k) of invertible ni-by-ni matrices over k acts

on niVi by (v1, . . . , vni
) 7→ (v1, . . . , vni

)gi (and by the identity on njVj, j 6= i), and
therefore acts on the set of subrepresentations of V , preserving the property we need
to establish: namely, under the action of gi, the matrix Xi goes to Xigi, while Xj, j 6=
i don’t change. Take gi ∈ Gi such that (q1, . . . , qni

)gi = (1, 0, . . . , 0). Then Wgi

contains the first summand Vi of niVi (namely, it is Pgi), hence Wgi = Vi⊕W ′, where
W ′ ⊂ n1V1 ⊕ . . . nmVm is the kernel of the projection of Wgi to the first summand Vi
along the other summands. Thus the required statement follows from the induction
assumption. �

Corollary 2. Let V be an irreducible finite dimensional representation of A, and
v1, . . . , vn ∈ V be any linearly independent vectors. Then for any w1, . . . , wn ∈ V there
exists an element a ∈ A such that avi = wi.

Proof. Assume the contrary. Then the image of the map A → nV given by a 7→
(av1, . . . , avn) is a proper subrepresentation, it corresponds to an r-by-n matrix X,
r < n. Thus, taking a = 1, we see that there exist vectors u1, . . . , ur ∈ V such
that (u1, . . . , ur)X = (v1, . . . , vn). Let (q1, . . . , qn) be a nonzero vector such that
X(q1, . . . , qn)T = 0 (it exists because r < n). Then

∑
qivi = (u1, . . . , ur)X(q1, . . . , qn)T =

0, i.e. Pqivi = 0 - a contradiction with the linear independence of vi. �

Theorem 3. (the Density Theorem).

(i) Let V be an irreducible finite dimensional representation of A. Then the map
ρ : A→ EndV is surjective.
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(ii) Let V = V1 ⊕ · · · ⊕ Vr, where Vi are irreducible pairwise nonisomorphic finite
dimensional representations of A. Then the map ⊕ri=1ρi : A→ ⊕ri=1End(Vi) is
surjective.

Proof. (i) Let B be the image of A in End(V ). Our aim is to show that B = End(V ).
Let c ∈ End(V ), v1, . . . , vn be a basis of V , and wi = cvi. By Corollary 2, there exists
a ∈ A such that avi = wi. Then ρ(a) = c, so c ∈ B, and we are done.

(ii) Let Bi be the image of A in End(V ), and B be the image of A in ⊕ri=1End(Vi).
Recall that as a representation of A, ⊕ri=1End(Vi) is semisimple: it is isomorphic to
⊕ri=1diVi, where di = dimVi. Then by Proposition 2.2, B = ⊕iBi. On the other hand,
(i) implies that Bi = End(Vi). Thus (ii) follows. �

2.2. Direct sum of matrix algebras.

Definition 4. Let A be an algebra, then it is dual Aop = a ∈ A is an algebra with
multiplication a · b = ba.

Definition 5. (Dual representation) Let V be a representation of any algebra A. Then
the dual representation V is the representation of the opposite algebra Aop with the
action

ρ : a 7→ φa ∈ End(V ∗), φa(f(v)) = f(av).

Direct sum of matrix algebras is an algebra A = ⊕ri=1Matdi(k).

Theorem 4. Let A = ⊕ri=1Matdi(k). Then the irreducible representations of A are
V1 = kd1 , . . . , Vr = kdr and any finite dimensional representation of A is a direct sum
of copies of V1, . . . , Vr.

Proof. First, the given representations are clearly irreducible, as for any v 6= 0, w ∈ Vi,
there exists a ∈ A such that av = w. Next, let X be an n-dimensional representation of
A. Then, X∗ is an n-dimensional representation of Aop. But (Matdi(k))op ∼= Matdi(k)
with isomorphism ϕ(X) = XT , as (BC)T = CTBT . Thus, A ∼= Aop and X∗ may be
viewed as an n-dimensional representation of A. Define

ϕ : ⊕ni=1A 7→ X∗

by
ϕ(a1, . . . , an) = a1y1 + · · ·+ anyn,

where {yi} is a basis of X∗. ϕ is clearly surjective, as k ⊂ A. Thus, the dual map
ϕ∗ : X → An∗ is injective. But An∗ ∼= An as representations of A (check it!). Hence,
Imϕ∗ ∼= X is a subrepresentation of An. Also, Matdi(k) = diVi, so A = ⊕ri=1diVi, A

n =
⊕ri=1ndiVi, as a representation of A. Hence X = ⊕ri=1miVi. �

Home work.

(1) Let A = C[G] be a group algebra of a finite group G. Show that a representation
V of A is indecomposable if and only if it is irreducible.


