
AN INTRODUCTION TO REPRESENTATION THEORY.

1. Lecture 1. Basic facts and algebras and their representations.

1.1. What is representations theory? Representation theory studies abstract al-
gebraic structures by representing their elements as structures in linear algebras, such
as vectors spaces and linear transformations between them.

{
abstract algebraic

structures

}
=⇒

{
concrect objects in linear algebra

which ”respect” abstract structure

}
Abstract algebraic structures can be very different. The following structures we will
study on our seminars:

• groups;
• associative algebras;
• Lie algebras;
• quivers;
• posets.

On the other hand objects in linear algebra usually are:

• vector (unitary) spaces;
• transformations between them.

Why is it interesting?

There are basically several reasons. A representation makes an abstract algebraic ob-
ject more concrete by describing its elements by matrices and the algebraic operations
in terms of matrix addition and matrix multiplication. Hence representation theory
provides a powerful tool to reduce problems in abstract algebra to problems in linear
algebra (a subject of which is well understood). If a vector space is infinite-dimensional
(Hilbert space) then representation theory injects methods of functional analysis into
the (for example) group theory (if one studies representations of groups). So this theory
provides a bridge between different areas of mathematics.

What are typical questions?

The typical question is:

to classify all representations of a given abstract algebraic structure.
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For this one defines what are simple representation and what are isomorphic represen-
tations. In some cases it is possible to show the any representation is (in some sence)
a sum of simple ones. Hence the main question reduces to the following

to classify all simple (up to isomorphism) representations.

What are typical methods?

Roughly speaking, studying the representations of ”any” algebraic structure can be
reduced to studying the representations of certain associative algebra. For example

• repr. of groups ⇐⇒ repr. of group algebras;
• repr. of Lie algebras ⇐⇒ repr. of universal enveloping algebras;
• repr. of quivers ⇐⇒ repr. of path algebras;
• repr. of posets ⇐⇒ repr. of incidence algebras.
• so on...

So, roughly speaking, representation theory studies representations of associative alge-
bras.

Studying the representations of a given algebra is more or less the same as studying
modules over this algebra. So the theory of modules plays an important role in repre-
sentation theory. And in this sense the results in theory of modules are the results in
representation theory.

Today I will recall basic facts about associative algebras and will introduce basic con-
cepts about their representations.

1.2. Basic facts about associative algebras. Let k be a field. We will always
assume that k is algebraically closed. Our basic field will be the field of complex
numbers C, but we will also consider fields of characteristic p — the algebraic closure
Fp of the finite field Fp.

Definition 1. An associative algebra over k is a vector space A over k together with
a bilinear map A× A→ A, (a, b)→ ab, such that (ab)c = a(bc).

Definition 2. A unit in an associative algebra A is an element 1 ∈ A such that
1a = a1 = a.

Proposition 1. If a unit exists, it is unique.

Proof. Let 1, 1′ be two units. Then 1 = 11′ = 1′. �

Example 1. Some examples of algebras over k:

(1) A = k;
(2) A = k[x1, . . . , xn] — the algebra of polynomials in variables x1, . . . , xn;
(3) A = EndV – the algebra of endomorphisms of a vector space V over k (i.e.,

linear maps from V to itself). The multiplication is given by composition of
operators;
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(4) The free algebra A = k〈x1, . . . , xn〉. A basis of this algebra consists of words
in letters x1, . . . , xn, and multiplication in this basis is simply concatenation of
words;

(5) The group algebra A = k[G] of a group G. Its basis is {ag, g ∈ G}, with
multiplication law agah = agh.

An algebra A is commutative if ab = ba for all a, b ∈ A.

Question 1. Which algebras in preceding examples are comutative?

Definition 3. A homomorphism of algebras f : A → B is a linear map such that
f(xy) = f(x)f(y) for all x, y ∈ A, and f(1) = 1.

1.2.1. Ideal and Quotients. A left ideal of an algebra A is a subspace I ⊂ A such that
aI ⊂ I for all a ∈ A. Similarly, a right ideal of an algebra A is a subspace I ⊂ A such
that Ia ⊂ I for all a ∈ A. A two-sided ideal is a subspace that is both a left and a
right ideal.

Example 2. Some examples of ideals

(1) If A is any algebra, 0 and A are two-sided ideals. An algebra A is called simple
if 0 and A are its only two-sided ideals;

(2) If ϕ : A → B is a homomorphism of algebras, then ker is a two-sided ideal of
A.

(3) If S is any subset of an algebra A, then the two-sided ideal generated by S is
denoted 〈S〉 and is the span of elements of the form asb, where a, b ∈ A and
s ∈ S. Similarly we can define 〈S〉l = span{as} and 〈S〉r = span{sb} the left,
respectively right, ideal generated by S.

Let A be an algebra and I a two-sided ideal in A. Then A/I is the set of (additive)
cosets of I. Let π : A → A/I be the quotient map. We can define multiplication in
A/I by π(a)π(b) := π(ab). This is well defined. Indeed, if π(a) = π(a′) then

π(a′b) = π(ab+ (a′a)b) = π(ab) + π((a′a)b) = π(ab),

because (a′a)b ∈ Ib ⊂ I = kerπ, as I is a right ideal; similarly, if π(b) = π(b) then

π(ab′) = π(ab+ a(b′b)) = π(ab) + π(a(b′b)) = π(ab),

because a(b′b) ∈ aI ⊂ I = kerπ, as I is also a left ideal. Thus, A/I is an algebra.

1.3. Representations.

Definition 4. A representation of an algebra A is a vector space V together with a
homomorphism of algebras ρ : A→ EndV .

Example 3. Here is some examples of representatins:

(1) V = 0.
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(2) V = A, and ρ : A → EndA is defined as follows: ρ(a) is the operator of left
multiplication by a, so that ρ(a)b = ab (the usual product). This representation
is called the regular representation of A.

(3) A = k. Then a representation of A is simply a vector space over k.
(4) A = k〈x1, . . . , xn〉. Then a representation of A is just a vector space V over k

with a collection of arbitrary linear operators ρ(x1), . . . , ρ(xn) : V → V .

Definition 5. A subrepresentation of a representation V of an algebra A is a subspace
WV which is invariant under all the operators ρ(a) : V → V , a ∈ A; i.e. ρ(a)(w) ∈ W
for all w ∈ W and a ∈ A.

Example 4. 0 and V are always subrepresentations.

Definition 6. A representation V 6= 0 of A is irreducible (or simple) if the only
subrepresentations of V are 0 and V .

Definition 7. Let V1, V2 be two representations of an algebra A. A homomorphism
(or intertwining operator) ϕ : V1 → V2 is a linear operator which commutes with the
action of A, i.e., ϕ(av) = aϕ(v) for any v ∈ V1. A homomorphism is said to be an
isomorphism of representations if it is an isomorphism of vector spaces. The set (space)
of all homomorphisms of representations V1 → V2 is denoted by HomA(V1, V2).

We will now prove our first result Schurs lemma. Although it is very easy to prove, it
is fundamental in the whole subject of representation theory.

Proposition 2. (Schurs lemma) Let V1, V2 be representations of an algebra A over
any field k (which need not be algebraically closed). Let ϕ : V1V2 be a nonzero homo-
morphism of representations. Then:

(i) If V1 is irreducible then ϕ is injective;
(ii) If V2 is irreducible then ϕ is surjective.

Thus, if V1 and V2 are irreducible then ϕ is an isomorphism.

Proof. (i) The kernel K of ϕ is a subrepresentation of V1. Since ϕ 6= 0, this subrepre-
sentation cannot be V1. So by irreducibility of V1 we have K = 0. (ii) The image I of
ϕ is a subrepresentation of V2. Since ϕ 6= 0, this subrepresentation cannot be 0. So by
irreducibility of V2 we have I = V2. �

Corollary 3. (Schurs lemma for algebraically closed fields) Let V be a finite dimen-
sional irreducible representation of an algebra A over an algebraically closed field k,
and ϕ : V → V is an intertwining operator. Then ϕ = λI for some λ ∈ k (a scalar
operator).

Corollary 4. Let A be a commutative algebra. Then every irreducible finite dimen-
sional representation V of A is 1-dimensional.

Example 5. Here is some basic examples

• A = k. Since representations of A are simply vector spaces, V = A is the only
irreducible representation.
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• A = k[x]. Since this algebra is commutative, the irreducible representations
of A are its 1-dimensional representations. As we discussed above, they are
defined by a single operator ρ(x). In the 1-dimensional case, this is just a
number from k. So all the irreducible representations of A are Vλ = k, λ ∈ k,
in which the action of A defined by ρ(x) = λ. Clearly, these representations
are pairwise non-isomorphic.
• The group algebra A = k[G], where G is a group. A representation of A is

the same thing as a representation of G, i.e., a vector space V together with a
group homomorphism ρ : G→ GL(V ).

Home work.


