INTRODUÇÃO À TEORIA DA REPRESENTAÇÃO.

- 1. Palestra 1. Fatos básicos e álgebras e suas representações.
- 1.1. Qual é a teoria das representações? Teoria das representações estuda estruturas abstratas algébricas representando seus elementos como estruturas em álgebras lineares, como vetores espaços e transformações lineares entre eles.

$$\left\{ \begin{array}{c} \text{estruturas abstractas} \\ \text{algébricas} \end{array} \right\} \Longrightarrow \left\{ \begin{array}{c} \text{objetos concretos na álgebra linear} \\ \text{que "respeitam" estrutura abstrata} \end{array} \right\}$$

Estruturas algébricas podem ser muito diferentes. Nos vamos estudar em nossos seminários:

- grupos;
- álgebras associativas;
- álgebras de Lie;
- quivers;
- posets.

Por outro lado, os objetos em álgebra linear geralmente são:

- espaços vetoriais (unitário);
- transformações entre eles.

Por que é interessante?

Existem basicamente várias razões. A representação faz um objeto abstrato algébrico mais concreto, descrevendo os seus elementos como as matrizes e as operações algébricas em termos de adição de matrizes e multiplicação de matrizes. Daí a teoria da representação é uma poderosa ferramenta para reduzir os problemas de álgebra abstrata para problemas de álgebra linear. Se um espaço vetorial de dimensão infinita (espaço de Hilbert por examplo), a teoria da representação injeta métodos de análise funcional para a teoria do grupo (por exemplo). Assim, essa teoria fornece os pontes entre diferentes áreas da matemática.

Quais são problemas típicos?

O problema típico é:

classificar todas as representações de uma dada estrutura algébrica.

Para este definimos simples representações e isomorfismos entre representações. Em alguns casos é possível mostrar que qualquer representação é uma soma de simples. Daí o problema principal se reduz à seguinte

classificar todos representações simples (salvo isomorfismos).

Quais são os métodos típicos?

Grosseiramente falando, estudando as representações de "qualquer" estrutura algébrica pode ser reduzido a estudar as representações da álgebra associativa. Por exemplo

- repr. de grupos \iff repr. de álgebras de grupo;
- repr. de álgebras de Lie \iff repr. de álgebra envelopante;
- repr. de quivers \iff repr. de álgebras de caminhos;
- repr. de posets \iff repr. de álgebras de incidência.

Assim, teoria das representações estuda representaçãos de álgebras associativas.

Estudar as representações de uma álgebra, é mais ou menos, o mesmo que estudar os módulos sobre esta álgebra. Assim, a teoria de módulos é importante na teoria da representação.

Hoje vou relembrar fatos básicos sobre álgebras associativas e irei introduzir conceitos básicos sobre suas representações.

1.2. Fatos básicos sobre álgebras associativas. Seja k um corpo. Nós sempre assumimos que k é algebricamente fechado. Nosso corpo básico é o corpo dos números complexos \mathbb{C} .

Definição 1. Algebra associativa sobre k é um espaço vetorial A sobre k juntamente com uma aplicação bilinear $A \times A \to A$, $(a, b) \to ab$, tal que (ab)c = a(bc).

Definição 2. Uma unidade em uma álgebra associativa A é um elemento $1 \in A$ tal que 1a = a1 = a para todos $a \in A$.

Proposição 1. Se uma unidade existe, ela é única.

Demonstração. Sejam 1, 1' duas unidades. Então 1 = 11' = 1'.

Exemplo 1. Alguns exemplos de álgebras sobre k:

- (1) A = k:
- (2) $A = k[x_1, \ldots, x_n]$ a álgebra de polinômios em variáveis x_1, \ldots, x_n ;
- (3) A = EndV a álgebra de endomorfismos de um espaço vetorial V sobre k (ou mapas lineares de V em V). A multiplicação é composição dos operadores:
- (4) A álgebra livre $A = k\langle x_1, \ldots, x_n \rangle$. A base desta álgebra consiste de palavras em letras x_1, \ldots, x_n , e multiplicação nesta base é simplesmente a concatenação de palavras;
- (5) A álgebra de grupo A = k[G] de um grupo G. Sua base é $\{a_g, g \in G\}$, com a multiplicação $a_g a_h = a_{gh}$.

Uma álgebra A é comutativa se ab = ba para todos $a, b \in A$.

Pergunta 1. Que álgebras em exemplos anteriores são comutativas?

Definição 3. Um homomorfismo de álgebras $f: A \to B$ é uma aplicação linear tal que f(xy) = f(x)f(y) para todos $x, y \in A$ e f(1) = 1.

1.2.1. Ideal e Quocientes. A esquerda ideal de uma álgebra A é um subespaço $I \subseteq A$ tal que $aI \subseteq I$ para todos $a \in A$. Da mesma forma, um ideal direito de uma álgebra A é um subespaço $I \subseteq A$ tais que $Ia \subseteq I$ para todos $a \in A$. Um ideal de dois lados é um subespaço que seja ideal à esquerda e um ideal à direita.

Exemplo 2. Alguns exemplos de ideais

- (1) Se A é qualquer álgebra, 0 e A são ideais de dois lados. Uma álgebra A é chamada de simples se 0 e A são seus únicos ideais de dois lados;
- (2) Se $\varphi:A\to B$ é um homomorfismo de álgebras, então $\ker\varphi$ ideal de dois lados de A.
- (3) Se S é qualquer subconjunto de uma álgebra A, então o ideal gerado por S é denotado $\langle S \rangle$ é o conjunto de elementos do formulário asb, onde $a, b \in A$ e $s \in S$. Da mesma forma podemos definir $\langle S \rangle_l = \text{span}\{as\}$ e $\langle S \rangle_r = \text{span}\{sb\}$ a esquerda e direito ideais gerado por S.

Seja A uma álgebra e I a ideal de dois lados em A. Então A/I é grupo quociente de I. Seja $\pi:A\to A/I$ a aplicação quociente. Podemos definir a multiplicação em A/I, $\pi(a)\pi(b):=\pi(ab)$. Este está bem definida. De fato, se $\pi(a)=\pi(a')$, em seguida,

$$\pi(a'b) = \pi(ab + (a' - a)b) = \pi(ab) + \pi((a' - a)b) = \pi(ab),$$

porque $(a'-a)b \in Ib \subseteq I = \ker \pi$, pois I é um ideal à direita. Se $\pi(b) = \pi(b')$, em seguida,

$$\pi(ab') = \pi(ab + a(b' - b)) = \pi(ab) + \pi(a(b' - b)) = \pi(ab),$$

porque $a(b'-b) \in aI \subseteq I = \ker \pi$, pois I é também um ideal esquerdo. Assim, A/I é uma álgebra.

1.3. Representações.

Definição 4. Uma representação de uma álgebra A é um espaço vetorial V com um homomorfismo de álgebras $\rho: A \to \operatorname{End} V$.

Exemplo 3. Alguns exemplos de representações:

- (1) V = 0.
- (2) V = A, e $\rho : A \to \text{End}A$ é definido da seguinte forma: $\rho(a)$ é o operador de multiplicação à esquerda por a: $\rho(a)b = ab$ (o produto usual). Esta representação é chamada de representação regular de A.
- (3) A = k. Neste caso, uma representação de A é simplesmente um espaço vetorial sobre k.
- (4) $A = k\langle x_1, \ldots, x_n \rangle$. Neste caso, uma representação de A é apenas um espaço vetorial V sobre k com uma coleção arbitrária de operadores lineares $\rho(x_1), \ldots, \rho(x_n) : V \to V$.

Definição 5. Uma subrepresentação de uma representação V de uma álgebra A é um subespaço $W \subset V$ que é invariante sobre todos os operadores $\rho(a): V \to V$, $a \in A$. $\rho(a)(w) \in W$ para todos $w \in W$ e $a \in A$.

Exemplo 4. 0 e V são sempre subrepresentaçãoes.

Definição 6. Uma representação $V \neq 0$ de A é irredutível (ou simples), se as subrepresentação es dele são somente $0 \in V$.

Definição 7. Seja V_1, V_2 duas representações de uma álgebra A. Um homomorfismo $\varphi: V_1 \to V_2$ é um operador linear que comuta com a ação de A, ou $\varphi(av) = a\varphi(v)$ para qualquer $v \in V_1$. Um homomorfismo φ é isomorfismo de representações se é um isomorfismo de espaços vetoriais. O conjunto (espaço) de todos os homomorfismos de representações $V_1 \to V_2$ é denotada por $\operatorname{Hom}_A(V_1, V_2)$.

Vamos agora provar o nosso primeiro resultado - lema de Schur. Embora seja muito fácil de provar, é fundamental em todo o assunto da teoria da representação.

Proposição 2. (lemma de Schur) Sejam V_1, V_2 representações de uma álgebra A em qualquer corpo k (que não precisa ser algebricamente fechado). Seja $\varphi: V_1 \to V_2$ um homomorfismo não nulo de representações. Então:

- (i) Se V_1 é simple então φ é injetora;
- (ii) Se V_2 é simple então φ é sobrejetora.

Assim, se V_1 e V_2 são simples, então φ é um isomorfismo.

Demonstração. (i) O kernel de φ é uma subrepresentação K de V_1 . $\varphi \neq 0$, então este subrepresentação não pode ser V_1 . Então, pela simplicidade de V_1 temos que K=0. (ii) A imagem I de φ é uma subrepresentação de V_2 . $\varphi \neq 0$, este subrepresentação não pode ser 0. Então, pela simplicidade de V_2 temos que $I=V_2$.

Corolário 3. (Lema de Schur para corpos algebricamente fechado) Seja V é um representação simples de dimensão finita de uma álgebra A sobre um corpo algebricamente fechado k e $\varphi: V \to V$ é um homomorphismo. Então $\varphi = \lambda I$ para algum $\lambda \in k$ (um operador escalar).

Corolário 4. Seja A uma álgebra comutativa. Então, cada representação simples de dimensão finita V de A é 1-dimensional.

Exemplo 5. Alguns exemplos básicos

- A = k. As representações de A são simplesmente espaços vetoriais, então V = A irredutível.
- A = k[x]. Esta álgebra é comutativa, então as representações irredutíveis de A são sempre representações 1-dimensional. Elas são definidas por um único operador $\rho(x)$. No caso 1-dimensional, este é um número de k. Assim, todas as representações irredutíveis de A são $V_{\lambda} = k, \lambda \in k$. A ação de A é definida por $\rho(x) = \lambda$. Claramente, estas representações são não-isomorfas.
- A álgebra de group A = k[G], onde G é um grupo. Uma representação de A é a mesma coisa que uma representação de G, ou seja, um espaço vetorial V junto com um homomorfismo $\rho: G \to \operatorname{GL}(V)$.

2. Palestra 2. Representações irredutíveis e indecomponíveis. Teorema de densidade.

2.1. Representações indecomponíveis e teorema de densidade.

Definição 8. A soma direta de duas representações V_1 e V_2 de uma álgebra A é uma representação $V_1 \oplus V_2$ com ação $\rho(x,y) = \rho_1(x) \oplus \rho_2(y)$.

Definição 9. Uma representação $V \neq 0$ de uma álgebra A é *indecomponível* se não é isomorfo a uma soma direta de duas representações diferentes de zero.

Se uma representação é irredutível, então é indecomponível. O inverso é falso em geral (ver nos exemplos).

Definição 10. Uma representação de A é semi-simples se ele é uma soma direta de representações simples (irredutível).

Exemplo 6. Alguns exemplos:

(1) Suponha que $V_1 = k$ é representação 1-dimensional de k. Então a soma direta $V_1 \oplus V_1$ é $k \oplus k$ com

$$\rho: x \mapsto \left(\begin{array}{cc} x & 0 \\ 0 & x \end{array}\right), \quad x \in k$$

(2) Seja $V = k^2$ uma representação de k[x] dada por

$$\rho: x \mapsto \left(\begin{array}{cc} \lambda & 1\\ 0 & \lambda \end{array}\right), \quad \lambda \in k.$$

Esta representação é indecomponível, mas não irredutível (o subespaço

$$\{(\lambda,0) \mid \lambda \in k\}$$

é invariante). Em particular, não é semi-simples.

(3) Seja V uma representação irredutível de A de dimensão n. Então $Y = \operatorname{End}(V)$, com ação de A por multiplicação à esquerda, é uma representação semisimples de A, isomorfo a nV (a soma direta de n cópias de V). Na verdade, qualquer base v_1, \ldots, v_n de V dá origem a um isomorfismo de representações $\operatorname{End}(V) \to nV$, dado por $x \mapsto (xv_1, \ldots, xv_n)$.

Vamos discutir o caso A = k[x]. Esta é uma álgebra comutativa então representações irredutíveis de A são sempre representações 1-dimensionais $\rho(x) = \lambda \in k$.

A classificação das representações indecomponíveis de k[x] é mais interessante. Lembrese que qualquer operador linear em um espaço vetorial V de dimensão finita, pode ser reduzida para a forma normal de Jordan. Mais especificamente, o bloco de Jordan $J_{\lambda,n}$ é o operador em k^n que age na base como $J_{\lambda,n}e_i=\lambda e_i+e_{i-1}$ para i>1, e $J_{\lambda,n}e_1=\lambda e_1$. Para qualquer operador linear $B:V\to V$ existe uma base de V tal que a matriz de B nesta base é uma soma direta de blocos de Jordan. Isto implica que todas as representações indecomponíveis de A são $V_{\lambda,n}=k^n, \lambda\in k$, com $\rho(x)=J_{\lambda,n}$. O fato de que estas representações são indecomponível e pares não-isomórfica resulta do teorema da forma normal de Jordan (o que em particular diz que a forma normal de Jordan de um operador é único salvo permutação de blocos).

Proposição 5. Sejam V_1, \ldots, V_m representações não-isomorficas irredutíveis de dimensão finita de A, e W é um subrepresentação de $V = \bigoplus_{i=1}^m n_i V_i$. Então W é isomorfo a $\bigoplus_{i=1}^m r_i V_i$, $r_i \leq n_i$, e a inclusão $\varphi: W \to V$ é uma soma direta de inclusões $\varphi_i: r_i V_i \to n_i V_i$ dado pela multiplicação de um vetor de elementos de V_i por uma matriz X_i de tamanho $r_i \times n_i$ com linhas linearmente independentes: $\varphi(v_1, \ldots, v_{r_i}) = (v_1, \ldots, v_{r_i}) x_i$.

Demonstração. A demonstração é por indução em $n:=\sum_{i=1}^m n_i$. A base da indução n=1 é clara. Para executar o passo de indução, vamos supor que W é diferente de zero, e estabelecer uma subrepresentação irredutível $P \subset W$. Lembre-se que tal P existe. Pelo Lema de Schur, P é isomorfo a V_i para algum i, e a inclusão $\varphi: P \to V$ fatora através de n_iV_i , e depois a identificação de P com V_i é dada pela fórmula $v \mapsto (vq_1, \ldots, vq_{n_i})$, onde $q_i \in k$ não são todos zero.

Agora, nos temos que o grupo $G_i = GL_{n_i}(k)$ de matrizes invertíveis $n_i \times n_i$ sobre k atua na n_iV_i por $(v_1,\ldots,v_{n_i})\mapsto (v_1,\ldots,v_{n_i})g_i$ (e pela identidade em $n_jV_j,\ j\neq i$), e, então atua no conjunto de subrepresentações de V, preservando a propriedade que queremos mostrar: sobre a ação de g_i a matriz X_i vai para X_ig_i , e $X_j, j\neq i$ não mudam. Tome $g_i\in G_i$ tal que $(q_1,\ldots,q_{n_i})g_i=(1,0,\ldots,0)$. Então W_{g_i} contém o primeiro termo da soma V_i de n_iV_i (é Pg_i). Então $Wg_i=V_i\oplus W'$, onde $W'\subset n_1V_1\oplus\cdots\oplus n_mV_m$ o kernel da projeção de Wg_i para o primeiro somando V_i . Assim, a declaração exigida segue do pressuposto de indução.

Corolário 6. Seja V uma representação irredutível de dimensão finita de A e $v_1, \ldots, v_n \in V$ são vetores linearmente independentes. Então, para qualquer $w_1, \ldots, w_n \in V$ existe um elemento $a \in A$ tal que $av_i = w_i$.

Demonstração. Suponha o contrário. Em seguida, a imagem da aplicação $A \to nV$ dada por $a \mapsto (av_1, \ldots, av_n)$ é um subrepresentação corresponde a uma $r \times n$ matriz X, r < n. Assim, tomando a = 1, temos que existem vetores $u_1, \ldots, u_r \in V$ tal que $(u_1, \ldots, u_r)x = (v_1, \ldots, v_n)$. Seja (q_1, \ldots, q_n) um vetor não nulo tal que $X(q_1, \ldots, q_n)T = 0$ (existe porque r < n). Então

$$\sum q_i v_i = (u_1, \dots, u_r) X(q_1, \dots, q_n) T = 0.$$

Então $Pq_iv_i=0$. Contradição com a independência linear de v_i .

Teorema 7. (Teorema de Densidade).

- (i) Seja V uma representação irredutível de dimensão finita de A. A aplicação $\rho: A \to \operatorname{End}V$ é sobrejetiva;
- (ii) Seja $V = V_1 \oplus \cdots \oplus V_r$, onde V_i são representações irredutíveis não isomorfas de A. A aplicação $\bigoplus_{i=1}^r \rho_i : A \to \bigoplus_{i=1}^r \operatorname{End}(V_i)$ é sobrejetiva.

Demonstração. (i) Seja B a imagem de A em End(V). Nosso objetivo é mostrar que B = End(V). Seja $c \in End(V)$, v_1, \ldots, v_n uma base de V e $w_i = cv_i$. Pelo Corolário 6, existe $a \in A$ tal que $av_i = w_i$. Então $\rho(a) = c$, para $c \in B$. Então afirmação (i) segue.

(ii) Seja B_i a imagem de A em $\operatorname{End}(V)$, e B a imagem de A em $\bigoplus_{i=1}^r \operatorname{End}(V_i)$. Lembre-se que como uma representação de A, $\bigoplus_{i=1}^r \operatorname{End}(V_i)$ é semisimples: é isomorfo a $\bigoplus_{i=1}^r d_i V_i$, onde $d_i = \dim V_i$. Então, pela Proposição 2.2, $B = \bigoplus_i B_i$. Por outro lado, (i) implica que $B_i = \operatorname{End}(V_i)$. Assim (ii) segue.

2.2. Soma direta de álgebras matriciais.

Definição 11. Seja A uma álgebra. A álgebra dual $A^{op} = a \in A$ é uma álgebra com a multiplicação $a \cdot b = ba$.

Definição 12. (Representação Dual) Seja V uma representação de qualquer álgebra A. A representação dual V^* é a representação da álgebra dual A^{op} com a ação

$$\rho: a \mapsto \phi_a \in \operatorname{End}(V^*), \quad \phi_a(f(v)) = f(av).$$

Soma direta de álgebras de matriz é uma álgebra $A = \bigoplus_{i=1}^r \operatorname{Mat}_{d_i}(k)$.

Teorema 8. Seja $A = \bigoplus_{i=1}^r \operatorname{Mat}_{d_i}(k)$. Então as representações irredutíveis de A são $V_1 = k^{d_1}, \ldots, V_r = k^{d_r}$ e qualquer representação de dimensão finita de A é uma soma direta de copias de V_1, \ldots, V_r .

Demonstração. Primeiro, as representações dadas são claramente irredutíveis, porque para qualquer $v \neq 0$, $w \in V_i$, existe $a \in A$ tal que av = w. Seja X uma n-dimensional representação de A. Então, X^* é uma representação n-dimensional de A^{op} . Mas $(\operatorname{Mat}_{d_i}(k))^{op} \cong \operatorname{Mat}_{d_i}(k)$ com isomorfismo $\varphi(X) = X^T$, $(BC)^T = C^TB^T$. Assim, $A \cong A^{op}$ e X^* pode ser como uma representação n-dimensional de A. Defina

$$\varphi: \bigoplus_{i=1}^n A \mapsto X^*$$

pelo

$$\varphi(a_1,\ldots,a_n)=a_1y_1+\cdots+a_ny_n,$$

onde $\{y_i\}$ é uma base de X^* . φ é claramente sobrejetora, porque $k \subset A$. Assim, a aplicação dual $\varphi^*: X \to A^{n*}$ é injetora. Mas $A^{n*} \cong A^n$ como representações de A. Assim, $\operatorname{Im} \varphi^* \cong X$ é uma subrepresentação de A^n . Também, $\operatorname{Mat}_{d_i}(k) = d_i V_i$, assim $A = \bigoplus_{i=1}^r d_i V_i$, $A^n = \bigoplus_{i=1}^r n d_i V_i$, como uma representação de A. Então $X = \bigoplus_{i=1}^r m_i V_i$.

Trabalho de casa.

- (1) Seja $A = \mathbb{C}[G]$ uma álgebra de grupo finito G. Mostra que uma representação V de A é indecomponível se, e somente se, é irredutível.
- (2) Seja $A = \mathbb{C}[G]$ uma álgebra de grupo finito G. Mostra que qualqer representação V de A é semi-simples.

- 3. Palestra 3. Filtrações. Teorema da Jordan-Holder. Teorema da Krull-Schmidt
- 3.1. **Filtrações.** Seja A uma álgebra. Seja V uma representação de A. Uma filtração (finito) de V é uma seqüência de subrepresentações $0=V_0\subset V_1\subset\cdots\subset V_n=V$.

Rembrar que se V é uma representação de A, e $W \subset V$ é uma subrepresentação, assim V/W is é representação também. Na verdade, temos $\pi: V \to V/W$ o aplicação quociente, e uma acão $\rho_{V/W}(a)\pi(x) := \pi(\rho_V(a)x)$.

Lemma 9. Qualquer representação de dimensão finita V de uma álgebra A admite uma filtração finito $0 = V_0 \subset V_1 \subset \cdots \subset V_n = V$ tal que os quocientes V_i/V_{i-1} são irredutíveis.

Demonstração. A demonstração é por indução em dim V. A base é clara. Escolha uma subrepresentação irredutível $V_1 \subset V$, e considerar a representação $U = V/V_1$. Em seguida, pela suposição de indução U tem um filtração $0 = U_0 \subset U_1 \subset \cdots \subset U_{n-1} = U$ tal que U_i/U_{i-1} são irredutíveis. Definir V_i para $i \geq 2$ como os preimages de U_{i-1} sobre o projector $V \to V/V_1 = U$. Então $0 = V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_n = V$ é uma filtração de V com a propriedade desejada.

Teorema 10. (Jordan-Holder theorem). Seja V é representação de dimensão finita de A, e $0 = V_0 \subset V_1 \subset \cdots \subset V_n = V, 0 = V_0' \subset V_1' \subset \cdots \subset V_m' = V$ são filtrações de V, tal que as representações $W_i := V_i/V_{i-1}$ e $W_i' := V_i'/V_{i-1}'$ são irreducivels para todos i. Assim n = m, e existe uma permutação σ de $1, \ldots, n$ tal que $W_{\sigma(i)}$ é isomorfo a W_i' .

Demonstração. A demonstração é por indução em dim V. A base da indução é claro, então vamos provar o passo de indução. Se $W_1 = W_1'$ (como subespaços), teorema é verdadeiro, porque pela suposição teorema é verdadeiro para V/W_1 . Assim, assumir $W_1 \neq W_1'$. Neste caso $W_1 \cap W_1' = 0$ (porque W_1, W_1' são irreducivels), então nos temos uma incorporação $f: W_1 \oplus W_1' \to V$. Seja $U = V/(W_1 \oplus W_1')$, e $0 = U_0 \subset U_1 \subset \cdots \subset U_p = U$ filtração de U com irredutivel $Z_i = U_i/U_{i-1}$ (existe pela Lema 9). Assim nos temos:

- (1) V/W_1 tem uma filtração com quocientes W_1, Z_1, \ldots, Z_p , e uma outra filtração com quocientes W_2, \ldots, W_n .
- (2) V/W_1' tem uma filtração com quocientes W_1, Z_1, \ldots, Z_p , e uma outra filtração com quocientes W_2', \ldots, W_n' .

Pela assunção de indução, isto significa que a recolha de representações irredutíveis com multiplicidades $W_1, W'_1, Z_1, \ldots, Z_p$ coincide, de um lado com W_1, \ldots, W_n , e, por outro lado, com W'_1, \ldots, W'_m .

O teorema de Jordan-Holder mostra que o número n de termos em uma filtração de V com irredutível quocientes não dependem da escolha de uma filtração, e depende sempre de V. Este número é chamado de comprimento de V e denotada por l(V).

É fácil de ver que n é também o comprimento máximo de uma filtração de V na qual todas as inclusões são estritas.

3.2. Finite dimensional algebras.

Definição 13. O radical de uma álgebra de dimensão finita A é o conjunto de todos os elementos de A que aguir com 0 em todas as representações irredutíveis de A. É denotado Rad(A).

Proposição 11. Rad(A) é um ideal bilateral.

Demonstração. Em casa.

Proposição 12. Seja A uma álgebra de dimensão finita

- (i) Seja I um ideal bilateral e nilpotente em A, ($I^n = 0$ para algum n). Assim $I \subset \text{Rad}(A)$.
- (i) Rad(A) é ideal nilpotente. Então, Rad(A) é o maior ideal bilateral em A.

Demonstração. (i) Seja V uma representação irredutível de A. Seja $v \in V$. Então $Iv \subset V$ é um subrepresentation. Se $Iv \neq 0$, então Iv = V, e existe um $x \in I$ tal que xv = v. Então $x^n \neq 0$, uma contradição. Assim Iv = 0, então I açao pelo 0 em V e, assim, um subconjunto de Rad(A).

(ii) Seja $0 = A_0 \subset A_1 \subset \cdots \subset A_n = A$ uma filtração da representação regular de A por subrepresentações tal que A_{i+1}/A_i são irredutíveis. Existe pelo Lema 9. Seja $x \in \text{Rad}(A)$. Então x age em A_{i+1}/A_i por zero, assim x mapas A_{i+1} para A_i . Isto implica que $\text{Rad}(A)^n = 0$, como desejado.

Teorema 13. Álgebra de dimensão finita A tem so número finito de representações irredutíveis V_i (salvo isomorfismo), estas representações são de dimensão finita, e

$$A/\operatorname{Rad}(A) \cong \bigoplus_{i} \operatorname{End}(V_i).$$

Demonstração. Primeiro, para qualquer representação irredutível V de A, e para qualqer diferente de zero $v \in V$, $Av \subset V$ é um subrepresentação de dimensão finita de V. (Isso é dimensão finita porque A de dimensão finita). Como V é irredutível e $Av \neq 0$, V = Av e V de dimensão finita. Proximo, suponha que temos representações não-isomórficas irredutíveis $V_1, V_2, \ dots, V_r$. Pelo Teorema da última palestra, temos que o homomorfismo

$$\bigoplus \rho_i: A \to \bigoplus_i \operatorname{End}(V_i).$$

é sobrejetora. Assim $r \leq \sum_i \dim \operatorname{End} V_i \leq \dim A$. Então, A tem so número finito de não-isomórficas representações irredutíveis (no máximo $\dim A$). Agora, seja V_1, V_2, \ldots, V_r todos as representações não-isomórficas irredutíveis finitos dimensionais de A. O homomorfismo

$$\bigoplus \rho_i: A \to \bigoplus_i \operatorname{End}(V_i).$$

é sobrejetora. O kernel do esse mapa, por definição, é exatamente Rad(A).

Corolário 14. $\sum_{i} (\dim V_i)^2 \leq \dim A$, onde V_i são as representações irredutíveis de A

Demonstração. Como dim $EndV_i = (\dim V_i)^2$, Theorema 13 implica que dim $A - \dim Rad(A) = \sum_i \dim EndV_i = \sum_i (\dim V_i)^2$. Mas dim $Rad(A) \ge 0$, $\sum_i (\dim V_i)^2 \le \dim A$.

Proposição 15. Para um álgebra de dimensão finita A, a seguir são equivalentes:

- (1) A é semisimples.
- (2) $\sum_{i} (\dim V_i)^2 = \dim A$, onde V_i são as representações irredutíveis de A.
- (3) $A \cong \bigoplus_i Mat_{d_i}(k)$ para alguem d_i .
- (4) Qualquer representação de dimensão finita de A é completamente redutível (isto é, isomorfo a uma soma direta das representações irredutíveis).
- (5) A é uma representação completamente redutível de A.

Demonstração. Como dim A – dim $\operatorname{Rad}(A) = \sum_{i} (\dim V_i)^2$, é claro que dim $A = \sum_{i} (\dim V_i)^2$ se e somente se $\operatorname{Rad}(A) = 0$. Assim, $(1) \Leftrightarrow (2)$.

Proximo, pelo Teorema 13, se Rad(A) = 0, então claro que $A \cong \bigoplus_i Mat_{d_i}(k)$ para $d_i = \dim V_i$. Assim, (1) \Leftarrow (3). Inversamente, se $A \cong \bigoplus_i Mat_{d_i}(k)$, então pelo Teorem 13, Rad(A) = 0, assim A é semisimples. Assim (3) \Leftarrow (1).

Proximo, (3) \Leftarrow (4) pelo Teorema de ultima palestra. Claro (4) \Leftarrow (5). Para mostrar que (5) \Leftarrow (3), seja $A = \bigoplus_i n_i V_i$. Considerar $\operatorname{End}_A(A)$ (endomorfismos de A com uma representação de A). V_i são nonisomorfic para $i \neq j$. Também, novamente pelo Schur's lemma, $\operatorname{End}_A(V_i) = k$. Assim, $\operatorname{End}_A(A) \cong \bigoplus_i \operatorname{Mat}_{n_i}(k)$. Mas $\operatorname{End}_A(A) \cong A^{op}$ so $A^{op} \cong \bigoplus_i \operatorname{Mat}_{n_i}(k)$ Thus, $A \cong (\bigoplus_i \operatorname{Mat}_{n_i}(k))^{op} = \bigoplus_i \operatorname{Mat}_{n_i}(k)$.

3.3. Teoreda da Krull-Schmidt.

Teorema 16. (Krull-Schmidt) Qualquer representação de dimensão finita de A pode ser uniquamente (salvo isomorfismo e da ordem de somandos) decomposto em uma soma direta de representações indecomponível.

Demonstração. Claro que a decomposição de V em uma soma direta de representações indecomponíveis existe, só precisamos de provar a unicidade. Vamos provar por indução sobre dim V. Let $V=V_1\oplus\ldots V_m=V_1'\oplus\ldots V_n'$. Seja $i_s:V_s\to V$, $i_s':V_s'\to V$, $p_s:V\to V_s, p_s':V\to V_s'$ aplicações natural associado a estas decomposições. Seja $\theta_s=p_1i_s'p_s'i_1:V_1\to V_1$. Nos temos $\sum_{s=1}^n\theta_s=1$. Agora nos precisamos a seguinte lemma.

Lemma 17. Seja W representação indecomponivel de dimenção finita de A. Então

- (i) Qualquer homomorfismo $\theta: W \to W$ ou é um isomorfismo ou nilpotente;
- (ii) Se $\theta_s: W \to W$, s = 1, ..., n são homomorfismos nilpotentes, então $\theta := \theta_1 + ... + \theta_n$ é nilpotente também.

Demonstração. (i) Generalizados eigenespaços de θ são subrepresentações de W e W é sua soma direta deles. Assim, θ só pode ter um eigenvalue λ . Se λ é zero, θ é nilpotente, caso contrário é um isomorfismo. (ii) A demonstração é por indução em n. A base é clara. Para fazer o passo de indução (n-1 para n), supponha que θ é não nilpotente. Então pelo (i) θ é um isomorfismo, assim $\sum_{i=1}^{n} \theta^{-1}\theta_i = 1$. Morphismos $\theta^{-1}\theta_i$ são não isomorfismos, assim eles são nilpotentes. Assim $1 - \theta^{-1}\theta_n = \theta^{-1}\theta_1 + \cdots + \theta^{-1}\theta_{n-1}$ é um isomorfismo, que é uma contradição com a hipótese de indução.

Pelo essa lemma, nos temos que para alguem s, θ_s deve ser um isomorfismo; podemos assumir que s=1. Neste caso, $V_1'=\operatorname{Im}(p_1'i_1)\oplus\operatorname{Ker}(p_1i_1')$, então V_1' é indecomponivel, e nos temos que $f:=p_1'i_1:V_1\to V_1'$ e $g:=p_1i_1':V_1'\to V_1$ são isomorfismos.

Seja $B=\bigoplus_{j>1}V_j,\ B'=\bigoplus_{j>1}V_j'$; então nos temos que $V=V_1\oplus B=V_1'\oplus B'$. Considere o aplicação $h:B\to B'$ definida como uma composição dos mapas naturais $B\to V\to B'$. h é um isomorfismo. Para mostrar isso noe temos que mostrar $\mathrm{Ker}h=0$. Supponha que $v\in\mathrm{Ker}h\subset B$. Então $v\in V_1'$. Por outro lado, a projecção de v a V_1 é zero, assim $g_v=0$. Mas g é um isomorfismo, então nos temos v=0.

Agora pela assunção de indução, m=n, e $V_j\cong V'_{\sigma(j)}$ para alguns permutação σ de $2,\ldots,n$. O teorema está provado.

Trabalho de casa.

- (1) Seja $M \in Mat_d(k)$ uma matriz nilpotente $(M^n = 0 \text{ para alguem } n)$. Mostra que a matriz I M é invertible.
- (2) Seja V uma representação de dimenção finita e seja V_1, \ldots, V_t subrepresentações se V. Mostra se

$$l(\sum_{i=1}^{t} V_i) = l(V),$$

então $V = \bigoplus_{i=1}^{t} V_i$.

- (3) Construir indecomponível representações V_1 e V_2 com $l(V_1) = l(V_2) = 2$.
- (4) Seja $A = k[x]/(x^n)$. Mostre que essa álgebra tem uma representação irredutível único. Computar Rad(A).
- (5) Seja A uma álgebra de triangular superior $n \times n$ matrizes. Calcular todas as representações irredutíveis de A e computar Rad(A).
- (6) Seja $A = M_n(k)$. Computar Rad(A).