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Abstracts presented for the
Workshop in São Paulo, SP.

Koszul algebras, linear modules, and their generalizations

Edward Green
Virginia Tech

460 McBryde Hall
United States

E-mail address: green@math.vt.edu

Abstract: In the first two talks, I will present the definitions of Koszul algebras and linear modules.
I will discuss Koszul duality and many homological properties of Koszul algebras and linear modules,
while providing numerous examples. The last talk will be devoted to various generalizations of Koszul
algebras; including definitions and results for D-Koszul algebras, quasi-Koszul algebras, and delta-Koszul
algebras.

References

[] None

Representations of alternative and Jordan algebras

Ivan Shestakov
Universidade de Sao Paulo

Rua do Matao, 1010
Brazil

E-mail address: shestak@ime.usp.br

We will give an introduction to the structure theory and representations of finite dimensional alter-
native and Jordan algebras. In particular, the structure of simple algebras and of irreducible bimodules
will be given, including the Morita - equivalence of the category of Jordan bimodules over a Jordan ma-
trix algebra and the category of associative/alternative bimodules with involution over the corresponding
coordinatizating composition algebra.

References

[] None
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2-Calabi-Yau-tilted algebras

Idun Reiten
NTNU

Alfred Getz vei 1,
Norway

E-mail address: idunr@math.ntnu.no

Abstract: In this series we discuss some of the main properties of the 2-Calabi-Yau-tilted algebras.
They are by definition the endomorphism algebras of cluster-tilting objects in Hom-finite triangulated
2-Calabi-Yau categories, and contain the cluster-tilted algebras.

References

[] None

Trivial extensions, iterated tilted algebras and cluster

tilted algebras

Maŕıa Inés Platzeck
Universidad Nacional del Sur

Av. Alem 1253
Argentina

E-mail address: platzeck@uns.edu.ar

Trivial extensions of artin algebras have been extensively studied and play and important role in the
representation theory of artin algebras. For instance, there are interesting and useful connections with
tilting theory. We will explore the connections between trivial extensions, iterated tilted algebras and
cluster tilted algebras, and give some applications.

References

[] None

Fourier-Mukai transforms and the Hall algebra of an

elliptic curve

Igor Burban
NULL

University of Bonn
Beringstr. 1
Germany
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E-mail address: burban@math.uni-bonn.de

Lecture 1. Vector bundles on an elliptic curve via Fourier-Mukai transforms
Lecture 2. Hall algebra of an elliptic curve
Lecture 3. Finite length modules over the ring k[[x, y]]/xy and semi-stable sheaves on a nodal cubic curve

Abstract.
In my first lecture, I am going to explain Atiyah’s classification of indecomposable vector bundles on an
elliptic curve using the technique of twist functors and Fourier-Mukai transforms.
This description will be used in my second lecture (based on a joint paper with Olivier Schiffmann) to
give a presentation of the composition subalgebra of the Hall algebra of an elliptic curve by generators
and relations. In particular, I am going to show that the group of exact auto-equivalences of the derived
category of coherent sheaves on a smooth elliptic curve induces an action of the group ŜL2(Z) on the
Drinfeld double of the composition subalgebra.
In my third lecture (based on a series of joint articles with Bernd Kreussler), I am going to explain
how the classification of indecomposable finite length modules over the ring k[[x, y]]/xy can be used to
describe semi-stable torsion free sheaves on a nodal cubic curve zy2 = x3 + x2z as well as to construct
some interesting examples of vector bundles on genus one fibrations.

References

[] (1) K. Brüning, I.Burban Coherent sheaves on an elliptic curve. Interactions between homotopy
theory and algebra, 297–315, Contemp. Math., 436, Amer. Math. Soc., Providence, RI, 2007.

[] (2) I.Burban, B.Kreussler, Fourier-Mukai transforms and semi-stable sheaves on nodal Weierstrass
cubics, J. Reine Angew. Math., vol. 584, 45-82 (2005).

[] (3) I.Burban, B.Kreussler, Derived categories of irreducible projective curves of arithmetic genus one,
Compositio Math., vol. 142, 1231-1262 (2006).

[] (4) I.Burban, O.Schiffmann, On the Hall algebra of an elliptic curve I, math.AG/0505148.

Ringel-Hall Algebras of Cyclic Quivers

Andrew Hubery
NULL

University of leeds
University of leeds
United Kingdom

E-mail address: ahubery@maths.leeds.ac.uk

We shall study the Ringel-Hall algebra Hn associated to the categoryAn of finite dimensional nilpotent
representations of the cyclic quiver with n vertices. This is naturally a self-dual Hopf algebra and has
a Hopf algebra decomposition Hn

∼= Cn ⊗ Zn, where Zn is the centre of Hn and Cn is the subalgebra
generated by the simple objects of An.

6



There exist canonical Hopf algebra embeddings Λ → Zn and Cn → Uv(ŝln), where Λ is Macdonalds
ring of symmetric functions and Uv(ŝln) is the quantum affine algebra of type Ã. Moreover, we can extend
this latter to an embedding ηn:Hn → Uv(ĝln). In other words, we can realise the Borel subalgebra of
Uv(ĝln) as the Ringel-Hall algebra of the category An.

Taking these ideas further, we can define embeddings of categories An → An+1, inducing algebra
embeddings Hn → Hn+1. Under η, these correspond to the “upper left corner embeddings Uv(ĝln) →
Uv(ĝln+1).

Finally, taking colimits, we have the category A∞ := limAn and the algebra H∞ := limHn, and
these constructions commute in the sense that H∞ is the Ringel-Hall algebra of A∞. We can therefore
realise the Borel subalgebra of Uv(ĝl∞) as the Ringel-Hall algebra of A∞.

References

[] None
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Abstracts presented for the general
conference in Santos, SP.

RELATIONS BETWEEN TILTING AND STRATIFICATION

Jose Fidel Hernandez Advincula
Departament of Mathemtic
Universidad de La Habana
San Lazaro y L , Vedado

Cuba

E-mail address: fidel@matcom.uh.cu

In this work we study the relation between tilting and standard stratification. We recall that for
each standardly stratified algebra corresponds a tilting module. We show that the poset given by the
different stratifications of one algebra is a subposet of the poset formed by the tilting modules. Also, we
show several examples, in particular, in the oriented An for n = 2, 3.4, 5 all tilting modules are given by
stratifications.

References

[AR] ar M. Auslander, I. Reiten, Aplications of Contravariantly Finite Subcategories, Advances in Math-
ematics, 86, 1991, 111-152.

[HU] hu D. Happel and L. Unger, On a partial order of tilting modules, Algebr. Represent. Theory, 8(2),
147 -156, 2005.

[HM1] hm1 F. Hernndez Advncula, E. N. Marcos Algebras which are standardly stratitified in all orders,
RT-MAT 2004-26, Trabalhos do Departamento de Matemtica, IME - USP.

[HM2] hm2 F. Hernndez Advncula, E. N. Marcos Stratifications of algebras with radical square zero,
RT-MAT 2004-25, Trabalhos do Departamento de Matemtica, IME - USP.

[R] hm3 C. M. Ringel The category of modules with good filtrations over a quasi-hereditary algebras has
almost split sequences, Mathematische Zeitschrift, Vol. 208, pag. 209-223, 1991.

[X] x Changchang Xi, Standardly Stratified Algebras and Cellular Algebras, Mathematical Proceedings
of the Cambridge Philosophical Society, 133, pag. 37-53, Cambridge University Press, 2002

Homological characterization of piecewise hereditary

algebras

Dieter Happel
Technische Universitaet Chemnitz

Fakultaet fuer Mathematik
Germany
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E-mail address: happel@mathematik.tu-chemnitz.de

This is a report on joint work with Dan Zacharia
A finite dimensional algebra A is called piecewise hereditary provided its bounded derived category is

triangle equivalent to the derived category of a hereditary category. The hereditary categories occurring
in this context have been classified. They are module categories of finite dimensional hereditary algebras
and the categories of sheaves over a weighted projective line. For an arbitrary finite dimensional algebra
B it was suggested by Ringel to consider the strong global dimension. This measures the length of inde-
composable complexes whose stalks are projective B-modules. It was conjectured by Kerner, Skowronski,
Yamagata and Zacharia that the class of piecewise hereditary algebras coincide with the class of algebras
having finite strong global dimension. The aim of the talk will be twofold. First we will recall some ho-
mological properties of piecewise hereditary algebras. Then we will outline the proof of the main result.
In this we will use a characterization of the derived category of a hereditary category in terms of paths
due to Ringel and an interesting lemma on shortening of paths in an arbitrary triangulated category.

References

[] None

Matrix problems and stable homotopy types

Yuriy Drozd
Institute of Mathematics

National Academy of Sciences
Tereschenkivska str. 3

Ukraine

E-mail address: y.a.drozd@gmail.com

Let C be a triangulated category, A,B be its fully additive subcategories such that C(B,A[1]) = 0 for
all A ∈ A, B ∈ B, A†B be the full subcategory of C consisting of all X that occur in the triangles A →
B → X → A[1] with A ∈ A, B ∈ B. We construct a bimodule category M and ideals I ⊂ A†B, J ⊂ M
such that (A†B)/I ' M/J, moreover, J2 = 0.

We use this construction to describe stable homotopy types of polyhedra (finite CW-complexes)
X ∈ Pn, i.e. (n − 1)-connected of dimension at most 2n − 1, for n ≤ 4, and for those polyhedra from
Pn that have no torsion in integral homologies, for n ≤ 7. If n < 4 (in torsion free case n < 7), the
problem is of finite type, for n = 4 (in torsion free case n = 7) it is tame and the result is formulated in
terms of “strings and bands.” We also show that for bigger n these problems become wild, i.e. contain a
classification of representations of an arbitrary finitely generated algebra over a field.

More details can be found in [1,2].

References

[1] Yuriy Drozd, Matrix problems and stable homotopy types of polyhedra, Central European J. Math.
vol. 2 (2004) 420–447 .

[2] Yuriy Drozd, On classification of torsion free polyhedra, Preprint MPI 2005-99, Max-Plank-Institut
für Mathematik, 2005.
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Skew monoid categories and derived equivalences

Hideto Asashiba
Department of Mathematics, Faculty of Science,

Shizuoka Universtiy
836 Ohya, Suruga-ku

Japan

E-mail address: shasash@ipc.shizuoka.ac.jp

In the classification of representation-finite self-injective algebras up to derived equivalences in [2]
a covering technique for derived equivalence in [1] developed along the line of the classical covering
technique [3] was the main tool. But requirements on categories in the classical covering technique were
so strong that they made proofs unnecessarily complicated and applications difficult, in particular, direct
application to additive categories was impossible and it was necessary to verify that the group action
in consideration was free on isoclasses of indecomposable objects in the bounded homotopy category of
finitely generated projective modules. Since this was not always easy to check we had a restriction in
application (e.g., we needed an assumption that the group is torsion-free). In the last ICRA I announced
an outline of a generalization of the covering technique to remove all classical requirements including
the free action condition. This time we deal with applications. In the generalized case orbit categories
essentially coincide with skew group categories, and we have the following generalized form of the main
theorem of covering technique for derived equivalence with a simplified proof: For algebras (categories)
A and B on each of which a group G acts, if there exists a “G-equivariant” derived equivalence between
them, then the skew group algebras (categories) A ∗ G and B ∗ G are derived equivalent. In order to
apply this we need to know how to compute skew group algebras (categories). We give a general way
to compute skew monoid algebras (categories) using quivers with relations (cf. [4]), which enables us to
compute examples of derived equivalent skew group algebras.

References

[1] Asashiba, H.: A covering technique for derived equivalence, J. Alg., bf 191 (1997), 382–415.

[2] Asashiba, H.: The derived equivalence classification of representation-finite selfinjective algebras, J.
Alg., 214 (1999), 182–221.

[3] Gabriel, P.: The universal cover of a representation-finite algebra, Lecture Notes in Mathematics,
Vol. 903, Springer-Verlag, Berlin/New York (1981), 68–105.

[4] Reiten, I. and Riedtmann, Ch.: Skew group algebras in representation theory of artin algebras, J. Alg
92, (1985) 224–282.

Representations of Finite Posets

Volodymyr Kyrychenko
Mechanics and Mathematics

Kyiv Taras Shevchenko National University
Volodymyrska, 64

Ukraine
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E-mail address: vkir@univ.kiev.ua

(jointly with V.Bondarenko, N.Gubareni and M.Khybyna)

Let P = {p1, p2, . . . , pn} be a poset with ordering relation �. Denote by A(P) the set of all antichains
of P of length l ≥ 0. We assume that the antichain of length 0 is an empty set, and we denote this
antichain as 0. We identify antichains of length 1 with the elements themselves. We define the order
relation ≤ in A(P) as follows. If X, Y ∈ A(P), then X ≤ Y if and only if for any a ∈ X there exists
b ∈ Y such that b � a. We also assume that 0 < X for any X 6= 0.

Denote A(P) = A1(P) and Am(P) = A(Am−1(P))
We say that a poset P is a garland if for any p ∈ P there exists at most one q ∈ P such that p and q

are incomparable.

Proposition. Let P be a poset of width 2 and let Am(P) be a poset of width 2 for all m > 1. Then
P is a garland. Conversely, if P is garland then Am(P) be a poset of the width 2 for all m > 1.

Let Cm be a chain of m elements. Consider the cardinal square Cm t Cm, where Cm is a chain of m
elements. Note that the width of A(Cm tCm) equals m + 1. We use the construction P → A(P) for the
representation theory of finite posets.

References

[] None

Representation finite cluster-tilted algebras and bound

modulated quivers

Nguefack Bertrand
Départ. de Mathématiques, Fac. des sciences

Université de Sherbrooke
2500 boul. Université

Canada

E-mail address: ng.bertd@yahoo.ca

We investigate representation finite cluster-tilted algebras over any field using bound modulated quiv-
ers. For a Dynkin valued graph ∆ ∈ {An, Bn, Cn}, we define a special valued graph T∆ called the
triangle-decorated tree of class ∆. We then start by proving a structure theorem which explicitly de-
scribes all valued quivers in the mutation class of ∆ in terms of full valued subgraphs of T∆. We next
obtain a “characterization theorem for representation finite cluster-tilted algebras” which generalizes a
similar result for simply-laced cluster-tilted algebras. We also give necessary and sufficient criterion for
a bound modulated quiver algebra to be cluster-tilted of type An, Bn, Cn, F4 or G2. In particular, any
representation finite cluster-tilted algebra Ã is uniquely determined by its modulated quiver. Also, the
representation type of Ã depends only on its valued quiver.

References

[] none

11



Chevalley Groups and Hyperalgebras

Tiago Macedo
IMECC

UNICAMP
Brazil

E-mail address: ra025318@ime.unicamp.br

We will present results relating the Distribution algebra of Chevalley Groups with the so called
hyperalgebras. These hyperalgebras are Hopf algebras built from Kostant integral form of semisimple
Lie algebras by reduction mod p.

References

[1] J. Humphreys, Linear algebraic groups, GMT21 Springer (1981).

[2] J. Jantzen, Representation of algebraic groups, Mathematical Surveys and Monographs 107, AMS
(2003).

A right normed basis for free Lie algebras

Evgeny Chibrikov
IME
USP

Rua Corinto 431 22 BL A
Brazil

E-mail address: chibr@gorodok.net

In this paper we construct a basis of a free Lie algebra that consists of right normed words, i.e. the
words that have the following form: [ai1 [ai2 [. . . [ait−1ait ] . . .]]], where aij are free generators of the Lie
algebra.

References

[] None

Almost hereditary noetherian rings

Otto Kerner
Mathematisches Insititut

H.-Heine-Universitaet
Universitaetsstr. 1

Germany
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E-mail address: kerner@math.uni-duesseldorf.de

When D. Happel, I. Reiten and S. Smalødeveloped the concept of quasi-tilted algebras, they showed
that for an R-artin-algebra A the following conditions are equivalent: (i) A is almost hereditary. (ii)
There exists a split torsion pair (X ,Y) in modA, such that Y consists of modules of proj. dimension ≤ 1
and contains A. (iii) A is isomorphic to the endomorphism ring of a tilting object T in a locally finite
hereditary abelian R-category.

In collaboration with J. Stovicek and J. Trlifaj we generalised this result to right noetherian rings.

References

[] None

NULL

Olivier Mathieu
NULL

Universite de Lyon
UFR de mathematiques

France

E-mail address: mathieu@math.univ-lyon1.fr

On varieties determined by their jets (joint with R. Gurjar).
Let X be an affine variety over the complex field C, and let Y be a subvariety defined by the ideal

I of C[X] and let X̂ be the infinitesimal neighborhood of Y in X. By definition, C[X̂] is the I-adic
completion of C[X].

Usually, one cannot recover X from X̂. For example, if X is smooth of dimension n and Y is a point,
then C[X̂] ' C[[x1, . . . , xn]. However, in the case where a reductive group G acts over X and when Y is
the unique closed orbit under the action, then X̂ determined X. More precisely:

Theorem Let G (respectively G) be a reductive groups acting on X (respectivelyX). with a unique
closed orbit Y (respectively Y ). If X̂ and X̂ are isomorphic, then X and X are isomorphic.

Some consequences of this result are given.

References

[] None

Actions on inverse semigroups on algebras

Wagner de Oliveira Cortes
NULL

UFRGS
Av Bento Goncalves, 9500

Brazil
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We study that if S is a faithfully projective R-algebra and H is a finite inverse semigroup acting on
S as R-linear maps such that the fixed subring SH = R, then any partial isomorphism between ideals of
S which are generated by central idempotents can be obtained as restriction of an R-automorphism of S
and there exists a finite subgroup of automorphisms G of S with SG = R.

This article was made with Miguel Ferrero, Antonio Paques e Dirceu Bagio.
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The objective of this work is to present the algebraic theory of locally nilpotent k-derivations in
k[x1, .., xn], based on a Zariski’s automorphism of this ring, and an algorithmic way to determine the
generators and a SAGBI base of its kernels.
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It is well known that Koszul algebras are quadratic and monomial quadratic algebras [Green-Zacharia]
and quadratic algebras of global dimension two are Koszul. It was also proved [Green-Huang] that
algebras with a quadratic Groebner basis are Koszul, however there is no general characterization of
Koszul algebras, hence it is of interest to construct new Koszul algebras from given ones.

We consider triangular matrix algebras

Λ =
[

R 0
M T

]
,

with R and T K-algebras and M a T -R-bimodule.
The aim of this talk is to give sufficient conditions on R, T and M in order to obtain a Koszul algebra

Λ.
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Joint work with Maria Julia Redondo and Andrea Solotar
The fundamental group of a category over a field is the inverse limit of the groups providing connected

gradings of the category. This invariant is related to Galois coverings of the category and is not a Morita
invariant. We consider the thin categories of Galois coverings and of connected gradings in order to show
that they are isomorphic, providing this way an intrinsic formulation of results obtained by E.L. Green
and E.N. Marcos for a category presented as a path category of a quiver with relations. Then we will
prove that algebras of matrices do not have an universal grading (or equivalently an universal cover),
nevertheless for an algebraically closed field of good characteristic there exist precisely two source objects
in the category of gradings. This allows to compute explicitly the fundamental group of matrices of sizes
2 and 3, making use of classification results by C. Boboc, S. Dăscălescu and R. Khazal.
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Motivated by the theory of cluster algebras initiated by Fomin and Zelevinsky [3], Buan, Marsh and
Reiten [1] introduced via the notion of cluster categories the so-called cluster-tilted algebras. Through
further papers, the ordinary quivers of cluster-tilted algebras were shown to be obtained by sequences of
Fomin-Zelevinsky quiver mutations on acyclic quivers; but the nature of the relations on these quivers
remained unknown.

On the other hand, there is a recent theory of mutation of quivers with potential initiated by Derksen,
Weyman and Zelevinsky [2], and to which are associated algebras called Jacobian algebras. In this talk,
we discuss the strong relationship between mutation of cluster-tilting objects in triangulated 2-Calabi-Yau
categories and mutation of quivers with potentials. In particular, we show that cluster-tilted algebras are
Jacobian algebras, solving the problem of finding the relations on cluster-tilted algebras.

This talk is based on a recent joint work with A. Buan, O. Iyama and I. Reiten.
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Decorated generalized bunches of chains
We consider a class of matrix problems, which contains both generalized bunches of chains (or Gelfand

problems, or clans) [3] and decorated bunches of chains that appear in the theory of Cohen–Macaulay
modules over non-isolated singularities [2].

Definition Let {E ,F , <,∼,−, Ec, Fc} be a generalized bunch of chains (GBC) over a field K in the
sense of [3]. A decoration of this GBC consists of:



1. A discrete valuation on K and its prolongations to every skewfiled Ec, Fc; we denote by K∗, E∗
c , F ∗

c

the corresponding discrete valuation rings.

2. A subset D of pairs (x, y) such that x ≤ y; we call these pairs decorated. Especially, we call x
decorated if so is the pair (x, x).

The following condition must hold:
If x ≤ y ≤ z and the pair (x, z) is decorated, then both pairs (x, y) and (y, z) are also decorated.

Especially, if x occur in a decorated pair it is decorated itself.

We define representations of a decorated GBC by analogy with [3] and [2]. The main distinction is that
for decorated pairs (x, y) the corresponding elementary transformations are only possible with coefficients
from E∗

c or F ∗
c . Then, following [1], we elaborate an algorithm of reduction and give a combinatorial

description of indecomposable representations in terms of strings and bands.
I will also present some examples of the applications.
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Let A be an algebra and M be a finitely generated A-module. In the class of all the sub-objects of

M, we have a pre-order relation ≤ . That is, given two monomorphisms f : X → M and g : Y → M,
it is said that f ≤ g if there is a morphism h : X → Y such that gh = f. This pre-order induces an
equivalence relation in the class of all sub-objects of M . Indeed, f ∼ g if and only if f ≤ g and g ≤ f .
So, the pre-order becomes a partial order on the set of equivalence classes of sub-objects of M .

Consider a stratifying system (Θ,≤) of size t, M ∈ F(Θ), the category of finitely generated left
modules having a Θ-filtration, and f : N → M a Θ-monomorphism. If g : X → M is a sub-object of M
which is equivalent to f , then g is also a Θ-monomorphism. Therefore, the notion of Θ-monomorphism
is compatible with the pre-order relation considered above. On the other hand, we have the notion of
Θ-length of M ∈ F(Θ), which is given by `Θ (M) :=

∑t
i=1 [M : Θ(i)], where [M : Θ(i)] is the multiplicity

of Θ(i) in M.
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Given a module M in the category F(Θ), we study the concept of the relative socle of M . We do so,
under two different approaches, which are:

(Ap.1) as a Θ-semisimple subobject of M having maximal Θ-length,
(Ap.2) as a maximal Θ-semisimple subobject of M with respect to the order ≤ introduced above.
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Hochschild homology and global dimension
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In his 1989 paper on Hochschild cohomology, Happel raised the following question: if the Hochschild
cohomology of a finite dimensional algebra vanishes in high degrees, then does the algebra have finite
global dimension? This was answered negatively in a paper by Buchweitz, Green, Madsen and Solberg,
where a counterexample was given. However, the Hochschild homology version of the question, a conjec-
ture given by Han, is still open. We give a positive answer to this conjecture for local graded algebras,
Koszul algebras and cellular algebras. The proof uses Igusas formula for relating the Euler characteristic
of the relative cyclic homology to the graded Cartan determinant.

This is joint work with Dag Madsen.
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The research concerns some problems of the representation theory of posets with additional structures.
Our main objective are posets equipped with more than one order relation.

Recall that, in a series of papers by Zavadskij and his students, there were introduced and stud-
ied equipped posets, with order relations of two kinds: weak and strong. Their representations (and
corepresentations) determine some matrix problems of mixed type over quadratic field extensions.

Extending this ideas, we define now 3-equipped posets (with order relations of three kinds) and their
representations and corepresentations over a purely inseparable cubic field extension F ⊂ G, in charac-
teristic 3.

We mainly study the infinite-representation case dealing with the matrix problems of mixed type
over the pair (F,G) which correspond to classification of indecomposables. For some critical 3-equipped
posets, their representations and corepresentations are completely classified and described in evident
matrix form. Meanwhile for the others, the task is reduced to some matrix problems that contain the
pseudolinear pencil problem as a subproblem.
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We classify all irreducible weight modules with finite dimensional weight spaces over affine Lie algebras.
This problem has been studied extensively in the last twenty years. Futorny introduced the notion of a
dense weight module and classified all non-dense irreducible modules. Chari and Pressley showed that
every integrable irreducible weight module with finite dimensional weight spaces is either a loop module
or a highest weight module. They also studied more general loop modules. The above mentioned works
of Futorny, Chary, and Pressley produced a list of irreducible weight modules with finite dimensional
weight spaces which Futorny conjectured to be complete. In this talk I will talk about the proof of this
conjecture.

This is a joint work with Dimitar Grantcharov.

Twisted Representations of Quivers
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In this work we introduce the concept of twisted representations of a quiver and we prove an equiva-
lence between the category of twisted representations of a quiver Q, and the category of representations
of a quiver Q̃, where Q̃ depends on Q and on the twisting factors.
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México

E-mail address: avella@matem.unam.mx

Joint work with Christof Geiss.
We study the classification of gentle algebras according to derived equivalence, which is well under-

stood in the case of gentle algebras whose associated quiver has just one cycle.
We define derived equivalent invariants for gentle algebras, constructed in an easy combinatorial way

from the quiver with relations defining these algebras. They consist of pairs of natural numbers and
contain important information about the algebra and the structure of the stable Auslander-Reiten quiver
of its repetitive algebra.
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Abstract: I will discuss the recently constructed functor which takes a representation of an arbitrary
(finite) quiver Q, and returns a representation of Q for which the maps over all arrows are isomorphisms.
The common dimension of the resulting vector spaces at each vertex is a numerical invariant of the
representation. Combining these functors with pulling back representations along well chosen maps of
directed graphs allows one to construct other numerical invariants of representations. These include,
as the simplest cases, the dimension vector of a representation, the ranks of any composition of maps,
dimensions of intersections of images, and so forth. We call the functors giving rise to these invariants
”rank functors”, although in general they measure something more complicated than the rank of any one
map.

There is a natural tensor product on representations of Q, which allows one to construct a repre-
sentation ring R(Q) a la Grothendieck. The rank functors above commute with direct sum and tensor
product of representations (addition and multiplication in R(Q)), and fix the identity, hence induce ring
homomorphisms from R(Q) to the integers, called rank functions. In more recent work, when Q is a tree
quiver with a unique sink, I use combinatorial methods to construct all rank functions on Q and show
that ring R(Q), modulo its ideal of nilpotents, is finitely generated as an abelian group.
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On generating of homotopy categories of complexes
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When dealing with triangulated categories which are not small, it is a very useful property if they
are compactly generated (such as the unbounded derived category of a module category). It was recently
studied by Holm, Jørgensen, Krause and Neeman whether or when different homotopy categories of
complexes, such as K(Mod-R), K(Flat-R), K(Proj-R) or K(Inj-R), are compactly generated.

In this talk, I will outline a general method for studying this problem. I will employ Neeman’s concept
of a well-generated triangulated category which generalizes compactly generated categories. I will show
that the homotopy category K(Mod-R) is “locally” well-generated. However, if A is an additive category
with coproducts, then K(A) is truly well-generated only if a rather restrictive condition is satisfied.

As a result, a complete answer to the question about compact generatedness of K(Mod-R) for any
ring R is given, and the cases of K(Flat-R) and K(Proj-R), where the situation is more complicated, are
explained. This way, many natural examples of non-well-generated categories are provided and a general
method for detecting more such examples among algebraic triangulated categories is shown.
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Links of faithful partial tilting modules
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This is a report on some recent joint work with Dieter Happel.
Let Λ be a basic, hereditary, finite dimensional algebra over an algebraically closed field k. We denote

by −→KΛ the quiver of tilting modules over Λ. For a direct summand M of a multiplicity free Λ-tilting
module let −→lk(M) be the full subquiver of −→KΛ with vertices T such that M is a direct summand of T .
We call −→lk(M) the link of M . In general −→lk(M) is not connected.

We indicate the proof that −→lk(M) is connected provided M is faithful.
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In this talk, we will present some results obtained in ongoing work with Oppermann, Reiten and
Solberg. The main problem addressed in the talk will be that of finding sufficient conditions for a one-
point extension H[M ] to have representation dimension less or equal than 3, where H is a hereditary
finite-dimensional algebra.
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We consider equipped posets (i.e. posets with two kinds of order relations) and investigate their
corepresentations over a quadratic field extension F ⊂ G.

Representations of one-parameter equipped posets over the classical field extension R ⊂ C were
described completely in matrix form in [1]. Their classification led to some matrix problems of mixed
type over the pair (R, C). On the other hand, recently in [2] there were introduced and studied also
corepresentations of equipped posets. Their classification corresponds to similar matrix problems of mixed
type which are in some intuitive sense dual to the mentioned ones for representations. Nevertheless, there
is no yet any formal construction reducing one type of problems to another one.

Having in mind the objective to classify in the future all corepresentations of one-parameter equipped
posets over an arbitrary quadratic extension F ⊂ G, we establish some necessary properties of corepre-
sentations based on characteristics of the critical subposets. We also classify completely in matrix form
all the indecomposable corepresentations of several critical and faithful one-parameter equipped posets.
One of the essential investigation tools is the algorithm of differentiation V̂ II constructed in [2].
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This talk is dedicated to the applications of the poset representation theory to the number theory. We
recall that the representation theory of posets was developed in the 70’s by Nazarova and Roiter. The
main aim of this study was to determine indecomposable matrix representations of a given poset over a
fixed field. Soon after the discovery of matrix representations of a poset, Gabriel introduced the concept
of a filtered linear representation of a poset in connection with the investigation of oriented graphs having
finitely many isomorphism classes of indecomposable linear representations [3].

In this talk we shall describe how we can use differentiation algorithms (which have been successfully
applied in determining the representation type (finite or infinite) of posets and in the classification of
indecomposable poset representations), as well as representations over the set of natural numbers of a
poset, in order to obtain solutions of some open problems concerning figurate numbers [1,2]. In particular,
we present criteria for natural numbers which are the sum of three octahedral numbers (in connection
with the Pollock’s conjecture on tetrahedral and octahedral numbers), three polygonal numbers of positive
rank (note for example that the problem of representing a natural number as sums of three nonvanishing
squares is still an unsolved problem [1]) or four cubes with two of them equal. Some identities of
the Rogers- Ramanujan type involving this class of numbers are also obtained with the help of poset
representation theory.
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An equipped poset is a poset with some additional binary relation. Representations of equipped posets
over a quadratic field extension F ⊂ G lead to certain natural matrix problems of mixed type over the
pair (F,G).

Our objective is to deal with the representation infinite (tame) equipped posets. In case of the classical
quadratic field extension R ⊂ C, we already have (as a result of the previous investigations) the developed
differentiation technique and the representation type criteria for equipped posets to be one-parameter,
tame, of finite growth.

To extend the theory to an arbitrary quadratic extension F ⊂ G, one needs in particular to classify the
indecomposable representations of the natural G-G-bimodule W = G⊗F G. We do it [2] for a separable
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(inseparable) extension F ⊂ G reducing the task to the semilinear (pseudolinear) pencil problem, solved
by Djoković in 1978 (Sergeichuk in 1989). We also obtain a simplified canonical form of indecomposables of
the bimodule W in characteristic 6= 2. The construction involves a special technique of transformations of
polynomials on the base of some integer matrix sequence [1]. The results find applications in constructing
generalized differentiation algorithms and classifying indecomposables.
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Let KQ/I be the path algebra of the quiver Q = (Q0, Q1) with the ideal I of admissible relations.
There is a theorem of Derksen and Weman stating that the semi-invariants for quivers with relations are
also generated by the determinantal semi-invariants of Schofield. Using this theorem, we can describe
the rings of semi-invariants of tubular algebras. In particular, we are interested in the semi-invariants
SI(Q/I, β) where β is a dimension vector of a regular KQ/I module. This talk will also include a
brief explanation of how shrinking functors are used to show isomorphism of rings of semi-invariants for
1-parameter families of modules.
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Hyper loop algebras are certain Hopf algebras associated to affine KacMoody algebras. We will focus
on finite dimensional representations of hyper loop algebras over arbitrary fields. The main results concern
the classification of the irreducible representations, their tensor products, the construction of the Weyl
modules, and base change. Several of the results are related to the study of irreducible representations
of polynomial algebras and Galois theory. This is a joint work with Adriano Moura.
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A non-commutative curve is a pair (X,AX), where X is an algebraic curve over a field k and AX is a
sheaf of OX -algebras, coherent as a sheaf of OX -modules. We always suppose that this curve is reduced,
i.e. AX has no nilpotent ideals. An Auslander curve of such a (non-commutative, reduced) curve is
a curve (X, EndAX

(M)), where M is a coherent torsion free sheaf of AX -modules such that, for each
point x ∈ X, the stalk Mx is an additive generator of the category of torsion free (finitely generated)
AX, x-modules. Then gl.dimAX ≤ 2 (exactly 2 if the curve is not smooth, i.e not all stalks AX, x are
hereditary).

Suppose that X is a rational (commutative) curve, which only has simple nodes and cusps as singu-
larities, π : X̃ → X is its normalization, O = OX and Õ = π∗(OX̃). Set M = O⊕Õ and A = EndO(M).
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Then (X,AX) is an Auslander curve of (X,OX). We construct a tilting complex T in the derived cat-
egory Db(Coh(AX)) and calculate its endomorphism algebra ΛX . Namely, let {X1, X2, . . . , Xs} be the
irreducible components of X̃ (all of them are identified with the projective line), {x1, x2, . . . , xm} be
the nodes of X and {y1, y2, . . . , yn} be its cusps. Let also π−1(xj) = {x′j , x′′j }, where x′j ∈ Xi′(j) and
x′′j ∈ Xi′′(j) (possibly i′′(j) = i′(j)), while π−1(yk) ∈ Xi(k). Then ΛX = kQ/I, where Q is the quiver
with the set of vertices

{vi, v
′
i, xj , yk | 1 ≤ i ≤ s, 1 ≤ j ≤ m, 1 ≤ k ≤ n}

and the set of arrows

{a′j : xj → vi′(j), a′′j : xj → vi′′(j), b
′
k, b′′k : yk → vi(k), ci, di : vi → v′i}.

The ideal I is generated by the relations

(η′jci′(j) − ξ′jdi′(j))a′j if x′j = (ξ′j : η′j),
(η′′j ci′′(j) − ξ′′j di′′(j))a′′j if x′′j = (ξ′′j : η′′j ),
(ηkci(k) − ξkdi(k))b′k and (ηkci(k) − ξkdi(k))b′′k − b′k if π−1(yk) = (ξk : ηk).

In particular, gl.dim ΛX = 2 and Db(Coh(AX)) ' Db(ΛX -mod), while the category D−(Coh(X)) embeds
into D−(ΛX -mod) as a full triangulated subcategory.

Note that the algebra ΛX is gentle if X is either a chain or a cycle of projective lines. Since gentle
algebras are known to be derived-tame, this gives a new proof of tameness of the category of coherent
sheaves Coh(X) and its perfect derived category. Other way arround, such a geometric description of the
obtained gentle algebras leads to interesting corollaries about their Serre functor and the full subcategory
of band complexes.

This result can be generalized to non-commutative curves such that all their singularities are nodal
algebras.

Partial orders in the representations of algebras.
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For a finitely generated algebra A over an algebraically closed field k, and a natural number d, the space
of d-dimensional representations, repdA, is the space of k-algebra homomorphisms from A to Mn(k), the
algebra of d× d-matrices over k. On this space one can consider for each natural number m the preorder
≤m given by fM ≤m fN if the dimension of the kernel of the matrix (fM (ai,j)) is less than or equal to
the dimension of the kernel of the matrix (fN (ai,j)) for all m×m-matrices (ai,j) with entries from A.

In this lecture it will be shown that this preorder is a partial order for a given d when m is big enough.
Also relations to other partial orders on the space of representations will be given.
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It is well known that the indecomposable representations of wild quivers depend on arbitrary many
parameters making the classification of all indecomposable representations for wild quivers impossible.
Nevertheless, one may ask for those dimension vectors showing a “tame” behaviour.

A dimension vector d is called tame if there is a one parameter family of indecomposable representa-
tions for d and, given any (componentwise) decomposition d = d1+d2 as a sum of two dimension vectors,
all families of indecomposable representations for both d1 and d2 depend on at most one parameter.

The tame dimension vectors for trees can be characterised in completely combinatorial terms:
Theorem. Let d be a dimension vector of a tree Q and q denote the Tits form for Q. Then d is

tame if and only if q(d) = 0 and for any decomposition d = d1 + d2 as a sum of two dimension vectors,
both q(d1) ≥ 0 and q(d2) ≥ 0.

But not only a combinatorial characterisation of the dimension vectors is possible: It can be shown
(and is actually needed in the proof of the theorem above) that any tame dimension vector can be cut
into “building blocks which can be described explicitly. In order to construct the families of indecom-
posable representations for the tame dimension vectors it is enough to give a constructive procedure for
indecomposable representations of the corresponding building blocks.

There are two different kinds of building blocks for the tame dimension vectors: Taking into account
all trees, there are only finitely many building blocks showing again a tame behaviour, and there are
building blocks for which only one indecomposable representation exists. For the former ones, it is easy
to construct the families of indecomposable representations. Although there are infinitely many of the
latter ones, they can again be entirely described, and the corresponding indecomposable representations
can be constructed explicitly by means of BGP reflection functors from simple representations.
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For a Hom-finite 2-CY triangulated category C, we generalise the notion of cluster structures from
[BIRSc] to include situations where the quivers of the clusters may have loops.

An object in C is said to be maximal rigid if Ext1(T, T ) = 0 and whenever Ext1(T ⊕X, T ⊕X) = 0,
we have that X lies in add T . We show that the set of maximal rigid objects in C forms a generalised
cluster structure. This is a generalisation of a result in [BIRSc].

As an example, we will show that the set of maximal rigid objects in the cluster category of a tube
(none of which are cluster-tilted) forms a generalised cluster structure of type B.

This is joint work with Aslak Bakke Buan and Robert Marsh.
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Let k be an algebraically closed field. We investigate isolated quasihomogeneous surface singularities
R through the quotient category H of all finitely generated graded R-modules by its Serre subcategory
of all finitely dimensional graded R-modules. The category H is a hereditary noetherian category with
Serre duality which, invoking a result of Reiten-van den Bergh, has an interpretation as the category of
coherent sheaves on a weighted projective curve C whose underlying ordinary curve is smooth projective.
We show among others that — up to a natural equivalence — R can be recovered from H.

The central topic of the talk is the investigation of the stable derived category of finitely generated
graded R-modules in the sense of R. Buchweitz, or in different terminology the triangulated category of
graded singularities of R in the sense of Bondal and Orlov. We show that this category is equivalent to the
stable category of vector bundles on C — which arises from a natural Frobenius category structure on the
category of vector bundles on C — and investigate its structure, in particular determine its Auslander-
Reiten components. Our results are particularly complete in case the ordinary curve underlying C
has genus zero. In this case the triangulated categories mentioned above have tilting objects whose
endomorphism rings form interesting classes of finite dimensional algebras.

Most of the research is joint work with D. Kussin, H. Meltzer and J. A. de la Peña.
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Joint work with I. Assem and F. Coelho. In this talk, we give a sufficient (which is also necessary
under a compatibility hypothesis) condition on a set of arrows in the quiver of an algebra A so that A is
a split extension of A/M, where M is the ideal of A generated by the classes of these arrows and A and
A/M have compatible presentations. We apply these results to cluster tilted algebras.
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The Chuang-Rouquier theory of sl2 categorification begins with an infinite family of blocks whose
total Grothendieck group, after complexification, can be viewed as a highest weight representation for an
affine Lie algebra of type A. The idea of the categorification is to lift the linear transformations ei and
fi of the Lie algebra to functors Ei and Fi of module categories of the blocks. The theory was applied
successfully to group algebras over a field of characteristic p for the symmetric groups and general linear
groups, with the blocks arrayed along i-strings which are reflected by derived equivalences. In order to
deal with spin representations of the symmetric groups, two changes are needed. First of all, one must
consider twisted sl2 categorification, using a twisted affine Lie algebra of type A. Secondly, we conjecture
that one must consider simultaneously blocks of the covering groups of Sn and of the alternating groups
An, with crossovers between the two sets of blocks whenever the underlying partitions have a change of
parity. As evidence for this Crossover Conjecture (Kessar-Schaps), we demonstrate that there are Morita
equivalences between the extremal blocks of the i-strings, provided crossovers are taken into account.
Joint with Ruthi Leabovich.
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David Bessis [1] defined a certain “dual” presentation of Artin groups of finite type (that is to say,
Artin groups whose corresponding Coxeter group is finite), generalizing the Birman-Ko-Lee presentation
of braid groups [2]. The proof of correctness of the presentation involved type-by-type arguments and a
computer check for the exceptional types. I will present a uniform proof (for crystallographic types only)
based on exceptional sequences (as in Crawley-Boevey [3]) of representations of Dynkin quivers. I will
also discuss the natural conjectural generalization: a presentation for arbitrary Artin groups.
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It is a well-established fact that the composite of n irreducible morphisms can lie in the (n + 1)-th
power of the radical and still be non-zero. In our talk, we shall discuss this situation, surveying old and
new results.
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We study the derived equivalenve between a koszul algebra and its yoneda algebra. We shall present
a complete classification for the case of descrete derived categories of the koszul and its yoneda algebras.
We also have described that equivalence for the simply connected koszul algebras and koszul algebras
that satisfy the clock condition.
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Let R be an artin algebra, and M an indecomposable nonprojective R-module. If

· · · → P 2 δ2→ P 1 δ1→ P 0 δ0→ M → 0

is a minimal projective resolution of M , then the i-th Betti number of M , βi(M), is defined to be the
number of indecomposable summands of P i. We say that the complexity of a finitely generated R-module
M is at most n, and we write

cx M ≤ n

if βi(M) ≤ cin−1, for some c ∈ Q and i sufficiently large and that the complexity of M is n, cx M = n,
if cxM ≤ n but cx M 6≤ n − 1. We also say that the complexity of M is infinite, if no n exists such
that cxM ≤ n. For example, cx M = 0 is equivalent to the projective dimension of M being finite,
and cx M = 1 is equivalent to M having infinite projective dimension and the existence of some b ∈ Q
such that βn(M) ≤ b, for all n ≥ 0. It is well-known that if R is a selfinjective artin algebra, then the
complexity is constant on each stable component of its Auslander-Reiten quiver. The purpose of this
talk is to look at modules of complexity one over a selfinjective artin algebra using the structure of the
Auslander-Reiten components containing them. If time permits, I will also present some preliminary
results for modules of higher complexity.
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By a result of Osamu Iyama (see his talk) the module category of the Auslander algebra of linear
oriented As contains a 2-cluster tilting object, and, more generally, there is a certain n-Auslander algebra
containing an (n + 1)-cluster tilting object. In my talk I will introduce a special kind of tilting module,
called n-APR tilting module. We will see that n-APR tilting acts on n-cluster tilting objects in a similar
way as classical APR-tilting acts on module categories. In particular, the existence of n-cluster tilting
objects is preserved. Finally, for n = 2, we will see how 2-APR tilting changes the algebra in terms of
quivers with relations.

This is joint work in progress with Osamu Iyama.
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Error Correcting Codes in Group Rings Joint work with Raul Ferraz, Marines Guerreiro and Cesar
Polcino

Error correcting Codes and their uses are every where now a days, in the supermarket, in CD s
DVDs, space ships and others. Originally the algebraic theory of error correcting codes took place in the
setting of vector spaces over finite fields, but the study of linear or ciclyc codes over finite rings grow
of importance, because certains non linear codes are related to ideals in some rings. In some cases this
ideals can be viewed as ideals of a group ring, and some invariants can be calculated.
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Let R be a commutative ring, G a group and RG its group ring. Let ϕ : RG → RG denote the
R-linear extension of an involution ϕ defined on G. An element x in RG is said to be ϕ-antisymmetric
if ϕ(x) = −x. The set of antisymmetric elements of A will be denoted by (A)−ϕ . For general algebras A
with an involution ϕ, crucial information of the algebraic structure of A can be determined by that of
(A)−ϕ and by the ϕ-unitary unit group Uϕ(A) = {u ∈ A | uϕ(u) = ϕ(u)u = 1}.

This group has been extensively studied. For example, Smirnov and Zalesskii in [3], proved that if
the Lie ring generated by the elements of the form g + g−1 with g ∈ U(A) is Lie nilpotent then A is Lie
nilpotent. In [1] Giambruno and Polcino Milies show that if A is a finite dimensional semisimple algebra
over an algebraically closed field F with char(F ) 6= 2 then Uϕ(A) satisfies a group identity if and only
if (A)−ϕ is commutative. Furthermore, if F is a nonabsolute field then Uϕ(A) does not contain a free
group of rank 2 if and only if (A)−ϕ is commutative. Giambruno and Sehgal, in [2], showed that if B is a
semiprime ring with involution ϕ, B = 2B and (B)−ϕ is Lie nilpotent then (B)−ϕ is commutative and B
satisfies a polynomial identity of degree 4.

We shall give a characterization of when the ϕ-antisymmetric elements of RG commute. This is joint
work with O. Broche Cristo, E. Jespers and M. Ruiz.
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Let A be an artin algebra. An A-module M is said to be torsionless provided it can be embedded
into a projective A-module. The algebra A is said to be torsionless-finite provided there are only finitely
many isomorphism classes of indecomposable torsionless modules. The aim of the lecture will be to
survey properties of the torsionless modules. In particular, we will consider the question which algebras
are torsionless-finite. Note that the representation dimension of a torsionless-finite algebra is always
bounded by 3.
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In this talk we present some new results related to the “finitistic dimension conjecture”. Almost all
the results are from three joint works (the third in progress) with Octavio Mendoza (Universidad Nacional
Autónoma de México) and François Huard (Bishop’s University, Québec).

It was conjectured by H. Bass, in the 60’s that the finitistic dimension (fin.dim(Λ)) of an Artin algebra
has to be finite. Since then, much work has be done towards the proof of this conjecture.

Recently, K. Igusa and G. Todorov defined in the paper “On the finitistic global dimension conjecture
for artin algebras”, a function Ψ : modΛ → N which turned out to be useful to prove that fin.dim(Λ) is
finite for some class of algebras.

In this talk, we show some new properties of the Igusa-Todorov function and we apply them to prove
the finitistic dimension conjecture for a large family of algebras. Also, generalizing the Loewy length
and having in mind the finitistic dimension conjecture, we propose the infinite layer length, a new
measure of Λ-modules, which is an example of a more general definition: the layer length associated
with a torsion theory (τ,F).
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The notion of n-Lie (Filippov) superalgebra was introduced in [1] as a natural generalization of the
notion of n-Lie (Filippov) algebra [2]. In [3], finite-dimensional commutative n-ary Leibniz algebras over
a field of characteristic 0 were studied. It was shown there that there exist no simple ones. The finite-
dimensional simple Filippov algebras over an algebraically closed field of characteristic 0 were classified
in [4]. Note that an n-ary commutative Leibniz algebra is exactly a Filippov superalgebra with trivial
even part, and a Filippov algebra is exactly a Filippov superalgebra with trivial odd part. Let G be a Lie
superalgebra. We say that a Filippov superalgebra F has type G if its multiplication Lie superalgebra is
isomorphic to G. In this talk, we discuss a description of Filippov superalgebras of types B(m,n) and
A(n, n).
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We study the representation type of the blocks of locally-finite weight module categories for generalized
Weyl algebras of degree n over an arbitrary field and describe indecomposable modules in tame blocks.

This is a joint work with Georgia Benkart (University of Wisconsin, USA) and Vyacheslav Futorny
(Universidade de São Paulo, Brasil).

References

[] None

On Minimal Affinizations of Quantum Affine Algebras

Adriano Moura
NULL

UNICAMP
IMECC - UNICAMP

Brazil

E-mail address: aamoura@ime.unicamp.br

Let g be a finite-dimensional simple Lie algebra over the field of complex numbers. Consider its loop
algebra g̃ and the corresponding quantized enveloping algebras Uq(g) and Uq(g̃). It is known that, unless
g is of type A, there is no quantum group analogue of the evaluation maps g → g̃. In particular, the
concept of evaluation representations is not available in the context of the quantum affine algebra Uq(g̃).
Chari and Pressley introduced and studied the concept of minimal affinizations (nowadays also called
generalized Kirillov-Reshetikhin modules) which, in some sense, place the role of evaluation modules. In
this talk we will discuss a few results on minimal affinizations and Kirillov-Reshetikhin modules.
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This is a work done in collaboration with B. Cox and V. Futorny. In this talk we discuss how
to construct boson type realizations of the elliptic affine Lie algebra sl(2, R) ⊕ ΩR/dR, where R =
C[t, t−1, u |u2 = t3 − 2bt2 + t].
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We describe the present state of the representation theory of Schur superalgebras S = S(m|n, r) in pos-
itive characteristic. The category of (super)modules over a general linear supergroup is a highest weight
category (proved by Zubkov) but polynomial (super)modules ((super)modules over Schur superalgebras)
do not form a highest weight subcategory. Actually, in positive characteristic, a Schur superalgebra
S = S(m|n, r) is quasi-hereditary if and only if it is semisimple. Explicit descriptions of S(1|1, r) was
used by Hemmer-Kujawa-Nakano to determine the representation type of all superalgebras S(m|n, r).
The description of highest weights λ of simple modules over S is not straightforward and was given by
Brundan-Kujawa via an algorithm related to Moullineax conjecture. Highest weights λ corresponding to
(m|n)-hook partitions appear already in characteristic zero case. In that case the corresponding simple
modules Dλ were described using (super)bideterminants by Muir. We consider its Z-form and suitably
defined (super)bideterminants. An interesting feature of these (super)bideterminants is that they are
Z-linear combinations of (super)bideterminants corresponding to semistandard tableaux.
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We will discuss the basic examples, classification and representation theory of Jordan superalgebras.
Of special interest is the small rank case, which is related to the so called superconformal algebras.
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This a joint work with V. Serganova and I. Shestakov. The talk is devoted to the problem of the
classication of indecomposable Jordan bimodules over nite dimensional Jordan algebras defined by bilinear
form. Recall, that for a Jordan algebra J the category J-bimod of l-nite dimensional J-bimodules is
equivalent to the category U-mod of (left) nitely dimensional modules over an associative algebra U =
U(J), which is called the universal multiplication envelope of J. If J has nite dimension the algebra U is
nite dimensional as well. It allows us to apply to the category J-bimod all the machinery developed in the
representation theory of nite dimensional algebras. In particular, in accordance with the representation
type of the algebra U one can dene Jordan algebras of the nite, tame and wild representation types. We
classify half-unital (or one-sided) representation type for Jordan algebras of bilinear form with radical
square zero.
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Several recent results concerning the classification of minimal representations of the 1D N-Extended su-
peralgebra (the algebra of the Supersymmetric Quantum Mechanics) are presented. They include the
admissible field-content of the minimal representations, the presentation of supersymmetry transforma-
tions as N-colored oriented graphs and the classification of the admissible connectivities of the associated
graphs. Open problems in the representation theory of the 1D N-extended superalgebra are discussed.
The talk is based on the works 1-4 (see below).
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