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Abstract

GEH, L. R. Mobile robot self-driving through image classi�cation using
discriminative learning of sum-product networks. Institute of Mathematics
and Statistics, University of São Paulo, São Paulo, Brazil, 2018.

Driving has proven to be a very di�cult task for machines to emulate, not only due to
the inherent complexity of the problem but also because of the need for accurate real-time
predictions. Nonetheless, recent advances in computer vision and machine learning
have shown promising results in the real-world. Mobile robots are low-cost miniature
computers with limited processing power and memory. The problem of self-driving can
be similarly applied to the mobile robot domain as a down-scaled version of the same
task, with an additional hardware constraint. Sum-product networks are probabilistic
graphical models capable of representing tractable probability distributions containing
a great number of variables. Exact inference is asymptotically linear to the number of
edges in the network’s graph, and its deep architecture is capable of representing a
wide range of distributions. In this work, we attempt to model autonomous driving by
using sum-product networks on a small mobile robot. We model this task as an imitation
learning problem through image classi�cation. We present accuracy results on an arti�cial
self-driving dataset for di�erent sum-product network learning algorithms, providing a
comparative study not only for di�erent network architectures, but also discriminative
and generative models. Finally, we provide a real-world mobile robot implementation on a
miniature computer.

Keywords: sum-product networks, probabilistic graphical models, machine learning,
robotics
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Chapter 1

Introduction

In this chapter we �rst describe the motivations and objectives of this thesis. Next, we
describe the structure of this document.

1.1 Motivation and objectives

Self-driving is a challenging computer vision task, mainly due to its inherent complexity
and the necessity for real-time decision making. Although there have been many promising
results the past few years on autonomous driving, the task still relies on the underlying
problem of following a pathway through visual cues (usually road markings). A possible
approach to this task is through imitation learning by means of image classi�cation. That
is, the agent tasked with driving should be able to reliably mimic human behavior by
correctly classifying whether to turn, stop or go straight given an image captured in front
of the car.

Mobile robots are low cost machines capable of movement. These robots are usually
small, and because of their size and cost often do not have the same performance capabilities
as a desktop computer. However, these domain traits make mobile robot self-driving a
very similar analogue to real-world autonomous cars. Processing power and memory
constraints play a big role in this case, and translate well to embedded systems present in
a self-driving car.

Sum-product networks (SPNs) are probabilistic graphical models that are able to
represent a wide range of tractable probability distributions of many variables. SPNs have
shown impressive results in several domains, and particularly that of image classi�cation.
Their deep architecture seems to capture features and contexts well, and since inference
is computed in time linear to the network’s edges, SPNs are promising models for fast
inference in self-driving.

In this work, we attempt to model self-driving of mobile robots through image
classi�cation. For the task of classi�cation our objective is to use sum-product networks
learned discriminatively, though we also give results for generative SPNs, comparing not
only generative and discriminative learning, but also di�erent SPN architectures.
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1.2 Thesis structure
This thesis is structured as follows. In Chapter 2, we �rst provide background on

sum-product networks, where we formally de�ne an SPN, present key properties on
their structure, explain how to compute exact inference and �nd an approximation of the
maximum a posteriori probability (MAP).

In Chapter 3, we show how to compute the partial derivatives with respect to a
sub-SPN and to its weights, leading on how to perform gradient descent and then on
learning the weights of the network through gradient descent both generatively and
discriminatively.

Chapter 4 is dedicated to algorithms for learning the structure of an SPN. We explain
the two structural learning algorithms that were used in the experiments.

For Chapter 5, we �rst show how we model self-driving as an image classi�cation
problem. We then give a brief explanation on the dataset used for training and testing. We
then formalize how we extract inference for self-driving.

Chapter 6 is dedicated to explaining the hardware aspects of this work. We describe
the processing unit used for inference and the unit used for handling the motors. We also
explain how communication between the two is done.

How we pre-processed images before learning and inference is explained in Chapter 7.
We describe each image transformation and how they a�ected performance.

In Chapter 8, we show accuracy results and timings on training and inference when
using di�erent SPN architectures and weight learning methods.

We �nally implement and show results of the self-driving robot on a real world
application in Chapter 9.

Finally, in Chapter 10 we give our conclusions and provide some discussion of the
results.
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Chapter 2

Sum-product networks

In this chapter we provide some background concepts needed for de�ning a sum-
product network. Once this is covered, we formally de�ne an SPN, list some interesting
properties on their structure, and describe how to perform exact inference (i.e. extract
the probability of evidence of some valuation) and how to �nd an approximation of the
maximum a posteriori probability.

2.1 Background
Probabilistic modelling attempts to represent interactions between variables as a

probability distribution. The objective of probabilistic models is to compactly represent
a distribution, be able to �nd a good approximation to the real function, and e�ciently
compute both the marginals and modes. By quantifying uncertainty through data, we are
able to predict events by looking at past observations. We model this through random
variables (RVs), �nding correlations and statistical independencies between variables in
order to extract new information from the distribution that encompasses the entire scope
of variables. Through Bayesian inference, a probabilistic model is able to infer uncertainties
and update its belief accordingly.

Probabilistic graphical models (PGMs) attempt to model this through the use of graphs,
representing distributions as a normalized product of factors (Pearl, 1988)

P(X = x) =
1
Z

∏
k

ϕk(x{k}).

Where x ∈ X is a d-dimensional vector valuation of RVs X on sample space X, and
factor (also called a potential)ϕk is a function mapping instantiations ofX to a non-negative
number. Z is the partition function Z =

∑
x∈X

∏
k ϕk(x{k}) that sums out all variables and

normalizes the term above it to the [0, 1] range.

A downside of this representation is that inference is exponential on the worst
case, which makes learning also exponential, as it uses inference as a subroutine. To
get around this problem, Darwiche proposed in Darwiche, 2003 the notion of network
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polynomial.

A network polynomial is a function over the probabilities of each instantiation. Let
Φ(x) be a probability distribution. The network polynomial of Φ(x) is the function f =∑

x∈X Φ(x)Π(x), where Π(x) is the product of the indicator variables (IVs) of each variable
on instantiation x , where each indicator variable [Y = y] has a value of zero if Y , y in x
and a value of one otherwise (i.e. if Y = y in x or Y < x ).

As an example, take the bayesian network N = A→ B with binary variables. Let λa ,
λa , λb and λb be the indicator variables for whenA = 1,A = 0, B = 1 and B = 0 respectively.
The network polynomial of N is the expression

fN = P(a)P(b |a)λaλb + P(a)P(b |a)λaλb + P(a)P(b |a)λaλb + P(a)P(b |a)λaλb .

The main advantage of this representation is to avoid recomputing terms. For instance,
take an instantiation of x = {A = 0}. Then, the network polynomial will be as
follows.

fN (x) = P(a)P(b |a) · 0 · 1 + P(a)P(b |a) · 0 · 1 + P(a)P(b |a) · 1 · 1 + P(a)P(b |a) · 1 · 1 =

= P(a)P(b |a) + P(a)P(b |a)

Which means we can avoid computing values from the two �rst terms. We can also
compute the network polynomial of some unnormalized probability distribution as long as
we divide by the partition function, de�ned as the network polynomial with all indicators
set to one. Although the network polynomial has exponential size in terms of variables,
computing the probability of evidence is linear in its size (Darwiche, 2003). By representing
the network polynomial as an arithmetic circuit of sums and products, one can prove that
the cost of inference is indeed polynomial.

2.2 De�nitions and properties
Sum-product networks borrow many concepts from network polynomials and arith-

metic circuits. There are many de�nitions of SPNs, and in this thesis we present two. The
�rst de�nition is given by the seminal article Poon and Domingos, 2011, and can be seen
as a more low-level approach to de�ning the network. The second, based on Gens and
Domingos, 2013, is a stronger de�nition, but one which we will use more throughout this
thesis, as it lends itself better to continous data.

Let X = {X1,X2, . . . ,Xn} be the set of all variables. We shall call this set the root scope.
Let G be a directed acyclic graph. The sets of vertices and edges of G will be denoted
by V (G) and E(G). We will call Ch(n) and Pa(n) the sets of children and parents of node
n ∈ V (G).
De�nition 2.1 (Sum-product network; Poon and Domingos, 2011). A sum-product

network (SPN) over variables X1,X2, . . . ,Xn is a DAG whose leaves are indicator variables

[X1 = x11], [X2 = x12], . . . , [Xn = x1n], . . . , [X1 = xd1 ], [X2 = xd2 ], . . . , [Xn = xdn ]. Its internal
nodes are products or weighted sums. Each edge coming out from a sum node n to another
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Figure 2.1: An example of an SPN.

node j has a non-negative weight associated with it. We denote such weight bywn,j . The value

of a sum node n is vn =
∑

j∈Ch(n)wn,jvj , where vj is the value of node j . The value of a product
node n is vn =

∏
j∈Ch(n)vj . The value of a leaf node is the value of the indicator variable. The

value of the SPN is the value of its root node.

Throughout this thesis, we denote by S(X = x), or simply by S(X ), the value of an
SPN S given evidence x . A sub-SPN Sn of S is the subgraph of S rooted at node n. A node
in an SPN is itself an SPN. When all indicator variables are set to one, the value of S is
denoted by S(∗). The scope of an SPN S , denoted by Sc(S), is the union set of all scopes of
its children. A leaf’s scope is the scope of its IV.
De�nition 2.2 (Validity). An SPN is valid i�, for all evidence E = e , S(E = e) = ΦS (E = e),
where ΦS is an unnormalized probability distribution.

De�nition 2.3 (Completeness). An SPN is complete i� all children of the same sum node

have the same scope.

De�nition 2.4 (Consistency). An SPN is consistent i� no variable appears with a value v
in one child of a product node, and valued u, with u , v , in another.

Validity in an SPN means that the network correctly and e�ciently computes the
probability of evidence of the distribution it represents. In this document we only work
with valid SPNs, as we wish to always compute exact inference. However, non-valid SPNs
are an interesting �eld of research for approximate inference in SPNs.

A su�cient condition for validity is completeness and consistency. Yet whilst this
condition is su�cient, it is not necessary, as the converse (i.e. an incomplete and
inconsistent valid SPN) can be true.
Theorem 2.1 (Poon and Domingos, 2011). An SPN is valid if it is complete and consistent.
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When an SPN S is valid, then S(∗) is the partition function, and we can extract the
probability of evidence from an SPN by computing P(X = x) = S(x)/S(∗). If for every sum
node all of their weights are non-negative and sum to one, then the partition function is
S(∗) = 1, and the SPN is the distribution itself.
Corollary 2.1 (Validity recursion; Poon and Domingos, 2011). If an SPN S is valid, then

all sub-SPN of S is valid.

De�nition 2.5 (Decomposability). An SPN is decomposable i� no variable appears in more

than one child of a product node.

In other words, an SPN is decomposable if and only if, for every product node, every
child node has disjoint scopes with relation to all their other siblings. It is easy to see
that decomposability implies consistency, as there can be no inconsistency between
product children since scopes are disjoint. Therefore, a complete and decomposable SPN
is valid, as it is already consistent. Indeed it is much easier to produce decomposable
SPNs than purely consistent ones. Although this condition may seem strong and
restrictive, Robert Peharz et al., 2015 showed that a consistent SPN is representable
by a polynomially larger decomposable SPN, meaning representability power is not lost
on adding decomposability.

So far, SPNs are restricted to the discrete domain, as we rely on IVs to de�ne possible
valuations to variables. We can generalize SPNs to the continuous by assuming an in�nite
number of IVs and thus replacing sum nodes whose children are IVs with integral nodes.
A leaf node then becomes an integral node with in�nite IVs as children. Particularly, this
represents an unnormalized univariate probability distribution, such as a Gaussian. The
value of this integral node n becomes the pdf pn(x). This extension brings us to a second
de�nition of SPNs.
De�nition 2.6 (Sum-product networks; Gens and Domingos, 2013). A sum-product

network is de�ned recursively as follows.

1. A tractable univariate probability distribution is an SPN.

2. A product of SPNs with disjoint scopes is an SPN.

3. A weighted sum of SPNs with the same scope is an SPN, provided all weights are positive.

4. Nothing else is an SPN.

This second de�nition limits our scope to only complete and decomposable SPNs. Note
that an IV is also an SPN, as we can assume that an indicator variable is a degenerate
tractable univariate distribution, taking a value of one if it agrees with the given evidence
and zero otherwise.

2.3 Inference
Throughout this thesis we assume that all sum nodes are normalized and sum to

one, meaning the partition function is S(∗) = 1 and the SPN’s value is the probability
itself.

Let X = {X1 = x1,X2 = x2, . . . ,Xk = xk} be a valuation and S be an SPN. We say that
X is a complete valuation if Sc(X ) = Sc(S). That is, X contains a valuation for all variables
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in S . An incomplete valuation has some variable assignment missing.

Computing the probability of evidence is done through a bottom-up backwards pass
through the SPN. To �nd the value of an SPN, we must know the value of the root node,
which depends on all nodes below it. This is done through a topological traversal of the
graph.

Finding the value of a leaf node depends on the valuation given. Letn be a leaf node, and
Sc(n) = {X j}. Let X be some valuation. Assuming the univariate probability distribution of
n has pdf pn(x), then ifX has a valuationX j = xj , the value of node n will be Sn(X ) = pn(xj).
If X has no valuation for variable X j , then Sn(X ) is the distribution’s mode. Note that this
holds for indicator variables, as if X has a valuation for X j = xj and the IV matches with
xj , then pn(xj) = 1. In case it does not, pn(xj) = 0. For the incomplete case, the mode of an
indicator variable is one, which holds the equivalence.

Once we compute leaf nodes, we can compute each internal node’s value by following
the topological order until we reach the root. For sum nodes, we compute the weighted
sum Sn(X ) =

∑
j∈Ch(n)wn,jSj(X ), and for products Sn(X ) =

∏
j∈Ch(n) Sj(X ).

Figure 2.2: Computing the probability of evidence on a sample SPN.

Figure 2.2 shows the value of the SPN in Figure 2.1 given a valuation X = {X1 = 0}.
Values in blue are the values of each sub-SPN. Finding the probability of evidence P(X = x)
is fast, as computing the value of an SPN is linear to the number of edges of the graph.

Additionally, we might want to �nd the probability that maximizes a certain valuation,
i.e. the maximum a posteriori probability (MAP). To compute the approximate value of the
MAP of some valuation X , we �rst transform the SPN into a max-product network (MPN)
by replacing all sums with max nodes. The value of a max node is the maximum value
of its weighted children. More formally, the value of an MPN’s max node n is given by
Mn(X ) = maxj∈Ch(n)wn,jMj(X ). Other nodes behave identically to an SPN. The computed
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value of an MPN is an approximation of maxy P(X = x,Y = y), where X is incomplete and
Y is the set of variables that are missing. This is called the max-product algorithm.

In SPNs, computing the exact MAP was shown to be NP-hard (Robert Peharz et al.,
2015; Conaty et al., 2017; Mei et al., 2018), and better approximation algorithms were
proposed as an alternative to the max-product algorithm described here. However, in this
thesis, when we talk about computing the (approximate) MAP, we are referring to the
usual max-product algorithm.

Figure 2.3: Computing the approximate MAP of an SPN through its MPN.

Once the MPN values are computed, we can �nd the most probable explanation (MPE)
of the distribution given an evidence. This is done through a top-down forward pass,
where we take a maximum sub-circuit path of the MPN by always taking the max path at
a max node and taking all paths on a product node. The MPE is the maximum sub-circuit
leaves’ instantiations.

Figure 2.3 shows the MPN of the SPN shown in Figure 2.1 given X = {X1 = 0},
where the numbers in blue represent the MPN values at each node, green arrows indicate
the sub-circuit of maximum value and red boxes indicate the most probable valuations
given evidence. The resulting MPE argmaxy∈Y P(X = {X1 = 0},Y = y) is the valuation
{X1 = 0,X2 = 0}.

Therefore, computing the probability of evidence, which is also called soft inference, of
an SPN is done through a single bottom-up pass. Similarly, computing the MAP probability,
refered to as hard inference, is done through a bottom-up pass on the SPN’s MPN. On the
other hand, �nding the MPE valuations requires a bottom-up pass to �rst compute the
MAP, and then a top-down search to �nd the most probable instantiations.

Next, we provide pseudocode for computing both soft and hard inference. We assume
as input only valid, (weight) normalized SPNs. However, one could easily extend the
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included algorithms for unnormalized networks.

Algorithm 1 SoftInference: Computes the probability of evidence in SPNs
Input A valid SPN S with normalized weights and a valuation X
Output The soft inference values at each node Sn

1: Initialize Sn = 0
2: Find topological order T of S
3: for each node n ∈ S from T do
4: if n is a leaf node then
5: Let Sc(n) = {Xk}, pn(x) be n’s pdf and p̂n be pn’s mode
6: if Xk ∈ X then
7: Let xk be Xk ’s value in X
8: Sn ← pn(xk)
9: else

10: Sn ← p̂n

11: else if n is sum node then
12: for all j ∈ Ch(n) do
13: Sn ← Sn +wn,jSj

14: else
15: for all j ∈ Ch(n) do
16: Sn ← Sn · Sj

17: return each Sn node value
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Algorithm 2 HardInference: Computes an approximation of the MAP in SPNs
Input A valid SPN S with normalized weights and a valuation X
Output The hard inference values at each node Mn

1: Let M be S’s MPN
2: Initialize Mn = 0
3: Find topological order T of M
4: for each node n ∈ M from T do
5: if n is a leaf node then
6: Let Sc(n) = {Xk}, pn(x) be n’s pdf and p̂n be pn’s mode
7: if Xk ∈ X then
8: Let xk be Xk ’s value in X
9: Mn ← pn(xk)

10: else
11: Mn ← p̂n

12: else if n is sum node then
13: for all j ∈ Ch(n) do
14: Mn ← max(Mn,wn,jMj)

15: else
16: for all j ∈ Ch(n) do
17: Mn ← Mn ·Mj

18: return each Mn node value

Algorithm 3 ArgMaxSPN: Finds the MPE of a valuation on an SPN
Input A valid SPN S with normalized weights and a valuation X
Output The argmax values of each variable according to X

1: M ←HardInference(S,X )
2: Let Y be a copy of X
3: Let Q be a queue
4: Push S into Q
5: for each node n ∈ M in Q do
6: if n is a leaf node then
7: Let Sc(n) = {Xk} and pn(x) be n’s pdf
8: Let x̂ = argmaxxk pn(xk) be pn’s maximum valuation
9: if Xk < X then

10: Y ← Y ∪ {Xk = x̂}

11: else if n is sum node then
12: Push maximum child Mj , j ∈ Ch(n) into Q
13: else
14: Push all children j ∈ Ch(n) into Q

15: return Y
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Chapter 3

Parameter learning

The objective of this chapter is to expose the ideas behind generative and discriminative
gradient descent for parameter learning of sum-product networks. We �rst show how to
derive the SPN with respect to its nodes and weights so that we can �nd the gradient of
the SPN wrt its parameters (i.e. weights). This allows us to �nd the weight updates needed
for gradient descent on SPNs. We then describe how to perform generative stochastic
gradient descent, and �nally discriminative gradient descent.

The results presented in this chapter follow the derivations from both Poon and
Domingos, 2011 for generative gradient descent, and Gens and Domingos, 2012 for
discriminative gradient descent. In both, the authors present only a brief sketch of proof
for deriving the gradient. In this chapter, we explain these derivations in detail and in a
step-by-step manner.

3.1 Derivatives
Let S be an SPN. We are only interested in �nding the derivative of internal nodes, as

leaf nodes have no weights to be updated. Our objective is to �nd the gradient ∂S/∂W
by computing each component ∂S/∂wn,j , allowing us to �nd each weight update on the
SPN.

At each weighted edge (n → j,wn,j), the derivative ∂S/∂wn,j takes the form

∂S

∂wn,j
(X ) =

∂S

∂Sn

∂Sn
∂wn,j

(X ) =
∂S

∂Sn

∂

∂wn,j

©«
∑

i∈Ch(n)
wn,iSi(X )

ª®¬ = ∂S∂SnSj(X ). (3.1)

The term ∂S/∂Sn appears because of chain rule, since Sn is a function of S . This can
be intuitively interpreted as taking into account the change in all nodes “above” n. So
to compute the derivative wrt a weight, we need to �nd the derivative ∂S/∂Sj for each
internal node j.

Finding ∂S/∂Sj requires analyzing two possible cases: sum and product parents of j.
We know that S is a multilinear function of X , since in reality S is just a function made out
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of sums and products. In particular, if we apply chain rule on ∂S/∂Sj , we have that

∂S

∂Sj
(X ) =

∑
n∈Pa(j)
n: sum

∂S

∂Sn

∂Sn
∂Sj
(X )

︸                ︷︷                ︸
(∗)

+
∑

n∈Pa(j)
n: product

∂S

∂Sn

∂Sn
∂Sj
(X ).

︸                    ︷︷                    ︸
(∗∗)

We expand each term at a time. Starting with the sum parents case, we can substitute
the value of Sn(X ) with the corresponding expansion.

(∗) =
∑

n∈Pa(j)
n: sum

∂S

∂Sn

∂

∂Sj

©«
∑

i∈Ch(n)
wn,iSi(X )

ª®¬ =
∑

n∈Pa(j)
n: sum

∂S

∂Sn
wn,j

Here we are computing the derivative ∂/∂Sj of each weighted sibling of j, counting j
itself. Since no sibling i depends on j, its derivative wrt Sj is zero, leaving the case when
i = j, which is trivially equal to wn,j . We do the same for the product case.

(∗∗) =
∑

n∈Pa(j)
n: product

∂S

∂Sn

∂

∂Sj

©«
∏

i∈Ch(n)
Si(X )

ª®¬ =
∑

n∈Pa(j)
n: product

∂S

∂Sn

∏
k∈Ch(n)\{j}

Sk

In this expansion, we simply �nd the derivative of the product of siblings of j and j
itself. This can be seen as the derivative of a variable multiplied by a constant, which gives
us the constant, in this case the product of siblings. This brings us to the �nal form.

∂S

∂Sj
(X ) =

∑
n∈Pa(j)
n: sum

∂S

∂Sn
wn,j +

∑
n∈Pa(j)

n: product

∂S

∂Sn

∏
k∈Ch(n)\{j}

Sk (3.2)

Note how each ∂S/∂Sj depends on the derivative of its parents. This dependency goes
all the way up to the root, where ∂S/∂S = 1. This derivation lends itself neatly to an
algorithmic format.
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Algorithm 4 Backprop: Backpropagation derivation on SPNs
Input A valid SPN S with pre-computed probabilities Sn(X )
Output Partial derivatives of S with respect to every node and weight

1: Initialize ∂S
∂Sn
= 0 except ∂S∂S = 1

2: for each node n ∈ S in top-down order do
3: if n is sum node then
4: for all j ∈ Ch(n) do
5: ∂S

∂S j
← ∂S
∂S j
+wn,j

∂S
∂Sn

6: ∂S
∂wn, j

← ∂S
∂Sn

Sj

7: else
8: for all j ∈ Ch(n) do
9: ∂S

∂S j
← ∂S
∂S j
+ ∂S∂Sn

∏
k∈Ch(n)\{j} Sk

Computing all derivatives and forward passes is fast, as it takes linear time in the
number of edges. However, these values su�er from gradient di�usion, as their signal
dwindles the deeper the network, eventually becoming zero.

A possible solution to this issue is replacing soft derivation with hard derivation. This
is done by �nding the derivatives of the MPN of the network instead of the SPN. This
guarantees that the signal remains constant throughout the structure, at the cost of slower
convergence rate. We call this hard inference derivation, as opposed to the regular soft
inference derivation we covered earlier.

Figure 3.1: Signal di�erence between soft and hard derivation.

Figure 3.1 gives a visual representation of the di�erence between soft and hard
derivation in gradient descent. MPNs preserve the signal, as the resulting gradient is
constant.

To compute the hard derivatives of an SPN, we take its MPN and �nd its derivatives
in a similar way as in soft derivation. Let M be an MPN. We shall callW the multiset of
weights that a forward pass through M visits. The value of M is M(X ) =

∏
wi∈W wci

i , where
ci is the number of times wi appears inW . We can then take the logarithm of the MPN to
end up with a friendlier expression.
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∂ logM
∂wn,j

=
∂

∂wn,j
log

( ∏
wi∈W

wci
i

)
=

1∏
wi∈W wci

i

· cn,jw
cn, j−1
n,j ·

∏
wi∈W \{wn, j }

wci
i

If we assume that weights are strictly positive, the resulting expression yields the
following expression for the �nal hard derivative.

∂ logM
∂wn,j

= cn,j
w

cn, j−1
n,j

w
cn, j
n,j

=
cn,j

wn,j
(3.3)

Although not needed for the gradient, we can also compute the derivative in each
internal node. The process is similar to soft derivation. There is no change for parent
product nodes. For parent max nodes, we sum only contributions where wn,j ∈W .

∂M

∂Mj
=

∑
n∈Pa(j)
n: max

{
wk,n

∂M
∂Mk

if wk,n ∈W

0 otherwise
+

∑
n∈Pa(j)

n: product

∂M

∂Mn

∏
k∈Ch(n)\{j}

Mk (3.4)

Computing each derivative ∂ logM/∂wn,j means �nding each cn,j count at each weight.
This is done through an initial forward pass on M to �nd each MAP, and then �nding each
maximal edge inW through a backwards pass. Algorithm 5 computes the total number of
occurences cn,j for each maximal edge wn,j .

Algorithm 5 HardBackprop: Hard backpropagation derivation on SPNs
Input A valid SPN S with pre-computed MAP probabilities Mn(X )

Output Counts cn,j of each derivative ∂ logM∂wn, j

1: Initialize cn,j = 0
2: Let Q be a queue
3: Push M into Q
4: for each node n ∈ M in queue Q do
5: if n is max node then
6: Let j = argmaxi∈Ch(n)wn,iMi(X ) the maximum weighted child
7: cn,j ← cn,j + 1
8: Push Mj into Q
9: else if n is product node then

10: Push all children j ∈ Ch(n) into Q

11: return all counts cn,j

In summary, the derivatives of an SPN with respect to its internal nodes take values
according to Table 3.1. The gradient components are shown in Table 3.2.
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Inference Partial derivatives wrt internal node j

Soft
∂S

∂Sj
=

∑
n∈Pa(j)
n: sum

wn,j
∂S

∂Sn
+

∑
n∈Pa(j)

n: product

∂S

∂Sn

∏
k∈Ch(n)\{j}

Sk

Hard
∂M

∂Mj
=

∑
n∈Pa(j)
n: max

{
wk,n

∂M
∂Mk

if wk,n ∈W ,
0 otherwise.

+
∑

n∈Pa(j)
n: product

∂M

∂Mn

∏
k∈Ch(n)\{j}

Mk

Table 3.1: Partial derivatives for the SPN wrt internal nodes.

Inference Partial derivatives wrt weightwn,j

Soft
∂S

∂wn,j
= Sj
∂S

∂Sn

Hard
∂M

∂wn,j
= Mj

∂M

∂Mn

Table 3.2: Partial derivatives for the SPN wrt weights.

3.2 Generative gradient descent
Once computed all derivatives, we update each node with the resulting gradient

component. For generative gradient descent, where we are learning a joint probability
distribution P(X ,Y ), our objective is to �nd the gradient of the log-likelihood

∂

∂W
log P(X ,Y ) =

∂

∂W
log S(X ,Y ) =

1
S(X ,Y )

∂S

∂W
(X ,Y ) ∝

∂S

∂W
(X ,Y ).

Since the gradient is proportional to the derivative of the weights, our weight update
becomes

∆wn,j = η
∂S

∂wn,j
(X ,Y ),

where η is the learning rate. An L2 regularization factor can be added to the expression
above, leaving us with the �nal generative gradient descent weight update

∆wn,j = η
∂S

∂wn,j
(X ,Y ) − 2λwn,j, (3.5)

where λ is the regularization constant. We call this soft generative gradient descent. It
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is now easy to visualize why gradient di�usion occurs with soft derivation. Component
∂S/∂wn,j depends on partial derivative ∂S/∂Sn. Assuming normalized weights, the root
node derivative is ∂S/∂S = 1 and each subsequent descendant node becomes smaller and
smaller.

Weight update for hard derivation comes directly from Equation 3.3. Since we are
interested in the log-likelihood of the joint distribution

∂

∂W
log P(X ,Y ) =

∂

∂W
logM(X ,Y ),

we get, for each component wn,j , the weight update

∆wn,j = η
cn,j

wn,j
.

In a similar fashion to soft generative gradient descent, we can apply L2 regularization
to each weight update.

∆wn,j = η
cn,j

wn,j
− 2λwn,j (3.6)

So for generative gradient descent we get the following weight updates.

Inference Weight updates

Soft ∆wn,j = η
∂S

∂wn,j
(X ,Y ) − 2λwn,j

Hard ∆wn,j = η
cn,j

wn,j
− 2λwn,j

Table 3.3: Generative gradient descent weight updates with L2 regularization.

Algorithm 6 and Algorithm 7 show pseudocode for both soft and hard generative
stochastic gradient descent, though it is easy to extend both to mini-batch versions. From
now on we denote soft generative gradient descent and hard generative gradient descent
as SGGD and HGGD for short.
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Algorithm 6 SoftGenGD: Soft generative stochastic gradient descent for SPNs
Input A valid SPN S , learning rate η, regularization constant λ and a dataset D
Output S with learned weights

1: repeat
2: for each instance I ∈ D do
3: Compute SoftInference(S, I )
4: Compute Backprop(S)
5: for each sum node n ∈ S do
6: wn,j ← η ∂S

∂wn, j
− 2λwn,j

7: Normalize weights
8: until convergence

Algorithm 7 HardGenGD: Hard generative stochastic gradient descent for SPNs
Input A valid SPN S , learning rate η, regularization constant λ and a dataset D
Output S with learned weights

1: repeat
2: for each instance I ∈ D do
3: Compute HardInference(S, I )
4: Compute HardBackprop(S)
5: for each sum node n ∈ S do
6: wn,j ← η

cn, j
wn, j
− 2λwn,j

7: Normalize weights
8: until convergence

3.3 Discriminative gradient descent
The goal of discriminative learning is optimizing the conditional probability distribution

P(Y |X ), where Y and X are query and evidence variables. To compute the gradient of this
distribution we maximize the conditional log-likelihood (Gens and Domingos, 2012).

∂

∂W
log P(Y |X ) =

∂

∂W
log

(
P(Y ,X )

P(X )

)
=
∂

∂W
log P(Y ,X ) −

∂

∂W
log P(X )

Through chain rule, we get the form

∂

∂W
log P(Y ,X ) −

∂

∂W
log P(X ) =

1
P(Y ,X )

∂

∂W
P(Y ,X ) −

1
P(X )

∂

∂W
P(X )

=
1

S(Y ,X )

∂

∂W
S(Y ,X ) −

1
S(X )

∂

∂W
S(X ).

We can update our weights discriminatively by taking each gradient component
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∆wn,j = η

(
1

S(Y ,X )

∂S(Y ,X )

∂wn,j
−

1
S(X )

∂S(X )

∂wn,j

)
.

With L2 regularization, soft discriminative gradient descent has the following
form.

∆wn,j = η

(
1

S(Y ,X )

∂S(Y ,X )

∂wn,j
−

1
S(X )

∂S(X )

∂wn,j

)
− 2λwn,j (3.7)

For hard inference we want to optimize the following expression.

∂

∂W
log P̃(Y |X ) =

∂

∂W
log

(
P̃(Y ,X )

P̃(X )

)
=
∂

∂W
log

(
M(Y ,X )

M(X )

)
Where P̃ is the MAP probability of the distribution. As usual, we apply chain rule,

yielding

∂

∂W
log

(
M(Y ,X )

M(X )

)
=
∂

∂W
logM(Y ,X ) −

∂

∂W
logM(X ).

But we know from Equation 3.3 that the derivatives of the logs have a particular
expression based on the counts of visited weights. We substitute the equation above with
the earlier results from hard derivation, giving us the following equation for each gradient
component.

∂

∂wn,j
log

(
M(Y ,X )

M(X )

)
=
∂

∂wn,j
logM(Y ,X ) −

∂

∂wn,j
logM(X ) =

∆cn,j

wn,j

Where ∆cn,j is the di�erence between the �rst counting, restricted to (Y ,X ), and the
second restricted to only X .

∂
∂W logM(Y ,X )

−

∂
∂W logM(X )

=

∇ log P̃(Y |X )

Figure 3.2: Hard discriminative gradient descent counts visualization.

Figure 3.2 shows the hard discriminative gradient descent di�erence derived from
∂
∂W log P̃(Y |X ). The �rst pass, shown in the image with blue edges, counts the maximum
edges given the Y ,X valuation. The second pass, in red, is the evidence pass on X . The
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gradient is then computed by �nding the di�erence between the two countings. On the
right-hand side of the expression portrayed in Figure 3.2, blue edges mean a positive count
cn,j and red edges represent a negative count. Edges coming out from product nodes are
not colored, as they are not weighted.

The actual weight update has a similar form to hard gradient descent.

∆wn,j = η
∆cn,j

wn,j

With L2 regularization we get

∆wn,j = η
∆cn,j

wn,j
− 2λwn,j . (3.8)

In a similar fashion to generative gradient descent, we denote by HDGD and SDGD hard
discriminative gradient descent and soft discriminative gradient descent respectively.

We now build a discriminative gradient descent table for each inference type. Just like
in generative gradient descent, we add an L2 term to it.

Inference Weight updates

Soft ∆wn,j = η

(
1

S(Y ,X )

∂S(Y ,X )

∂wn,j
−

1
S(X )

∂S(X )

∂wn,j

)
− 2λwn,j

Hard ∆wn,j = η
∆cn,j

wn,j
− 2λwn,j

Table 3.4: Discriminative gradient descent weight updates with L2 regularization.

We now �nally show an algorithmic form to HDGD and SDGD. Note how in
discriminative gradient descent we have two passes through the network. We can avoid
recomputing node values by memoizing nodes that have no query variables in descendant’s
scopes (Gens and Domingos, 2012).



20

3 | PARAMETER LEARNING

Algorithm 8 SoftDiscGD: Soft discriminative stochastic gradient descent for SPNs
Input A valid SPN S , query variables Y , learning rate η, regularization constant λ and a

dataset D
Output S with learned weights

1: repeat
2: for each instance I ∈ D do
3: Compute SoftInference(S, I ) and store them in S+n for each node n
4: Compute Backprop(S+) and store them in ∂S+n

∂wn, j

5: Compute SoftInference(S, I \ Y ) and store them in S−n for each node n
6: Compute Backprop(S−) and store them in ∂S−n

∂wn, j

7: for each sum node n ∈ S− ∪ S+ do
8: wn,j ← η

(
1
S+
∂S+

∂wn, j
− 1

S−
∂S−

∂wn, j

)
− 2λwn,j

9: Normalize weights
10: until convergence

Algorithm 9 HardDiscGD: Hard discriminative stochastic gradient descent for SPNs
Input A valid SPN S , query variables Y , learning rate η, regularization constant λ and a

dataset D
Output S with learned weights

1: repeat
2: for each instance I ∈ D do
3: Compute HardInference(S, I ) and store them in M+n for each node n
4: Compute HardBackprop(M+) and store them in c+n,j
5: Compute HardInference(S, I \ Y ) and store them in M−n for each node n
6: Compute HardBackprop(M−) and store them in c−n,j
7: for each sum node n ∈ S do
8: wn,j ← η

(
c+n, j−c

−
n, j

wn, j

)
− 2λwn,j

9: Normalize weights
10: until convergence
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Chapter 4

Structure learning

In this chapter we cover two structure learning algorithms we use for image
classi�cation. The �rst is based on Dennis and Ventura, 2012. The second is a variation
of Gens and Domingos, 2013’s structure learning schema. Once we cover both algorithms,
we explain how we add a slight modi�cation to the �rst architecture. We have empirically
found that this change increased image classi�cation accuracy signi�cantly. We call this
the “classi�cation architecture”.

4.1 The Dennis-Ventura architecture
Let us �rst formalize the notion of dataset. We call a dataset a set of instances, where

each instance is a set we call valuation or instantiation. As we have mentioned before, a
valuation may be incomplete, meaning that an instantiation of some random variable may
be missing from the instance. In this thesis we assume complete data, as both structure
learning algorithms do not admit incomplete datasets.

Having said that, let D be a complete dataset. Since D is complete, for each instance
I we can map each random variable X from I to a number, yielding an ordered
vector (X1,X2, . . . ,Xm) equivalent to I . We do the same for each instance I . The vector
(I1, I2, . . . , In) is a representation of D. This way, D could be seen as anm × n matrix. We
denote by Dᵀ the transpose of the matrix representation of the dataset D. Let T be a
subscope, that is, a subset of the set of all variables in the SPN. We use the notation DT to
represent the matrix of all instances from D but restricted only to elements from random
variables in T .

Since we are restricted to the image classi�cation domain, we give some semantic
meaning to datasets. If D is a dataset, then each instance I ∈ D can be seen as a vector
containing all the pixel values of an image plus a classi�cation label. Each variable is a
pixel from the image, and each variable value is the pixel’s color intensity. If the dataset D
is a vector of images and their labels, the transpose Dᵀ is a vector of variables and their
values in each image.

Just like in Poon and Domingos, 2011, the Dennis-Ventura algorithm uses the notion
of similarity between local variables. This local neighborhood is called a Region. A Region
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represents a cluster of pixels that has some semantic value when grouped together.
Contrastingly, a Decomposition represents independence between variables. In an SPN, a
Region is graphically represented by a set of sum nodes, whilst a Decomposition is a set of
products.

To learn an SPN structure from data, Dennis and Ventura, 2012 use a region

graph, which is a simpli�ed representation of an SPN made out of Region nodes and
Decomposition nodes.

(a) (b)

Figure 4.1: Dennis-Ventura region graph (a) and translated SPN (b) as shown in Dennis and Ventura,

2012.

The region graph is generated by recursively �nding two subregions from a parent
region through the use of k-means clustering. Let R be a region, and Dᵀ

R the transposed
dataset restricted to R’s scope. We partition R into two subregions R1 and R2 by k-means
clustering Dᵀ

R , yielding two subclusters Dᵀ
R1

and Dᵀ
R2

. We then apply recursion on the two
subregions. At each clustering step, we connect regions R to a decomposition node P ,
which is then connected to each Ri node. Our stop criteria is when Sc(Ri) = 1. The root
node is a special case. We run k-means cluster on D, and for each Di cluster, we construct
a sub-SPN for each root child with Di .

Once created, the region graph is then translated to a valid SPN. Each region node R is
translated to a set of SPN nodes. If Sc(R) = 1, then these nodes are д univariate gaussian
distributions, where each gaussian is a di�erent quantile of the distribution of the pixel.
Else, m sum nodes are created. Partition nodes are translated to product nodes. Edges are
added such that every product child node of a region is connected to all sum nodes in the
region. Each of these product nodes are then connected to a distinct pair of sum nodes
from both region’s children subregions, meaning that each decomposition node contains
2m products.

With the architecture done, we apply parameter learning on the SPN to learn weights.
This is done either through gradient descent or EM. In this thesis we apply generative and
discriminative gradient descent to the architecture.

4.2 The Gens-Domingos schema
In Gens and Domingos, 2013, Gens and Domingos describe a �exible schema for

structure learning of SPNs. The schema is based on the interpretation that completeness



4.2 | THE GENS-DOMINGOS SCHEMA

23

in a sum node means a child node’s variables are similar (and by consequence dissimilar to
the variables in other sibling nodes’ scopes), and that variables in a product child’s scope
are dependent of each other (and thus independent of other siblings).

This interpretation of SPNs yields an adaptable and open schema of learning. Sum
nodes are created through clustering, as each cluster has some similarity aspect given some
metric. Meanwhile, product nodes are created through statistical variable independence
algorithms. When the scope of this partitioning of variables is one, we create a univariate
distribution over the partitioned dataset.

Algorithm 10 GensArch: Gens-Domingos structure learning schema
Input Set of instances D and scope X
Output SPN structure learned from D and X

1: if |X | = 1 then
2: return univariate distribution over DX

3: else
4: Partition X into P1, P2, . . . , Pm such that every Pi is independent of Pj , i , j
5: if m > 1 then
6: Let π be a new product node
7: for i ← 1, . . . ,m do
8: pi ←GensArch(DPi , Pi)
9: π.AddChild(pi)

10: return π
11: else
12: Cluster D such that Q1,Q2, . . . ,Qn are D’s clusters
13: Let σ be a new sum node
14: for i ← 1, . . . ,n do
15: si ←GensArch(Qi,X )
16: w ← |Qi |/|D |
17: σ.AddChild(si,w) . w is edge σ → si ’s weight
18: return σ

Our implementation was done by using DBSCAN, a density based clustering algorithm
that automatically decides the number of clusters to generate (Ester et al., 1996), for
clustering and the traditional G-test for variable independence. We also implemented
k-means, k-mode and k-median for clustering and Pearson’s χ 2-square for independence
testing. We found that DBSCAN yielded the best accuracy results on clustering, but took a
long time for training. Using k-means clustering with k = 2 yielded worse, but comparable
results, but with the upside of being fast to train. The G-test provided the best variable
independence results.

Finding independent variable subsets can be done by iteratively comparing variables
pairwise. The connected components of the resulting disconnected graph are independent
subsets. This brute force approach is intractable, as the G-test already takes O(|X | |Y |) time,
where X and Y are random variables and | · | indicates the number of categories of the RV,
and testing each pair of variables exhaustively takes exponential time.
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Instead of testing every variable pairwise, we constructed a dependency graph. Each
vertex from the dependency graph represents a variable. An edge between two vertices
means the two variables are dependent. To �nd independent partitions in a dataset it
su�ces to �nd a spanning tree of the dependency graph. We do this through Kruskal’s
MST union-�nd algorithm. The resulting connected components of the spanning tree are
the partitions we wish to �nd. This signi�cantly reduces complexity. However, we have
found that it still accounts for approximately 90% of the algorithm’s runtime.

We speculate that a better approach to variable indepedence would be �nding
approximate spanning trees on the graph. Many independence tests resulted in a completely
dependent graph, but with cuts that could possibly yield better accuracy and runtime
performance.

Our Gens-Domingos implementation generated very deep and expressive SPNs,
resulting in good accuracy results. However, the algorithm only generates SPTs, as once
each step (either clustering or variable independence) is concluded, the function never
returns to the same node.

4.3 The classi�cation architecture
The Dennis-Ventura structure learning algorithm is able to model classi�cation

problems by initially partitioning data into l clusters and assigning a sub-SPN for each
cluster. One can interpret each sub-SPN as a model of each label. However, clustering may
not select the right classi�cation instances for each label, as we have no control over which
labels �t each cluster. This e�ect is intensi�ed on datasets containing a large number of
data.

We try to solve this problem by simplifying the model. Instead of generating sub-SPNs
through clustering, we restrict each label to its own SPN. In our architecture, we create a
single sum node as root, representing the image and its classi�cation label. For each label
l , we construct a sub-SPN Sl such that the SPN is still valid. This is done by assigning a
product node as Sl ’s root. Let Y be the classi�cation variable. Each of these products are
then connected to an indicator variable [Y = yl ] and a sub-SPN restricted to only data
where Y = yl .

Figure 4.2: The classi�cation architecture for the Dennis-Ventura structure.
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Figure 4.2 shows the graphical representation of the classi�cation architecture. The
SPN is still valid, as the product node guarantees decomposability and the root sum node is
complete. Each sub-SPN S |Y = yi is then constructed with the Dennis-Ventura algorithm,
but restricted to data with the Y = yi valuation.

In practice, this architecture yielded much better results than the original clustering
method. Furthermore, it is possible to easily parallelize each S |Y = yi learning procedures
for faster learning runtime. Similarly, since each S |Y = yi is independent of other restricted
SPNs, we can compute SPN values concurrently, allowing for faster inference. We cover
this more thoroughly in Chapter 5.

Interestingly, when this architecture model was applied to the Gens-Domingos
algorithm, accuracy decreased. This is possibly due to the limitations of trees in SPNs.
Another possible reason is that the Gens-Domingos better captures interactions between
labels and pixels than only between pixels.
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Chapter 5

Modelling the problem

In this chapter we formally de�ne a possible model for the mobile robots self-driving
problem. We �rst present this problem as an imitation learning through image classi�cation
problem. We then describe the dataset intended as training set for image classi�cation.
Finally, we discuss the problems of computing inference in a mobile robot, and provide a
concurrent programming solution for our particular problem.

5.1 The problem
One of the main problems of self-driving is to follow a certain pathway. In real life, a self-

driving car should be able to maintain itself centered on a lane, more speci�cally inbetween
lane markings. Our objective is to address this particular subproblem of self-driving. This
is achieved by considering this situation as an imitation learning application.

Imitation learning consists of an agent accurately mimicking human behavior. In our
case, we wish for such an agent to simulate the behavior of keeping a car centered on a
single lane. We model this particular situation by use of image classi�cation. The agent, in
this case the self-driving car, should reliably identify when to turn and when to go straight
by solely “looking” at the road ahead. This can be achieved through the use of image
classi�cation, as turns tends to have di�erent visual features then a straight lane.

Whilst this comes naturally to humans, machines have trouble identifying these
features by themselves. Noise and object occlusion play a big role in how reliably the agent
behaves. A possible obstruction of the agent’s view could turn fatal in a real-life scenario.
However, with the advent of more complex models in machine learning, modelling this
problem through image classi�cation has become a feasible solution.

Our approach to self-driving in mobile robots consists of a very simpli�ed and purely
reactive image classi�cation control system. The mobile robot should follow a lane and
turn accordingly based on its image input of its front view.

We de�ne a classi�cation variable, which we will denote by Y , as an indicator of what
the robot should do. The function Val(Y ) de�nes the set of all possible values of Y . In our
case, Val(Y ) = {L, R,U}, each meaning that the robot should “go left”, “go right” and “go
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straight” (or up) respectively.

Let X = {X1,X2, . . . ,Xn} be the set of variables that compose an image, where each Xi

represents a pixel of a �attened image. Our entire scope is de�ned by the setW = X ∪ {Y }.
Our objective is to reliably guess Y ’s value based solely on the values of X . That is, we
wish to �nd

argmax
y∈Val(Y )

P(Y = y |X ) = argmax
y∈Val(Y )

P(Y = y,X )

P(X )
∝ argmax

y∈Val(Y )
P(Y = y,X ). (5.1)

Where we assume the existence of an underlying probability distribution that correctly
models the classi�cation problem. Ultimately, our goal is to �nd this distribution by “learn-
ing” from data through the learning algorithms described in Chapter 3 and Chapter 4.

Once learned, the SPN is able to �nd the MAP probabilities and states that correctly
predict the most probable values ofY given an image. Note how the LHS of Equation 5.1 can
be computed with a single pass with the approximate max-product algorithm. Alternatively,
we can also compute the exact max values by computing each possible y ∈ Val(Y ) with a
single forward pass through the SPN.

5.2 The dataset
For training, we used Moraes and Salvatore’s self-driving dataset (Moraes and

Salvatore, 2018). Every image has dimensions 80 × 45, with three additional channels
for RGB. The dataset is split into three sets, corresponding to training, test and validation
data. Each image contains a label indicating whether the robot should go straight, turn
left or turn right. These actions are labeled as 0, 1 and 2.

Figure 5.1: Sample images from training dataset.

Figure 5.1 showcases sample images from the training dataset. The leftmost image has
label L, the one on the middle is U and the one on the right R. It is possible to observe that
images do not have uniform lightning and lane markings are irregular. This adds a noise
e�ect to the images.

The original dataset is already reduced in size. However, we can further reduce the
number of variables by discarding colors, as its presence is not so important for identifying
the correct values of Y . If we compare Figure 5.1 and Figure 5.2, lane markings, the most
important features of lane following, are still very much visible.

We can try to further reduce the complexity of the dataset at the same time preserving
its most informational features by attempting to reduce the number of possible values
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Figure 5.2: Grayscale sample images from training dataset.

of each pixel through image quantization. This transformation turned out to be very
meaningful in terms of both training speed and accuracy, as we detail in Chapter 8.
However, noise is still a problem, as Figure 5.3 shows.

Figure 5.3: Quantized sample images from training dataset.

Another possible transformation we can apply on the dataset is binarization. Though
this comes with a problem, as traditional “hard” binarization with a �xed k threshold
on the image could potentially cause completely black or white images due to a poor
choice of k . This can be countered with two possible solutions. Either through adaptive
threshold where we choose k either by a mean or gaussian measurement, or by use of
Otsu’s binarization (Otsu, 1979). We found that Otsu’s method, coupled with a prior
gaussian blur transformation on each image, proved the most capable of correctly applying
binarization in our dataset.

Figure 5.4: Binarized sample images from training dataset.

Figure 5.4 shows the �nal result of applying a combination of gaussian blur and Otsu’s
binarization.

One last transformation we tested our models on was histogram equalization.
Equalization was done in order to reshape the pixel value histogram to an approximately
uniform distribution. This was done in an attempt to increase the accuracy of the Gens-
Domingos algorithm. As mentioned in Chapter 4, the Gens-Domingos schema attempts to
�nd partitions of independent variables. We use an implementation of the G-test, which
works best when there are su�cient samples for every variable category. The original
dataset has a skewed histogram that contains almost no pixel values in the extreme ranges
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(either too white or too black). This transformation added a lot of noise to the dataset.
In Chapter 8 we give more motivation on why we used equalization and its impact on
accuracy.

Figure 5.5: Equalized sample images from training dataset.

5.3 The model
Our classi�cation model should be able to accurately infer the most probable action to

be taken given the front camera feed’s image. Although a simple decision model could be
used for such a task, in many cases we wish to maintain an uncertainty measurement (e.g.
a probability distribution) as a means to quantify error. Error and noise is often a problem
in robotics, one which can be mitigated through probabilistic localization algorithms. For
our particular case, we discard these problematic issues and focus solely on the problem
of computing a valid probability distribution that accurately models our classi�cation
problem. SPNs have full probabilistic semantics and are able to represent local and sparse
variable interactions due to their deep architecture. This allows for a reliable probabilistic
model for modelling our problem.

We use two SPN architectures. We model the �rst using the Dennis-Ventura algorithm
described in section 4.1. This model in particular uses the classi�cation architecture also
cited in Chapter 4. The second model uses the Gens-Domingos structural algorithm
(section 4.2).

For weight learning, we found that soft gradient descent su�ered from gradient
di�usion, resulting in no change on weight update. Consequently, we showcase only
hard gradient descent trained networks in Chapter 8.

As we have previously mentioned, we wish to compute the MPE

argmax
y∈Val(Y )

P(Y = y,X ) = argmax
y∈Val(Y )

S(Y = y,X ) ≈ y |M(Y=y,X ),y ∈ Val(Y ). (5.2)

Where y |M(Y=y,X ) signals an MPN forward and backward pass to compute the most
probable explanation of variable Y given X as evidence on the underlying SPN.

Recalling Chapter 2, we can compute this probability in two di�erent ways. Either by
computing each Y value by means of a forward pass on the SPN S(Y = y,X ), or through
the approximate MAP M(Y = y,X ). These two options both carry disadvantages. On one
hand, computing each Y value through a forward pass on each possible valuation can
cause inference to become very slow, especially when hardware is as limited as in a mobile
robot. On the other hand, the max-product algorithm is a fast inference method, though
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approximate. Furthermore, the approximate method tends to favor shallower paths due to
its Viterbi-style features.

We compromise with exact inference, but with an addendum. We take advantage of
our hardware’s multi-cored CPU by running exact inference in parallel. Since the Gens-
Domingos and Dennis-Ventura architectures are very distinct structure-wise, we apply a
di�erent implementation for each.

As mentioned in Chapter 4, the Dennis-Ventura structure we implemented follows a
particular classi�cation architecture that models each set of images of a certain label
as a separate, independent sub-SPN. This allows for an easy parallel programming
implementation, as each CPU core can be assigned to a single sub-SPN, and thus to
a label. Each core will then be linked to a particular robot command. Once all cores �nish
inference, we then compare which sub-SPN returned the highest probability. This is only
advantageous if the number of labels is low. In our case, | Val(Y )| = 3, meaning this method
is feasible for our problem.

This method does not work as well on the Gens-Domingos structure, as we cannot
guarantee if an independency or clustering step on the root node has yielded a su�cient
number of nodes for each core. However, a similar method is used, where we compute each
value of y in parallel. Since | Val(Y )| = 3, we can compute each forward pass concurrently
and then compare them.
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Chapter 6

Hardware

In this chapter we dive into the hardware speci�cations of our mobile robot. Our robot
is composed of two main units: the Berry and the Brick. The former is composed of a
Raspberry Pi and a webcam, and serve as the brain for our robot. The latter is a Lego
Mindstorms robot, which contains two di�erential motors for each wheel and a small
processing unit, called the Brick, used for issuing low-level commands to the wheels. We
�rst explore the Berry, and then describe the Brick.

6.1 The Berry
The main processing unit of our robot consists of a Raspberry Pi 3 Model B. With a

Broadcom Quad-Core BCM2837 with 64-bit at 1.4 GHz, it is a small, yet powerful micro-
computer. Its architecture is based on ARMv7, and has four processing cores.

Through four USB 2.0 ports, we are able to connect the Raspberry Pi with the motor
part of our robot and a small portable webcam that will be used for input.

Figure 6.1: The Berry part of the robot.

A MicroSD with 16GB provides both the Raspbian operating system, which is based
on Debian, as well as an additional 1 GB swap memory space, as the Berry contains only
1GB RAM. The remaining amount is used as storage.
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Although the Berry has reasonable processing power for its size, training is done
o�ine in a desktop computer, with only inference done on the micro-computer. On the
training-side computer, we generate the SPN and then serialize it into a string of bytes and
save it to a binary �le. This �le is then sent through SSH to the Berry, read, loaded into
memory, converting the array of bytes into a full SPN, and then used for inference.

With its connected webcam, the Berry receives each image frame, applies some pre-
processing to the image (which will be detailed in Chapter 8), feeds it to the SPN as
evidence, computes the most probable classi�cation label, and �nally sends this to the
external unit, i.e. the Brick, responsible for dealing with the robot’s motion. This is all
done concurrently, as we can dedicate three cores to classi�cation, and the remaining unit
to camera capture, image pre-processing and message passing.

6.2 The Brick
The Lego Mindstorms robot is composed of three main parts: the brick, which is the

Lego Mindstorm’s processing unit that handles the motors, and two di�erential motors
that are able to give motion to the robot in a somewhat precise manner through the use of
tachometers. In this document, when we say the Brick, we are referring to the whole set
of brick and motors.

In our experiments we used the Lego Mindstorms NXT. Its main processor is an Atmel
AT91SAM7S256 with a 48 MHz clock and 32-bit ARMv4 architecture. It has 64 KB of RAM
and 256 KB of �ash storage. A USB port allows for local input and output from and to the
Brick.

Figure 6.2: The Brick part of the robot.

Low-level handling is done on the Brick. Once it receives a command to be executed
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(i.e. the classi�cation label passed by the Berry), the Brick needs to interpret it and execute
the desired movement. We use the leJOS NXJ API1 for low-level motor programming. The
Brick’s cycle is as follows:

Algorithm 11 Brick: The Brick’s cycle
1: Connect and power up motors
2: Let UP← 0x00

3: Let LEFT← 0x01

4: Let RIGHT← 0x02

5: Let QUIT← 0x03

6: Let NOOP← 0x04

7: Let ML and MR be the left and right side motors respectively
8: Let k be some speed constant
9: while true do

10: if input size > 0 then
11: Read input byte and store in variable c
12: if c is QUIT then
13: Disconnect and power down
14: else if c is UP then
15: Set ML’s power to k
16: Set MR’s power to k
17: else if c is LEFT then
18: Set ML’s power to 2k
19: Set MR’s power to 3k
20: else if c is RIGHT then
21: Set ML’s power to 3k
22: Set MR’s power to 2k

No complex control is done on the Brick. A standard “do something until told otherwise”
is implemented. This is reliant on the Berry’s inference speed, but we found that inference
was fast enough for this to work well on slow speeds.

Setting the motors’ power is straightforward with leJOS. Two function calls are enough
for our case. The problem is in choosing k . If k is too big, not only the Berry might not
have enough time to compute the labels, but also turns may not be as steep as the lane
requires. In the case of a too small k , the challenge of autonomous driving becomes null.
We experimented on values of k and chose k = 150 for our Lego Mindstorms. We recognize
that a better control solution to this would be preferred, but for our case this su�ces.

6.3 Bridging the two
Communication between the two modules, Berry and Brick, is done through a USB

cable. We use a Go codebase on the Berry, opting to use Google’s GoUSB2 as a low-level
1Available at h�p://lejos.org/nxj.php
2Available at h�ps://github.com/google/gousb

http://lejos.org/nxj.php
https://github.com/google/gousb
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interface to handle the Raspberry Pi’s data output, sending each predicted label as a byte
value.

At each cycle, the Brick checks for new input by reading from an input stream. This
is done through Java’s java.io.DataInputStream, which translates the incoming USB data
into Java bytes.

This hierarchization of Berry to Brick allows for the unit with most processing power, i.e.
the Berry, to take on the heavy load, leaving only the necessary dedicated low-level motor
handling to the Brick, a very limited processing unit in terms of power and memory.

Figure 6.3: Fully assembled robot.

Every USB device contains a pair of IDs that are essential for identi�cation. The vendor
ID is used to identify which company or organization created the device. Whilst the
product ID is used to identify speci�c products created by the company. In our case, the
vendor refers to the Lego Mindstorms company and the product to the NXT version 2,
which are 0x0694 and 0x0002 respectively. These IDs allow us to cycle through each active
USB device and select exactly the one we need.

USB devices may contain multiple functionalities, such as acting as a power source or
as an input/output stream. These are called con�gurations, and are usually indexed by
a number. In our case we are interested in the read and write con�guration of the Brick,
indexed by the number 1.

Each con�guration contains di�erent interfaces that can be seen as virtual devices to
the physical USB. We selected interface number 0, with alternative interface 0.

When writing and reading from and to a USB device, we must de�ne an output and
input endpoint. There are a total of 30 endpoints, where input endpoints are indexed from
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0x81 to 0x8f, and output endpoints from 0x01 to 0x0f. Two additional in/out endpoints 0x80

and 0x00 are control endpoints used internally by the USB device. For our Brick we used
the input 0x82 and output 0x01 endpoints.
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Chapter 7

Pre-processing

Before training and inference, we apply di�erent image transformations to the dataset.
As mentioned in Chapter 5, we use three main transformations: binarization, quantization
and equalization. In all cases we �rst convert the original RGB colored dataset to
grayscale.

7.1 Binarization
The binarization process was done by �rst converting the original dataset to grayscale,

followed by applying a gaussian blur with a unit �lter kernel (that is, a 1 × 1 window
matrix that blurs a single pixel based on zero values from its neighbors) and standard
deviation of one on both axes, and �nally using Otsu’s binarization (Otsu, 1979). We chose
this particular process since standard hard threshold binarization was unable to produce
clear images of the track lines.

Figure 7.1: Binarization using hard threshold.

Figure 7.1 shows how hard thresholding can produce noisy images, as the applied
threshold does not account for local neighborhoods and may end up choosing a bad
threshold value. Figure 7.2 shows a sample of the dataset after applying Otsu’s binarization,
with much clearer tracks. Images are labeled as left, up and right respectively
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Figure 7.2: Binarization using Otsu’s threshold.

7.2 Quantization
The Gens-Domingos algorithm, as mentioned in Chapter 4, has two main steps: a

clustering phase and an independency test part. Our independency test implementation
uses the standard G-test statistical test based on contingency tables, where each frequency
of the categories of each two variables are laid out on a matrix and their likelihood ratios
are computed. This test takes only O(nm), where n and m are the number of categories of
each variable. However, each variable must be tested pairwise with all others, and although
we use a spanning-tree heuristic, time complexity grows fast the more categories and total
number of variables there are.

We empirically found that max{n,m} and training set size are directly correlated to
the model’s accuracy and speed. If n orm are big and the training set size is small, then
accuracy will fall. Accuracy increases if the training set is large, but is still dependent on
how big the number of categories in variables is. Our best results were with small n andm
with a large training set. Another interesting result we found is that the bigger the number
of categories, the shallower the SPN when using the Gens-Domingos algorithm, which
results in much faster inference.

Figure 7.3: Histogram for dataset pixel values on 8-bit, 5-bit and 3-bit image quantizations.

A possible explanation for poor results with small training sets is the low number of
pixel intensity values for too extreme values, as there are fewer samples where pixels



7.3 | EQUALIZATION

41

are either too bright or too dark, as Figure 7.3 shows. This is a problem for the G-test, as
chi-squared tests are unreliable when dealing with low frequencies.

Quantizing the dataset resulted in a signi�cant improvement in accuracy to the model
when training with a small set of images (≤ 300). We found that when we increased the
number of training images, accuracy depended less on quantization, but inference time
increased, as the model grew in depth. We thus needed to �nd a balance between network
complexity and inference speed.

We faced two possible solutions to this problem. Either implement an exact indepen-
dence test, such as the Fisher exact test (Fisher, 1922), or perform histogram equalization
on the dataset. The former was unfortunately not an option, as we found that there were
no libraries in Go or C that provided a general case implementation of the Fisher exact test,
and implementing our own within our time constraints was out of question. We chose the
latter, applying histogram equalization on the entire dataset.

7.3 Equalization
Equalization was done using OpenCV. We attempted two methods of histogram

equalization: traditional equalization through brightness and contrast normalization, and
Contrast Limited Adaptive Histogram Equalization (CLAHE) (Zuidervald, 1994). We
found that the CLAHE method resulted in images that were very similar to the output
of the traditional method. Since these transformations are also expected to be applied
on-the-�y during inference, we chose the standard equalization for its speed. Figure 7.4
shows how the dataset pixel histogram looks like after equalization.

Figure 7.4: Histogram for equalized dataset with 8-bit, 5-bit and 3-bit image quantizations.

When coupling quantization and equalization, we slightly increased accuracy, reaching
up to a ≈4% accuracy di�erence. Interestingly, these transformations proved to be harmful
for the Dennis-Ventura architecture. In fact, the structure yielded better results without
equalization, and quantization had little to no impact on accuracy. We attribute this
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phenomenom to the classi�cation architecture we discussed in Chapter 4. Since each
sub-SPN is essentially modelling each class as a separate, independent image model to
the other classes, the more details in the image, the easier the model can distinguish from
other label images. Furthermore, since the Dennis-Ventura algorithm does not need to run
an independence test, it does not su�er from its drawbacks and thus does not depend on
an equalized histogram.
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Chapter 8

Experiments and benchmarks

In this chapter we apply our model on an arti�cial self-driving dataset, running several
experiments and measuring how good our models perform with each setup. The thinking
behind this benchmarking is to provide an initial screening to �nd the best SPN iteration
to use on a real-world testing scenario.

We �rst show results on accuracy for each of the models and pre-processing
transformations. We then show how fast each model is, i.e. how long it took for training
and how much time it took for the model to predict a label.

All our implementations are free, open-source and publicly available. GoDrive1

implements all experiments covered in Chapter 8 and Chapter 9. GoSPN2 implements the
learning and inference algorithms.

8.1 Setups
For our experiments, we tested two structure learning algorithms, the Dennis-Ventura

and Gens-Domingos architectures, and for each of these models we evaluated accuracy
when applying either generative or discriminative weight learning. We additionally ran
tests without applying weight learning to serve as reference. In this case, for the Gens-
Domingos architecture we set weights proportional to each cluster size, whereas in Dennis-
Ventura we randomized weights.

For the Dennis-Ventura algorithm, we discarded pre-clustering, opting to use the
classi�cation architecture mentioned in Chapter 4, as it resulted in much better accuracy.
We also �xed the number of sums per region and gaussians per pixel to four, and the
similarity threshold to 0.975.

For the Gens-Domingos algorithm, we tested two implementations. The �rst uses
k-means for the clustering step with k = 2. The second uses DBSCAN, with parameters
ϵ = 4 the maximum radius of a point neighborhood, andm = 4 the minimum number of
points to describe a dense region. Both were set with a p-value of 0.01 for the independence

1https://github.com/RenatoGeh/godrive
2https://github.com/RenatoGeh/gospn
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step. We refer to the k-means implementation as k-GD, and the DBSCAN variation as
DBSCAN-GD.

Raw Gray Binarized

LearnWeight LearnStructure

SaveDisk

Pre-processing

Training

Figure 8.1: Our training pipeline when using binarization in pre-processing.

DBSCAN-GD achieved the best scores, but took the longest time for both training and
testing. We did not test all possible iterations of pre-processing in this case, as DBSCAN-GD
took too long during training (an average of 10 hours for training alone). We found that
when using DBSCAN-GD, the resulting structure was too complex (about 32 times bigger
than k-GD), causing inference to take too long. For instance, when running inference on
k-GD, average prediction took about 0.1 second. When using DBSCAN, the average time
of prediction was 19.72 seconds. However, in terms of accuracy, DBSCAN-GD showed
impressive results, with all tests achieving a perfect score of 100% accuracy. Despite these
numbers, a model that takes too long for inference is not adequate for a self-driving
application. For this reason, we discarded the DBSCAN-GD model and decided to only use
the k-GD model.

In both training and testing, we �rst apply image transformations (e.g. quantizing,
binarization or equalization) to the dataset and then train or perform prediction with
a particular model. The applied image transformation is always identical in training
and testing. For example, a valid training pipeline would be choosing to apply 3-bit
quantization and equalization to a training dataset, train an SPN structure using k-GD,
perform discriminative gradient descent on the resulting structure to learn its weights, and
�nally save the model for testing. Its then equivalent testing pipeline would be applying
the same image transformation, in our case 3-bit quantization and equalization, and
for each image �nd the argmaxy∈Y P(Y = y |X ). Figure 8.1 shows a visualization of the
training pipeline for binarization, whereas Figure 8.2 displays its equivalent inference
pipeline.

Both Gens-Domingos and Dennis-Ventura algorithms generate a structure as deep as
the number of training samples. The deeper the structure, the more expressive it is. We
found that accuracy with models trained with 1000 samples had much better accuracies
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than with 500. However, a more complex network means inference will take longer. We
attempted to keep inference at less than a second per prediction. A training set size of 500
was chosen as the generated SPNs had decent prediction time and accuracy, and did not
take too long in training. The size of the testing dataset was also 500 images.

Raw Gray Binarized

Pre-processing

LoadDisk

BuildSPN Inference

SPN loading
Predicted: RIGHT

Figure 8.2: Our inference pipeline when using binarization in pre-processing.

We use a particular set of notations for our experiments. For image transformations,
we denote by Qn as applying an n-bit quantization of the dataset. An E means the dataset
was equalized, and a B means it was binarized. Any combination of image transformation
is signalled with a + sign. A ∅ means there were no image transformations done to the
dataset apart from grayscale conversion.

For learning algorithms, a GD means we are using k-means Gens-Domingos and DV
Dennis-Ventura. This is then followed by the weight learning algorithm used. The letters
g, d and s mean we either applied generative gradient descent, discriminative gradient
descent or no weight learning.

Parameters for weight learning were �xed to learning rate η = 1.0, L2 regularization
constant λ = 0.001, mini-batch size b = 50 and number of epochs N = 15. In all setups
weight learning su�ered heavily from gradient di�usion when using soft gradient descent,
forcing us to only use hard gradient descent for all tests.

8.2 Accuracy
In this section we show accuracy results in each setup. All values are in percentage of

hits.

Table 8.1 shows some interesting results. The �rst is that generative gradient descent
on the Dennis-Ventura architecture had a negative impact on the performance of the
network. Discriminative learning on the other hand seemed to not impact accuracy at
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Accuracy (%) DV+g DV+d DV+s GD+g GD+d GD+s
B 78.8 78.8 78.8 82.8 83.8 85.0
Q2 78.6 78.0 78.0 78.6 80.4 79.4
Q2 + E 76.6 76.6 76.8 79.6 82.8 81.8
Q3 77.4 77.4 77.4 77.6 80.2 79.8
Q3 + E 70.4 76.6 76.6 79.2 81.2 77.4
Q4 78.2 78.4 78.2 76.0 78.2 76.4
Q4 + E 76.6 76.6 76.8 76.0 74.6 80.6
Q5 77.8 78.4 78.4 77.6 74.0 73.8
Q5 + E 76.6 76.6 76.6 72.0 72.8 72.0
Q6 77.4 78.4 78.4 75.2 74.4 72.0
Q6 + E 76.0 76.4 76.4 73.0 75.0 73.6
Q7 78.2 78.4 78.4 62.8 72.2 71.4
Q7 + E 76.2 76.4 76.4 70.6 71.4 71.6
∅ 78.0 78.4 78.4 62.4 62.4 62.4
E 76.4 76.4 76.4 60.4 60.0 61.2

Table 8.1: Accuracy values for each possible model permutation.

all. Not only that, quantization seems to have had no impact on the DV structure, with
equalization always deteriorating accuracy.

The Gens-Domingos architecture, on the other hand, achieved better results, but
showed a more unpredictable behavior. When resolution was low, as is the case of B, Q2
and Q3, the GD architecture seems to always outclass DV. In fact, our best results were,
as expected, when binarization was used, as we are only tracking the most signi�cant
feature: lane bounds. In some cases generative learning improved accuracy, but in most
it had a negative impact. Discriminative learning, on the other hand, seemed to almost
always provide a minor boost to the network’s accuracy.

Our main takeaway from these accuracy results is that the structure of an SPN is much
more meaningful than its weights. Generative learning in our use case had a negative
impact, and discriminative learning slightly improved accuracy.

8.3 Speed
In this section we try to quantify both training and inference of our models in each

setup. We ran all tests on an Intel Core i7-4500U CPU @ 1.8GHz, a 2-core 4-threaded
processor. For memory we had 16GB RAM and 16GB swap space, though training did not
use more than 4GB and testing did not exceed 100MB.

Training time for DV was very regular, as Table 8.2 shows. As expected, discriminative
gradient descent took the longest time, as we require two passes through the network for
each mini-batch. Training time with gradient descent depends on the depth of the network.
We found that the DV structure had very regular training times for only generating the
network. Not only that, regardless of pre-processing the network had very similar network
depth and size. This was in clear distinction with the Gens-Domingos structure. In fact,
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Training (mins) DV+g DV+d DV+s GD+g GD+d GD+s
B 22m36s 34m23s 01m03s 85m58s 200m53s 01m50s
Q2 22m07s 34m59s 00m23s 52m57s 125m17s 01m28s
Q2 + E 22m01s 35m05s 00m24s 98m51s 232m20s 09m36s
Q3 22m15s 32m42s 00m25s 34m24s 96m18s 04m56s
Q3 + E 22m25s 32m35s 00m25s 44m47s 102m03s 13m01s
Q4 22m16s 31m56s 00m25s 31m25s 41m46s 08m15s
Q4 + E 22m23s 31m49s 00m31s 34m21s 45m42s 11m35s
Q5 22m24s 35m06s 00m29s 23m10s 23m18s 07m24s
Q5 + E 22m25s 36m44s 00m29s 20m13s 29m38s 08m36s
Q6 22m20s 36m34s 00m27s 49m22s 50m35s 21m37s
Q6 + E 22m12s 37m13s 00m27s 54m53s 43m30s 21m17s
Q7 22m13s 33m14s 00m30s 78m05s 72m03s 43m44s
Q7 + E 22m22s 37m40s 00m29s 95m30s 79m48s 65m19s
∅ 22m10s 36m56s 00m33s 166m53s 107m44s 90m22s
E 22m10s 34m58s 00m33s 174m55s 116m41s 186m49s

Table 8.2: Average time in minutes and seconds for training each model.

Inference (secs) DV+g DV+d DV+s GD+g GD+d GD+s
B 0.23 0.25 0.25 0.38 0.37 0.31
Q2 0.22 0.24 0.23 0.28 0.34 0.16
Q2 + E 0.22 0.23 0.23 0.38 0.30 0.27
Q3 0.22 0.23 0.22 0.22 0.32 0.17
Q3 + E 0.22 0.23 0.22 0.34 0.32 0.31
Q4 0.22 0.22 0.23 0.16 0.17 0.13
Q4 + E 0.23 0.27 0.29 0.13 0.14 0.13
Q5 0.22 0.26 0.28 0.07 0.05 0.02
Q5 + E 0.22 0.29 0.25 0.05 0.05 0.02
Q6 0.23 0.24 0.23 0.04 0.05 0.01
Q6 + E 0.22 0.24 0.28 0.03 0.04 0.02
Q7 0.23 0.23 0.26 0.03 0.01 0.01
Q7 + E 0.22 0.26 0.24 0.01 0.01 0.01
∅ 0.22 0.26 0.23 0.02 0.01 0.01
E 0.23 0.23 0.22 0.01 0.01 0.02

Table 8.3: Average time in seconds to predict a single image.

binarization generated the deepest network when applying the GD learning algorithm,
whilst training the structure with no pre-processing resulted in the shallowest. Interestingly,
on average, deeper networks took the least time to train and had the best accuracy results.
This is probably due to better variable partitioning during the independence step, resulting
in a more balanced and more expressive tree.

Table 8.3 shows how much time it took, on average, to predict a single image.
Computation of the average time was done by timing all 500 predictions on the test
dataset, and then dividing by the number of total predictions. Again, the DV architecture
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had very regular times. The GD structure, on the other hand, took the longest on deeper
networks (where lower resolution quantization was used) and the shortest on shallower
SPNs.

Note that although values in Table 8.3 look promising, they were extracted from a
desktop computer. We quantify actual mobile robot inference speeds in Chapter 9.
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Chapter 9

Real world

In this chapter we �nally apply our model to a real-world implementation of mobile
robot lane following. We give reasons as to why we chose the models and pre-processing
used in our real-world experiment. Next, we describe how each model performed in each
track. A video demonstration of the robots in action is available online1. Finally, we give
some brief comments on the performance of the robots in general.

9.1 Control and inference
Our main goal in this project was to be able to provide a fast, accurate and robust model

for self-driving that was capable of real-time measurement of uncertainty. Emphasis must
be placed on real-time, as a self-driving car ought to react at least as fast as a human. For
this reason, we chose to use a very simple control system that relied on fast and accurate
inference to perform well.

In Moraes and Salvatore, 2018, the robot’s control system employed a command
queue. In their implementation, the robot does not move itself until it receives a command.
Once it does, it then moves a �xed distance. If the next command is not ready to be
processed, it stops and waits for inference (i.e. the next command). Otherwise, the queued
command is executed. These steps are then repeated. Although this method of self-driving
evaluation nicely quanti�es accuracy, it fails to account for inference speed. Indeed, Moraes
and Salvatore achieved ≈80% accuracy with deep feedforward neural networks and ≈85%
with convolutional neural networks, but inference took about 1.35 seconds, with binarized
results taking faster average speeds of 0.6 seconds, even with GPU support. In the real-
world, a self-driving car cannot a�ord to run a few meters, stop for inference, and then
continue for a few more. We account for this in our implementation.

For this reason, a much more reactive control system was built for this project. Input
was based solely on commands given by an inference model. Not only that, the speed of
which these commands were given impacted heavily on its performance. As mentioned
in Chapter 6, the Brick receives a command and applies power to its motors accordingly.
Until another command is given by the Berry, the Brick repeats the same command

1h�ps://youtu.be/vhpWQDX2cQU

https://youtu.be/vhpWQDX2cQU
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previously given. For instance, if the Brick is given a command to go straight, it will
continue to do so without stopping until a di�erent order is otherwise given. This sort of
control is able to quantify how reliable inference is based not only on accuracy, but also
speed of inference.

In Chapter 8, we showed inference speed results based on a desktop computer with a
powerful CPU. When running the same models on the Berry, we found that although the
binarized GD architecture achieved 85% accuracy and took about 0.3 seconds on a desktop
PC, this speed went up to 3.5 seconds on the Berry. This high increase is not only due
to the power di�erence between the two CPUs, but also by the need of real-time image
pre-processing (in this case binarization) directly from a live video feed.

This speed discrepancy forced us to discard several models due to slow inference. In fact,
we found that a model that took more than 0.15 seconds would take more than 1.0 second
on the Berry. Additionally, histogram equalization proved to severely decrease speeds,
causing us to discard any of its use in our real-world experimentations. We ultimately
decided to use

1. Q4 and GD+d;

2. Q6 and GD+d;

3. no pre-processing and GD+d.

Inference times were about 0.7, 0.150 and 0.075 seconds for item 1, item 2 and item 3
respectively. All our implementations used solely the CPU, with no GPU support. Our
experiments show that a high accuracy but slow inference speed performs poorly on our
setup. A low accuracy but fast prediction speed model can behave erratically, but is able
to correct itself because of its speed. We found that a good balance between accuracy and
speed performed the best. We will refer as Model 1, Model 2 and Model 3 the model and
pre-processing done in item 1, item 2 and item 3 respectively.

9.2 Tracks
We built three di�erent tracks in order to evaluate how well models behaved in di�erent

environments. We assembled tracks in the same way as done in Moraes and Salvatore,
2018. In each track, A4 paper sheets were placed in order to form road markings on both
sides of the “road”. In this section, we describe each track and discuss how each model
performed.

9.2.1 Track 0
The �rst track is a standard square shaped track. It is the simplest track we built in

order to evaluate turns and lines. The robot’s objective is to complete a lap without going
out of bounds.

All models were able to drive through the whole lap. We noticed that Model 1 was much
slower in terms of updating its state when compared to the other models. It particularly had
trouble with straight lines, as the model’s slow inference speed prevented it from making
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Figure 9.1: Track 0 is a simple square shaped circuit.

small corrections and thus propagated a sort of accumulated error at each attempted
correction. Model 3 seemed to avoid moving in a straight line, opting to zig-zag instead.
This model’s behavior was a constant in every track. Model 2 was able to correctly turn and
run lines with no apparent issue. Small corrections when travelling on straight lines were
handled well, as its fast inference speed allowed for �ne modi�cations to its direction.

9.2.2 Track 1

In this∞-shaped track, the robot is supposed to travel through both conjoined circles,
alternating between the two of them without going out of bounds.

Figure 9.2: Track 1 is an in�nity shaped circuit.
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Model 1 was unable to complete the lap, as once on the intersection of the two circles,
the robot kept its turning course, repeating the same circle instead of the other. This is due
to its slowness in updating its prediction, as the intersection point between the two circles
could be predicted as both a turn to the left, right or, as intended, a go straight command.
All other models were able to complete the two circles.

Model 2 completed the track perfectly, having no issue with traversing the intersection
point. Model 3 zig-zagged throughout the whole course, but was able to complete the track
as well.

9.2.3 Track 2

The hardest of the tracks, it features sharp turns and irregular paths. One may map
this arti�cial scenario to the real-world challenge of roads in steep terrains, such as going
down a mountain. An additional challenge in this circuit is the proximity and otherwise
intersection between road markings that do not belong to the track the robot is currently
on. This confuses the robot, as depending on its position relative to the marks, it may
incorrectly predict its next action. Indeed, all models failed in this track directly or indirectly
due to this.

Figure 9.3: Track 2 simulates a road going down a mountain.

Turns are identi�ed by their order of appearance when travelling the pathway. Turns
are increasingly tighter as the road progresses. Figure 9.4 marks these four turns with
visual aids colored in blue. We do the same for the three ambiguous road markings, coloring
them with red.

Model 1 failed due to both ambiguous road markings (particularly on Mark 1) and
the �rst sharp turn (Turn 1). Because of its slow inference, it was unable to correct itself.
Model 2 managed to go all the way down to Turn 3, however it got confused on Mark 3,
mistaking it for a right turn. Model 3 failed on Mark 2 due to the same reasons.
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Figure 9.4: Track 2 ambiguous markings and sharp turns.

Track 2 was designed with the �aws of our system in mind. We knew beforehand our
approach with image classi�cation does not take into account previous classi�cations.
This causes ambiguous markings to be misclassi�ed when they could have been inferred
from previous predictions. Likewise, sharp turns prove to be a challenge for a robot that is
only allowed to go forward, as one misclassi�cation may prove fatal. Nevertheless, Model
2 exceeded our expectations, managing to correctly travel through Turn 1 and Turn 2, and
correctly evading Mark 1 and Mark 2.

9.3 Comments
Although our experiments have shown that image classi�cation for self-driving is not

perfect, it is worthy to mention that the robots were able to correctly extrapolate from
data. Even though the materials used to build the tracks were identical to the dataset’s,
the tracks themselves were very distinct from what was used in the original’s. This shows
how SPNs were able to generalize from their training data. Model 2 especially was able to
correctly classify both Marks 1 and 2 despite never seeing this kind of road marking in its
training dataset. It is also worthy to mention that, although Model 3 failed to go straight
when presented with a straight line, the probabilities computed by the model to go UP
when on a line were very often high, meaning the model had some sense of uncertainty
between turning and going straight.

We also noticed that calibration seemed to have played a major role in how well the
models performed. In fact, the correct positioning of the camera, i.e. its angle with relation
to the ground and its height, was crucial for making the robot work. Self-driving image
classi�cation seems to be very sensitive with respect to this. The training dataset had a
speci�c camera angle and height that we attempted to replicate as best as possible. In spite
of this, as the robot is in constant movement, and because of small vibrations made by
the Brick’s motors, the camera angle was often disturbed, causing the robot to misclassify.
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However this could easily be solved by a�xing the camera to the robot itself.

Another recurring issue we had were CPU processing interruptions. Often, the
Raspberry Pi would completely halt the program’s runtime. We are unsure if this was
an OS interruption or if it was related to the power source, as we were using several
periphericals for input and output whilst using an underpowered battery source. This can
be viewed in the demonstration video, where Model 2’s front video feed in Track 0 skips
several frames during recording.

Overall, the models were able to perform fairly well, although with some minor
technical issues.
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Chapter 10

Conclusion and discussion

In which we conclude our thesis, provide some discussion on the topics covered by
pointing the advantages and the �aws in using image classi�cation in self-driving, and
�nally give a brief overview on possible future work.

10.1 Conclusion
In this thesis we argued the feasibility of lane following via image classi�cation. We

showed that, with a fast and accurate model, it is possible to obtain reasonable results
with such a simple approach. SPNs were fast enough to be able to provide both accuracy
and speed, even on such a limited miniature computer as the Raspberry Pi.

Having said that, we identi�ed a few �aws in this approach, as documented by the
previous chapter. First and foremost, the choice of which model to use (i.e. to �nd the
�ne balance between network complexity and inference speed) is still unquanti�able. At
which point is a fast model accurate enough? Should self-driving be more focused on being
accurate or fast?

Second, although current deep models have proven to be able to extract very
meaningful features and reach impressive accuracy levels, it is still not completely foolproof.
Ambiguous markings such as the ones mentioned in Chapter 9 can easily fool any model,
as they are perfectly valid classi�cations. A possible solution to this would be to account for
previous classi�cations through a temporal model, such as a markov-chain-like network
or a recurrent neural network.

Finally, the choice of how to model the control system can play a big part in how well
the robot is going to perform on a real case scenario. We chose a very simple control
system that only turned left, right or went straight with no degree of continuity between
commands. Furthermore, our implementation had a �xed turn ratio, meaning sharp turns
were a problem from the start.

Despite all this, our attempt was reasonably successful at modelling self-driving on
a low-budget mobile robot. The robot was able to correct itself before going o� tracks,
identi�ed turns correctly, and in its best iteration was able to follow long lines smoothly.
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It is also worthy to mention that training was much faster and required fewer training
samples than other deep models. We were also able to accurately quantify uncertainty
very fast due to linear time exact inference in SPNs.

10.2 Further work
This section is dedicated to possible future work related to this thesis. We give brief

suggestions on how to improve the training and inference model as well as the robot’s
control system.

In our thesis, we only implemented the Gens and Domingos, 2013 and Dennis and
Ventura, 2012 structure learning algorithms. There have been many other architectures
that have achieved better results since. Future work on a comparison between these more
recent state-of-the-art networks would be a very interesting path to take.

For weight learning, we only applied hard generative and discriminative gradient
descent. There have been many advances on weight learning, including Rashwan et al.,
2018 through the use of Extended Baum-Welch. Accuracy increased signi�cantly though
this new weight learning method, and we speculate whether this would provide a boost to
accuracy.

Nowadays, deep models make use of GPUs to accelerate both learning and inference.
Our implementation made use of only the CPU. GPU parallelization in SPNs is still in
its early infancy, but implementations such as R. Peharz et al., 2018 have shown that a
more connectionist approach similar to deep neural networks could potentially increase
its performance whilst maintaining its probabilistic semantics.

Our robot control system was based on a very simplistic approach that does not mirror
a real-world implementation. A more complex controller could potentially enhance self-
driving as a whole. However an excedingly complex system could put too much load on
the robot, decreasing its performance.
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