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...but life is short

Section 2︷ ︸︸ ︷
Mobile Robot Self-Driving Through Image Classification

Using Discriminative Learning of Sum-Product Networks︸ ︷︷ ︸
Section 1

Section 3: (1+2)
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Sum-Product Networks



Definition

Definition 1 (Gens and Domingos 2013).

A sum-product network (SPN) is a DAG where each node can be

defined recursively as follows.

1. A tractable univariate probability distribution is an SPN.

2. A product of SPNs with disjoint scopes is an SPN.

3. A weighted sum of SPNs with the same scope is an SPN,

provided all weights are positive.

4. Nothing else is an SPN.
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Sum-product network

The value S(X ) of an SPN is equal to φ(X ), an unnormalized

probability function, if it obeys certain properties. If all weights

sum to one, S(X ) = Pφ(X ) (Poon and Domingos 2011).
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Probability of evidence

Single backward pass computes S(X = {X1 = 0}) = 0.31. Linear

on the number of edges
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Maximum a posteriori probability

Replace sums with max nodes. Backward pass followed by forward

pass computes most probable explanation, i.e. find

arg maxx∈X P(X ,E ).
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Learning

Structure

• PD-Dense architecture (Poon and Domingos 2011)

• Clustering on Variables (Dennis and Ventura 2012)

• Gens-Domingos LearnSPN (Gens and Domingos 2013)

• Using deep learning techniques (Peharz et al. 2018)

• many others...

Weights

• Generative and discriminative gradient descent

• Generative Expectation-Maximization

• Extended Baum-Welch (Rashwan, Poupart, and Zhitang 2018)

• many others...
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Self-Driving



Dataset

Dataset used: Moraes and Salvatore 2018

Lane tracking dataset with 80× 45 RGB images. Each labeled

with either UP, LEFT or RIGHT.
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Self-driving as image classification

Let X = {X0,X1, . . . ,Xn−1} be an image. Every Xi = xi refers to

the i-th pixel with a grayscale intensity of xi .

Let Y = {UP, LEFT,RIGHT} be the classification variable.

LEFT UP RIGHT

The entire scope of variables is X ∪ {Y }.

Objective: arg maxy∈Y P(Y = y |X )
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Pre-processing

Pipeline:

original RGB image → grayscale → some T transformation.

Three transformations tested:

1. Otsu binarization (Otsu 1979)

2. Quantization (resolution downscaling)

3. Histogram equalization

1 2 3
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Berry

Raspberry Pi 3 Model B — Berry

CPU: Quad Core 1.2GHz Broadcom BCM2837 64bit ARMv7

Memory: 1GB RAM

Storage: 16GB SSD
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Brick

Lego Mindstorms NXT v2 — Brick

CPU: Atmel AT91SAM7S256 48MHz 32bit ARMv4

Memory: 64KB RAM

Storage: 256KB Flash
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Robot

Berry handles inference, passing predicted label to Brick.

Brick handles motors according to label received from Berry.

Message passing through USB cable.
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Driving with SPNs



Modelling

Every pixel Xi is a variable in the distribution represented by the

SPN, i.e. no additional feature extraction, end-to-end.

Two architectures:

GD: LearnSPN (Gens and Domingos 2013)

DV: Clustering on Variables (Dennis and Ventura 2012)

Three weight setups:

g: Generative gradient descent (Poon and Domingos 2011)

d: Discriminative gradient descent (Gens and Domingos 2012)

s: Proportional weights for GD, random weights for DV
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Accuracy

Accuracy (%) DV+g DV+d DV+s GD+g GD+d GD+s

B 78.8 78.8 78.8 82.8 83.8 85.0

Q2 78.6 78.0 78.0 78.6 80.4 79.4

Q2 + E 76.6 76.6 76.8 79.6 82.8 81.8

Q3 77.4 77.4 77.4 77.6 80.2 79.8

Q3 + E 70.4 76.6 76.6 79.2 81.2 77.4

Q4 78.2 78.4 78.2 76.0 78.2 76.4

Q4 + E 76.6 76.6 76.8 76.0 74.6 80.6

Q5 77.8 78.4 78.4 77.6 74.0 73.8

Q5 + E 76.6 76.6 76.6 72.0 72.8 72.0

Q6 77.4 78.4 78.4 75.2 74.4 72.0

Q6 + E 76.0 76.4 76.4 73.0 75.0 73.6

Q7 78.2 78.4 78.4 62.8 72.2 71.4

Q7 + E 76.2 76.4 76.4 70.6 71.4 71.6

∅ 78.0 78.4 78.4 62.4 62.4 62.4

E 76.4 76.4 76.4 60.4 60.0 61.2
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Inference time

Inference (secs) DV+g DV+d DV+s GD+g GD+d GD+s

B 0.23 0.25 0.25 0.38 0.37 0.31

Q2 0.22 0.24 0.23 0.28 0.34 0.16

Q2 + E 0.22 0.23 0.23 0.38 0.30 0.27

Q3 0.22 0.23 0.22 0.22 0.32 0.17

Q3 + E 0.22 0.23 0.22 0.34 0.32 0.31

Q4 0.22 0.22 0.23 0.16 0.17 0.13

Q4 + E 0.23 0.27 0.29 0.13 0.14 0.13

Q5 0.22 0.26 0.28 0.07 0.05 0.02

Q5 + E 0.22 0.29 0.25 0.05 0.05 0.02

Q6 0.23 0.24 0.23 0.04 0.05 0.01

Q6 + E 0.22 0.24 0.28 0.03 0.04 0.02

Q7 0.23 0.23 0.26 0.03 0.01 0.01

Q7 + E 0.22 0.26 0.24 0.01 0.01 0.01

∅ 0.22 0.26 0.23 0.02 0.01 0.01

E 0.23 0.23 0.22 0.01 0.01 0.02
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Chosen models

Model 1: Q4, GD+d

Accuracy: 78.2%

Desktop time: 170ms

Berry time: 700ms

Model 2: Q6, GD+d

Accuracy: 74.4%

Desktop time: 50ms

Berry time: 150ms

Model 3: ∅, GD+d

Accuracy: 62.4%

Desktop time: < 10ms

Berry time: 75ms
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“Real world” scenario

Mobile Robot Self-Driving Through Image Classification Using

Discriminative Learning of Sum-Product Networks — YouTube

(https://youtu.be/vhpWQDX2cQU)
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Implementation

Inference and learning: GoSPN

(https://github.com/RenatoGeh/gospn)

Mobile robot implementation: GoDrive

(https://github.com/RenatoGeh/godrive)
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Thank you.

Questions?
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