
VISUALIZING GENERATIVE SUM-PRODUCT NETWORKS ON IMAGE
RECONSTRUCTION

Renato L. Geh

University of São Paulo
Institute of Mathematics and Statistics

Rua do Matão, 1010 - São Paulo, SP, Brazil, 05508-090

ABSTRACT

Sum-Product Networks (SPNs) are fairly recent deep tractable
probabilistic graphical models that are able to answer exact
queries in linear time. Although there have been many ad-
vancements in practical problems, there is an absence in lit-
erature of visualizations on how SPNs represent learned data.
In this paper we show how two structure learning algorithms
can heavily impact on how SPNs treat data, particularly in
the domain of image reconstruction. We show a coloring
technique to visualize sum and product nodes through their
scopes. We then apply this technique to generative SPNs
learned from two distinct learning methods.

Index Terms— Sum-product networks, probabilistic
graphical models, visualization, image reconstruction

1. INTRODUCTION

Image reconstruction is the task of accurately predicting,
guessing and completing missing elements from an image.
Density estimators that model a joint probability distribution
can achieve this by learning the features of similar images
and finding the valuation that most adequately fits the incom-
plete image. However, classical density estimators, such as
Probabilistic Graphical Models (PGMs), suffer from exact
inference intractability in the general case. This leads to ap-
proximate prediction and representation, as learning in PGMs
often requires the use of inference as a subroutine.

Sum-Product Networks (SPNs) [1] are fairly recent
tractable PGMs capable of representing distributions as a
deep network of sums and products. Most importantly, SPNs
are capable of exact inference in time linear to its graph’s
edges. There have been many advances on SPNs in the
image domain, such as image classification and reconstruc-
tion [2, 3, 4], image segmentation [5] and activity recogni-
tion [6, 7, 8]. However, there have been little effort [9] so far
to explore SPNs’ semantics and representation power.

In this paper, we provide visualizations on SPNs learned
from two structure learning algorithms. We propose a tech-
nique to perform this task. This technique relies on a couple

of properties SPNs must follow in order to correctly repre-
sent a probability distribution, and are highly dependent on
the graph’s structure. We first give a short background re-
view of SPNs, relevant properties and scope definition. We
follow this with an explanation on how we achieved the visu-
alizations shown in this article. Finally, we show results and
provide a conclusion of our findings.

2. BACKGROUND

An SPN can be seen as a DAG with restrictions with respect
to its node types and weighted edges. Let n be a graph node.
The set of nodes Ch(n) is the set of children of n. A weighted
edge i→ j is denoted by wi,j .

Definition 1. A sum-product network (SPN) is a directed
acyclic graph. A node n of an SPN can either be a:

1. sum, where its value is given by vn =
∑

j∈Ch(n) wn,jvj;

2. product, where its value is given by vn =
∏

j∈Ch(n) vj;

3. probability distribution, whose value is its probability
of evidence.

In this paper, we assume that all SPN leaves (i.e. node
type 3) are tractable univariate distributions, that is, comput-
ing its mode or partition function takes constant time. The
scope of a node, denoted by Sc(n), is the union set of the
scope of its children.

Definition 2 (Completeness). An SPN is complete iff every
child of a sum node has the same scope as its siblings.

Definition 3 (Decomposability). An SPN is decomposable iff
every child of a product node has disjoint scope with its sib-
lings.

A complete and decomposable SPN correctly computes
the probability of evidence of the modeled distribution. An
SPN that correctly represents a probability distribution is said
to be valid. In fact, completeness and consistency (i.e. no two
children of an SPN node have contradicting variable values)
is sufficient (though not necessary) for validity [1]. However,

Fig. 1. Finding the MPE of an SPN given X = {X1 = 0}.

learning decomposable SPNs is easier, and it has been shown
that decomposability is as expressive as consistency [10].

Let X = {X1 = x1, X2,= x2, . . . , Xn = xn} be a
valuation and S an SPN. The value of S is the value of its
root, and is denoted by S(X). Inference in SPNs is done
through a bottom-up evaluation. The value of a leaf node n
is the probability of X. If Sc(n) 6⊂ X, then n’s value is the
distribution’s mode.

Finding the argmaxx S(X = x), also called the Most
Probable Explanation (MPE), of an SPN has been shown to be
NP-hard [10, 11, 12]. Image reconstruction can be seen as an
application of MPE, where each variable is a pixel, and values
are pixel colors. Finding the MPE, and thus the reconstruction
of an image given some initial evidence consists of finding the
pixel values that are most likely to fit the model. Given that
finding the exact valuation that maximizes the model is hard,
we instead use an approximate method proposed in [1] called
the Max-Product algorithm.

The Max-Product algorithm consists of replacing the
original SPN with a Max-Product Network (MPN). An MPN
of an SPN is simply the SPN with its sum nodes replaced
with max nodes. The value of a max node is the maximum
weighted child. Finding an MPE approximation on an MPN
is done through a bottom-up evaluation similar to an SPN.
Once all nodes have been computed, a top-down traversal is
done, finding the max paths in the graph by choosing only the
max edge in a max node and traversing all edges in product
nodes, as shown in Figure 1.

3. VISUALIZING SPNS

Visualization in SPNs can be done through an analysis of the
SPN’s scope and structure. The definition of completeness

(a) (b)

(c) (d)

Fig. 2. Samples from the Caltech-101 [13] dataset. Cate-
gories are, from left to right, top to bottom, (a) airplane, (b)
dollar bill, (c) saxophone and (d) stop sign.

lends itself naturally to an interpretation of sum nodes as lay-
ers of mixture models. A possible intuition for this interpreta-
tion is that sum nodes model latent variables in charge of ex-
plaining similar interactions between variables. Decompos-
ability, on the other hand, models independence between sets
of variables.

This kind of semantics allows for a very intuitive repre-
sentation when dealing with images. In the image domain,
a product can be thought of as a hidden variable explaining
different regions of pixels of an image, with a region being
a particular meaningful portion of the image. For instance,
in Figure 2 (d), the sign itself could be a region, the bush on
the left another, the window, wall and pole the remaining three
others. Sum nodes, on the other hand, represent the regions

Algorithm 1 VisualizeSPN
Input An SPN S and scope threshold k

1: ComputeScope(S)
2: for each node n in S in breadth first search order do
3: if Sc(n) < k then
4: Skip current search branch
5: if n is a product then
6: Let I be an image
7: for each node c ∈ Ch(n) do
8: Colorize Sc(c) onto I with unused color
9: if using variation 1 then

10: if c is sum and |Sc(c)| > k then
11: Find c’s MPE and write to file
12: Write I to file
13: else if n is a sum and using variation 2 then
14: Find n’s 3 highest valued weighted children
15: Find the MPE for each of them and write to file

(a)

(b)

(c)

Fig. 3. Visualizations at layer 1 (i.e. root’s children) for D-
SPNs. Row (a) shows product node colorizations. Row (b)
and (c) show MPE values for row (a)’s child nodes. Columns
from left to right belong to airplanes, dollar bills, saxophones
and stop signs.

themselves. For example, another stop sign image may por-
tray a car in place of a bush. Sums model this difference by
assigning similar samples under the same child, so that each
child models a different object or texture.

We build our visualization technique on top of this inter-
pretation of SPNs. Our method computes the scope of each
node. At each product node, we color different regions differ-
ent colors to distinct between them. For sum nodes, we take
two approaches. Variation 2 takes every sum node’s MPE and
writes it to a file, showing what the most probable objects and
textures the node captures, whilst variation 1 is restricted to
only sum nodes with at least one product as parent, as sums
with only sum nodes as parents are not as expressive and of-
ten model only minor changes. We also skip any nodes whose
scopes are too small.

By traversing the graph in a breadth-first search manner,
we are able to restrict scopes which are too small. Once we
identify that the scope of a node has fallen bellow a threshold,
we no longer need to keep iterating over remaining descen-
dants, as a complete and decomposable SPN guarantees that
every node below it has at most its size. Nodes whose scopes
are too small are not as interesting for visualization, as they
do not have as much value in semantics, and are often too
low-level.

4. RESULTS

We applied VisualizeSPN1 on two SPNs learned with differ-
ent learning algorithms. One with LearnSPN [2], which we
will call G-SPNs, and the other with Dennis and Ventura’s
clustering algorithm [3], refered here as D-SPNs. The former
is implemented with k-means for clustering, with a chosen

1Code available at https://github.com/RenatoGeh/visualize

(a)

(b)

(c)

Fig. 4. Visualizations at layer 25 for D-SPNs. The deeper
the nodes, the more restricted the scope. Colored parts in
row (a) indicate to which child the pixels belong to, whereas
grayscale values do not belong to the node’s scope, and are
mean images of all dataset samples.

value of k = 4, and G-test for variable independence. Leaves
are multinomial distributions on the pixels. The latter con-
tains four sums per region and have gaussian mixtures of four
gaussians as leaves. We applied variation 1 to D-SPNs and
variaton 2 to G-SPNs.

SPNs were learned on the Caltech-101 [13] and Olivetti
Faces [14] datasets. The former was reduced to only four
categories: airplanes, dollar bills, saxophones and stop signs;
and were resized and converted to 100 × 100 grayscale im-
ages. The Olivetti dataset is already in grayscale, and images
were kept in their original 46× 56 dimension.

VisualizeSPN was able to provide clean visualizations on
how each learning algorithm segmented data. Figure 3 shows
a top-level visualization on D-SPNs, where the top row shows
a product node at layer 1. Different colors represent different

(a)

(b)

(c)

Fig. 5. Visualizations at deeper layers for D-SPNs. At lower
levels, scopes are more restricted to details. The outline of the
saxophone is visible on the third column.

https://github.com/RenatoGeh/visualize

(a)

(b)

(c)

(d)

Fig. 6. Visualizations for G-SPNs. Row (a) corresponds to
the segmentation of a product node’s scope. Different colors
mean different children. Rows (b), (c) and (d) show the top 3
image reconstructions on (a)’s sum children.

child scopes. The following two rows correspond to the MPE
values (i.e. the most probable image reconstructions) on each
sum node child. Since the SPN is decomposable, the union
of the two children’s scope should match the entire parent
node’s scope. Figure 4 and Figure 5 show deeper layers in the
same SPNs. These deeper layers often attempt to model more
delicate differences between images, a natural consequence
of narrowing the node’s scope.

We found that, under a low quantity of samples, G-SPNs

(a)

(b)

(c)

Fig. 7. D-SPNs on the Olivetti Faces dataset. Key facial fea-
tures, such as eyes, nose, mouth and forehead are correctly
identified and segmented.

(a)

(b)

(c)

(d)

Fig. 8. Applying variation 2 of VisualizeSPN on G-SPNs
learned with the Olivetti Faces dataset.

were less deep than D-SPNs. We speculate this is due to the
approximate nature of the G-test variable independence algo-
rithm. Figure 6 shows how fragmented scopes became, which
indicate G-SPNs are much wider and shallower than D-SPNs.

Applying VisualizeSPN to the Olivetti dataset yielded
some interesting results. We found that SPNs were very
capable of splitting facial features into significant regions.
Figure 8 shows how the SPNs were able to learn how to
segment the images to identify key facial regions. It was
also able to distinguish between background and face, as ev-
idenced by the second column. The third column suggests
that the SPN was able to discriminate between left and right
side. This is important, as the Olivetti dataset contains im-
ages with slightly turned faces. Reconstruction must take into
account the face’s side to provide accurate predictions. In
G-SPNs case, it is not clear how the SPN identifies features,
but it seems to provide human-like reconstructions as Fig-
ure 8 shows. It also seems to distinguish skin color better
than D-SPNs.

5. CONCLUSION

We proposed a new technique of visualizing SPNs in the do-
main of image reconstruction. The method was applied on
the Caltech-101 [13] and Olivetti Faces [14] dataset, on SPNs
learned with both LearnSPN [2] and the Dennis-Ventura clus-
tering algorithm [3]. We found this kind of visualization pro-
vided some interesting insights on how SPNs learn data.

6. REFERENCES

[1] Hoifung Poon and Pedro Domingos, “Sum-product net-
works: A new deep architecture,” Uncertainty in Artifi-
cial Intelligence, vol. 27, 2011.

[2] Robert Gens and Pedro Domingos, “Learning the struc-
ture of sum-product networks,” International Confer-
ence on Machine Learning, vol. 30, 2013.

[3] Aaron Dennis and Dan Ventura, “Learning the architec-
ture of sum-product networks using clustering on vari-
ables,” Advances in Neural Information Processing Sys-
tems, vol. 25, 2012.

[4] Robert Gens and Pedro Domingos, “Discriminative
learning of sum-product networks,” Advances in Neural
Information Processing Systems, pp. 3239–3247, 2012.

[5] Zehuan Yuan, Hao Wang, Limin Wang, Tong Lu, Shiv-
akumara Palaiahnakote, and Chew Lim Tan, “Modeling
spatial layout for scene image understanding via a novel
multiscale sum-product network,” Expert Systems with
Applications, vol. 63, pp. 231 – 240, 2016.

[6] M. R. Amer and S. Todorovic, “Sum-product networks
for modeling activities with stochastic structure,” in
2012 IEEE Conference on Computer Vision and Pattern
Recognition, June 2012, pp. 1314–1321.

[7] M. R. Amer and S. Todorovic, “Sum product net-
works for activity recognition,” in IEEE Transactions on
Pattern Analysis and Machine Intelligence, April 2016,
vol. 38, pp. 800–813.

[8] J. Wang and G. Wang, “Hierarchical spatial
sum–product networks for action recognition in still im-
ages,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 28, no. 1, pp. 90–100, Jan 2018.

[9] Antonio Vergari, Nicola Di Mauro, and Esposito Flori-
ana, “Visualizing and understanding sum-product net-
works,” Machine Learning, 08 2016.

[10] Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf,
and Pedro M. Domingos, “On theoretical properties of
sum-product networks,” in AISTATS, 2015.

[11] Jun Mei, Yong Jiang, and Kewei Tu, “Maximum a pos-
teriori inference in sum-product networks,” in AAAI,
2018.

[12] Diarmaid Conaty, Denis D. Maua, and Casio P. de Cam-
pos, “Approximation complexity of maximum a posteri-
ori inference in sum-product networks,” in Proceedings
of The 33rd Conference on Uncertainty in Artificial In-
telligence. 8 2017, AUAI.

[13] L. Fei-Fei, R. Fergus, and P. Perona, “Learning gener-
ative visual models from few training examples: an in-
cremental bayesian approach tested on 101 object cate-
gories,” in CVPR 2004, Workshop on Generative-Model
Based Vision. 2004, IEEE.

[14] Ferdinando Samaria and Andy Harter, “Parameterisa-
tion of a stochastic model for human face identification,”
in Proceedings of 2nd IEEE Workshop on Applications
of Computer Vision. 1994, IEEE.

	 Introduction
	 Background
	 Visualizing SPNs
	 Results
	 Conclusion
	 References

