
A POLYNOMIAL-TIME REDUCTION OF THE 3-SAT TO THE

QUADRATIC CONGRUENCE AND OTHER RELATED

PROBLEMS

Renato Lui Geh
NUSP: 8536030

Computational Number Theory (MAC6927)
Prof. Sinai Robins

University of São Paulo

Abstract. In this term paper for MAC6927 — Computational Number The-
ory, we explore the history behind the quadratic congruence problem (QCP)

and other related number theoric problems; show a polynomial-time reduc-
tion from the 3-SAT to the QCP quoting Adleman and Manders’ 1978 the-

orem [MA78], implying that quadratic congruence is NP-complete; and show

some solved and unsolved problems in Number Theory that are directly (or
indirectly) related to the QCP problem and its membership in NP.

1. History

German mathematician David Hilbert published in 1902 [Hil02] a set of 23 un-
solved problems in mathematics he deemed to be the most important mathematical
problems to be solved in the 20th century. Since then 9 of them have been solved,
9 are considered partially resolved, three of them are unsolved and two of them are
considered too vague (as of the time the author is writing this line and as far as the
author is aware). Unsolved problems include the infamous Riemann Hypothesis
and an extension to the Kronecker-Weber Theorem. Amongst solved problems is
the 10th Hilbert problem.

10th Hilbert Problem: Given a diophantine equation with any number of
unknown quantities and with rational integral numerical coefficients: to devise a
process according to which it can be determined by a finite number of operations
whether the equation is solvable in rational integers.

It was answered in 1970 by Matiyasevich to be impossible [Mat70]. The question
now becomes, in which cases is there an algorithm for solvability and what is the
complexity of such algorithm? In 1976, Adleman and Manders [MA76] partially
answered these questions by proving that, for the quadratic case, there exists an
algorithm and the problem of finding the solutions is NP-complete. In their proof,
they also found that, through a slight modification in the final step of their proof,

1

2 QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION

it was possible to answer the quadratic congruence problem. A cleaner version of
this proof was published in 1978 by Adleman and Manders [MA78], proof we try
to explain in this paper.

In this paper we focus on the second result of Adleman and Manders’ 1978
article (namely that the quadratic congruence problem is NP-complete), but also
briefly show the main result, i.e that the set of quadratic diophantine equations with
natural numbers solutions is NP-complete. The proof is done through a polynomial-
time reduction from the 3-SAT problem. This reduction implies that both problems
covered in Adleman and Manders’ article are NP-complete.

In 1971, American mathematician Stephen Cook published “The Complexity of
Theorem-proving Procedures” [Coo71], and in the next year, his fellow countryman
Richard Karp published “Reducibility Among Combinatorial Problems” [Kar72].
The two articles introduced the concepts of P and NP classes, yielding the duo
a Turing Award. Interestingly in 1973, on the other side of the Iron Curtain,
Ukrainian Leonard Levin published [Lev73] in the USSR equivalent results to
Cook’s and Karp’s, but considering search problems instead of decision problems
(an interesting remark is that Levin did not receive a Turing Award for his work,
despite achieving equivalent results). Both works resulted in the following state-
ment: that any problem in NP can be reduced in polynomial time, in a deterministic
Turing machine, to the problem of satisfiability of a Boolean formula, i.e. the SAT
problem. Additionally, if there exists a deterministic polynomial time algorithm for
solving SAT, then every NP problem can be solved by a deterministic polynomial
time algorithm.

This independent, parallel work from opposite parts of the world, ideologically
and geographically, gave rise to what is considered one of the most important open
questions in theoretical computer science, the P vs NP problem.

In his 1972 paper, Karp also published a list of 21 NP-complete problems, show-
ing the polynomial-time reductions of 21 problems. Below is Karp’s list, where
the nesting indicates the direction of the reduction. For instance, the exact cover
problem was reduced to the knapsack problem, chromatic number was reduced to
exact cover, 3-SAT was reduced to exact cover, and the SAT was reduced to the
3-SAT problem.

• Satisfiability (SAT)
• 0–1 integer programming
• Clique

• Set packing
• Vertex cover

• Set covering
• Feedback node set
• Feedback arc set
• Directed Hamiltonian cycle
• Undirected Hamiltonian cycle

• Satisfiability with at most 3 literals per clause (3-SAT)
• Chromatic number

QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION 3

• Clique cover
• Exact cover
• Hitting set
• Steiner set
• 3-dimensional matching
• Knapsack
• Job sequencing
• Partition
• Max cut

From this we know that one can reduce 3-SAT to any problem that the latter will
be proved to be NP-complete. In the next sections we will provide a brief review
on polynomial-time reductions, present proper definitions on the QCP and 3-SAT,
and finally prove the reduction. We then try to give some intuition on the proof.
The last section is devoted to related problems. We show the Diophantine problem
presented in [MA78] and other Number Theory problems reductions.

2. Brief Review on Complexity Theory

In this section we define decision problems, the P and NP complexity classes
and all the tools we need to prove a polynomial-time reduction. We give a shallow
definition of the 3-SAT problem and give other examples of NP-complete problems.

Before we prove reductions, we first need to properly define the concepts we are
going to use. We shall define a Problem as a question that takes a set of objects
as input and returns another set of objects as output. There are many types of
problems: decision problems, where the output is restricted to yes or no (or true
or false) answers; search problems, when the output is an element of the set; and
optimization problems where the answer is given by a particular element of the set
that optimizes certain criteria.

We can give a format for problems:

Problem: vector sorting

Input n ∈ N and a vector A[1..n] with n integers

Output An ordered vector

Description Sorting the vector A in increasing order.

It is natural to conclude that problems have a certain complexity attached to
them. Furthermore, we can provide several algorithms that give answers to our
problems. In this case in particular we know that sorting a vector through com-
parison is O(n lg n) at best. Examples of algorithms for the above problem are
InsertionSort, MergeSort and BubbleSort, with each one having different worst
case complexities. We next show a few examples of different types of problems:

4 QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION

Search problem: greatest common divisor

Input a, b 6= 0 ∈ N
Output d|a, d|b, and for all d′|a, d′|b we have d′ ≤ d
Description Finding the gcd(a, b)

The Euclidean algorithm is an example of an algorithm that solves the gcd
problem in O(ln(max{a, b})).

Optimization problem: longest common subsequence

Input Two strings X[1..m] and Y [1..n]

Output A string

Description Finding the longest common subsequence in X and Y .

This classic computer science problem turns out to be Θ(m ·n). Following Cook
and Karp’s, we treat only the case for decision problems. One might think this
severly restricts the generality of complexity classes, but it is easy to see that one
can treat decision problems as special cases of optimization and search problems.
We do this by restricting these problems into their decision problem subproblems:

Decision problem: greatest common divisor

Input a, b 6= 0 ∈ N and k ∈ N
Output Boolean value

Description Is gcd(a, b) = k true?

Decision problem: longest common subsequence

Input Two strings X[1..m] and Y [1..n]

Output Boolean value

Description Is there an LCS of X and Y such that its length ≥ k?

We simply added a k restriction on the input and modified the question so that
the answer is a yes or no question.

For the next part we assume Turing machines to be already defined, as we wish
to keep this section brief, as the title says. We consider an algorithm a series of
finite steps that can be performed by a Turing machine. A problem is solvable in
polynomial time if there exists an algorithm that takes a polynomial number of
steps on the size of the instance. We define an instance as a particular input of a
problem. In the gcd decision problem, we could take the tuple (253, 37, 1) as an
instance of the input. Both the Euclidean algorithm and the optimal 2-dimension
LCS algorithm run in polynomial time on the size of the instance. However, the
general case of the LCS algorithm is O(2n1), where ni is the length of the i-th
string, and thus not polynomial.

Definition 2.1. The P class is the set of all decision problems that can be solved
by polynomial (on the size of the instance) time algorithms.

QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION 5

Let Π be a Problem. We say that Π admits a polynomial verifier V for a YES
answer if there exists a polynomial algorithm that takes an instance I of Π and an
object C such that the size of C is polynomial in I and returns YES for some C if
the answer Π(I) is YES and NO for all C if Π(I) is NO.

In other words, V takes an instance I and checks whether such an instance is
a true answer to the problem. We call the object C a polynomial certificate of
problem Π.

Analogally, a polynomial verifier for a NO answer takes a polynomial certificate
C and returns NO if the answer Π(I) is NO and YES for all C if Π(I) is YES.

Problem: Hamiltonian cycle

Input A graph G = (V,E)

Output Boolean value

Description Is there a Hamiltonian cycle, i.e. a path p = (e1, e2, . . . , ek) s.t. ∀v ∈
V , v is visited by p exactly once, and p is a cycle?

Consider the Hamiltonian cycle problem above. In the image below, the poly-
nomial certificate is the red path, and the polynomial verifier is an algorithm that
checks whether the instance given is an actual solution to the problem. It is easy to
see that a polynomial verifier for the Hamiltonian cycle is an algorithm that checks
whether the set of edges in C traverse all the vertices and that the edges form a
cycle.

Figure 1. The red path is a polynomial certificate for the
Hamiltonian cycle problem. Source: Wikipedia.

Definition 2.2. The NP class is the set of all decision problems that admit a
polynomial verifier for the YES answer.

Definition 2.3. The co-NP class is the set of all decision problems that admit a
polynomial verifier for the NO answer.

Note how every problem in P is already in NP and co-NP, since the algorithm
that solves the problem could be used as a verifier for both the YES and NO answer.

6 QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION

Let Π and Π′ be problems. A polynomial-time reduction from Π to Π′ is an
algorithm that solves Π using an algorithm that solves Π′ as a subroutine, and that
(excluding its subroutine) is polynomial on the size of its instance. We denote such
a reduction by Π ≤p Π′ if there exists a polynomial reduction from Π to Π′.

Problem: SAT

Input A Boolean formula with n variables written in CNF, e.g. (x1 ∨ x2 ∨ x2 ∨
x3) ∧ (x2 ∨ x5) ∧ · · ·

Output Boolean value

Description Is there a valuation ν : {x1, x2, . . . , xn} → {false, true} such that the
input formula evaluates to true?

Problem: 3-SAT

Input A Boolean formula with n variables written in CNF with at most 3 literals
in each clause, e.g. (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x1 ∨ x5) ∧ · · ·

Output Boolean value

Description Is there a valuation ν : {x1, x2, . . . , xn} → {false, true} such that the
input formula evaluates to true?

We can prove that SAT ≤p 3-SAT by turning the clauses in the SAT problem
into 3-SAT clauses [Kar72]. Recall Karp’s 23 NP-complete list of problems. Each
nesting means that the nested item Π′ and its parent item Π obey Π ≤p Π′. The
SAT problem can also be reduced to the Hamiltonian cycle problem by turning
edges and vertices into SAT clauses. The vertex cover problem can also be reduced
to the Hamiltonian cycle problem [Kar72].

Definition 2.4. A problem Π in NP is NP-complete if ∀ Π′ ∈ NP, Π′ ≤p Π.

From the Cook-Levin Theorem [Coo71; Lev73], we know that the SAT problem
is NP-complete. So if Π ≤p Π′, and Π is NP-complete, then Π′ is also NP-complete.
So showing that a problem Π′ is NP-complete consists of the following steps:

(1) Take Π′ ∈ NP,
(2) Take Π NP-complete,
(3) Show that Π ≤p Π′.

Definition 2.5. A problem Π is NP-hard if the existence of a polynomial algorithm
for Π implies in P = NP.

So every NP-complete problem is NP-hard, but an NP-hard problem is not
necessarily in NP.

We wish to show that the 3-SAT problem can be reduced to the quadratic con-
gruence problem, proving that QCP is NP-complete.

QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION 7

3. The Reduction

In this section we first define the Quadratic Congruence Problem (QCP), state
the second theorem in [MA76], quote the algorithm used in the article that will be
used in the proof, and then we show a complete and detailed proof of the reduction.

We first define the QCP as a decision problem.

Problem: quadratic congruence

Input α, β, γ ∈ Z
Output Boolean value

Description Is there a solution x ∈ Z where

x2 ≡ α mod β

and such that 0 ≤ x ≤ γ?

It turns out that the QCP is NP-complete, as we shall prove later. One might
think that the QCP’s complexity difficulty lies on the factorization of β. However,
even when the full factorization of β is given, as the reduction shows, it is still
NP-complete.

Another interesting note regarding the QCP problem is that, finding a solution
x without the second restriction (i.e. no upper bound on x, γ = ∞) is solvable in
polynomial time if we are given β’s factorization. Furthermore, if we assume the
Extended Riemann Hypothesis to be true, the problem is also solvable in polynomial
time when β is prime [GJ79]. Additionally, the problem is trivially solvable in
pseudo-polynomial time, meaning given a nondeterministic Turing machine, one
can solve by running a “guess a solution and check whether it is a correct” algorithm
in polynomial time [MA78].

We now state the theorem that covers the reduction.

Theorem 1 (Adleman and Manders, 1976). The (problem of accepting the) set of
quadratic congruences (in a standard encoding)

x2 ≡ α mod β

with solutions x ∈ ω satisfying

0 ≤ x ≤ γ; α, β, γ ∈ ω
is NP-complete.

It is easy to prove QCP’s membership in NP. One could design an algorithm
that first checks whether the input instance x obeys the condition 0 ≤ x ≤ γ. If it
passes, we simply check whether x2 ≡ α mod β. This algorithm runs in O(1), and
thus is polynomial. This is a polynomial verifier for the YES answer for the QCP,
so QCP is in NP.

Before we prove Theorem 1, we first quote the algorithm used in the reduction
from [MA78]. We use this algorithm in the proof extensively. In the article, Adle-
man and Manders recommend the reader to simply skim over the algorithm, and

8 QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION

then to refer it back when reading the proof. We also recommend this, as the intent
of the algorithm is not clear at first glance.

The algorithm itself is directly quoted from [MA78], but is also used in [MA76].
The former is a modified version of the latter. We chose the first to quote as it
looked to be simpler and cleaner. Comments of the form [Comment: . . .] are
comments taken directly from the article.

3.1. The algorithm

On input φ, read φ and eliminate all duplicate conjuncts and those in which,
for some variable xi, both xi and xi occur. Count the l variables occurring in the
remaining formula φR. Let

Σ = {σ1, . . . , σm}

be a standard enumeration of all possible disjunctive clauses, formed from x1, . . . , xl
and their complements, with at most three literals per clause and no variable oc-
curring twice or both complemented and uncomplemented in a clause. Compute

τφ = −
∑
σl∈φR

8j ,

where, as below, we use ∈ to denote the relation of an expressing occurring in
another expression. [Comment: τφ is the only quantity computed which depends
specifically on φR, rather than just on the number l of variables occurring in φR.]
Compute:

f+i =
∑
xi∈σj

8j , i = 1, 2, . . . , l,

f−i =
∑
xi∈σj

8j , i = 1, 2, . . . , l.

Set n = 2m+ l and compute cj , j = 0, . . . , n, as

c0 = 1

cj = − 1
28k, j=2k-1,

cj = −8k, j=2k,

}
j = 1, . . . , 2m

c2m+j =
1

2
(f+j − f

−
j), j = 1, 2, . . . , l,

and

QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION 9

τ = τφ +

n∑
j=0

cj +

l∑
i=1

f−i

[Comment: At this point we have in fact obtained a knapsack problem sumn
j=0cjαj =

τ , αj ∈ {−1,+1}, which is solvable if and only if φ is satisfiable; moreover, for any
value of αj ∈ {−1,+1}, |

∑n
j=0 cjαj−τ | < 8m+1, so the knapsack problem is equiv-

alent to
∑n
j=0 cjαj ≡ τ mod 8m+1, αj ∈ {−1,+1}. These assertions will become

clear from the proof of correctness.]

Determine the first n+ 1 primes, p0, . . . , pn, exceeding

(4(n+ 1)8m+1)
1

n−1

[This is in fact never exceeds 12, so we can set p0 = 13.]

Determine parameters θj , j = 0, 1, . . . , n, as: the least θj ∈ ω such that

θj ≡ cj mod 8m+1,

θj ≡ 0 mod

n∏
i6=j

pn+1
i ,

θj 6≡ 0 mod pj .

(Note: the following part of the algorithm was changed since Theorem 1 in
article [MA78] is the quadratic Diophantine solutions problem and Theorem 2 is
the QCP. In our paper, we refer to Theorem 1 as the QCP, and Theorem 2 as the
Diophantine problem.)

Compute H =
∑n
j=0 θj , K =

∏n
j=0 p

n+1
j and output:

(a) for Theorem 1 (QCP):

x2 ≡ (2 · 8m+1 +K)
−1 · (Kτ2 + 2 · 8m+1H2) mod 2 · 8m+1 ·K, 0 ≤ x ≤ H,

where, (2 · 8m+1 +K)
−1

is the inverse of (2 · 8m+1 +K) mod 2 · 8m+1 ·Kn.

(b) for Theorem 2 (Diophantine):

(K + 1)
3 · 2 · 8m+1 · (H2 − x21) +K(x21 − τ2)− x2 · 2 · 8m+1 ·K = 0.

10 QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION

3.2. The proof

In this subsection we show the proof of correctness of the algorithm (i.e. the
proof of the reduction). We follow the proof given in [MA78], but with all passages
explicitly explained, as well as a proof of Lemma 2 that was left to the reader.

We need to first show that the propositional formula φ is satisfiable if and only
if the following expression is solvable.

n∑
j=0

θjαj ≡ τ mod 8m+1, αj ∈ {−1,+1}, j = 0, . . . , n

It is easy to see that the formula φR is satisfiable if and only if φ is, since φR
is the result of taking out all irrelevant clauses. But φR is satisfiable if and only if
there is a valuation r : {x1, . . . , xl} → {0, 1} such that for each disjunctive clause
σk ∈ Σ

(1) 0 = Rk


= yk −

∑
xi∈σk

r(xi)−
∑
xi∈σk

(1− r(xi)) + 1, if σk ∈ φR, (1)

= yk −
∑
xi∈σk

r(xi)−
∑
xi∈σk

(1− r(xi)), if σk 6∈ φR.(2)

is solvable by yk ∈ {0, 1, 2, 3}. We also add the constraint

0 = R0 = α0 + 1, α0 ∈ {0, 1}

that does not influence the satisfiability of the system. We next prove that Equa-
tion 1 does in fact hold for the if and only if satisfiability.

Proof of Equation 1. We first consider case (1):

0 = yk −
∑
xi∈σk

r(xi)−
∑
xi∈σk

(1− r(xi)) + 1, if σk ∈ φR

So yk must be of the form:

yk =
∑
xi∈σk

r(xi) +
∑
xi∈σk

(1− r(xi))− 1

With no loss of generality, we can enumerate all possible clauses σk as follows

QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION 11

(xp ∨ xq ∨ xt) : yk = r(xp) + r(xq) + r(xt)− 1⇒− 1 ≤ yk ≤ 2

(xp ∨ xq ∨ xt) : yk = r(xq) + r(xt) + 1− r(xp)− 1⇒− 1 ≤ yk ≤ 2

(xp ∨ xq ∨ xt) : yk = r(xt) + 2− r(xp)− r(xq)− 1⇒− 1 ≤ yk ≤ 2

(xp ∨ xq ∨ xt) : yk = 3− r(xp)− r(xq)− r(xt)− 1⇒− 1 ≤ yk ≤ 2

Note how in all cases above, the clause is satisfiable if and only if yk 6= −1. In
the first case, when yk = −1, no literal xi is evaluated as true. In the second case,
when yk 6= −1, no literal xi is evaluated as true and xp is evaluated as false. The
third case is similar, with xt false, and xp, xq false. For the last case, all xi are
set to false. When yk 6= −1, there exists some literal being evaluated as true, and
therefore the clause σk is evaluated as true.

For case (2), we do the same. In this case, yk is of the form:

yk =
∑
xi∈σk

r(xi) +
∑
xi∈σk

(1− r(xi))

Enumerating all literal combinations we have:

(xp ∨ xq ∨ xt) : yk = r(xp) + r(xq) + r(xt)⇒0 ≤ yk ≤ 3

(xp ∨ xq ∨ xt) : yk = r(xq) + r(xt) + 1− r(xp)⇒0 ≤ yk ≤ 3

(xp ∨ xq ∨ xt) : yk = r(xt) + 2− r(xp)− r(xq)⇒0 ≤ yk ≤ 3

(xp ∨ xq ∨ xt) : yk = 3− r(xp)− r(xq)− r(xt)⇒0 ≤ yk ≤ 3

The analysis for this case goes analogally to the previous case, but with yk = 0
being instatisfiable. Note how yk = 0 is still a solution to the previous case. This
inconsistency does not break the hypothesis, since in (2) we are considering clauses
σk 6∈ φR. That is, σk does not need to necessarily satisfy for φR to satisfy. However,
for φR to be satisfiable, yk needs to be in {0, 1, 2, 3}, as we showed. �

In order for φR to be satisfiable, every σk ∈ φR must be satisfiable. This is an if
and only if condition on yk ∈ {0, 1, 2, 3}, as we showed earlier. For any satisfiable
φR, we have the following inequalities.

−3 ≤ Rk ≤ 4, k = 1, 2, . . . ,m

0 ≤ R0 ≤ 2

From this, it follows that

12 QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION

(2) Rk = 0, k = 0, 1, . . . ,m ⇐⇒
m∑
k=0

Rk · 8k = 0

and also that

(3)

∣∣∣∣∣
m∑
k=0

Rk · 8k
∣∣∣∣∣ < 8m+1

This is true because

∣∣∣∣∣
m∑
k=0

Rk · 8k
∣∣∣∣∣ =

∣∣∣∣∣R0 · 80 +

m∑
k=1

Rk · 8k
∣∣∣∣∣ ≤ 2 +

m∑
k=1

4 · 8k

≤ 2 + (4 · 8 + 4 · 82 + · · ·+ 4 · 8m)

≤ 2 + 8 (4 + 4 · 8 + 4 · 82 + · · ·+ 4 · 8m−1)︸ ︷︷ ︸
geometric series

≤ 2 + 8

(
4

7
· 8m − 4

7

)
≤ 2 +

4

7
· 8m+1 − 8 · 4

7

< 8m+1

From (2) and (3), we have that

(4) Rk = 0, k = 0, 1, . . . ,m ⇐⇒
m∑
k=0

Rk · 8k ≡ 0 mod 8m+1.

We now wish to prove that we can reorganize the RHS of Equation 4 into the
following expression by using the terms from the algorithm. That is, that

(5)

m∑
k=0

Rk · 8k ≡ 0 mod 8m+1 ⇐⇒
n∑
j=0

cjαj ≡ τ mod 8m+1.

Proof of Equation 5. We replace variables yk and valuations r(xi) by {−1,+1}-
valued variables:

QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION 13

yk =
1

2
[(1− α2k−1) + 2 · (1− α2k)]

r(xi) =
1

2
(1− α2m+i)

We call R′k the result of this substitution. It follows that

R′k =
1

2
[(1−α2k−1)+2(1−α2k)]−

∑
xi∈σk

1

2
(1−α2m+i)−

∑
xi∈σk

[
1− 1

2
(1− α2m+i)

]
+1

when σk ∈ φR. Plugging R′k into (4) gives us

(6)
m∑
k=0

(
8k

2
− 8k

2
α2k−1 + 8k − 8kα2k −

∑
xi∈σk

(
8k

2
− 8k

2
α2m+i

)
−
∑
xi∈σk

(
8k

2
+

8k

2
α2m+i

)
+ 8k

)
≡ 0 mod 8m+1

Recall the cj , j = 0, 1, . . . , n variables computed earlier in the algorithm:

c2k−1 = − 1
28k

c2k = −8k

}
j = 1, . . . , 2m

c2m+j =
1

2
(f+j − f

−
j), j = 1, 2, . . . , l

We wish to take equation (6) and make it look like

n∑
j=0

cjαj ≡ τ mod 8m+1, αj ∈ {−1,+1}.

Replacing the values from (6) with the corresponding cj values gives us

(7)

m∑
k=0

−c2k−1 + c2k−1α2k−1 − c2k + c2kα2k︸ ︷︷ ︸
(?)

−
∑
xi∈σk

8k
(

1

2
− 1

2
α2m+i

)
−
∑
xi∈σk

8k
(

1

2
+

1

2
α2m+i

)
︸ ︷︷ ︸

(??)

+ 8k︸︷︷︸
(???)


on the LHS. We first turn our attention to (?). Notice how the pair (2k− 1, 2k)

over the range [0,m] covers the range [0, 2m], meaning that

14 QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION

m∑
k=0

(c2k−1 + c2k) =

2m∑
i=0

ci.

In particular, separating the terms of the summation into two parts gives us

(?)︷ ︸︸ ︷
m∑
k=0

(c2k−1α2k−1)−
m∑
k=0

(c2k−1 + c2k) =

2m∑
j=0

cjαj −
2m∑
j=0

cj

Recall from the algorithm that

f+i =
∑
xi∈σj

8j , i = 1, 2, . . . , l,

f−i =
∑
xi∈σj

8j , i = 1, 2, . . . , l.

Since f+j and f−j are both counting the number of literals in φR, it is easy to see

that
∑
xi∈φR

f+i =
∑
xi∈φR

f−i , since they range over all σk, and Σ is the set of all
σk relevant clause permutations. So every literal xi must appear the same number

of times as xi. This means
∑l
j=1 c2m+j = 0. Note how there exactly l variables in

φR. From this we have that

2m∑
j=0

cjαj −
2m∑
j=0

cj =

n∑
j=0

cjαj −
n∑
j=0

cj .

We now consider (??). It follows from (??) that

−
∑
xi∈σk

8k

2︸ ︷︷ ︸
f
+
i
2

−
∑
xi∈σk

8k

2︸ ︷︷ ︸
f
−
i
2

−8k

2

(∑
xi∈σk

α2m+i −
∑
xi∈σk

α2m+i

)
︸ ︷︷ ︸

=0 when summing over [0,m]

= −
∑
x̂i∈σk

1

2

(
f+i + f−i

)

where we say x̂i ∈ σk if xi ∈ σk or xi ∈ σk. The same argument from (?) can be
used to show that

−
m∑
k=0

∑
x̂i∈σk

1

2
(f+i + f−i) = −

m∑
k=0

∑
x̂i∈σk

f−i

QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION 15

Now we have a summation over all disjunctive clauses σk, and for each k we are
summing all occurrences in which x̂i ∈ σk. But this means we are summing all
times in which each variable occurs in all clauses. The number of variables is l, so
it follows that

−
m∑
k=0

∑
x̂i∈σk

f−i = −
l∑
i=1

f−i .

Let us now focus on (? ? ?). It is easy to see that

m∑
k=0

8k =
∑
σj∈φR

8j = −τφ

Plugging the results (note that these results already take into account the outer
summation

∑m
k=0, and thus we ommit it) from (?), (??), (? ? ?) in Equation 7 gives

us the following expression:

n∑
j=0

cjαj −
n∑
j=0

cj︸ ︷︷ ︸
(?)

−
l∑
i=1

f−i︸ ︷︷ ︸
(??)

− τφ︸︷︷︸
(???)

≡ 0 mod 8m+1

Isolating the first summation of (?) yields

n∑
j=0

cjαj ≡ τφ +

n∑
j=0

cj +

l∑
i=1

f−i mod 8m+1

The RHS of the congruence is exactly the definition of τ from the algorithm.
Therefore:

n∑
j=0

cjαj ≡ τ mod 8m+1, αj ∈ {−1,+1}

�

From the definition of θj , j = 0, . . . , n, it follows directly that the above is
equivalent to

n∑
j=0

θjαj ≡ τ mod 8m+1, αj ∈ {−1,+1}

16 QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION

Lemma 1. Let K and H be as in the algorithm. The general solution of the system

0 ≤ |x| ≤ H, x ∈ Z (1)

(H + x)(H − x) ≡ 0 mod K (2)

is given by

x =

n∑
j=0

αjθj , αj ∈ {−1,+1}, j = 0, 1, . . . , n.

Proof. Let us recall the definitions of K and H from the algorithm:

K =

n∏
i=0

pn+1
i , where p0 = 13 and p1, p2, . . . , pn primes exceeding 12.

H =

n∑
i=0

θi

It is obvious that x is a solution to the system. We need to prove that these are
the only solutions to the system. Let x be a solution to the system. Then

(H + x)(H − x) ≡ 0 mod pn+1
j , j = 0, 1, . . . , n

We will prove by contradiction. Assume that for some j0:

pj0 |(H + x) and pj0 |(H − x)

Then pj0 |(H + x) + (H − x) = 2H. But pj0 > 2 and pj0 is prime, so pj0 |H. It
then follows that pj0 |

∑n
j=0 θj . But from the definition of θj , we know that pj0 |θj

for all j 6= j0, since we have

θj ≡ 0 mod

n∏
i6=j

pn+1
i ⇒

n∏
i 6=j

pn+1
i |θj ⇒ pi|θj , i 6= j

So it must be that pj0 |θj0 , but from θj ’s definition:

θj 6≡ 0 mod pj ⇒ pj - θj

We end up in a contradiction. Therefore we can conclude that for all j, pn+1
j

divides either (H + x) or (H − x), but not both.

We define:

QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION 17

αj =

{
1, if pn+1

j |(H − x)

−1, if pn+1
j |(H + x)

x′ =

n∑
j=0

αjθj

So we have x′ ≡ αjθj ≡ αjH ≡ x mod pn+1
j , and x′ ≡ x mod pn+1

j , for all j,

and so x′ ≡ x mod K.

−H ≤ x′ ≤ H
−H ≤ x ≤ H

}
⇒ |x− x′| ≤ 2H

But pj ≥ (4(n+ 1)8m+1)
1

n+1 , and let

λj =
θj∑n

i=0
i6=j

pn+1
i

We have that λj < 2·8m+1 for each j. Each term in H is bounded by K/2(n+1),
so 2H < K. This means |x − x′| < K, but x′ ≡ x mod K. Therefore, it must be
that x = x′.

Thus x′ is a solution and is the same as x, meaning any solution of the system
is of that form. �

From Lemma 1, the condition

n∑
j=0

θjαj ≡ τ mod 8m+1

is equivalent to the system:

(i) 0 ≤ |x| ≤ H, x ∈ Z,
(ii) x ≡ τ mod 8m+1, (I)

(iii) (H + x)(H − x) ≡ 0 mod K

Lemma 2. Let τ be odd, x ∈ Z, k ≥ 3

(τ + x)(τ − x) ≡ 0 mod 2k+1 ⇐⇒ either τ + x ≡ 0 mod 2k

or τ − x ≡ 0 mod 2k

18 QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION

Proof. We first prove the converse (⇐=):

Assume it is possible for both cases to be true.

τ + x ≡ 0 mod 2k ⇒ τ ≡ −x mod 2k

τ − x ≡ 0 mod 2k ⇒ τ ≡ x mod 2k

So τ ≡ x ≡ 0 mod 2k. But τ is odd, leading to a contradiction. Therefore, only
one of the two can be true at the same time. Consider the first case (τ + x ≡ 0
mod 2k). So (τ + x) ≡ 0 mod 2k ⇒ (τ + x)(τ − x) ≡ 0 mod 2k. In other words,
(τ +x)(τ −x) = 2k · c. Multiplying 2 on both sides yields 2(τ +x)(τ −x) = 2k+1 · c.
Converting it back to its congruence form gives us 2(τ + x)(τ − x) ≡ 0 mod 2k+1.
But τ +x ≡ 0 mod 2k, so we can substitute (τ +x) for 2k, giving 2 · 2k · c(τ −x) =
2k+1c(τ − x) ≡ 0 mod 2k+1. We do the same for τ − x ≡ 0 mod 2k.

We now prove the direct implication (⇒):

(τ + x)(τ − x) ≡ 0 mod 2k+1 ⇒ either τ + x ≡ 0 mod 2k

or τ − x ≡ 0 mod 2k

We can rewrite (τ + x)(τ − x) ≡ 0 mod 2k+1 as (τ + x)(τ − x) = 2k+1 · c =
2k(2c) = (τ + x)(τ − x). So (τ + x)(τ − x) ≡ 0 mod 2k.

Let a = τ + x and b = τ − x. We need to show that the cases:

(1) a ≡ 0 mod 2k and b 6= 0 mod 2k

(2) b 6≡ 0 mod 2k and b 6≡ 0 mod 2k

are impossible if a · b ≡ 0 mod 2k. We take case (1) into consideration first.

{
τ + x ≡ 0 mod 2k

τ − x ≡ 0 mod 2k

But from the converse’s proof, we know that this is impossible. Now we consider
the second case.


τ + x 6≡ 0 mod 2k

τ − x 6≡ 0 mod 2k

(τ + x)(τ − x) ≡ 0 mod 2k
⇒


2k - τ + x

2k - τ − x
2k - (τ + x)(τ − x)

Which is a contradiction. Therefore, the two cases are impossible. It is easy
to see that all the remaining cases are the ones listed in the Lemma, and all are
true. �

QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION 19

Consider the system (I). The conditions of Lemma 2 apply to the system. There-
fore system (I) is satisfiable if and only if system (II) is also satisfiable:

(i) 0 ≤ |x| ≤ H, x ∈ Z,
(ii) (τ + x)(τ − x) ≡ 0 mod 2 · 8m+1, (II)

(iii) (H + x)(H − x) ≡ 0 mod K

From Lemma 2, (I) (ii) satisfies if and only if (II) (iii) satisfies, since if τ − x ≡ 0
mod 8m+1, then it satisfies (I) (ii); and if τ + x ≡ 0 mod 8m+1, then it satisfies (i)
and (iii).

Note how:

(i) (τ + x)(τ − x) ≡ τ2 − x2 ≡ 0 mod 2 · 8m+1

(ii) (H + x)(H − x) ≡ H2 − x2 ≡ 0 mod K

So we can restrict condition (i) to only positive integers:

0 ≤ x1 ≤ H, x1 ∈ Z

Also note that gcd(2 · 8m+1,K) = 1, since K is a product of odd primes (in
fact greater than 12) and 2 · 8m+1 a power of 2. Because of that, we can join both
conditions (ii) and (iii) from system (II).

λ12 · 8m+1(H2 − x21) + λ2K(τ2 − x21) ≡ 0 mod 2 · 8m+1 ·K

Where λ1 and λ2 are parameters we can freely choose subject to the following
condition:

gcd(λ1,K) = gcd(λ2, 2 · 8m+1) = 1, λ1, λ2 ∈ Z

We join these conditions into the new system (III):

(i) 0 ≤ x1 ≤ H, x1 ∈ Z,
(ii) λ12 · 8m+1(H2 − x21) + λ2K(τ2 − x21) ≡ 0 mod 2 · 8m+1 ·K, (III)

(iii) gcd(λ1,K) = gcd(λ2, 2 · 8m+1) = 1, λ1, λ2 ∈ Z.

In fact, choosing λ1 and λ2 provides proofs for two problems: the quadratic
Diophantine problem (which we will mention later) and for the QCP. Furthermore,

20 QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION

conditions (III) (i), (ii) are satisfiable for any λ1, λ2 obeying (III) (iii) or for no λ1
and λ2.

We now finally provide a proof for Theorem 1.

Proof of Theorem 1. Choose λ1 = λ2 = 1. It obviously satisfies (III) (iii). We
rewrite (III) (ii) with these values:

2 · 8m+1(H2 − x21) +K(τ2 − x21) ≡ 0 mod 2 · 8m+1 ·K
2 · 8m+1H2 − 2 · 8m+1x21 +Kτ2 − x21K ≡ 0 mod 2 · 8m+1 ·K
Kτ2 + 2 · 8m+1 ·H2 ≡ (2 · 8m+1 +K) · x21 mod 2 · 8m+1 ·K

Note how gcd(2 · 8m+1 + K, 2 · 8m+1 ·K) = 1, and as such there exists an inverse

(2 · 8m+1 +K)
−1

. Multiplying the inverse on both sides, yields:

(2 · 8m+1 +K)
−1·(2·8m+1+K)x21 ≡ (2 · 8m+1 +K)

−1
(Kτ2+2·8m+1·H2) mod 2·8m+1·K

Rewriting the expression above gives us:

x21 ≡ (2 · 8m+1 +K)
−1

(Kτ2 + 2 · 8m+1 ·H2) mod 2 · 8m+1 ·K

Note how this is exactly the output of the algorithm for the QCP. Call α =

(2 · 8m+1 +K)
−1

(Kτ2 + 2 · 8m+1 ·H2) and β = 2 · 8m+1 ·K. Rename x1 as x. Note
how we now have:

x2 ≡ α mod β

Renaming H as γ gives us the restriction

0 ≤ x2 ≤ γ

where α, β, γ ∈ ω. But this is exactly the theorem. So the QCP is satisfiable
if and only if system (III) is satisfiable. But (III) is satisfiable if and only if the
propositional formula (i.e. 3-SAT) is satisfiable. From this we conclude that QCP
is NP-complete. �

4. Intuition

In this section we try to give some intuition on the reduction. It might be
convenient to keep the reduction and algorithm sections close by, so that one can
reference them back following the statements made here.

One can summarize the proof as trying to find an algorithm that converts a 3-
CNF formula to an expression of the quadratic congruence form. In the algorithm

QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION 21

stated in the last section, we took as input the 3-CNF formula φ and as output an
expression of the QCP form. We do not give a particular form for φ because it is
not needed for the proof. In fact, we only need to prove that φ is satisfiable if and
only if the quadratic congruence formula is satisfiable (i.e. there is a solution for x
obeying the QCP conditions). The satisfiability of φ is guaranteed by the 3-SAT
problem, so our goal is then to show that if we can find a valuation for the 3-SAT
problem, then there is a corresponding valuation for the QCP to be satisfiable.

The proof’s first step is to show that, by using a certain function r, we can
transform the 3-CNF formula to a congruence. That is, show that the LHS below
is satisfiable if and only if the RHS is satisfiable.

m∑
k=0

Rk · 8k ≡ 0 mod 8m+1 ⇐⇒ φ

We do this by defining Rk dependent on σk, so that Rk is satisfiable if and only
if all σk are satisfiable (and therefore φ satisfiable). Now that the set of all Rk is
satisfiable if and only if φ is satisfiable, we need to manipulate Rk such that there
is a congruence in there somewhere, as we need to have something that resembles
x2α ≡ β. We do this by summing all clauses σk. Note that in Equation 3, we
are summing all σk through Rk. In fact, one can think of each term Rk · 8k as an
octal encoding of each 3-clause (23) (thanks to Thales for this great insight). This
encoding maps a certain valuation yk at each clause. If we look back to the proof
of Equation 2, we can see that there are 4 possible valuations (one can easily see
that other permutations are equivalent) for yk. This valuation is encoded by yk,
as there are only 4 possible values of yk that make Rk satisfiable: {0, 1, 2, 3}. So
the set of {yk ∈ {0, 1, 2, 3}|0 ≤ k ≤ m} is actually the 3-SAT valuation. Note how
in Equation 3, for Rk to be zero, yk ∈ {0, 1, 2, 3}, and so the summation on the
RHS encodes the same valuation.

The goal is then to keep this encoding satisfiable if and only if φ is satisfiable,
and also get something of the form x2 ≡ α mod β. We do this by getting to Equa-
tion 4. Equation 5 then replaces variables from Equation 4 with variables from
the algorithm, whilst at the same time maintaining the if and only if satisfiability.
The rest of the proof does similar transformations, trying to keep the satisfiability
of each system and also transforming the expressions into something that looks
like Theorem 1.

5. Related problems

Manders and Adleman proved in both [MA76; MA78] that not only the QCP is
NP-complete, but also that

Theorem 2. The (problem of accepting the) set of Diophantine equations (in a
standard binary encoding) of the form

αx21 + βx2 − γ = 0; α, β, γ ∈ ω,
which have natural-number solutions x1, x2 is NP-complete.

22 QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION

The proof of this theorem starts exactly as the reduction we showed, with the
only difference being in the choice of λ1 and λ2. We leave it to the reader to prove
this (take λ1 = (K + 1)

3
and λ2 = −1).

Problem: 0-1 knapsack

Input Set of n items, weights w1, . . . , wn, values v1, . . . , vn and maximum capacity
W , all positive integers

Description Can a value of at least V be achieved without exceeding W?

Reduction Exact cover

Reference [Karp, 1972 ([Kar72])]

When describing the algorithm in [MA78], Adleman and Manders commented
on the algorithm’s similarity to the Knapsack problem. In fact, we can reduce
QCP to Knapsack, as the algorithm for Knapsack can be used as a subroutine for
the algorithm quoted in this paper. In fact, Knapsack is satisfiable if and only if∑n
j=0 cjαj ≡ τ mod 8m+1.

We end this paper with a list of selected Number Theory problems that were
shown to be NP-complete. This list was extracted from [GJ79]. All the following
problems are decision problems, meaning we will ommit their output, as they should
all return a boolean value. We label as Reduction the transformation done in the
proof (e.g. the 3-SAT was reduced to the QCP in our proof), and as Reference
the article with the reduction. The field Comment contains comments given by
Garey and Johnson on each problem [GJ79].

Problem: simultaneous incongruences

Input Collection {(a1, b1), . . . , (an, bn)} of ordered pairs of positive integers, with
ai ≤ bi for 1 ≤ i ≤ n

Description Is there an integer x such that, for 1 ≤ i ≤ n, x 6≡ ai mod bi?

Reduction 3-SAT

Reference [SM73]

Problem: root of modulus 1

Input Ordered pairs (a[i], b[i]), 1 ≤ i ≤ n, of integers, with each b[i] ≥ 0.

Description Does the polynomial
∑n
i=1 a[i] · zb[i] have a root on the complex unit

circle, i.e., is there a complex number q with |q| = 1 such that
∑n
i=1 a[i] · qb[i] =

0?

Reduction 3-SAT

Reference [Pla77a]

Comment Not known to be in NP or co-NP.

QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION 23

Problem: cosine product integration

Input Sequence (a1, a2, . . . , an) of integers

Description Does
∫ 2π

0
(
∏n
i=1 cos(aiθ))dθ = 0?

Reduction Partition

Reference [Pla76]

Comment Solvable in pseudo-polynomial time.

Problem: non-trivial greatest common divisor

Input Sequences Ai =< (ai[1], bi[1]), . . . , (ai[k], bi[k]) >, 1 ≤ i ≤ m, of pairs of
integers, with each bi[j] ≥ 0.

Description Does the gcd of the polynomials
∑k
j=1 ai[j] · zbi[j], 1 ≤ i ≤ m, have

a degree greater than zero?

Reduction 3-SAT

Reference [Pla77b]

Comment Not known to be in NP or co-NP. Remains NP-hard if each ai[j] is
either −1 or +1 [Pla76] or if m = 2 [Pla77a]. The analogous problem in which
the instance also includes a positive integer K, and we are asked if the least
common multiple of the given polynomials has degree less than K, is NP-hard
under the same restrictions. Both problems can be solved in pseudo-polynomial
time using standard algorithms.

Problem: simultaneous divisibility of linear polynomials

Input Vectors ai = (ai[0], . . . , ai[m]) and bi = (bi[0], . . . , bi[m]), 1 ≤ i ≤ n, with
positive integer entries

Description Do there exist positive integers x1, x2, . . . , xm such that, for 1 ≤ i ≤
n, ai[0] +

∑m
j=1(ai[j] · xj) divides bi[0] +

∑m
j=1(bi[j] · xj)?

Reduction Quadratic diophantine equations (i.e. Theorem 2)

Reference [Lip77; Lip78]

Comment Not known to be in NP, but belongs to NP for any fixed n. NP-
complete for any fixed n ≥ 5. General problem is undecidable if the vector
entries and the xj are allowed to range over the ring of “integers” in a real
quadratic extension of the rationals.

24 QUADRATIC CONGRUENCE POLYNOMIAL-TIME REDUCTION

References

[Coo71] Stephen Cook. “The Complexity of Theorem-proving Procedures”. In:
STOC ’71 Proceedings of the third annual ACM symposium on Theory
of computing (1971).

[GJ79] Michael Garey and David Johnson. Computers and Tractability: A Guide
to the Theory of NP-completeness. New York, NY, USA: W. H. Freeman
& Co., 1979. isbn: 0716710447.

[Hil02] David Hilbert. “Mathematical problems”. In: Bulletin of the New York
Mathematical Society 10 (1902).

[Kar72] Richard Karp. “Reducibility Among Combinatorial Problems”. In: Com-
plexity of Computer Computations (1972).

[Lev73] Leonard Levin. “Universal Sequential Search Problems”. In: Probl. Peredachi
Inf. 9 (1973).

[Lip77] L. Lipshitz. “A remark on the Diophantine problem for addition and
divisibility”. In: (1977).

[Lip78] L. Lipshitz. “The Diophantine problem for addition and divisibility”. In:
Transamerican Mathematical Society 235 (1978).

[MA76] Kenneth Manders and Leonard Adleman. “NP-complete Decision Prob-
lems for Quadratic Polynomials”. In: STOC ’76 Proceedings of the eighth
annual ACM symposium on Theory of computing (1976).

[MA78] Kenneth Manders and Leonard Adleman. “NP-Complete Decision Prob-
lems for Binary Quadratics”. In: Journal of Computer and System Sci-
ences 16 (1978).

[Mat70] Yuri Matiyasevich. “Diofantovost’perechislimykh mnozhestv (Enumer-
able sets are diophantine)”. In: Doklady Akademii Nauk SSSR (1970).

[Pla76] D. Plaisted. “Some polynomial and integer divisibility problems are NP-
hard”. In: Proceedings Annual Symposium on Foundations of Computer
Science 17 (1976).

[Pla77a] D. Plaisted. “New NP-hard and NP-complete polynomial and integer di-
visibility problems”. In: Proceedings Annual Symposium on Foundations
of Computer Science 18 (1977).

[Pla77b] D. Plaisted. “Sparse complex polynomials and polynomial reducibility”.
In: Journal of Computational Systems Science 14 (1977).

[SM73] J. L. Stockmeyer and A. R. Meyer. “Word problems requiring exponen-
tial time”. In: Proceedings 5th Annual ACM Symposium on Theory of
Computing (1973).

	1. History
	2. Brief Review on Complexity Theory
	3. The Reduction
	3.1. The algorithm
	3.2. The proof

	4. Intuition
	5. Related problems
	References

