Learning Probabilistic Sentential Decision Diagrams Under Logic Constraints by Sampling and Averaging

Renato L. Geh

renatolg@ime.usp.br

Denis D. Mauá

ddm@ime.usp.br

Department of Computer Science

Institute of Mathematics and Statistics, University of São Paulo

UAI 2021

Probabilistic Sentential Decision Diagrams

Probabilistic Sentential Decision Diagrams (PSDDs):

- Structured Decomposable probabilistic circuits
- Encode certain knowledge as logic constraints
- Encode uncertain knowledge as probabilities
- Interpretable syntax
- Many inferences are exact and tractable :

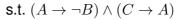
V	Evi	den	се	
_/				

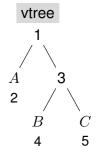
✓ Most Probable Explanation

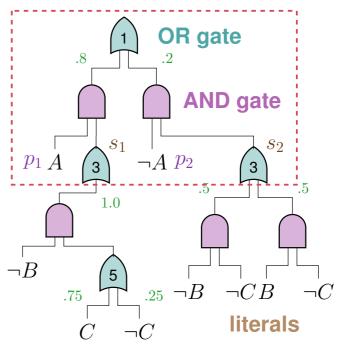
✓ Marginals

Expectations

✓ MLE Parameter Learning


✓ KL-divergence


• PSDD circuit represents recursive decomposition of formula:


$$\bigvee_{i=1}^k (p_i \wedge s_i)$$
, where each *prime* p_i and *sub* s_i are logical formulae

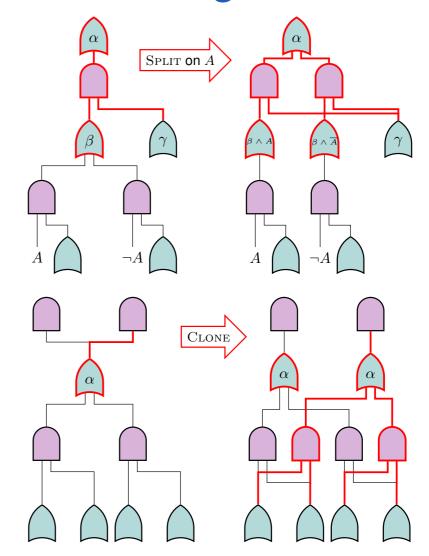
Darwiche [2011], Kisa et al. [2014]

\overline{A}	B	C	Pr
0	0	0	0.1
0	1	0	0.1
1	0	0	0.2
1	0	1	0.6

Probabilistic Sentential Decision Diagrams

Existing PSDD learners:

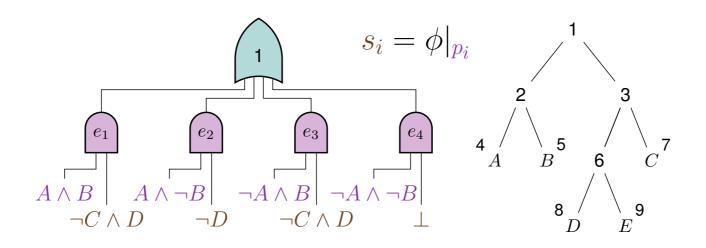
LEARNPSDD (Liang et al. [2017]):


- Requires initial PSDD encoding the support...
- Scales poorly to complex formulae and/or high dimension...
- Costly whole circuit evaluation at every iteration...
- Very good performance!

STRUDEL (Dang et al. [2020]):

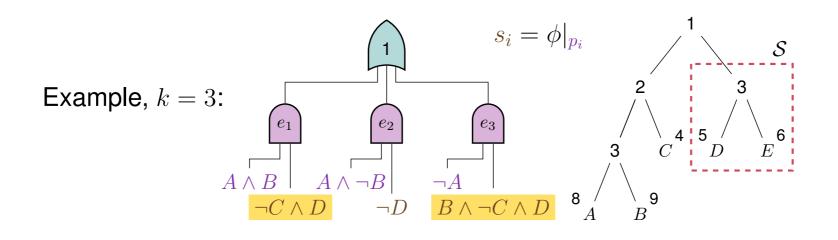
- ✓ Constructs an initial PSDD structure (from a CLT)!
- ▼ But does not encode constraints...
- ✓ Scales to high dimension!
- 🔀 As long as the circuit doesn't get too big...

SAMPLEPSDD (this work):


- Scales to high dimension and complex formulae!
- ✓ Constructs a structure consistent with constraints!
- But does so by relaxing the formula...
- Performance varies on set bounds and vtree structure...

SAMPLEPSDD

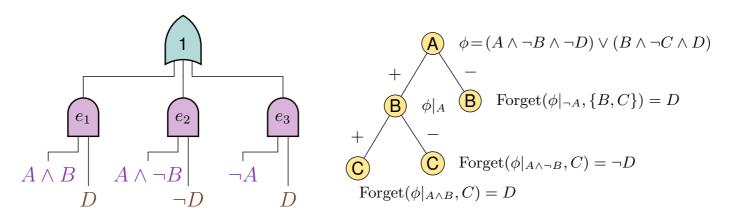
Common assumption: primes p_i are conjunctions of literals.


$$\phi(A, B, C, D) = (A \land \neg B \land \neg D) \lor (B \land \neg C \land D)$$

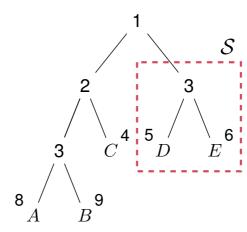
Problem: size of circuit is exponential in the size of p_i

SAMPLEPSDD

Solution: randomly sample a bounded number (k) of p_i



But: this violates structure decomposability


 $\neg C \land D$ contains C, and $C \notin S$ $\neg B \land \neg C \land D$ contains B and C, and $B, C \notin S$

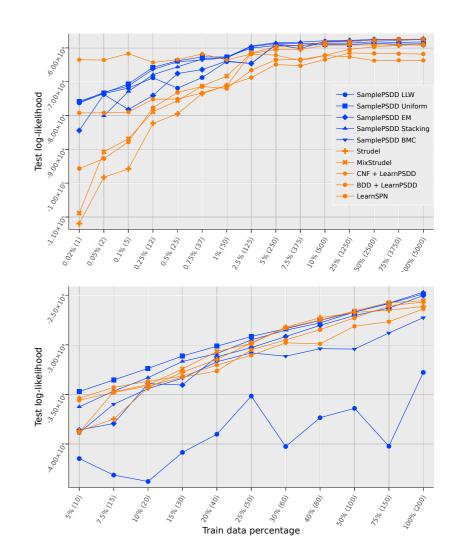
SAMPLEPSDD

New solution: relax logical constraints ϕ

Now all s_i respect \mathcal{S}

Evaluation: we sample 30 PSDDs and use 5 ensemble strategies:

- Likelihood weighting (LLW),
- Uniform weights,
- Expectation Maximization (EM),
- ▲ Stacking,
- **▼** Bayesian Model Combination (BMC),


comparing against STRUDEL, LEARNPSDD and LEARNSPN.

Datasets: we evaluate with 5 data + knowledge as logic constraints:

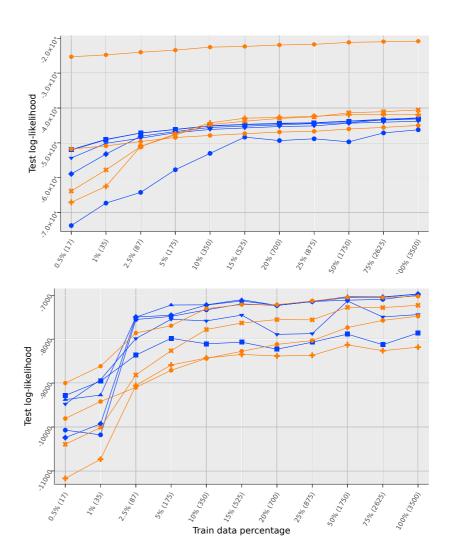
	Dataset	#vars	#train	ϕ 's size
\Rightarrow	LED	14	5000	23
\Rightarrow	LED + IMAGES	157	700	39899
	Sushi Ranking	100	3500	17413
	Sushi Top 5	10	3500	37
	DOTA 2 GAMES	227	92650	1308

Our approach fares **better** with **fewer** data , yet remains **competitive** under **lots of data** .

Mattei et al. [2020], Kamishima [2003], Shen et al. [2017], Choi et al. [2015], Gens and Domingos [2013], Dang et al. [2020]

Evaluation: we sample 30 PSDDs and use 5 ensemble strategies:

- Likelihood weighting (LLW),
- Uniform weights,
- Expectation Maximization (EM),
- ▲ Stacking,
- **▼** Bayesian Model Combination (BMC);


comparing against STRUDEL, LEARNPSDD and LEARNSPN.

<u>Datasets:</u> we evaluate with 5 data + knowledge as logic constraints:

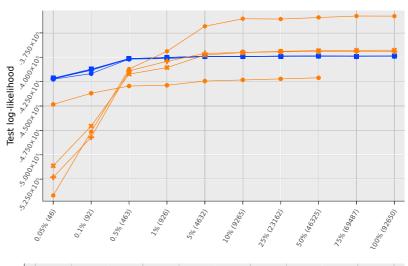
	Dataset	#vars	#train	ϕ 's size
	LED	14	5000	23
	LED + IMAGES	157	700	39899
\Rightarrow	Sushi Ranking	100	3500	17413
\Rightarrow	Sushi Top 5	10	3500	37
	Dota 2 Games	227	92650	1308

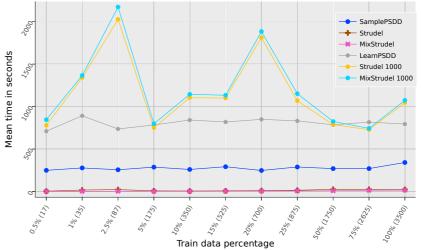
Our approach fares **better** with **fewer** data , yet remains **competitive** under **lots of data**

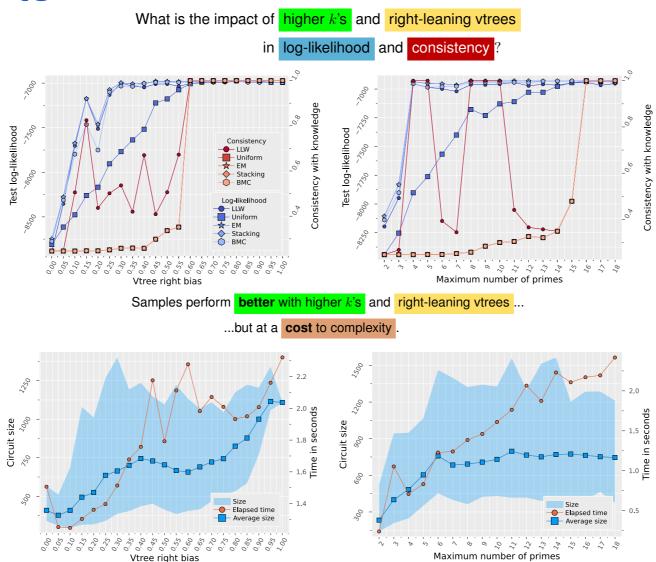
Mattei et al. [2020], Kamishima [2003], Shen et al. [2017], Choi et al. [2015], Gens and Domingos [2013], Dang et al. [2020]

Evaluation: we sample 30 PSDDs and use 5 ensemble strategies:

- Likelihood weighting (LLW),
- Uniform weights,
- Expectation Maximization (EM),
- Stacking,
- **▼** Bayesian Model Combination (BMC),


comparing against STRUDEL, LEARNPSDD and LEARNSPN.


Datasets: we evaluate with 5 data + knowledge as logic constraints:


Dataset	#vars	#train	ϕ 's size
LED	14	5000	23
LED + IMAGES	157	700	39899
Sushi Ranking	100	3500	17413
Sushi Top 5	10	3500	37
DOTA 2 GAMES	227	92650	1308

Our approach fares **better** with **fewer** data , yet remains **competitive** under **lots of data** .

Mattei et al. [2020], Kamishima [2003], Shen et al. [2017], Choi et al. [2015], Gens and Domingos [2013], Dang et al. [2020]

