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Probabilistic Sentential Decision Diagrams

Probabilistic Sentential Decision Diagrams (PSDDs):

 Structured Decomposable probabilistic circuits
* Encode certain knowledge as logic constraints
» Encode uncertain knowledge as probabilities

Interpretable syntax

* Many inferences are exact and tractable :

¥ Evidence # Most Probable Explanation
@ Marginals ¥ Expectations
# MLE Parameter Learning # KL-divergence

PSDD circuit represents recursive decomposition of formula:

k
\/(pz- A s;), Where each prime p; and sub s; are logical formulae
=1

Darwiche|[2011], Kisa et al.|[2014]
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Probabilistic Sentential Decision Diagrams

Existing PSDD learners:

LEARNPSDD (Liang et al.|[2017]):
W Requires initial PSDD encoding the support...

X Scales poorly to complex formulae and/or high dimension...

X Costly whole circuit evaluation at every iteration...

uf Very good performance!

STRUDEL (Dang et al.|[2020]):

@ Constructs an initial PSDD structure (from a CLT)!
X But does not encode constraints...

# Scales to high dimension!

X As long as the circuit doesn’t get too big...

SAMPLEPSDD (this work):

# Scales to high dimension and complex formulae!

uf Constructs a structure consistent with constraints!

X But does so by relaxing the formula...

X Performance varies on set bounds and vtree structure...



SAMPLEPSDD
Common assumption: primes p; are _

¢»(A,B,C,D)=(AN-BA-D)V (BAN=CAD)

¢‘pz 1
# # # # /\ /\
ANB AN—-B -ANB| -AN-B
~CAD -D ~CAD 1 1

Problem: size of circuit is exponential in the size of p;



SAMPLEPSDD

Solution: randomly sample a bounded number (k) of p;

= Q|

Example, k = 3: # ; # /\ /\E

~CAD  -D BA-CAD 8A 5°

But: this violates structure decomposability

—C'N D contains C,and C ¢ S
-BA—=C ANDcontains Band C,and B,C ¢ S



SAMPLEPSDD

(A) ¢=(AAN=BA-D)V(BA-CAD)

@ Forget(¢|-a,{B,C}) =

O O Forget(¢|an-B,C) =D

New solution: relax logical constraints ¢
Forget(¢|ans,C) = D
/ _\__ =

ANDB AN-B —-A
D -D D

Now all s; respect S / \ / \
4 5 6.



Experiments

Evaluation: we sample 30 PSDDs and use 5 ensemble strategies:

@ Likelihood weighting (LLW),

B uniform weights,

€ Expectation Maximization (EM),

A Stacking,

V¥ Bayesian Model Combination (BMC);

—®&— SamplePSDD LLW
—ll— SamplePSDD Uniform
—4&— SamplePSDD EM
—=a— SamplePSDD Stacking
—w— SamplePSDD BMC
—— Strudel

—3%— MixStrudel

—®— CNF + LearnPSDD
~—®— BDD + LearnPSDD
—®— LearnSPN

Test log-likelihood

comparing against STRUDEL, LEARNPSDD and LEARNSPN.
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Datasets: we evaluate with 5 data + knowledge as logic constraints:

Dataset #vars #train ¢’s size
LED 14 5000 23
LED + IMAGES 157 700 39899
SUSHI RANKING 100 3500 17413
SusHI TorP 5 10 3500 37
DoTA 2 GAMES 227 92650 1308

=
=

Test log-likelihood

Our approach [fares better with fewer datal, yet

Mattei et al.|[2020], Kamishimal[2003], [Shen et al.|[2017], N S
Choi et al.|[2015], [Gens and Domingos|[2013], [Dang et al.|[2020] Train data percentage
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